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Importance of our Community Building:

Attending & Participating at our community conferences
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networking, sharing and building your career over time
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Outline – Part Two

▪ Machine Learning Fundamentals
▪ Learning Methods Overview, Prerequisites, Classification Application & Linear Perceptron Model
▪ Training & Testing Process using different Datasets, Food Inspection Classification Application Example
▪ Linear Regression Model & Logistic Regression Model

▪ Artificial Neural Network (ANN) Basics
▪ Handwritten Character Recognition MNIST Dataset & Understanding Multi-Class Classification Approach
▪ Limits of the Perceptron Learning Model, Multi-Output Perceptron Model & ANNs with Backpropagation
▪ Observe Growth of Trainable Parameter & Understanding Overfitting

▪ Convolutional Neural Network (CNN) Basics
▪ Moving from Shallow Learning to Deep Learning, MNIST Application Example with CNNs in Keras
▪ Understanding Feature Maps in CNN Architecture, Hyperparameter Complexity & Adam Optimizer
▪ Understanding Accuracy Improvements & Limits

▪ Selected Parallel & Scalable Machine & Deep Learning Techniques 
▪ piSVM MPI Implementation & Remote Sensing Applications
▪ Computing Footprint in Training, Testing & Validation Methods, Distributed Training
▪ Parallel & Scalable HPDBSCAN for Data Clustering & Quantum Machine Learning, Hyperparameter tuning

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

▪ All HPC scripts will be available with 

ISC Online Material after the event 

▪ All source & data free to use
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More Information: Full HPC Spring 2023 University Course

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

➢ https://www.youtube.com/channel/UCWC4VKHmL4NZgFfKoHtANKg

‘… I have found your wonderful HPC lectures
on YouTube, and I am finding them very helpful for
learning the supercomputing tools necessary for
my research….‘

- student in computational nuclear physics from USA

Selected Testimonials from our community:

CFD & AI SPECIAL
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Machine Learning Fundamentals
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Machine Learning Models – Short Overview & Introduction to Classification

▪ Machine learning methods can be roughly categorized in classification, clustering, or regression augmented with various techniques for data 

exploration, selection, or reduction – despite the momentum of deep learning, traditional machine learning algorithms are still widely relevant today

Classification Clustering Regression

▪ Groups of data exist
▪ New data classified 

to existing groups

▪ No groups of data exist
▪ Create groups from

data close to each other

▪ Identify a line with
a certain slope
describing the data

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

[1] www.big-data.tips, ‘Data Classification‘
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Classification Machine Learning Model – Supervised Learning Example

▪ Each observation of the predictor measurement(s)
has an associated response measurement:
▪ Input

▪ Output

▪ Data

▪ (the output guides the learning process as a ‘supervisor‘)

▪ Goal: Fit a model that relates the response to the predictors
▪ Prediction: Aims of accurately predicting the response for future observations

▪ Inference: Aims to better understanding the relationship 
between the response and the predictors

▪ Supervised learning approaches fits a model that related the response to the predictors

▪ Supervised learning approaches are used in classification algorithms such as SVMs

▪ Supervised learning works with data = [input, correct output]

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

Classification
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Machine Learning Prerequisites & Computing Challenges – Revisited

1. Some pattern exists

2. No exact mathematical formula

3. Data exists

▪ Idea ‘Learning from Big Data‘
▪ Shared with a wide variety

of other disciplines

▪ E.g. signal processing, 
big data data mining, etc.

▪ Challenges 
▪ Data is often complex

▪ Requires ‘Big Data analytics‘

▪ Learning from data requires 
processing time → Clouds or
High Performance Compuing

▪ Machine learning is a very broad subject and goes from very abstract theory to extreme practice 

(‘rules of thumb’)

▪ Training machine learning models needs processing time (clouds or high performance computing)

▪ While data analysis is more describing the process of analysin the data, the term data analytics also 

includes and the necessary scalable or parallel infrastructure to perform analysis of ‘big data’

Data
Mining

Applied
Statistics

Data 
Science

Machine 
LearningComputing
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Simple Application Example: Classification of a Flower

(flowers of type ‘IRIS Setosa‘)

[2] Image sources: Species Iris Group of 
North America Database, www.signa.org  

(flowers of type ‘IRIS Virginica‘)

(new data: what type of flower is this?)

▪ Groups of data exist
▪ New data classified 

to existing groups

?
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The Learning Problem in the Example

Learning problem: A prediction task

▪ Determine whether a new Iris flower 
sample is a “Setosa” or “Virginica”

▪ Binary (two class) classification problem

▪ What attributes about the data help?

[2] Image sources: Species Iris Group of North America Database, www.signa.org  

(flowers of type ‘IRIS Setosa‘) (flowers of type ‘IRIS Virginica‘)

(what type of flower is this?)
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Feasibility of Machine Learning in this Example

1. Some pattern exists: 
▪ Believe in a ‘pattern with ‘petal length‘ & 

‘petal width‘ somehow influence the type

2. No exact mathematical formula
▪ To the best of our knowledge there is no 

precise formula for this problem

3. Data exists
▪ Data collection from UCI Dataset „Iris“

▪ 150 labelled samples (aka ‘data points‘)

▪ Balanced: 50 samples / class

[3] UCI Machine Learning 
Repository Iris Dataset

[4] Image source: Wikipedia, Sepal

▪ sepal length in cm
▪ sepal width in cm
▪ petal length in cm
▪ petal width in cm
▪ class: Iris Setosa, or

Iris Versicolour,  or
Iris Virginica

(four data attributes for each
sample in the dataset)

(one class label for each
sample in the dataset)
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Check Preparation Phase: Plotting the Data (Two Classes)
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(Recall: we believed in a ‘pattern‘ with ‘petal length‘ & ‘petal width‘ 
somehow influence the flower type)

(attributes with d=2)

(x1 is petal length,
x2 is petal width)

(what about the class labels?)

