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Attending & Participating at our community conferences
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All HPC scripts will be available with

OUtIine —_— Pa rt TWO . ISC Online Material after the event

All source & data free to use

Machine Learning Fundamentals
= Learning Methods Overview, Prerequisites, Classification Application & Linear Perceptron Model
" Training & Testing Process using different Datasets, Food Inspection Classification Application Example
= Linear Regression Model & Logistic Regression Model

Artificial Neural Network (ANN) Basics
= Handwritten Character Recognition MNIST Dataset & Understanding Multi-Class Classification Approach
= Limits of the Perceptron Learning Model, Multi-Output Perceptron Model & ANNs with Backpropagation
= Observe Growth of Trainable Parameter & Understanding Overfitting

Convolutional Neural Network (CNN) Basics
= Moving from Shallow Learning to Deep Learning, MNIST Application Example with CNNs in Keras
= Understanding Feature Maps in CNN Architecture, Hyperparameter Complexity & Adam Optimizer
= Understanding Accuracy Improvements & Limits

Selected Parallel & Scalable Machine & Deep Learning Techniques
= piSVM MPI Implementation & Remote Sensing Applications
= Computing Footprint in Training, Testing & Validation Methods, Distributed Training
= Parallel & Scalable HPDBSCAN for Data Clustering & Quantum Machine Learning, Hyperparameter tuning
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Full Professor / PhD Student . . o o
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Machine Learning Fundamentals

O
O 0
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Machine Learning Models — Short Overview & Introduction to Classification

Classification Clustering
'?)
~
-y W
s
-
= Groups of data exist = No groups of data exist
= New data classified = Create groups from
to existing groups data close to each other

Regression

ldentify a line with
a certain slope
describing the data

. Machine learning methods can be roughly categorized in classification, clustering, or regression augmented with various techniques for data
exploration, selection, or reduction — despite the momentum of deep learning, traditional machine learning algorithms are still widely relevant today

[1] www.big-data.tips, ‘Data Classification’

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2
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Classification Machine Learning Model — Supervised Learning Example

= Each observation of the predictor measurement(s)
has an associated response measurement:

= lnput X=2I,,...,0,
= Qutput ¥,,2=1,..,n
= Data (Xl,yl), oo (XN,yN)
= (the output guides the learning process as a ‘supervisor)
» Goal: Fit a model that relates the response to the predictors

= Prediction: Aims of accurately predicting the response for future observations

" |nference: Aims to better understanding the relationship
between the response and the predictors

" Supervised learning approaches fits a model that related the response to the predictors
" Supervised learning approaches are used in classification algorithms such as SVMs
" Supervised learning works with data = [input, correct output]

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2 7/94




1.
2.
3.

= |dea ‘Learning from Big Data“

Machine Learning Prerequisites & Computing Challenges — Revisited

Some pattern exists

No exact mathematical formula

Data exists

= Shared with a wide variety
of other disciplines

= E.g.signal processing,
big data data mining, etc.

= Challenges

= Data is often complex
= Requires ‘Big Data analytics’

" Learning from data requires
processing time = Clouds or
High Performance Compuing

Data Applied

=

Machine
Learning

Machine learning is a very broad subject and goes from very abstract theory to extreme practice
(‘rules of thumb’)
Training machine learning models needs processing time (clouds or high performance computing)

While data analysis is more describing the process of analysin the data, the term data analytics also
includes and the necessary scalable or parallel infrastructure to perform analysis of ‘big data’

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2 8/94



http://www.iconarchive.com/show/aesthetica-2-icons-by-dryicons/database-process-icon.html

Simple Application Example: Classification of a Flower

(new data: what type of flower is this?)

=

-
=
=
=

(flowers of type ‘IRIS Setosa’)

= Groups of data exist
= New data classified
to existing groups

(flowers of type ‘IRIS Virginica‘)

[2] Image sources: Species Iris Group of
North America Database, www.signa.org
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The Learning Problem in the Example

(flowers of type ‘IRIS Setosa‘) (flowers of type ‘IRIS Virginica‘)

[2] Image sources: Species Iris Group of North America Database, www.signa.org

Learning problem: A prediction task

= Determine whether a new lIris flower
sample is a “Setosa” or “Virginica”

‘ f.:z)llﬂ.'s“‘l

= Binary (two class) classification problem
= What attributes about the data help?

(what type of flower is this?)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2 10/94




Feasibility of Machine Learning in this Example

1. Some pattern exists:
=  Believe in a ‘pattern with ‘petal length’ &
‘petal width somehow influence the type
2. No exact mathematical formula

= To the best of our knowledge there is no
precise formula for this problem

[4] Image source: Wikipedia, Sepal

3. Data exists
= Data collection from UCI Dataset ,,Iris“ - Sepa: |e_r(‘j8thh.in cm

- ‘ . ‘ (four data attributes for each = sepalwidth in cm
150 labelled samples (aka ‘data points’) sample in the dutaset) . petal length in cm

= Balanced: 50 samples / class = petal width in cm

= class: Iris Setosa, or
[3] UCI Machine Learning (one class label for each . .
Repository Iris Dataset sample in the dataset) |I’IS Ve I’SICOlOU r, or
Iris Virginica
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Check Preparation Phase:

Plotting the Data (Two Classes)

Data Set (what about the class labels?)

3
=
O
C
= 25 Y YN (attributes with d=2)
F= AN X =2 x
e 00 00 L 2 - cee
8 Y . 1y

000 ¢ L 2 :
z - e et
© »e & P
0 ®We oo o
o 2
L 2
1.5 L . 4
P © Dataset
(Recall: we believed in a ‘pattern’ with ‘petal length’ & ‘petal width* (X ) (X )
somehow influence the flower type) 1/ N
1 (N = 100 samples)
L 2
0.5 L 4
L X4
L X
© 000000 ¢
*
0 T T T T T T T 1 H
etal length (in cm
0 1 2 3 4 5 6 7 8 p g ( )
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Check Preparation Phase: Class Labels

3
=
: )
£ 25 -
~ [

I EER [ | —

S 1 m = Ly dy
§ I N [ |

2 .
© (] | [ |
+ N EEEE N ;o
8_ [ yw 1= ) 7n

[ |
1.5 s # Iris-setosa
u M Iris-virginica
1 (X13y1)3"'3(XN7yN)
(N =100 samples)
*
0.5 L 2
L X X
400 ¢ (still no machine learning so far)
® 4¢o09 &
* ¢ .
0 w w w w w w w - petal length (in cm)
0 1 2 3 4 5 6 7 8
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Linearly Seperable Data & Linear Decision Boundary

3
— = The datais linearly seperable
= (rarely in practice)
Lc) /\ = Aline becomes a
= 25 ol decision boundary to
< " - - determine if a new data point
5 | is class red/green
'S |
s,
4?3 |
0 IEE N
Q
1.5 - # Iris-setosa
M Iris-virginica
1 (Xlayl):“':(xN:yN)
(N =100 samples)
0.5
(decision boundary)
0 } T T T T

‘ ‘ ‘ - petal length (in cm)
8
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Separating Line & Mathematical Notation

= Data exploration results
= Aline can be crafted between the classes since linearly seperable data
= All the data points representing Iris-setosa will be below the line
= All the data points representing Iris-virginica will be above the line

= More formal mathematical notation

[ Input. X —= :El’ cees :Ud (attributes of flowers)
" OUtpUt- (decision boundary) d

class +1 (Iris-virginica)
or class -1 (Iris-setosa) Iris-virginica if Z w;x; > threshold

i=1 (w, and threshold are
d still unknown to us)
ris-setosa if »  wiz; < threshold
1=1

d
sign E w,x, | — threshold | (compactnotation)
i=1

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2
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A Simple Linear Learning Model — The Perceptron

" Human analogy in learning
= Human brain consists of nerve cells called neurons

*= Human brain learns by changing the strength of neuron connections (w,)
upon repeated stimulation by the same impulse (aka a ‘training phase’)

" Training a perceptron model means adapting the weights w.
= Done until they fit input-output relationships of the given ‘training data’

(X13y1)3 Y (XN7yN)

(training data)

(modelled as

d bias term)
sign E w,x, | — threshold
(activation i=1
function, L ,
+1or-1) Y d
(the signal)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2

CORNELL AERONAUTICAL LABORATORY, INC.

Report No. 85-Li60-1

THE PERCEPTRON
A FERCEIVING AND RECOGNIZING AUTOMATON

(PROJECT PARA)

January, 1957

[5] F. Rosenblatt, 1957

output
node

(activation
function)

X, (bias)

input nodes
(representing the threshold)

(dimension of features)
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Perceptron — Example of a Boolean Function

output
1X11XZX-Z yl (Xlayl)v"'a(XNayN) X1 0.3 noze
o8l 1 0 1 1 (training data)
5N 1 1 0 1
. 1 1 11 y
o 0 0 1 1
6 0 1 0 -1 N
@l 0 1 1 1 (training phase) (::rt]ng/tai\:;:‘))n
8 0 0 04

t=04

p input nodes :
Z w.x, | —threshold
i—1 (trained perceptron model)

= Qutput node interpretation

= More than just the weighted sum of the inputs — threshold (aka bias)
= Activation function sign (weighted sum): takes sign of the resulting sum

y=1,if 0.3x1 + 0.325 + 0.323 — 0.4 > 0 SEimnetnsi

(e.g. consider sample #6,

y = —1,if 0.3x1 + 0.329 + 0.3x3 — 0.4 < 0 sumisnegative o) >-)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2 17 /94




Summary Perceptron & Hypothesis Set h(x)

= When: Solving a linear classification problem
= Goal: learn a simple value (+1/-1) above/below a certain threshold
= Class label renamed: Iris-setosa = -1 and Iris-virginica = +1

u Input: X — 371, ceey xd (attributes in one dataset)

u L| near fO rmu I d (take attributes and give them different weights — think of ‘impact of the attribute‘)

= All learned formulas are different hypothesis for the given problem

d
(parameters that define

}Z(X) prm E ”LU?i [L'i — thﬁ'f'e S h()ld ’ h, E H one hypothesis vs. another)

=1
(each green space and o - (red param.ete-rs corres-pond
blue space are regions v - to the redline in graphics)
of the same class label ®
determined by sign &
function) (but question remains: how do

we actually learn w; and threshold?)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2

CORNELL AERONAUTICAL LABORATORY, INC.