(N = 100 samples)
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Check Preparation Phase: Class Labels
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(still no machine learning so far)

(N = 100 samples)
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Linearly Seperable Data & Linear Decision Boundary
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?

▪ The data is linearly seperable

(rarely in practice)

▪ A line becomes a

decision boundary to 

determine if a new data point 

is class red/green

(N = 100 samples)
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Separating Line & Mathematical Notation

▪ Data exploration results
▪ A line can be crafted between the classes since linearly seperable data

▪ All the data points representing Iris-setosa will be below the line 

▪ All the data points representing Iris-virginica will be above the line

▪ More formal mathematical notation
▪ Input:

▪ Output: 
class +1 (Iris-virginica) 
or class -1 (Iris-setosa)

(attributes of flowers)

(decision boundary)

Iris-virginica if

Iris-setosa if

(compact notation)

(wi and threshold are
still unknown to us)
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A Simple Linear Learning Model – The Perceptron

▪ Human analogy in learning
▪ Human brain consists of nerve cells called neurons

▪ Human brain learns by changing the strength of neuron connections (wi)
upon repeated stimulation by the same impulse (aka a ‘training phase‘)

▪ Training a perceptron model means adapting the weights wi

▪ Done until they fit input-output relationships of the given ‘training data‘

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

(representing the threshold)

(training data)

(modelled as
bias term)

d

(dimension of features)

(activation
function,
+1 or -1)

(the signal)

[5] F. Rosenblatt, 1957
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Perceptron – Example of a Boolean Function

(training data)

(trained perceptron model)

(training phase)

▪ Output node interpretation
▪ More than just the weighted sum of the inputs – threshold (aka bias)

▪ Activation function sign (weighted sum): takes sign of the resulting sum

(e.g. consider sample #3,
sum is positive (0.2) → +1)

(e.g. consider sample #6,
sum is negative (-0.1) → -1)
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Summary Perceptron & Hypothesis Set h(x)

▪ When: Solving a linear classification problem
▪ Goal: learn a simple value (+1/-1) above/below a certain threshold

▪ Class label renamed: Iris-setosa = -1 and Iris-virginica = +1

▪ Input:

▪ Linear formula

▪ All learned formulas are different hypothesis for the given problem

(parameters that define
one hypothesis vs. another)

(red parameters correspond
to the redline in graphics)

(attributes in one dataset)

(take attributes and give them different weights – think of ‘impact of the attribute‘)

(each green space and
blue space are regions
of the same class label
determined by sign
function) (but question remains: how do

we actually learn wi and threshold?)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

[5] F. Rosenblatt, 1957
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Perceptron Learning Algorithm – Understanding Vector W

▪ When: If we believe there is a linear pattern to be detected
▪ Assumption: Linearly seperable data (lets the algorithm converge)

▪ Decision boundary: perpendicular vector wi fixes orientation of the line

▪ Possible via simplifications since 
we also need to learn the threshold:

(vector notation, using T = transpose)wi

(equivalent dotproduct notation)

(all notations are equivalent and 
result is a scalar from which 

we derive the sign)

[6] Rosenblatt, 1958

(points on the decision
boundary satisfy this equation)
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Perceptron Learning Algorithm – Learning Step

▪ Iterative Method using (labelled) training data

1. Pick one misclassified
training point where:

2. Update the weight vector: 

▪ Terminates when there are
no misclassified points

(a) adding a vector  or
(b) subtracting a vector

x

w + yx

w

y = +1

y = -1

x

w – yx 

w

(converges only with
linearly seperable data)

(one point at a time is picked)

(a)

(b)

(yn is either +1 or -1)

[7] Perceptron Visualization
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Predicting Task: Obtain Class of a new Flower ‘Data Point‘
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(N = 100 samples)
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Food Inspection in Chicago: Advanced Application Example

1. Some pattern exists: 
▪ Believe in a pattern with ‘quality violations in checking restaurants‘ will somehow influence if food 

inspection pass or fail (binary classification)

2. No exact mathematical formula
▪ To the best of our knowledge there is no precise formula for this problem

3. Data exists
▪ Data collection 

from City of Chicago

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

▪ The goal of the advanced machine learning 

application with food inspection of restaurants 

in the City of Chicago is to predict the outcome 

of food inspection of new Chicago restaurants 

given some of existing violations of older

restaurants already obtained in Chicago

▪ A key question is if the new restaurant will pass 

or fail the inspection just based on violations
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Logistic Regression Using Non-Linear Activation Function

▪ Linear Classification
▪ Simple binary classification (linearly seperable)

▪ Linear combination of the inputs xi with weights wi

▪ Linear Regression
▪ Real value with the activiation being the identity function

▪ E.g. how much sales given marketing money spend on TV advertising 

▪ Logistic Regression
▪ Model/error measure/learning algorithm is different

▪ Captures non-linear data dependencies
using the so-called Sigmoid function

▪ Key idea is to bring values between
0 and 1 to estimate a probability

▪ (candidate model for pass/fail in our application)
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[Video for further Studies] Logistic Regression Shortly Explained

[8] YouTube video, Logistic Regression
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Artificial Neural Network (ANN) Basics
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Predicting Task: Obtain Class of a new Flower ‘Data Point‘ – Revisited
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(N = 100 samples)

[2] Image sources: Species Iris Group of North America Database, www.signa.org  
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Perceptron Model – General Mathematical Notation for one Neuron

BiasOutput

Sum

non-linear
activation function

linear combination of 
input data

Trainable
Weights

Constants

Input 
Data

▪ Simplify the perceptron learning model 

formula with techniques from linear 

algebra for mathematical convenience
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Multi-Class Classification: Handwritten Character Recognition MNIST Dataset