Report No, 85-Li60-1

THE PERCEPTRON
A FERCEIVING AND RECOGNIZING AUTOMATON

(PROJECT PARA)

January, 1957

[5] F. Rosenblatt, 1957
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Perceptron Learning Algorithm — Understanding Vector W

= When: If we believe there is a linear pattern to be detected
= Assumption: Linearly seperable data (lets the algorithm converge)
= Decision boundary: perpendicular vector w, fixes orientation of the line

w x =0
w-x=20

(points on the decision
boundary satisfy this equation)

h(x) = sign(w'x)

(vector notation, using T = transpose)

w; = (Wi1, Wia, ..., Wq)

= Possible via simplifications since Wil
we also need to learn the threshold: wl = |7
[6] Rosenblatt, 1958
d | Wid |
h(x) = sign ( ( > u:z:) + u*o) ;w, = —threshold X; = (251, Tiy ..., Tq) O esitis nseala fromuhich
p— we derive the sign)

d .
bix) — si » e 1 h(x) = sign(w - x)
)"(X) - Szgn Z lb,,iﬁ?i ’xO T (equivalent dotproduct notation)

=0

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2 19/94




Perceptron Learning Algorithm — Learning Step

" |terative Method using (labelled) training data (x,,v,), ..., (X4, ¥y )

(one point at a time is picked)

1. P|c!< one m!sclassmed y=+1 W+ yX
training point where: :

sign(wix ) # 1y (a) w y

2. Update the weight vector: {b’) jj;’t*ffcjixg‘:‘;;c‘;gr
W W+ Yy, X,

(y, is either +1 or -1)

= Terminates when there are BT R s T e TR 7R
no misclassified points

(converges only with ( b) [7] Perceptron Visualization
linearly seperable data)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2 20/94




Predicting Task: Obtain Class of a new Flower ‘Data Point’

\( 3 -
W
P

J _

s

# Iris-setosa

M Iris-virginica

(X13y1)3 ) (XNJyN)

(N =100 samples)

(decision boundary)

- petal length (in cm)
7 8

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2
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Food Inspection in Chicago: Advanced Application Example

1. Some pattern exists:

= Believe in a pattern with ‘quality violations in checking restaurants’ will somehow influence if food
inspection pass or fail (binary classification)

2. No exact mathematical formula

= To the best of our knowledge there is no precise formula for this problem

3. Data exists

=  Data collection
from City of Chicago

. The goal of the advanced machine learning
application with food inspection of restaurants
in the City of Chicago is to predict the outcome
of food inspection of new Chicago restaurants
given some of existing violations of older
restaurants already obtained in Chicago

= Akey question is if the new restaurant will pass
or fail the inspection just based on violations

=  Restaurant Chicago « & e Vs foraged dlgﬁes‘ | QiMont SEARCH THIS AREA
Sabatino's
""" urant Chlcago Q Smoque BBQ
@ Casual BYOB ‘ :
for BBQ & sides ENTER Chicago Diner
Longtime
vegetarian diner
Owen & Engine @
® Stylish British pub
Q with a fireplace
® e N QAlinea
. New American
RICREGRIONS oCsatset::':lapll_aac:g(:,‘,e foodie destination
" seasonal ltalian fare A WN
McCgrmlck & Schmick's Seafood & Wicker Basket Cafe Q Pierrot Gourmet
Steaks ~ ) at The Peninsula
0‘7’ Luxe hotel with a spa.
acker Dr Smyth 0 w
chain
Monteverde
@ Restaurant & Pastificio
» — Modern Italian kitchen
Wicker Basket Cafe ~ 2504
[X) 4.8 % %k *x Douglas Park MmlGol(o o)

3$ - Caterer - 907 N Damen Ave
mey spot for gourmet sandwiches

®

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2
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Logistic Regression Using Non-Linear Activation Function

= Linear Classification

= Simple binary classification (linearly seperable)
" Linear combination of the inputs x, with weights w,

= Linear Regression

= Real value with the activiation being the identity function
= E.g. how much sales given marketing money spend on TV advertising

= | ogistic Regression

= Model/error measure/learning algorithm is different

= Captures non-linear data dependencies
using the so-called Sigmoid function

= Key idea is to bring values between
0 and 1 to estimate a probability

* (candidate model for pass/fail in our application)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2

output
node

128
/.

| - | o) | 1 |

-6 -4 -2 0 2 4 5
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[Video for further Studies] Logistic Regression Shortly Explained

CILIATL1LC)L DM AT) C.0) ]

PPl ) oii2is

[8] YouTube video, Logistic Regression
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Artificial Neural Network (ANN) Basics

O
O 0
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Predicting Task: Obtain Class of a new Flower ‘Data Point’ — Revisited

# Iris-setosa

M Iris-virginica

(X13y1)3 ) (XNJyN)

(N =100 samples)

(decision boundary)

‘ ‘ - petal length (in cm)
8

[2] Image sources: Species Iris Group of North America Database, www.signa.org
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Perceptron Model — General Mathematical Notation for one Neuron

non-linear linear combination of
activation function input data

1 1

J=g|lxwo+ Y wi*uw;

T T 1=1
Output Bias T
Constants

Sum
1 W1

>
|
g
I

" Simplify the perceptron learning model
formula with techniques from linear T W,
algebra for mathematical convenience m

Input Trainable
Data Weights
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Multi-Class Classification: Handwritten Character Recognition MNIST Dataset

" Metadata -
= Not very challenging dataset, but good for benchmarks & tutorials

= When working with the dataset

= Dataset is not in any standard image format like jpg,
bmp, or gif (i.e. file format not known to a graphics viewer)

= Data samples are stored in a simple file format that is designed
for storing vectors and multidimensional matrices (i.e. numpy arrays)

= The pixels of the handwritten digit images are organized row-wise

Handwritten Character Recognition
MNIST dataset is a subset of a larger
dataset from US National Institute of
Standards (NIST)

MNIST handwritten digits includes
corresponding labels with values 0-9 and
is therefore a labeled dataset

MNIST digits have been size-normalized
to 28 * 28 pixels & are centered in a fixed-
size image for direct processing

Two separate files for training & test:
60000 training samples (~47 MB) &

10000 test samples (~7.8 MB)

with pixel values ranging from 0 (white background) w10 H (7@ & T 3F 1] # 3]

to 255 (black foreground) e 1 B3] (@] [1] (7] [ [£] [6] [5] M]

= |mages contain grey levels as a result of an anti-aliasing technique % I?l,q % % % % % % % %
used by the normalization algorithm that generated this dataset g9 9] s n 33

lo RvINFANCIRF (< MTINC VAN =)

import numpy as np . g (downloads data into ~home/.keras/datasets as E‘ El @ E IEl IIl Q m

from keras.datasets import mnist NPZ file format of numpy that provides E :[l IE [ﬂ E Izl I' @ IEI

# download and shuffled as training and testing set storage of array data using gzip compression) EI El @ E IE' ﬂ @

(X_train, y_train), (X_test, y_test) = mnist.load_data() EI El @ |E| E @ E E E‘
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MNIST Dataset — Training/Testing Datasets & One Character Encoding

. Different phases in machine learning

= Training phases is a hypothesis search

. Testing phase checks if we are on the right track
once the hypothesis is clear

= Validation phane for model selection (set fixed
parameters and set model types)

= Work on two disjoint datasets

One for training only (i.e. training set
One for testing only (i.e. test set)

Exact seperation is rule of thumb per use case
(e.g. 10 % training, 90% test)

Label:

o

a
o e
8
0 e
o
8 a
')
B @
Label

1

s

171 219 253 253 253 253 195 80 9 ©

o000

o 3 18

18

18 126 136 175

154 170 253 253 253 253 253 225

o o &
o o o
o o o
o o o
o o o

o
a6

186 253 253 150
16 93 252 253
o o 249 253
130 183 253 253

© 39 148 220 253 253 253 250
114 221 253 253 253 253 201 78 ©
23 66 213 253 253 253 253 198 81 2 ©

172 226 253 253 253 253 244 133 11
253 253 253 212 135 132 16 @ ©

o

o

o
o

135 252 252

o
o

o
o

252 252 1
188 16 8

o
o

o o
o o o
o o o

53

Practice: If you get a dataset take immediately test data away
(‘throw it into the corner and forget about it during modelling’)

Once we learned from training data it has an ‘optimistic bias’
Usually start by exploring the dataset and its format & labels
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Deep Learning Frameworks using GPUs also good for Artificial Neural Networks