▪ Metadata
▪ Not very challenging dataset, but good for benchmarks & tutorials

▪ When working with the dataset 
▪ Dataset is not in any standard image format like jpg,

bmp, or gif (i.e. file format not known to a graphics viewer)

▪ Data samples are stored in a simple file format that is designed 
for storing vectors and multidimensional matrices (i.e. numpy arrays)

▪ The pixels of the handwritten digit images are organized row-wise 
with pixel values ranging from 0 (white background) 
to 255 (black foreground)

▪ Images contain grey levels as a result of an anti-aliasing technique 
used by the normalization algorithm that generated this dataset

(10 class 
classification 

problem)

▪ Handwritten Character Recognition 

MNIST dataset is a subset of a larger 

dataset from US National Institute of 

Standards (NIST)

▪ MNIST handwritten digits includes 

corresponding labels with values 0-9 and 

is therefore a labeled dataset

▪ MNIST digits have been size-normalized 

to 28 * 28 pixels & are centered in a fixed-

size image for direct processing

▪ Two separate files for training & test:

60000 training samples (~47 MB) &

10000 test samples (~7.8 MB)

(downloads data into ~home/.keras/datasets as
NPZ file format of numpy that provides

storage of array data using gzip compression)
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MNIST Dataset – Training/Testing Datasets & One Character Encoding

▪ Work on two disjoint datasets
▪ One for training only (i.e. training set)
▪ One for testing only (i.e. test set)
▪ Exact seperation is rule of thumb per use case 

(e.g. 10 % training, 90% test)
▪ Practice: If you get a dataset take immediately test data away

(‘throw it into the corner and forget about it during modelling‘)
▪ Once we learned from training data it has an ‘optimistic bias‘
▪ Usually start by exploring the dataset and its format & labels

Training Examples

(historical records, groundtruth data, examples)

‘test set’‘training set’

▪ Different phases in machine learning

▪ Training phases is a hypothesis search

▪ Testing phase checks if we are on the right track 

once the hypothesis is clear

▪ Validation phane for model selection (set fixed 

parameters and set model types)
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Deep Learning Frameworks using GPUs also good for Artificial Neural Networks

▪ TensorFlow
▪ One of the most popular deep learning frameworks available today

▪ Execution on multi-core CPUs or many-core GPUs

▪ Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-level deep learning frameworks like 

Tensorflow, CNTK, or Theano

▪ Created deep learning models with Keras run seamlessly on CPU and GPU via low-level deep learning frameworks

▪ The key idea behind the Keras tool is to enable faster experimentation with deep networks

▪ Keras is part of the more recent TensorFlow distributions

[9] Tensorflow 
Web page

▪ Tensorflow is an open source library for deep learning models using a flow graph approach

▪ Tensorflow nodes model mathematical operations and graph edges between the nodes are 

so-called tensors (also known as multi-dimensional arrays)

▪ The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)

▪ Tensorflow work with the high-level deep learning tool Keras in order to create models fast

▪ New versions of Tensorflow have Keras shipped with it as well & many further tools

▪ Keras
▪ Often used in combination with low-level frameworks like Tensorflow

[10] Keras 
Web page
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Using Google Colaboratory Cloud Infrastructure for Deep Learning with GPUs

▪ Google Colaboratory (free & pro version for 9.99 $ / month)
▪ ‘Colab’ notebooks are Jupyter notebooks that run in the Google cloud

▪ Possible to run Apache Spark via PySpark Jupyter notebooks in Colab (cf. Lecture 3)

▪ Possible to train Deep Learning networks via GPUs & Jupyter notebooks in Colab

▪ Highly integrated with other Google services (e.g., Google Drive for data)

▪ Access to vendor-specific Tensor Processing Units (TPUs)

[11] Google Colaboratory

▪ Google Colaboratory offers 

‘Colab‘ notebooks that are 

implemented with Jupyter 

notebooks that in turn run in 

the Google cloud and are 

highly integrated with other 

Google cloud services such 

as Google Drive thus 

making ‘Colab‘ notebooks 

easy to set up, access, and 

share with others

(for international students:
watch out – it uses the browser

language automatically)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

[12] Machine Learning Mastery MNIST Tutorial

▪ The portability of deep learning codes 

is hindered by the frequent updates of 

the different APIs of deep learning 

frameworks like Keras, Tensorflow, etc. 

(cf. different AWS EC2 AMI versions)

(tutorials & codes need updates)

(Clouds also face this update problem)
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MNIST Dataset – Data Exploration Script Training Data – Revisited 

▪ Loading MNIST 

training datasets 

(X) with labels (Y) 

stored in a binary 

numpy format

▪ Format is 28 x 28 

pixel values with 

grey level from 0 

(white background) 

to 255 (black 

foreground)

▪ Small helper 

function that prints 

row-wise one 

‘hand-written‘ 

character with the 

grey levels stored 

in training dataset

▪ Should reveal the 

nature of the 

number (aka label)

▪ Example: loop of the training dataset (e.g. first 10 characters as shown here)

▪ At each loop interval the ‘hand-written‘ character (X) is printed in ‘matrix notation‘ & label (Y)

[13] Jupyter @ JSC
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Data Inspection using Keras Dataset MNIST with Visualization in Jupyter
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MNIST Dataset with Perceptron Learning Model – Need for Reshape

▪ Two dimensional dataset (28 x 28)
▪ Does not fit well with input to Perceptron Model

▪ Need to prepare the data even more 

▪ Reshape data → we need one long vector

▪ Note that the reshape from two dimensional MNIST data to one 

long vector means that we loose the surrounding context

▪ Loosing the surrounding context is one factor why later in this 

lecture deep learning networks achieving essentially better 

performance by, e.g., keeping the surrounding context
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MNIST Dataset – Reshape & Normalization – Example

(numbers are 
between 0 and 1)

(one long input vector
with length 784)

(two dimensional original input with spatial context)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