" TensorFlow

= One of the most popular deep learning frameworks available today

= Execution on multi-core CPUs or many-core GPUs

» Tensorflow is an open source library for deep learning models using a flow graph approach

. Tensorflow nodes model mathematical operations and graph edges between the nodes are
so-called tensors (also known as multi-dimensional arrays)

. The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUSs)
» Tensorflow work with the high-level deep learning tool Keras in order to create models fast
. New versions of Tensorflow have Keras shipped with it as well & many further tools

client

run

m Keras

= Often used in combination with low-level frameworks like Tensorflow

master

worker A4

worker B

[9] Tensorflow
Web page

Keras

[10] Keras
Web page

Tensorflow, CNTK, or Theano

. The key idea behind the Keras tool is to enable faster experimentation with deep networks
. Keras is part of the more recent TensorFlow distributions

. Created deep learning models with Keras run seamlessly on CPU and GPU via low-level deep learning frameworks

. Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-level deep learning frameworks like




Using Google Colaboratory Cloud Infrastructure for Deep Learning with GPUs

= Google Colaboratory (free & pro version for 9.99 S / month)

s
Jupyter

= ‘Colab’ notebooks are Jupyter notebooks that run in the Google cloud

# initialize the optimizer and model

model = CNN.build(input shape=INPUT SHRPE, classes=NE CLASSES)

model.compile (loss="categorical crossentropy", optimizer=0PTIMIZER,
metrics=["accuracy™])
TvpeError Traceback (most recent call last)

<ipython-input-11-13caS28a46cZ> in <module>()

# initialize the optimizer and model

1 # ini i
—-———» 2 model = CHN.build(input_shape=INPUT_SHRAPE, classe
ntropy”", optimiz

3 model.compile (loss="categorical crosse
4 metrics=["accuracy"])

s=NB_CLASSES)
er=0PTIMIZER,

Possible to run Apache Spark via PySpark Jupyter notebooks in Colab (cf. Lecture 3)
Possible to train Deep Learning networks via GPUs & Jupyter notebooks in Colab
Highly integrated with other Google services (e.g., Google Drive for data)

Access to vendor-specific Tensor Processing Units (TPUs)

Notebook settings

Hardware accelerator

GPU ~ @

Hone lab, avoid usir

TPU

€O Colab Pro

Get more from Colab

UPGRADE NOW
$9.99/month
ling + Cancel

Faster GPU Longer runtime: More memon, y

[11] Google Colaboratory

(for international students:
watch out — it uses the browser
language automatically)

[ ormrcoascemedtput when saving this notebook

CANCEL SAVE

N
o bframes

fusr/local/lib/python3.6/dist-packages/tensorflow/python/keras/utils/generic_utils.py in wvalidate_

if kwarg not

/
776 for kwarg in kwargs:
T in allowed kwargs:

IypeError: ('Keyword argument not undersctood:',

SEARCH STACK OVERFLOW

(Clouds also face this update problem)

raise TypeError(error message, kwarg)

'border mode')

kwargs (kwargs, allowed kwargs, error

The portability of deep learning codes
is hindered by the frequent updates of
the different APIs of deep learning
frameworks like Keras, Tensorflow, etc.
(cf. different AWS EC2 AMI versions)

» Update Oct/2016: Updated for Keras 1.1.0, TensorFlow 0.10.0 and scikit-learn v0.18.
» Update Mar/2017: Updated for Keras 2.0.2, Tensori Flow 1.0.1 and Theano 0.9.0
« Update Sep/2019: Updated for Keras 2.2.5 API

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2

(tutorials & codes need updates)

Google Colaboratory offers
‘Colab‘ notebooks that are
implemented with Jupyter
notebooks that in turn run in
the Google cloud and are
highly integrated with other
Google cloud services such
as Google Drive thus
making ‘Colab‘ notebooks
easy to set up, access, and
share with others

[12] Machine Learning Mastery MINIST Tutorial
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MNIST Dataset — Data Exploration Script Training Data — Revisited

import numpy as np
from keras.datasets import mnist

# download and shuffled as training and testing set

(X_train, y_train), (X_test, y_test) =

mnist.load_data()

# function to explore one hand-written
def character_show(character):
for y 1in character:
row = ""
for x in y:
row +=
print(row)

"{0: <4}'.format(x)

character

Loading MNIST
training datasets
(X) with labels (Y)
stored in a binary
numpy format

Format is 28 x 28
pixel values with
grey level from 0
(white background)
to 255 (black
foreground)

# view first 10 hand-written characters
for i in range (0,9):
character_show(X_train[i])
print("\n")
print("Label:")
print(y_train[i])
print("\n"

—E——---____

—
_—__——

-

Small helper
function that prints
row-wise one
‘hand-written*
character with the
grey levels stored
in training dataset
Should reveal the
nature of the
number (aka label)

. Example: loop of the training dataset (e.g. first 10 characters as shown here)
= At each loop interval the ‘hand-written‘ character (X) is printed in ‘matrix notation‘ & label (Y)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2

e

— File Edit View Run Kemel Hub Tabs

Commands Running Files

Cell Tools

Tabs

. = JupyterLab x e = O

[} ® @& https/fjupyter-jscfz-juelich.de/use 0%

- @ W rinD B ® =

Settings  Help

A explore-MNIST- ®

B + X DO » = C Code v mi_tutorial_juron O
~

import numpy as np
from keras.datasets import mnist

Using TensorFlow backend.

swnload and shuffled as training a
rain, y_train), (X_test, y_test)

nist.load_data()

for i
char
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Data Inspection using Keras Dataset MNIST with Visualization in Jupyter

<« ¢ @ © O 1270013888 B -9 oD HBE® @6
i ' Jupyter Preprocessing Last Checkpoint: 8 minutes ago (unsaved changes) # Logout
File Edit View Insert Cell Kermel Widgets Help Trusted I‘ Environment (conda_tensorflow_p27) O I
+ 3 & B 4 % MHRun B C W cCode v | =

In import numpy as np

from keras.datasets import mnist
Using TensorFlew backend.

WRRNTNG: tensorflow:From /home/ec2-user/anaconda3/envs/tensorflow p27/1ib/python2.7/site-packages/tensorflow_core/_ init  .p
¥:1473: The name tf.estimator.inputs is deprecated. Please use tf.compat.vl.estimator.inputs instead.

# dovr

In

(X_test, y _test) = mnist.load datal(

(¥_train, y_train),

In

for y in character:
row = ""

for x in y:
row += '

print (row

In [4]:  # view
for i in range
character_show(X_test[1])

0 0 o 0 o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o 0 o 0 0 ~
0 0 ] 0 ] 0 ] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] 0 ] 0 ] 0 0
0 0 ] 0 ] 0 ] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] 0 ] 0 ] 0 0
0 0 ] 0 ] 0 ] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] 0 ] 0 ] 0 0
] 0 o 0 o 0 o 0 0 0 0 0 0 0 0 0 0 ] 0 ] 0 o 0 o 0 o 0 0
0 0 o 0 o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o 0 o 0 0
0 0 o 0 o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o 0 o 0 0
0 0 0 0 0 0 84 185 159 151 60 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ] 0 ] 0 222 254 254 254 254 241 198 198 198 198 198 108 198 198 170 32 O ] 0 a 0 a
0 0 ] 0 ] 0 67 114 72 114 163 227 254 225 254 254 254 250 229 254 254 140 0 a 0 a 0 a
] 0 o 0 o 0 o 0 0 0 0 17 &8 14 &7 &7 &7 58 21 236 254 108 0 ] ol ] ol 0
0 0 o 0 o 0 o 0 0 0 0 0 0 0 0 0 0 0 83 253 209 18 0 o 0 o 0 0
0 0 o 0 o 0 o 0 0 0 0 0 0 0 0 0 0 22 233 255 B3 0 0 o 0 o 0 0
0 0 o 0 o 0 o 0 0 0 0 0 0 0 0 0 0 129 254 238 44 0 0 o 0 o 0 0
0 0 ] 0 ] 0 ] 0 0 0 0 0 0 0 0 0 58 249 254 62 0 ] 0 ] 0 ] 0 0
0 0 ] 0 ] 0 ] 0 0 0 0 0 0 0 il 0 133 254 187 5 0 ] 0 ] 0 a 0 a
0 0 a 0 a 0 a 0 0 0 0 0 0 0 0 ] 205 248 58 0 0 a 0 a 0 a 0 0
] 0 Q 0 Q 0 Q 0 0 0 0 0 0 0 0 126 254 182 0 ] 0 Q 0 Q 0 Q 0 0
0 0 o 0 o 0 o 0 0 0 0 0 0 0 75 251 240 57 0 0 0 o 0 o 0 o 0 0
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MNIST Dataset with Perceptron Learning Model — Need for Reshape

= Two dimensional dataset (28 X 28) *  Note that the reshape from two dimensional MNIST data to one

. . . long vector means that we loose the surrounding context
= Does not fit well with mpUt to Perceptron Model " Loosing the surrounding context is one factor why later in this

= Need to prepare the data even more lecture deep learning networks achieving essentially better

performance by, e.g., keeping the surrounding context
= Reshape data - we need one long vector
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MNIST Dataset — Reshape & Normalization — Example