▪ While a reshape is necessary for the Perceptron Model and 

traditional Artificial Neural Network (ANN) it is unfortunate 

that we loose the spatial context on one large vectors 

instead of 2D

▪ That is a loss of information that hinders better learning as 

shown in deep learning networks that use spatial context
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MNIST Dataset & Multi Output Perceptron Model

▪ 10 Class Classification Problem
▪ Use 10 Perceptrons for 10 outputs with softmax activation function (enables probabilities for 10 classes)

▪ Note that the output units are independent among each other in contrast to neural networks with one hidden layer

▪ The output of softmax gives class probabilities

▪ The non-linear Activation function ‘softmax‘ represents a generalization of the sigmoid function – it squashes an 

n-dimensional vector of arbitrary real values into a n-dimenensional vector of real values in the range of 0 and 1 –

here it aggregates 10 answers provided by the Dense layer with 10 neurons

(Dense
Layer)

(output
probabilities)

(Softmax
Layer)

(NB_CLASSES = 10)(softmax
activation)

(10 neurons sum 
with 10 bias)

(input m = 784)

(parameters = 784 * 10 + 10 bias 
= 7850)
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MNIST Dataset & Compile Multi Output Perceptron Model

▪ Compile the model
▪ Optimizer as algorithm used to update 

weights while training the model

▪ Specify loss function (i.e. objective
function) that is used by the optimizer
to navigate the space of weights

▪ (note: process of optimization is also 
called loss minimization)

▪ Indicate metric for model evaluation
(e.g., accuracy)

▪ Specify loss function
▪ Compare prediction vs. given class label

▪ E.g. categorical crossentropy

▪ Compile the model to be executed by the Keras backend (e.g. TensorFlow)

▪ Optimizer Gradient Descent (GD) uses all the training samples available for a 

step within a iteration

▪ Optimizer Stochastic Gradient Descent (SGD) converges faster: only one 

training samples used per iteration 

▪ Loss function is a multi-class logarithmic loss: target is ti,j and prediction is pi,j

▪ Categorical crossentropy is suitable for multiclass label predictions (default 

with softmax)

[14] Big Data Tips,
Gradient Descent
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Full Script: MNIST Dataset – Model Parameters & Data Normalization

▪ NB_CLASSES: 10 Class Problem 

▪ NB_EPOCH: number of times the model is exposed to the overall training set – at each 

iteration the optimizer adjusts the weights so that the objective function is minimized –

increasing leads to better accuracy, but also to overfitting

▪ BATCH_SIZE: number of training instances taken into account before the optimizer 

performs a weight update to the whole model

▪ OPTIMIZER: Stochastic Gradient Descent (‘SGD‘)

▪ Data load shuffled between training and testing set in files

▪ Data preparation, e.g. X_train is 60000 samples / rows of 28 x 28 pixel values that are 

reshaped in 60000 x 784 including type specification (i.e. float32)

▪ Data normalization: divide by 255 – the max intensity value to obtain values in range 

[0,1]; a usual technique, e.g. model training smoother & avoids data structure problems

Training Examples

(historical records, groundtruth data, examples)

‘test set’‘training set’

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 38 / 94



Full Script: MNIST Dataset – Fitting a Multi Output Perceptron Model

▪ The Sequential() Keras model is a linear  pipeline (aka ‘a stack‘) of 

various neural network layers including Activation functions of 

different types (e.g. softmax)

▪ Dense() represents a fully connected layer used in ANNs that means 

that each neuron in a layer is connected to all neurons located in the 

previous layer

▪ The non-linear activation function ‘softmax‘ is a generalization of the 

sigmoid function – it squashes an n-dimensional vector of arbitrary 

real values into a n-dimenensional vector of real values in the range 

of 0 and 1 – here it aggregates 10 answers provided by the Dense 

layer with 10 neurons

▪ Loss function is a multi-class logarithmic loss: target is ti,j and the 

prediction is pi,j

▪ Train the model (‘fit‘) using selected batch & epoch sizes on training 

& test data

(full script continued from previous slide)
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Running a Simple ANN with no hidden layers – Multi-Output-Perceptron

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

▪ Note that the outcome of the training process is the 

result of optimization techniques like SGD that tend 

to vary ‘a bit‘

▪ Note that the outcome of the training process can 

be dependent on the length of training increasing 

accuracy to a certain point when overfitting starts

▪ Overfitting can be controlled with validation and 

regularization techniques that belong to advanced 

machine learning methods to be studied in full 

university machine learning course in detail
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MNIST Dataset – A Multi Output Perceptron Model – Output & Evaluation

(Dense
Layer)

(output
probabilities)

(Softmax
Layer)

(NB_CLASSES = 10)(softmax
activation)

(10 neurons sum 
with 10 bias)

(input m = 784)

▪ How to improve the model design by extending the neural network topology?

▪ Which layers are required?

▪ Think about input layer need to match the data – what data we had?

▪ Maybe hidden layers?

▪ How many hidden layers?

▪ What activation function for which layer (e.g. maybe ReLU)?

▪ Think Dense layer – Keras?