(one long input vector

784 dinput pixel values per train samples
784 input pixel values per test samples

with length 784) [o. 0. 0. 0. 0. 0.
Ay U Ay Ay Ay Ay
0. 0. 0 0. 0. 0.
0. 0. 0 0. 0. 0.
0. 0. 0 0. 0. 0.
0. 0. 0 0. 0. 0.
0. 0. 0 0. 0. 0.
0. 0. 0 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0 0. 0. 0.
0. 0. 0 0. 0. 0.
:Cl 0. 0. 0. 0. 0. 0.
0. 0. 0 0. 0. 0.
0. 0. 0 0. 0. 0.
X - . 0. 0. 0. 0. 0. 0.
—_— . 0. 0. [ 0. 0. 0.
. 0. 0. 0 0. 0. 0.
0. 0. 0 0. 0. 0.
T 0. 0. 0 0. 0. 0.
m 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0.01176471 ©,07058824 0.07058824 0,07058824
0.49411765 ©.53333336 0.6862745 0.10196079 0.6509804 1.
0.96862745 0.49803922 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0.11764706 ©,.14117648 0.36862746 0.6039216
0.6666667 0.99215686 0.99215686 0.99215686 0.99215686 0.99215686
(numbers are ©.88235295 0.6745098 0.99215686 0.9490196 0.7647059 0.2509804
between 0 and 1) 0. 0. 0 0. 0. 0.
0. 0. 0. 0. 0. 0.19215687
0.93333334 0.99215686 0.99215686 0.99215686 0.99215686 0.99215686
©.99215686 0.99215686 0.99215686 0.9843137 0.3647059 0.32156864
0.32156864 0.21960784 0.15294118 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0.07058824 0.85882354 0.99215686
0.99215686 ©.99215686 0.99215686 0.99215686 0.7764706 ©.7137255

[clcNcN NNl ol ol ol cllc oo Nolc il c ol ol cllc i c Il c o o I o]
OO0 OO0 0000000000000 0 0 0

(two dimensional original input with spatial context)
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Label:

=  While areshape is necessary for the Perceptron Model and
traditional Artificial Neural Network (ANN) it is unfortunate
that we loose the spatial context on one large vectors
instead of 2D

That is aloss of information that hinders better learning as
shown in deep learning networks that use spatial context
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MNIST Dataset & Multi Output Perceptron Model

= 10 Class Classification Problem
= Use 10 Perceptrons for 10 outputs with softmax activation function (enables probabilities for 10 classes)

(Softmax (output
(Dense Layer) probabilities)
from keras.models import Sequential
from keras.layers.core import Dense, Activation
s
s’ - ‘o
P4 # model Keras sequential

model = Sequential ()

# add fully connected layer — Iinput with output
model.add (Dense (NB CLASSES, inputishape: (RESHAPED, ) ))

# add activation function layer to get class probabilities
N, model .add (Activation ('softmax"'"))

# printout a summary of the model to understand model complexity

model . summary ()

(input m = 784) (10 neurons sum (softmax (NB_CLASSES = 10)
with 10 bias) activation) .
(parameters = 784 * 10 + 10 bias

= 7850)

" Note that the output units are independent among each other in contrast to neural networks with one hidden layer

= The output of softmax gives class probabilities e e e — S

=  The non-linear Activation function ‘softmax‘ represents a generalization of the sigmoid function — it squashes an dense_1 (Dense) (hone, 10)
n-dimensional vector of arbitrary real values into a n-dimenensional vector of real values in the range of 0 and 1 —
here it aggregates 10 answers provided by the Dense layer with 10 neurons

(None, 10)

Non-trainable params: 0
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MNIST Dataset & Compile Multi Output Perceptron Model

" Compile the model

= Optimizer as algorithm used to update
weights while training the model

= Specify loss function (i.e. objective

f(x)

(finding this point x is the
goal of gradient descent)

from keras.optimizers import SGD

OPTIMIZER = SGD()

(minimization: substract gradient term
because we move towards local minima)

(the derivative of f
with respect to a)

f(x)

# optimization technique

position a (current position)

(incre: asing
values)

function) that is used by the optimizer
to navigate the space of weights

(one step towards
local minimum)
(decreasing
values)
position b
w(next position)

b=a—-~V f(a)
frrert ‘ 1 “—x—’

(gradient term
before the step) is steepest ascent)

negative }
gradient |
H

(stationary) (new position  (weighting factor known as step-size,

= (note: process of optimization is also
called loss minimization)

after the step) can change at every iteration,

xl zero gradient xZ )(3 X also called learning rate) X X2 X

® |ndicate metric for model evaluation = Compile the model to be executed by the Keras backend (e.g. TensorFlow)
. Optimizer Gradient Descent (GD) uses all the training samples available for a
(e'g" accuracy) step within aiteration

. Optimizer Stochastic Gradient Descent (SGD) converges faster: only one
training samples used per iteration

" Loss function is a multi-class logarithmic loss: target is ti,j and prediction is pi,j

. Categorical crossentropy is suitable for multiclass label predictions (default
with softmax)

" Specify loss function
= Compare prediction vs. given class label
= E.g. categorical crossentropy

[14] Big Data Tips,
Gradient Descent
# specify loss, optimizer and metric L — Z t p 100' (p : }
model.compile(loss="'categorical_crossentropy', optimizer=OPTIMIZER, metrics=["'accuracy']) 4 J 4] = thJ
Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2 37 /94




Full Script: MNIST Dataset — Model Parameters & Data Normalization

import numpy as np

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers.core import Dense, Activation
from keras.optimizers import SGD

from keras.utils import np utils

NB_CLASSES: 10 Class Problem

NB_EPOCH: number of times the model is exposed to the overall training set — at each
iteration the optimizer adjusts the weights so that the objective function is minimized =
increasing leads to better accuracy, but also to overfitting

BATCH_SIZE: number of training instances taken into account before the optimizer
performs a weight update to the whole model

OPTIMIZER: Stochastic Gradient Descent (‘SGD")

# parameter setup ,’
NB EPOCH = 20 ’/’
BATCH SI1Z2E = 128 Re

NB CLASSES = 10 # number of outputs = number of digits

OPTIMIZER = SGD() # optimization technique

VERBOSE = 1

# download and shuffled as training and testing set

(X _train, y train), (X test, y test) = mnist.load data()

# X train is 60000 rows of 28x28 values --> reshaped in 60000 x 784

RESHAPED = 784

X train = X train.reshape (60000, RESHAPED)
X test = X test.reshape (10000, RESHAPED)

X train = X train.astype('float32')

X test = X test.astype('float32')

# normalize
X train /= 255
X test /= 255

Data load shuffled between training and testing set in files

Data preparation, e.g. X_train is 60000 samples / rows of 28 x 28 pixel values that are
reshaped in 60000 x 784 including type specification (i.e. float32)

Data normalization: divide by 255 — the max intensity value to obtain values in range
[0,1]; ausual technique, e.g. model training smoother & avoids data structure problems

# output number of samples
print (X train.shape[0], 'train samples')
print (X test.shape[0], 'test samples')

4mmmmm |

‘training set’ ‘test set’

Trainin% Examples

(leyl)a '}'7 (XN7 yN)

T
(historical records, groundtruth data, examples)
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Full Script: MNIST Dataset — Fitting a Multi Output Perceptron Model

. The Sequential() Keras model is a linear pipeline (aka ‘a stack’) of
cull <eri edt S various neural network layers including Activation functions of
t t -
(full script continued from previous slide) different types (e.g. softmax)
,f’ . Dense() represents a fully connected layer used in ANNs that means

’ a o q
# convert class label vectors using one hot encoding g that each neuron in alayer is connected to all neurons located in the
Y_train = np_utils.to_categorical(y_train, NB_CLASSES) 2 o
Y_test = np_utils.to_categorical(y_test, NB_CLASSES) ,,’ preVIOUS layer

’
’
# del & ral s . . . . . . .
rodot = Semmentisrer g =  The non-linear activation function ‘softmax‘ is a generalization of the
” sigmoid function — it squashes an n-dimensional vector of arbitrary
# add fully connected layer - input with output - real values into a n-dimenensional vector of real values in the range
model.add (Dense(NB_CLASSES, -+input_shape=(RESHAPED,))) ___-" .
e of 0 and 1 — here it aggregates 10 answers provided by the Dense

# add activation function layer to get class probabilities “—'— |ayer W|th 10 neurons
model.add (Activation('softmax'))
# printout a summar f tt model to understand del l ity . q q q q g oo
L e e e | = Lossfunction is a multi-class logarithmic loss: target is ti,j and the

g prediction is pi,]
# specify loss, optimizer and metric 'I’
model.compile(loss='categorical_crossentropy', optimizer=0PTIMIZER, metrics=['accuracy'])

L; = =X;t; ; log(p; ;

# model training t 7547 O(I IJ)
history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE) ~...~

~

Sl Train the model (‘fit‘) using selected batch & epoch sizes on training
& test data

# model evaluation
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)

print("Test score:", score[0])
print('Test accuracy:', score[l])
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Running a Simple ANN with no hidden layers — Multi-Output-Perceptron

c @ © [ 127.0.0.1:8888/notebooks/ANN_0_Hidden.ipynb 4 rinD B @® @@
'Jupyter ANN 0 Hidden Last Checkpoint: 27 minutes ago (unsaved changes) # Logout
File Edit View Insert Cell Kemnel Widgets Help Trusted IElwimnment|conda_tensorﬂmv_p2?: .I
+ = @& B 4+ % MRin B C W Code v

In [1]: |from _ future_ import print_function

import numpy as np

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers.core import Dense, Activation
from keras.optimizers import SGD

from keras.utils import np utils
np.random.seed (1671) # for rsprodn

Using TensorFlow backend.

WERNING: tensorflow:From /home/ec2-user/anaconda3/envs/tensorflow p27/lib/python2.7/site-packages/tensorflow core/_ init_ .p

v:1473: The name tf.estimator.inputs is deprecated. Please use tf.compat.vl.estimator.inputs instead.

In

™

In [3]:

RESHAPED g4

X_train = X_train.reshape
X test = X test.reshape(l
X_train = X_train.astype('f
X_test = X test.astype('flo

X_train /=
X _test /= 5
print (X_train.shape[0], 'train samples')

print (X test.shape[0], 'test samples')

Y _train = np utils.to_categorical (y_train, NB CLASSES)
Y_test = np_utils.to_categorical (y_test, NB_CLASSES

train samples
test samples
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Epoch 198/200

1 - 1s l4us/step - loss: 0.2762 - acc: 0.9229 - wval _loss: 0.2757 - val_acc: 0.92

1 - 1= l4us/step - loss: 0.2761 - acc: 0.9230 - wval_loss: 0.2756 - val acec: 0.92

41

1: 'Mon, 26 Oct 2020 23:12:30 +0000"

.evaluate (X_test, ¥ test, verbose=VERBOSE}

print ("Test score:", scors[0])
print ('Test accuracy:', score[l]
1 - 0s ZZus/step
T 8518630266
Test accurac 227

. Note that the outcome of the training process is the
result of optimization techniques like SGD that tend
to vary ‘a bit’

. Note that the outcome of the training process can
be dependent on the length of training increasing
accuracy to a certain point when overfitting starts

. Overfitting can be controlled with validation and
regularization techniques that belong to advanced
machine learning methods to be studied in full
university machine learning course in detail

Error
OVERFITTING A OPTIMUM A UNDERFITTING
Overfitting
& T
B
@
X; X w =
error @
v "
error @
X - X - X > i
Error on training samples

Number of iterations
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MNIST Dataset — A Multi Output Perceptron Model — Output & Evaluation

Epoch 7/20 (Dense (Softmax (output
60000/60000 [ ] - 25 26us/step - loss: 0.4419 - acc: 0.8838 Layer) probabilities)
Epoch 8/20

60000/60000 [ ] - 2s 26us/step - loss: 0.4271 - acc: 0.8866

Epoch 9/20 \ P
60000/60000 [ ] - 2s 25us/step - loss: 0.4151 - acc: 0.8888 \ ,’
Epoch 10/20 \ g
60000/60000 [ ] - 2s 26us/step - loss: 0.4052 - acc: 0.8910 \ s’

Epoch 11/20 \

60000/60000 [ ] - 2s 26us/step - loss: 0.3968 - acc: 0.8924 I — [ —
Epoch 12/20

60000/60000 [ ] - 23 25us/step - loss: 0.3896 - acc: 0.8944 ,/

Epoch 13/20 p \\
60000/60000 [ ] - 23 26us/step - loss: 0.3832 - acc: 0.8956 " ~
Epoch 14/20 V4 \\
60000/60000 [ ] - 2s 25us/step - loss: 0.3777 - acc: 0.8969

Epoch 15/20

60000/60000 [ ] - 2s 25us/step - loss: 0.3727 - acc: 0.8982

Epoch 16/20

60000/60000 [ ] - 1s 24us/step - loss: 0.3682 - acc: 0.8989 (input m = 784) (10 neurons sum (softmax (NB_CLASSES = 10)
Epoch 17/20 with 10 bias) activation)
60000/60000 [ ] - 1s 25us/step - loss: 0.3641 - acc: 0.9001

Epoch 18/20

60000/60000 [ ] - 1s 25us/step - loss: 0.3604 - acc: 0.9007

Epoch 19/20 = How to improve the model design by extending the neural network topology?
60000/60000 [ ] - 2s 25us/step - loss: 0.3570 - acc: 0.9016

Epoch 20/20 =  Which layers are required?

Foonosenooe L Do o puefeten mdoeas 0.3550 = acer 090250 Think about input layer need to match the data — what data we had?
# model evaluation n Maybe h|dden Iayers?

score = model.evaluate(X test, Y test, verbose=VERBOSE)

print ("Test score:", score[0]) * How many hidden layers?

print ('Test accuracy:', score[l]

=  What activation function for which layer (e.g. maybe ReLU)?

10000/10000 [ ] - 0s 4lus/step 0
Test score: 0.33423959468007086 - Think Dense layer — Keras?
oo oconraev: 0 = Think about final Activation as Softmax = output probability
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From Limits of Linear Perceptron Model to Multi Layer Perceptrons (MLP)

Input 1 Input 2 | Output
~ - — ~ 0 0 0 1@ ®
e s - :
P \ 1 1 0 2
7 \ 1 0 1 07
, 1 0.6
/ ‘ I )
output /
/7 X node
/ /
/ X /
/ ' 4 y
I X atio / i
o fu t‘:oni / 3
I input nodes V4
\ [15] The XOR Problem
(XOR limit of
linear learning models)
B
X
INPUT HIDDEN OUTPUT g, ()
LAYER LAYER LAYER )
[16] Multilayer Perceptron
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Introduce Non-Linearities — The Role of Activation Functions in ANNs

Linear Activation functions produce linear
decisions no matter the network size

linear combination
activation function of input data

| l

m
y=y 1*“/'()"‘233@'*%’5

T T i=1

Output Bias T

Sum

non-linear

01 02 03 04 05 06 07 08 03 1

Non-linearities allow us to approximate
arbitrarily complex functions

= The choice of the architecture and the
activation function plays a key role in

the definition of the network
= Each activation function takes a

single number and performs a certain

fixed mathematical operation on it
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m) -l

Constants

Ty

Im

Input
Data

[17] Introduction to Deep Learning [18] Understanding the Neural Network

wo + XTw
W
v —
Wiy,
Trainable
Weights

13 sigmoid

1l
08}
06+
04 ¢
02+

1]
02

-10 -5 Q 5 10

Z
1
9(2) = 1+e?

10 softplus

g!

6!

4+

2

a Iy

-0 5 0 5 10

9(z) =log(1 +e?)

tanh
1.5
1
0.5
1]
0.5
-
15
-10 5 1] 5 10
4
g(z) =tanhz
leaky RELU
10
]
B

9(2) = max(z, za)
O0<a<l1

10

-10 -5 0
Z

w

g(z) = max(z, 0)

ELU
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Artificial Neural Network (ANN) Basic Network Topology & Learning Algorithm

=  Forward interconnection of several layers of perceptrons create an Artificial Neural Network (ANNSs) * Forward propagation phase

. Multi Layer Perceptrons (MLPs) can be used as universal approximators | "~ 7

. In classification problems, they allow modeling nonlinear discriminant functions i MLP Yi
. Interconnecting neurons aims at increasing the capability of modeling complex input-output relationships * Backward propagation phase

INFORMATION FLUX

______

MLP =i —dy

= Weight updating phase (backpropagation

X of error)
< 1 — =
z z
w Ll
= WINNER TAKES =
£ Xy —» ALL =
w DECISION RULE g:;.
o wl
= g
e S
> =
w (%)
o Yn}
= A
= <
- X, — o

INPUT FIRST HIDDEN SECOND HIDDEN OUTPUT
LAYER LAYER LAYER LAYER
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Training an ANN with Backpropogation performing Weight Updates

Initialize weights randomly ~V'(0, 62)

(compute-intensive)

Loop until convergence

1
2
. W) _r . . .
3. Compute gradient o it explains how the loss changes with respect to each of the weights)
. aL(wy . . . . .
4 Update weights W :=W —n (in the opposite direction of the gradient )
___— ow

5 Retu rn WE|ghtS (Learning rate) (goal: minimize the ‘Loss using an optimization problem) ‘
=  The Learning Rate determines the " TRANING SAUPLES W - RN e W d i

adjustment magnitude & how much do you 1 o~ = arg mmz (f (i W), dy)

trust the computed gradient L =— (J’i — dl)z =1
L] Computing the gradients USing N i=1 - _ DESIR%;OUTPUT

optimization is the most computational part T HE L SAMPLE *= arg min L(W)

when there is a high number of weights . .