▪ Think about final Activation as Softmax → output probability
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From Limits of Linear Perceptron Model to Multi Layer Perceptrons (MLP)

𝑥1

𝑥2

INPUT 
LAYER

HIDDEN 
LAYER

OUTPUT 
LAYER

𝑤1,1

𝑤2,2

𝑤2,1

𝑤1,2 𝑤3,1

𝑤3,2

[16] Multilayer Perceptron

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

[15] The XOR Problem 

(XOR limit of
linear learning models)
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Introduce Non-Linearities – The Role of Activation Functions in ANNs

𝑔 𝑧 =
1

1 + 𝑒−𝑧
𝑔 𝑧 = tanh 𝑧 𝑔 𝑧 = max(𝑧, 0)

𝑔 𝑧 = log(1 + 𝑒𝑧) 𝑔 𝑧 = max z, z𝛼
0 < 𝛼 < 1

▪ The choice of the architecture and the 

activation function plays a key role in 

the definition of the network

▪ Each activation function takes a 

single number and performs a certain 

fixed mathematical operation on it

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

[18] Understanding the Neural Network[17] Introduction to Deep Learning
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Artificial Neural Network (ANN) Basic Network Topology & Learning Algorithm 
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Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

▪ Forward interconnection of several layers of perceptrons create an Artificial Neural Network (ANNs)

▪ Multi Layer Perceptrons (MLPs) can be used as universal approximators 

▪ In classification problems, they allow modeling nonlinear discriminant functions

▪ Interconnecting neurons aims at increasing the capability of modeling complex input-output relationships

(backpropagation
of error)
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Training an ANN with Backpropogation performing Weight Updates

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

1. Initialize weights randomly ~𝒩(0, 𝜎2)

2. Loop until convergence

3. Compute gradient    
𝜕ℒ 𝑾

𝜕𝑾
(it explains how the loss changes with respect to each of the weights) 

4. Update weights    𝑾≔𝑾− 𝜂
𝜕ℒ 𝑾

𝜕𝑊
(in the opposite direction of the gradient )

5. Return weights  

Small learning rate converges slowly and gets 
stuck in false local minima

Large learning rates overshoot, become 
unstable and diverge

Stable learning rates converge smoothly 
and avoid local minima

ℒ 𝑾 ℒ 𝑾 ℒ 𝑾

(Learning rate)

(compute-intensive)

▪ The Learning Rate determines the 

adjustment magnitude & how much do you 

trust the computed gradient

▪ Computing the gradients using 

optimization is the most computational part 

when there is a high number of weights
[17] Introduction to Deep Learning

(goal: minimize the ‘Loss‘ using an optimization problem)
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MNIST Dataset – Add Two Hidden Layers for Artificial Neural Network (ANN)

▪ All parameter value remain the same as before

▪ We add N_HIDDEN as parameter in order to set 128 neurons in one 

hidden layer – this number is a hyperparameter that is not directly 

defined and needs to be find with parameter search 

▪ The non-linear Activation function ‘relu‘ represents a so-called Rectified Linear Unit (ReLU) 

that only recently became very popular because it generates good experimental results in 

ANNs and more recent deep learning models – it just returns 0 for negative values and 

grows linearly for only positive values

▪ A hidden layer in an ANN can be represented by a fully connected Dense layer in Keras by 

just specifying the number of hidden neurons in the hidden layer

(activation functions ReLU & Tanh)

[19] big-data.tips, 
‘Relu Neural Network’

[20] big-data.tips, 
‘tanh’
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Running a Simple ANN with two hidden layers (200 Epochs: very long learning)
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MNIST Dataset – ANN Model Parameters & Output Evaluation (20 Epochs)

✓ Multi Output Perceptron: 

~91,01% (20 Epochs)

✓ ANN 2 Hidden Layers:

~95,14 % (20 Epochs)

▪ Dense Layer connects every neuron in this dense layer to the next 

dense layer with each of its neuron also called a fully connected 

network element with weights as trainiable parameters

▪ Choosing a model with different layers is a model selection that 

directly also influences the number of parameters (e.g. add Dense 

layer from Keras means new weights)

▪ Adding a layer with these new weights means much more 

computational complexity since each of the weights must be 

trained in each epoch (depending on #neurons in layer)
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[Video for further Studies] Neural Networks Summary

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

[21] YouTube Video, Neural Networks – A Simple Explanation
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Convolutional Neural Network (CNN) Basics
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Impact of Deep Learning in Various Application Domains
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Complex Relationships: ML & DL vs. HPC/Clouds & Big Data

SVMs
Random
Forests
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Dataset Volume

Large Deep Learning Networks

Medium Deep Learning Networks

Small Neural Networks

Traditional Learning Models

→ ‘Big Data‘

‘small datasets‘

manual feature
engineering‘
changes the

ordering

MatLab
Statistical 
Computing with R

Training
Time

OctaveWekascikit-learn

High Performance 
Computing & Cloud 

Computing

[22] www.big-data.tips

Computing
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Innovative Deep Learning Techniques – Revisited

[23] M. Riedel, ‘Deep Learning - Using a Convolutional Neural Network‘, 
Invited YouTube Lecture, six lectures, University of Ghent, 2017

[25] H. Lee et al., ‘Convolutional 
Deep Belief Networks for 
Scalable Unsupervised 
Learning of Hierarchical Representations’

[24] M. Riedel et al., ‘Introduction to Deep Learning Models‘, 
JSC Tutorial, three days, JSC, 2019

[26] Neural Network 3D Simulation

[27] A. Rosebrock

▪ Innovation via specific layers and architecture types

is the success of Convolutional Neural Networks (CNNs)
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CNNs – Basic Principles & Local Receptive Fields 

▪ Simple application example
▪ MNIST database written characters

▪ Use CNN architecture with different layers

▪ Goal: automatic classification of characters

[27] A. Rosebrock

[28] M. Nielsen

▪ Convolutional Neural Networks (CNNs/ConvNets) implement a connectivity pattner between 

neurons inspired by the animal visual cortex and use several types of layers (convolution, pooling)

▪ CNN key principles are local receptive fields, shared weights, and pooling (or down/sub-sampling)

▪ CNNs are optimized to take advantage of the spatial structure of the data

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

▪ MNIST dataset example
▪ 28 * 28 pixels modeled as square of 

neurons in a convolutional net

▪ Values correspond to the 28 * 28 
pixel intensities as inputs

(‘little window‘ on 
the input pixels)

(red box indicate the 
local receptive 

field for the hidden 
neuron)

(28 * 28 pixel image) (5 * 5 local connectivity)
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CNNs – Principle Sliding with Convolutions & Feature Maps