[17] Introduction to Deep Learning
V
o \ Initial guess . \ Initial guess \ o
/
w w
w
Small learning rate converges slowly and gets Large learning rates overshoot, become Stable learning rates converge smoothly
stuck in false local minima unstable and diverge and avoid local minima

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2
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MNIST Dataset — Add Two Hidden Layers for Artificial Neural Network (ANN)

=  All parameter value remain the same as before

= We add N_HIDDEN as parameter in order to set 128 neurons in one
hidden layer — this number is a hyperparameter that is not directly [20] big-data.tips,
defined and needs to be find with parameter search

[19] big-data.tips, Input Hidden Layers Output
‘Relu Neural Network’

‘tanh’

# parameter setup
NB_EPOCH = 20

BATCH_SIZE = 128

NB_CLASSES = 10 # number of outputs = number of digits
OPTIMIZER = SGD() # optimization technique

VERBOSE = 1

N_HIDDEN = 128 # number of neurons in one hidden layer

# model Keras sequential
model = Sequential()

# modeling step

# 2 hidden layers each N_HIDDEN neurons

model.add (Dense(N_HIDDEN, -input_shape=(RESHAPED,)))
model.add(Activation('relu'))
model.add(Dense(N_HIDDEN))
model.add(Activation('relu'))
model.add (Dense (NB_CLASSES))

(activation functions ReLU & Tanh)

model.add (Dense(N_HIDDEN)) model.add (Dense(N_HIDDEN))
K model.add(Activation('relu')) model.add (Activation('tanh'))

# add activation function layer to get class probabilities
model.add(Activation('softmax'))

The non-linear Activation function ‘relu‘ represents a so-called Rectified Linear Unit (ReLU)
that only recently became very popular because it generates good experimental results in
ANNs and more recent deep learning models — it just returns O for negative values and
grows linearly for only positive values

A hidden layer in an ANN can be represented by a fully connected Dense layer in Keras by
just specifying the number of hidden neurons in the hidden layer
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Running a Simple ANN with two hidden layers (200 Epochs: very long learning)

c ‘Q 0] B 127.0.0.1:8888/notebooks/ANN_2_Hidden.ipynb b w i I @ ﬂ @ @ @

"V. Jupyter ANN_2 Hidden Last Checkpoint: 30 minutes ago (unsaved changes) ﬁ Logout

File Edit View Insert Cell Kermnel Widgets Help Mot Trusted Il Emvironment {conda_tensorflow_p27) Ci

+ 3 A4 B A ¥ MHRin B C W Code ~| | =

In

from _ future  import print function

import numpy as np

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers.core import Dense, Activation
from keras.optimizers import SGD

from keras.utils import np utils

np.random.seed (1671) #

Using TensorFlow backend.

WARNING: tensorflow:From /home/ec2-user/anaconda3/envs/tensorflow_p27/lib/python2.7/site-packages/tensorflow_core/_ init_ .p

¥:1473: The name tf.estimator.inputs is deprecated. Please use tf.compat.vl.estimator.inputs instead. £
4 1 - 1s 26us/step - loss: 0.0160 - acc: 0.9978 - val loss: 0.0884 - wval acc: 0.97
5
Epoch 197/200
n (3] # e 428000/48000 [ ] - 1s 26us/step - loss: 0.0158 - acc: 0.9979 - val loss: 0.0888 - val acc: 0.97
I Rl -~ - 46
L3 LGl Eposh 198/200
BATCH SIZE = 48000/48000 [ 1 - 1s 26us/step - loss: 0.0157 - acc: 0.997% - val loss: 0.0881 - val_acc: 0.97
VERBOSE = 1 8
NB CLASSE Epoch 188/200
C‘P:II-’IZ R 48000/48000 [ 1 - 1s 26us/step - loss: 0.0155 - acc: 0.9979 - val loss: 0. - wval_acc: 0.97
- 9
N_HIDDEN = -
VRLIDRTICN SPLITI= 48 ] - 1= 26us/step - loss: 0.0154 - acc: 0.9979 - val loss: 0.0892 - val acc: 0.97
47

# down d testing s
(X train, y train), (X test, y test) = mnist.load

'Mon, 26 Oct 2020 23:19:28 +0000"

-
o
s

0000 rows of 28x28

# model

score = model.evaluate (X _test, ¥_test, verbos

print ("Test score:"”, score[0]}

print ('Test accuracy:', score[l]

= X test.reshape(
X_train = X_train.astype('float32") I13333:13333 [ 1 - Os 27us/step I

X _test = X_test.astype('float32') Test score: 0.0761875746714882€
Test accuracy: 0.9764

print (X train.shape[0], 'train samples')
print (¥_test.shape[0], 'test samples')

t class vectors to iatrices

Y train = np utils.te categorical(y train, NB CLASSES)
Y _test = np utils.to_categorical (v_test, NB_CLASSES)

60000 train samples
10000 test samples
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MINIST Dataset — ANN Model Parameters & Output Evaluation (20 Epochs)

Epoch 7/20
60000/60000
Epoch 8/20
60000/60000
Epoch 9/20
60000/60000
Epoch 10/20
60000/60000
Epoch 11/20
60000/60000
Epoch 12/20
60000/60000
Epoch 13/20
60000/60000
Epoch 14/20
60000/60000
Epoch 15/20
60000/60000
Epoch 16/20
60000/60000
Epoch 17/20
60000/60000
Epoch 18/20
60000/60000
Epoch 19/20
60000/60000
Epoch 20/20
60000/60000

# model evaluation
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("Test score:", score[0])

print('Test accuracy:', score[l])

18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step

18us/step

10000/10000
Test score:

[========================

0.16286438911408185

Test accuracy: 0.9514

1 - 0Os

33us/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.2264 - acc: 0.9356

.2175 - acc: 0.9386

.2092 - acc: 0.9412

.2013 - acc: 0.9432

.1942 - acc: 0.9454

L2743 - acc: 0.9223

.2601 - acc: 0.9266

L2477 - acc: 0.9301

.2365 - acc: 0.9329

.1876 - acc: 0.9472

.1813 - acc: 0.9487

.1754 - acc: 0.9502

L1700 - acc: 0.9522

.1647 - acc: 0.9536

# printout a summary of the model to understand model complexity

model . summary ()

Hidden Layers

Output

e

o

Layer (type) Output Shape Param #
demse_1 (Dense)  (Nome, 128) leeaso
activation 1 (Activation)  (Mene, 128) o
dense_Zizsggge) 777777 (Ncne?iizs) o 16512
activation_2 (Activation) (None, 128) Q

dense_3 (Dense) (None, 10) T 1290 B
actﬁvat;;;:g_(Activatio;;____(None?_ia) T '

.'.4’ Ye Total params: 118,282
Trainable params: 118,282

Non-trainable params: @

I/
1

)
L

Multi Output Perceptron:
~91,01% (20 Epochs)
ANN 2 Hidden Layers:
~95,14 % (20 Epochs)

Dense Layer connects every neuron in this dense layer to the next
dense layer with each of its neuron also called a fully connected
network element with weights as trainiable parameters

Choosing a model with different layers is a model selection that
directly also influences the number of parameters (e.g. add Dense

layer from Keras means new weights)

Adding a layer with these new weights means much more
computational complexity since each of the weights must be
trained in each epoch (depending on #neurons in layer)
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[Video for further Studies] Neural Networks Summary

|

|

_ Connection
~ Weight

[21] YouTube Video, Neural Networks — A Simple Explanation



Convolutional Neural Network (CNN) Basics

O
O 0
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Impact of Deep Learning in Various Application Domains

Vision, Natural Speech Material Science, Chemistry

1.12 woman
-0.28 in

1.23 white
1.45 dress
0.06 standing
-0.13 with

3.58 tennis

1.81 racket
0.06 two
0.05 people
-0.14in
0.30 green
-0.09 behind
-0.14 her

Omics (Genomics, Proteomics, Metabolomics)

1. High-throughput 2. Massively parallel deep learning 3. Community needs
experiments . .
Automatic model training New Prediction Proteln Foldlng
T T motifs network —
= e { ]
== (% =] 5}8 1O 3 Gene regulation T0954 /6CVZ T0965 / 6D2V. T0955 / SWOF
PBM b BB ) W TR) 1
A (&5 3 Mo |28 4 [ECA A
~ \7\ — — / [ B B H £
SELEX o T8 Precision medicine 3 T
TARG
TaceC DeepBind b MA'
£ & T models s A
= Large-scale ACA'.V ‘.“TV :
ChIP/CLIP datasets  GPU server Detect binding sites

Medical Imaging and Diagnostics Fluid, Gas Dynamics

rcacacrons 2 Goamavnn Games, Control Optimization
* Melanocytic benign
G  Melanocytic malignant

" "L
P e
: LR B

Seborrhoeic keratoses

[, 865T00)
00:01:00
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Complex Relationships: ML & DL vs. HPC/Clouds & Big Data

‘small datasets’

manual feature
engineering’
changes the
ordering

Model Performance / Accuracy

Turing Award 2018: Recognition of Deep Neural Networks as critical
component of computing

Assodiation for
Computing Machinery

FATHERS OF THE DEEP LEARNING REVOLUTION
RECEIVE ACM A.M. TURING AWARD

Bengio, Hinton, and LeCun Ushered in Major
kth hs in Artificial Intellig

High Performance
Computing & Cloud
Computing

ACM Announces 2018 Turing Award Recipientse

ACM has named Yoshua Bengio @ of the University of Montreal, Geoffrey Hinton of Google, and
Yann LeCun(Z of New York University recipients of the 2018 ACM A.M. Turing Award for conceptual
and engineering breakthroughs that have made deep neural networks a critical component of
computing. Working independently and together, Hinton, LeCun and Bengio developed conceptual
foundations for the field, identified surprising phenomena through experiments, and contributed
engineering advances that the practical of deep neural networks.