▪ MNIST database example
▪ Apply stride length = 1 

▪ Creates ‘feature map‘ of 
24 * 24 neurons (hidden layer)

▪ Role of Convolutions & Filter
▪ Valid convolution does not 

exceed the input‘s boundary

▪ Same convolution adds a so called 
‘padding‘ to maintain the input‘s 
dimension for each convolutional layer

▪ Feature maps reflect where in the 
input a part of local features were
activated by the applied filter

(28 * 28 pixel image) (24 * 24 feature map)
(28 * 28 pixel image) (24 * 24 feature map)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

(Example: apply a set of weights
as filter to extract

local features)

[17] Introduction to Deep Learning

55 / 94



CNNs – Understanding Application Example MNIST - Summary

▪ MNIST database example
▪ Pooling Layer & Apply ‘fully connected layer (flatten)‘: layer connects every neuron 

from the max-pooling outcome layer to every neuron of the 10 out neurons
(another indicator 

that even with
cutting edge technology
machine learning never 

achieves 100% performance)

[28] M. Nielsen

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

FEATURE 
MAP 1

FEATURE 
MAP 2

[29] M. Görner et al.

(Pooling layers: simplify the information in the output from the Convolution, e.g. max pooling )

(Convolution Example)
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Understanding Feature Maps & Convolutions Summary – Online Web Tool

[30] Harley, A.W., An Interactive Node-Link Visualization of Convolutional Neural Networks
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MNIST Dataset – Convolutional Neural Network (CNN) Model

[31] A. Gulli et al.

▪ Increasing the number of filters learned to 50 in the next layer from 20 in the first 

layer

▪ Increasing the number of filters in deeper layers is a common technique in deep 

learning architecture modeling

▪ Flattening the output as input for a Dense layer (fully connected layer)

▪ Fully connected / Dense layer responsible with softmax activation for classification

based on learned filters and features
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MNIST Dataset – Model Parameters & 2D Input Data  

▪ OPTIMIZER: Adam - advanced optimization technique that includes the concept of 

a momentum (a certain velocity component) in addition to the acceleration 

component of Stochastic Gradient Descent (SGD)

▪ Adam computes individual adaptive learning rates for different parameters from 

estimates of first and second moments of the gradients

▪ Adam enables faster convergence at the cost of more computation and is 

currently recommended as the default algorithm to use (or SGD + Nesterov 

Momentum)

[32] D. Kingma et al., ‘Adam: A Method for Stochastic Optimization’

▪ Compared to the Multi-Output Perceptron and Artificial Neural Networks (ANN) 

model, the input dataset remains as 2d matrice with 1 x 28 x 28 per image, 

including also the class vectors that are converted to binary class matrices
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MNIST Dataset – CNN Model Output & Evaluation

✓ Multi Output Perceptron: 

~91,01% (20 Epochs)

✓ ANN 2 Hidden Layers:

~95,14 % (20 Epochs)

✓ CNN Deep Learning Model:

~99,36 % (20 Epochs) [31] A. Gulli et al.

?Why not 
100%

some samples even for 
a human unrecognizable
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Running a Deep Learning Model with Convolutional Neural Network (CNN)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

▪ Using Deep Learning Techniques such as Convolutional 

Neural Networks (CNNs) in clouds can lead to significant 

improvements in accuracy, but also to significant longer 

run-times than traditional Artificial Neural Networks 

(ANNs) and are thus much more costly in clouds

▪ Using CPU resources for deep learning techniques is 

usually not recommended
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[Video for further Studies] Overfitting in Deep Neural Networks

[33] YouTube Video, Overfitting and Regularization For Deep Learning
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Selected Parallel & Scalable Machine & Deep Learning Techniques
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Machine Learning Models – Understanding Parallel Benefits

▪ Machine learning methods can be roughly categorized in classification, clustering, or regression augmented with various techniques for data 

exploration, selection, or reduction – despite the momentum of deep learning, traditional machine learning algorithms are still widely relevant today

Classification Clustering Regression

▪ Groups of data exist
▪ New data classified 

to existing groups

▪ No groups of data exist
▪ Create groups from

data close to each other

▪ Identify a line with
a certain slope
describing the data

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

[1] www.big-data.tips, ‘Data Classification‘
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Terminologies & Different Dataset Elements & Processes – Overview 

▪ Machine Learning Models
▪ Based on various algorithms that learn from existing data sets

▪ Labelled Dataset (samples)
▪ ‘in-sample‘ data given to us: 

▪ Learning vs. Memorizing
▪ The goal is to create a system that works well ‘out of sample‘ 
▪ In other words we want to classify ‘future data‘ (ouf of sample) correct

▪ Dataset Part One: Training set
▪ Used for training a machine learning algorithms
▪ Result after using a training set: a trained system

▪ Dataset Part Two: Test set
▪ Used for testing whether the trained system might work well 
▪ Result after using a test set: accuracy of the trained model

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

(e.g. student exam training on examples to 
get Ein ‚down‘, then test via exam)

Training Examples

(historical records, groundtruth data, examples)

‘test set’‘training set’

Classification

(exact separation is rule of thumb, but different in each data analysis case: e.g., 10% training data, 90% test data)
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▪ ‘Different kind‘ of parallel algorithms
▪ ‘learn from data‘ instead of modelling/approximate reality with physics

▪ Parallel algorithms often useful to reduce ‘overall time for data analysis‘

▪ E.g. Parallel Support Vector Machines (SVMs) Technique
▪ Data classification algorithm PiSVM using MPI to reduce ‘training time‘

▪ Example: classification of land cover masses from satellite image data

Parallel and Scalable Machine Learning – Parallel Support Vector Machine (SVM)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

[36] www.big-data.tips, ‘SVM Train‘

[35] C. Cortes & V. Vapnik, ‘Support Vector Networks’, 
Machine Learning, 1995

[34] G. Cavallaro & M. Riedel & J.A. Benediktsson et al., ‘On Understanding Big Data Impacts in Remotely Sensed Image Classification Using Support 
Vector Machine Methods’, Journal of Applied Earth Observations and Remote Sensing, 2015
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Unknown Target Function Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