Training
Time

Large Deep Learning Networks

Medium Deep Learning Networks

Small Neural Networks

Traditional Learning Models

MatlLab

i o Statistical
Random K} f% R SRS 4 Computing with R
dold b l K 0 /e
Forests J i ofe @
\\'/ T A scikit-learn Weka Octave

v

Dataset Volume
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-> ‘Big Data‘
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http://www.iconarchive.com/show/aesthetica-2-icons-by-dryicons/database-process-icon.html
http://www.iconarchive.com/show/real-vista-data-icons-by-iconshock/objects-icon.html

Innovative Deep Learning Techniques — Revisited

Engeneer

® Transform Learn Traditional
; . Reduce Machine
e Learning

R S

* s
1s5do Learn Deep
. Learning
— |1 ‘ —
1s8o g

[24] M. Riedel et al., ‘Introduction to Deep Learning Models’,
JSC Tutorial, three days, JSC, 2019

[23] M. Riedel, ‘Deep Learning - Using a Convolutional Neural Network’,
Invited YouTube Lecture, six lectures, University of Ghent, 2017

. Innovation via specific layers and architecture types
is the success of Convolutional Neural Networks (CNNs)

O H /7 A 03 0% 3] i
Sk gl 03]y lo]MellS] ¢
L 2l ¢ riprs T = ] Y ,
FUZ0AG 0G0 A sl l[Elr] o it Nttt
& 71 F] 3 E 3 5533 P .
09 HEEZ 714713 Scalable Unsupervised
Z 6@ E A6 D3 [27] A. Rosebrock Learning of Hierarchical Representations’
[zl 01 [&] 3] 18] [ 7] M [Z] [E]
4l 3] [&] 7] (81 & 2] [0 ] [€]
=zl Ml (& (7] (8] [7] (2] 3] [Z]
fcauuclmnps fcalmi‘maps l’cauu(ci:nnps fcanuizmnps e oul:};ut
npu 28x28 l4x14 _ 10x10 5x5
.. @ e NNe N
. —@ 7 e \ ==
—6s RN it N\ Ot
; . e 5x5 ~ N 22 5x5 \\\ 0 e
[26] Neural Network 3D Simulation ® ® comeluton mbmimg_miolmi _suuiu;lmg_ _\\\(\m_:u‘xilc‘:.d_\ A
feature extraction classification
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CNNs — Basic Principles & Local Receptive Fields

=  Convolutional Neural Networks (CNNs/ConvNets) implement a connectivity pattner between
neurons inspired by the animal visual cortex and use several types of layers (convolution, pooling)

= CNN key principles are local receptive fields, shared weights, and pooling (or down/sub-sampling)
. CNNs are optimized to take advantage of the spatial structure of the data

= Simple application example 24él7s7074 = MNIST dataset example
= MINIST database written characters %’%%%%g%% = 28 * 28 pixels modeled as square of
= Use CNN architecture with different layers Zg24di0inn neurons in a convolutional net
= Goal: automatic classification of characters 7467617575 " Values correspond to the 28 * 28
RERDENEN pixel intensities as inputs

EA RN EREN AV AT

input neurons input neurons (red box indicate the

REd a2 Mxld | oxl0 533 _ [28]M. Nielsen  eon0e000000220820080208002 local receptive

0000000000000 000000000000000

60006000600000000000000686860 i i
0000000000000000000000000000 field for the hidden
O—N¢> 0 60000000600000000000000806860
o——u1 0000000000000000000000000000 neuron)
=
L |
I s \
5x5 2x2 5)
06000000060000000
convolution \ subsampling convolution 2x2 \\ O fully \ 0000000000000000000000000000
sobsampliag comectd i
UH H {
¥ ——— — — — — _\\ ol R, 9890000000000000000000000000 (llttle window‘ on
feature extraction classification 00000000600000000000000800060 hei ixel
0000000000000000000000000000 the input pixe S)
0000000000000000000000080060

0000000000000 000000000000000
0000000000000000000000000000

[27] A. Rosebrock (28 * 28 pixel image) (5 * 5 local connectivity)
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CNNs — Principle Sliding with Convolutions & Feature Maps

input neurons input neurons
00000 first hidden laye 23838
= MNIST database example e e
00 0000

= Apply stride length =1

= Creates ‘feature map’ of
24 * 24 neurons (hidden layer)

= Role of Convolutions & Filter

= Valid convolution does not
exceed the input’s boundary

= Same convolution adds a so called
‘padding’ to maintain the input’s
dimension for each convolutional layer
= Feature maps reflect where in the

input a part of local features were
activated by the applied filter

(28 * 28 pixel image)

(24 * 24 feature map)

local features)

PR S

00000
10,0000

(9,0,0
e/0/0/00/0000000e (9,9,90
0/00/006/00000000 3555%8

0 00,000,000000 ¢
IS 3%%%@%
0000000000 eee

4 4
>3 s

i=1j=1

4x4 filter: matrix
of weights w;;

for neuron (p,q) in hidden layer
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(28 * 28 pixel image)

(Example: apply a set of weights
as filter to extract

first hidden layer

(24 * 24 feature map)

[17] Introduction to Deep Learning

1/1/1/0|0
0,1/1/1|0 4
Oxloxﬂlxlll
0[{0f1|1]0
0|1|1(0]O0
Convolved
Image Feature
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CNNs — Understanding Application Example MNIST - Summary

= VINIST database example

= Pooling Layer & Apply ‘fully connected layer (flatten)’: layer connects every neuron 621152 [A][g S]]
from the max-pooling outcome layer to every neuron of the 10 out neurons A gL allelre

(another indicator
that even with
(Pooling layers: simplify the information in the output from the Convolution, e.g. max pooling ) cutting edge technology
machine learning never

ot x \ ot O O H 14 A3 1] 3 achieves 100% performance)
28 x 28 3% 24 % - S (A3 &1 [7 M [F 6] 5] M
iy x4 e di7/A 2B R[Z ™
s O P[] [7][0] 51 (6] [@] = [@] []]
L1 i KON 8 7] 7] [3] [9] [3] [s] (3] (3] [3]
iy I I Q 027209y /e
=8 Tnanaeni
Q g 867 2R [g] 0 (¢
O 2l 4l [el 7] 0] (7] 23] [/ 5]

) hidden neurons (output from feature map)
[28] M. Nielsen

max-pooling units

— CAR Q0.
— TRUCK o0 0
— VAN

(]

FEATURE /
MAP 2 / FULLY
[ INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CONNECTED SOFTMAX
FEATURE
L MAP1 e @ R 2
. . FEATURE LEARNING CLASSIFICATION
[29] M. Gérner et al. (Convolution Example)
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Understanding Feature Maps & Convolutions Summary — Online Web Tool

2D Visualization of a Convolutiona: X [ieg

&« c Q ® scs.ryerson.ca/~aharley/vis/conv/flat.html oo Q N @ @ =

Draw your number here

b
!
Downsampled drawing: 7

First guess: | 7

Second guess: | 3

Layer visibility
Input layer

onvolution layer 1
Downsampling layer 1

~onvolution layer 2

[30] Harley, A.W., An Interactive Node-Link Visualization of Convolutional Neural Networks
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from
from
from
from
from
from
from
from
from
from

keras

keras.
keras.
keras.
keras.

keras

keras.
keras.
keras.
keras.
import numpy as np

import
models

layers.
layers.
layers.
. layers.
layers.

MNIST Dataset — Convolutional Neural Network (CNN) Model

backend as K

import Sequential

convolutional import Conv2D
convolutional import MaxPooling2D
core 1import Activation

core +import Flatten

core 1import Dense

datasets dimport mnist
utils import np_utils
optimizers dimport SGD, RMSprop, Adam

import matplotlib.pyplot as plt

#define the CNN model

clas

s CNN:

@staticmethod
def build(input_shape, classes):

model = Sequential()

# CONV => RELU => POOL

model.add(Conv2D (20, kernel_size=5, padding='"same'",
input_shape=input_shape))
model.add(Activation("relu"))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

# CONV => RELU => POOL

model.add(Conv2D (50, kernel_size=5, border_mode="same'))

model.add(Activation("relu'"))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

# Flatten => RELU layers
model.add(Flatten())
model.add(Dense(500))
model.add(Activation("relu"))

# a softmax classifier
model.add(Dense(classes))
model.add(Activation("softmax"))

return

model

. Increasing the number of filters learned to 50 in the next layer from 20 in the first
layer
. Increasing the number of filters in deeper layers is a common technique in deep
) learning architecture modeling
,’ . Flattening the output as input for a Dense layer (fully connected layer)
,’ . Fully connected / Dense layer responsible with softmax activation for classification
Il based on learned filters and features
/
II [31] A. Gulli et al. # printout a summary of the model to understand model complexity
/4 model.summary ()
/
II Layer (type) Output Shape Param #

I . conv2d_1 (Conv2D) (None, 20, 28, 28) 520
I 50 Feature . Dense ™
Maps Layer Dense Output = p 5 5
I Layer activation_1 (Activation) (None, 20, 28, 28) [}
I 20 Feature 'I
Maps I

max_pooling2d_1 (MaxPooling2 (None, 20, 14, 14) [¢]

II conv2d_2 (Conv2D) (None, 50, 14, 14) 25050

activation_2 (Activation) (None, 50, 14, 14) [¢]

Input D o
o 1
h'—i_ - "LLLL E o max_pooling2d_2 (MaxPooling2 (None, 50, 7, 7) 0

Pooling E? Convolution"]' r flatten_1 (Flatten) (None, 2450) ¢}
Pocling ﬁ I

dense_1 (Dense) (None, 500) 1225500
\\ activation_3 (Activation) (None, 500) ]
~
~
NNN dense_2 (Dense) (None, 10) 5010

e . Sso
# initialize the optimizer and model ~o activation_4 (Activation) (None, 10) 0
model = CNN.build(input_shape=INPUT_SHAPE, classes=NB_CLASSP9$..
model.compile(loss="categorical_crossentropy", optimizer=0PTIMIZ€§7~.. Total params: 1,256,080

trics=[" ”]) Trainable params: 1,256,080
MELIRIES S Ry CELIRAEH Non-trainable params: 0
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MNIST Dataset — Model Parameters & 2D Input Data