Final Hypothesis

(ideal function)

(final formula)

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

Training Examples

(historical records, groundtruth data, examples)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

Overview Machine Learning Terminologies & Computing-intensive Processes

?
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Problem of Overfitting – Clarifying Terms

Error

Training time

(‘generalization error‘)

(‘training error‘)

→ overfitting occursbad generalization

▪ A good model must have low training error (Ein) and low generalization error (Eout)

▪ Model overfitting is if a model fits the data too well (Ein)  with a poorer generalization error (Eout)

than another model with a higher training error (Ein)

▪ The two general approaches to prevent overfitting are (1) validation and (2) regularization

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

Classification

[37] www.big-data.tips, ‘Generalization in Machine Learning‘
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▪ Many different models
Use validation error to 
perform select decisions 

▪ Careful consideration:
▪ ‘Picked means decided‘

hypothesis has already
bias (→ contamination)

▪ Using            M times

Validation Technique – Proper Model Selection Process is Compute-Intensive

(set of candidate formulas across models)

Hypothesis Set

(pick ‘best‘ → bias)

(final real training
to get even better
out-of-sample)

(training)

(validate)

(final training on full set, use
the validation samples too)

(out-of-sample
w.r.t. DTrain)

(training not on
full data set)

(decides model selection)

Final Hypothesis (test this on unseen data
good, but depends on 
availability in practice)

(unbiased
estimates)

▪ Model selection is 

choosing (a) different types 

of models or (b) parameter 

values inside models

▪ Model selection takes 

advantage of the validation 

error in order to decide →

‘pick the best‘
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Validation Technique – Cross-Validation – Leave-more-out

▪ Leave-one-out
▪ N training sessions on 

N – 1 points each time

▪ Leave-more-out
▪ Break data into number of folds 

▪ N/K training sessions on 
N – K points each time

▪ Example: ‘10-fold cross-valdation‘ with K = N/10 multiple times (N/K)

▪ 10-fold cross validation is 

mostly applied in practical 

problems by setting K = 

N/10 for real data

▪ Having N/K training 

sessions on N – K points 

each leads to long 

runtimes (→ use 

parallelization)

(generalization to leave k points out at each run)

(dataset)

Training Examples

Training Examples

(leave 1 point out at each run →many runs)

1

K-fold

(use 1/10 for validation, use 9/10 for training, then another 1/10 … N/K times)

(fewer training sessions than above)

(involved in training now)(involved in training now)

(practice to avoid bias &
contamination: some rest for test

as ‘unseen data‘)

Training Examples

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

[38] www.big-data.tips, ‘Cross Validation‘
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Parallel Support Vector Machine (SVM) – piSVM MPI Implementation & Impact

▪ Original piSVM 1.2 version (2011)
▪ Open-source and based on libSVM library, C

▪ Message Passing Interface (MPI)

▪ New version appeared 2014-10 v. 1.3 
(no major improvements)

▪ Lack of ‘big data‘ support (e.g. memory)

▪ Tuned scalable parallel piSVM tool 1.2.1
▪ Highly scalable version maintained by Juelich

▪ Based on original piSVM 1.2 tool

▪ Optimizations: load balancing; MPI collectives

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

[34] G. Cavallaro & M. Riedel & J.A. Benediktsson et al., ‘On Understanding Big Data Impacts in Remotely Sensed Image Classification Using Support 
Vector Machine Methods’, Journal of Applied Earth Observations and Remote Sensing

[39] piSVM on SourceForge, 2008

Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

First Result: best parameter set from 14.41 min to 1.02 min

Second Result: all parameter sets from ~9 hours to ~35 min

Using MPI_Allreduce() instead

Using MPI_Allgather() instead

71 / 94



HPC Relationship to ‘Big Data‘ in Machine & Deep Learning – Scalability 

SVMs
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[22] www.big-data.tips

JUWELS

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

[42] JUWELS Supercomputer
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HPC Relationship to ‘Big Data‘ in Machine & Deep Learning – Complexity

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

[57] M. Riedel, C. Barakat, S. Fritsch, M. Aach, J. Busch, A. Lintermann, A. Schuppert, S. Brynjólfsson, H. Neukirchen, M. Book: Enabling 
Hyperparameter-Tuning of AI Models for Healthcare Using the CoE RAISE Unique AI Framework for HPC, in proceedings of IEEE MIPRO 2023, Croatia

▪ Load Modules, 

Environments, 

and Containers 

(LAMEC)

[58] CoE RAISE Web Page
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Multispectral Remote Sensing Dataset Example used in Deep Learning

Datasets
Image
type

Image per
class

Scene 
classes

Annotation 
type

Total 
images

Spatial 
resolution (m)

Image sizes Year

BigEarthNet Satellite MS
328 to 
217119

43 Multi label 590,326
10
20
60

120x120
60x60
20x20

2018

10m                   20m                60m

[40] G. Sumbul et al. 

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

[41] Big Earth Net Dataset
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Deep Learning via RESNET-50 Architecture – A Case for interconnecting GPUs

▪ Classification of land cover in scenes in Remote Sensing
▪ Very suitable for parallelization via distributed training on multi GPUs

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

▪ RESNET-50 is a known neural network architecture that has established a strong baseline in terms of accuracy

▪ The computational complexity of training the RESNET-50 architecture relies in the fact that is has ~ 25.6 millions of trainable parameters

▪ RESNET-50 still represents a good trade-off between accuracy, depth and number of parameters

▪ The setups of RESNET-50 makes it very suitable for parallelization via distributed training on multi GPUs

[45] RESNET
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node 

node 

node 

HPC Enables Faster Training of AI Models: Distributed Training (Benefit #1)

[47] Horovod

▪ Horovod is a distributed training framework used in combination with low-level 

deep learning frameworks like Tensorflow

▪ Horovod uses MPI for inter-process communication, e.g., MPI_Allreduce()

▪ Distributed training using data parallelism approach means: (1) Gradients for 

different batches of data are calculated separately on each node; (2) But averaged 

across nodes to apply consistent updated to the deep learning model in each node

Time per epoch [sec]

24 nodes x 4 GPUs = 96 GPUs

A partition of the JUWELS system 
has 56 compute nodes,

each with 4 NVIDIA V100 GPUs
(equipped with 16 GB of memory)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

Horovod distributed training via MPI_Allreduce()

Other distributed training 
approaches possible with DeepSpeed

[46] DeepSpeed
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Deep Learning Application Example – Using High Performance Computing

[43] J. Lange and M. Riedel et al., 
IGARSS Conference, 2018

[44] G. Cavallaro, M. Riedel et al., IGARSS 2019

▪ Using Convolutional Neural Networks (CNNs)

with hyperspectral remote sensing image data

▪ Find Hyperparameters & joint ‘new-old‘ modeling & 

transfer learning given rare labeled/annotated data in 

science (e.g. 36,000 vs. 14,197,122 images ImageNet)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

(challenges of big data & 
hyperparameter tuning)
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HPC Enables Better AI Models: Hyperparameter Tuning (Benefit #2)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

Hyperparameter 
Optimization 

Train Better 
AI Models

78 / 94



Machine Learning Models – Short Overview & Introduction to Classification

▪ Machine learning methods can be roughly categorized in classification, clustering, or regression augmented with various techniques for data 

exploration, selection, or reduction – despite the momentum of deep learning, traditional machine learning algorithms are still widely relevant today

Classification Clustering Regression

▪ Groups of data exist
▪ New data classified 

to existing groups

▪ No groups of data exist
▪ Create groups from

data close to each other

▪ Identify a line with
a certain slope
describing the data
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Data Science Example: DBSCAN Clustering Algorithm

▪ DBSCAN Algorithm
▪ Introduced 1996 and most cited clustering algorithm

▪ Groups number of similar points into clusters of data

▪ Similarity is defined by a distance measure (e.g. euclidean distance)

▪ Distinct Algorithm Features
▪ Clusters a variable number of clusters 

(cf. K-Means Clustering with K clusters)

▪ Forms arbitrarily shaped clusters (no ‘bow ties‘)

▪ Identifies inherently also outliers/noise

(MinPoints = 4)

(DR = Density Reachable)

(DDR = Directly Density Reachable)

(DC = Density Connected)

[49] Ester et al.

▪ Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering 

algorithm that requires only two parameters and has no requirement to specify number of clusters

▪ Parameter Epsilon: Algorithm looks for a similar point within a given search radius Epsilon

▪ Parameter minPoints: Algorithm checks that cluster consist of a given minimum number of points

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

Clustering

[48] M. Goetz and M. Riedel et al, 
Proceedings IEEE Supercomputing Conference, 2015
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Data Parallelism Example: Smart Domain Decomposition in Data Sciences

[48] M. Goetz and M. Riedel et al, 
Proceedings IEEE Supercomputing Conference, 2015

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

Clustering

cluster merge across 
halo regions/layers

Algorithm can be 
used in many application 

domains
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HPDBSCAN Clustering – Using Parallel File Formats & File Systems

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

▪ The standard out of the HPDBSCAN 

parallel & scalable DBSCAN 

clustering algorithm is not the 

result of the DBSCAN clustering 

algorithm and only shows meta 

information such as the numbers of 

clusters found, noise, and running 

time

▪ The real outcome of the parallel & 

scalable HPDBSCAN algorithm is 

directly written into the HDF5 file 

assigning for each point cloud data 

element a specific cluster ID, or 

using minus numbers to indicate 

noise points (no real clusters)

▪ The input data for the parallel & scalable 

HPDBSCAN clustering algorithm is a HDF5 

file and all the processors read in parallel 

chunks of the data

▪ The HDF5 file before the execution of 

HPDBSCAN has 0 as Cluster Ids for its 

specific initialization
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[48] M. Goetz and M. Riedel et al, 
Proceedings IEEE Supercomputing Conference, 2015
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[Video for further Studies] DBSCAN Algorithm Steps & Visualization Example

[50] YouTube video, DBSCAN Explanation and Visualization
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Emerging Quantum Machine Learning – Initial Results on Quantum Annealing

▪ Disruptive Technology in the HPC Ecosystems
▪ Different concept than traditional (super)computers

▪ Information as ‘0’ or ‘1’ or both simultaneously

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

[54] G. Cavallaro & M. Riedel et al., ‘Approaching Remote Sensing Image Classification with ensembles of support vector machines on the D-Wave Quantum Annealer‘
[53] M. Riedel, UTMessan 2020 YouTube Video

[52] DEEP Projects Web Page

[51] D-Wave Systems
YouTube Channel

[55] M. Riedel, G. Cavallaro, J.A. Bendiktsson, ‘Practice and Experience in Using Parallel and Scalable Machine Learning in Remote Sensing from HPC Over Cloud to Quantum Computing‘

[56] Delilbasic, A., Cavallaro, G., Willsch, M., Melgani, F., Riedel, M., Michielsen, K., ‘Quantum Support Vector Machine Algorithms for Remote Sensing Data Classification‘
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More Information: Full HPC Spring 2023 University Course

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics – Part 2 

➢ https://www.youtube.com/channel/UCWC4VKHmL4NZgFfKoHtANKg

‘… I have found your wonderful HPC lectures
on YouTube, and I am finding them very helpful for
learning the supercomputing tools necessary for
my research….‘

- student in computational nuclear physics from USA

Selected Testimonials from our community:

CFD & AI SPECIAL
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