# parameter setup

NB_EPOCH = 20

BATCH_SIZE = 128

VERBOSE = 1

OPTIMIZER = Adam()

VALIDATION_SPLIT=0.2

IMG_ROWS, IMG_COLS = 28, 28 # input image dimensions
NB_CLASSES = 10 # number of outputs = number of digits
INPUT_SHAPE = (1, IMG_ROWS, IMG_COLS)

# data: shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
K.set_image_dim_ordering("th'")

# consider them as float and normalize

X_train = X_train.astype('float32')

OPTIMIZER: Adam - advanced optimization technique that includes the concept of
a momentum (a certain velocity component) in addition to the acceleration
component of Stochastic Gradient Descent (SGD)

Adam computes individual adaptive learning rates for different parameters from
estimates of first and second moments of the gradients

Adam enables faster convergence at the cost of more computation and is
currently recommended as the default algorithm to use (or SGD + Nesterov
Momentum)

[32] D. Kingma et al., ‘Adam: A Method for Stochastic Optimization’

Compared to the Multi-Output Perceptron and Artificial Neural Networks (ANN)
model, the input dataset remains as 2d matrice with 1 x 28 x 28 per image,
including also the class vectors that are converted to binary class matrices

X_test = X_test.astype('float32') __——’
X_train /= 255 __,_—"

X_test /= 255 A=_——’

# we need a 60K x [1 x 28 x 28] shape as Tnput to the CONVNET
X_train = X_train[:, np.newaxis, :, :]

X_test = X_test[:, np.newaxis, :, :]

print(X_train.shape[0@], 'train samples')
print(X_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
y_train = np_utils.to_categorical(y_train, NB_CLASSES)
y_test = np_utils.to_categorical(y_test, NB_CLASSES)
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MNIST Dataset — CNN Model Output & Evaluation

Epoch 14/20

48@@@/480@@ [:::::::::::::::::::::::::

Epoch 15/20

48@0@/480@0 [:::::::::::::::::::::::::

Epoch 16/20

48@0@/480@0 [:::::::::::::::::::::::::

Epoch 17/20

48@0@/480@0 [:::::::::::::::::::::::::

Epoch 18/20

48@0@/480@0 [:::::::::::::::::::::::::

Epoch 19/20

48@0@/480@0 [:::::::::::::::::::::::::

Epoch 20/20

48@@@/480@0 [:::::::::::::::::::::::::

# model evaluation

score = model.evaluate(X_test, y_test, verbose=VERBOSE)

print("Test score:", scorel[0])
print('Test accuracy:', score[l])

] - 4s 88us/step - loss: 0.
=====] - 4s 89us/step - loss: 0.
=====] - 4s 88us/step - loss: @.
=====] - 4s 88us/step - loss: 0.
=====] - 4s 88us/step - loss: 0.
=====] - 4s 88us/step - loss: 0.

=====] - 4s 88us/step - loss: 3

l@@@@/lo@@o [:::::::::::::::::::::::::

Test score: 0.0303058747581508
Test accuracy: 0.9936

] - 1s 70us/step

v' Multi Output Perceptron:
~91,01% (20 Epochs)

v ANN 2 Hidden Layers:
~95,14 % (20 Epochs)

v CNN Deep Learning Model:

~99,36 % (20 Epochs)

[31] A. Gulli et al.

Input

. | Y
Convolution

0065 -

0030 -

0057 -

0043 -

0046 -

0047 -

20 Feature
Maps

acc: 0.9980 - val_loss: 0.0346 - val_
acc: 0.9990 - val_loss: 0.0418 - val_
acc: 0.9980 - val_loss: 0.0470 - val_
acc: 0.9985 - val_loss: 0.0440 - val_
acc: 0.9985 - val_loss: 0.0474 - val_
acc: 0.9986 - val_loss: 0.0353 - val_

.4055e-04 - acc: 1.0000 - val_loss: 0.0374 -

50 Feature
Maps

Poaling ﬁ ‘ Cnnvolutinn'}]

sy 13
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acc: 0.9921

acc: 0.9903
acc: 0.9910
acc: 0.9906
acc: 0.9891
acc: 0.9928

val_acc: 0.9927

Dense Qutput
Layer

R

NN QR Q4O
Sl B el SN NV SR RNV AN
SIS

NSNS e
SB[ ]l ][N B
NN (N[O el —
Felfe N RalWy o) Wi/
PIOINIC e o=
RN N s N )]
M eVl e [ L] 09 ][] X} e

Why not
100%

-

MENE RPN EINE
A= U] gl el

some samples even for
a human unrecognizable
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Running a Deep Learning Model with Convolutional Neural Network (CNN)

c o © O 127.00.1:8888/n0 LN DO H@®

@ from time import gmtime, strftime
b %

strftime("%a, *d ¥ , gutime())

model. fit (X_train, y train,
CH SIZE, epochs=NB_EPOCE,
BOSE, validation_split=VALIDATION_SELIT)

) Jupyter CNN Last Checkpoint: 37 minutes ago (unsaved changes) # Lagout history

batch_siz

verbos
File Edit View Insert Cell Kemel Widgets Help Not Trusted IEn\;ironmem (conda_tensorflow_p27) O I 2
from time import gmtime, strftime
3

, gmtime ()

+ 3 @ B A%/ WRin B C» | cose % strftime ("ta, %d %b %Y %H:¥
WERNING: tensorflow: From
/math_grad.py:liZd:
Instructions for updating:

Use tf ere in 2.0, which has the same broadcast rule as np.
from keras import backend as K WLRNING:tensorflow:From /home/ec2-user/anacondad/enve/tenserflow p27/lib/pythen2.7/site-packages /keras/backend/censorflow b
from keras.models import Sequential ackend.py:986: The name tf.assign add is deprecated. Please use tf.compat.vl.assign add instead.

from keras.layers.convolutional import ConvZD

from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation

from keras.layers.core import Flatten

from keras.layers.core import Dense

from keras.datasets import mnist

from keras.utils import np utils

from keras.optimizers import 5GD, RMSprop, Adam
import numpy as np

import matplotlib.pyplot as plt

me/ec2-user/anaconda3/envs/tensorflow_p27/1ib/python2. 7/ sise-packages/tensorflow_core/python/ops

(fzom tensorflow.pythen.cps.azzay_ops) is deprecated and will be zemoved in a futaze vezsionm.

where

here

In

WERNING:tensorflow:From /home/ec2-user/anaconda3/envs/tensorflow p27/lib/python2.7/site-packages/keras/backend/tensorflow b

ackend.py:973: The name tf.assign is deprecated. Please use tf.compat.vl.assign instead.

samples, validate on 12000 samples

©

1 - 95s Ims/step - loss: 0.1918 - acc: 0.9405 - wval_less: 0.0711 - val_acc: 0.97

1 - 953 Ims/step - loss: 0.0480 - acc: 0.9844 - val loss: 0.

=)
@
=
®
'

o
®

val_ace: 0.

=

o
®

1 - 92s Ims/step - loss: 0.0332 - acc: 0.9883 - wval loss: 0.0415 - val _ace: 0.

Using TensorFlow backend.

WARNING:tensorflow:From /home/ec2-user/anaconda3/enva/tensorflow p27/lib/python2.7/site-packages/tensorflow _core/_  init  .p
¥:1473: The name tf.estimator.inputs is deprecated. Please use tf.compat.vl.estimator.inputs instead.

o
w

1 - 955 2ms/step - loss: 0.0233 - acc: 0.9927 - wval loss: 0.0435 - val acc: 0

o
w

1 - 91s 2ms/step - loss: 0.0168 - acc: 0.9944 - wval loss: 0.0338 - val_acc: 0.

In

o
o

1 - 945 2ms/step - loss: 0.0131 - acc: 0.9955 - val loss: 0.0386 - val_acc: 0.

Bsta

Epoch 7/20

def build(input shape, classes): 25216/48000
model = Segquential ()

In [ ]:)#

score = model.evaluate (X test, y_test, verbese
score[0])
, score[1])

model. add (Conv2D (20, kernel size=5, padding="same", RBOSE)

input_shape=input_shape))

model.add (Activation("relu”)}

model.add (MaxPooling2D(pocl_size=(2, 2}, strides={2, 2)})

> POOL

mdel1233iEZEZiSL;Qﬁii?ifvfi“=5’ bordez_mode="same") ) . Using Deep Learning Techniques such as Convolutional

model.add (axooling2D(pool_size=(2, 2), strides=(2, 2))) Neural Networks (CNNs) in clouds can lead to significant

nodel.add(Flatten improvements in accuracy, but also to significant longer
— run-times than traditional Artificial Neural Networks

model . add (2
B e ) (ANNSs) and are thus much more costly in clouds

model . add (Activation("so
. Using CPU resources for deep learning techniques is
usually not recommended

return model
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[Video for further Studies] Overfitting in Deep Neural Networks

.....

Sl the student is, the more patterns he can memorize.

P Pl o 247/433
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20 hidden neurons

vy overfitting
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Selected Parallel & Scalable Machine & Deep Learning Techniques

O
O
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Machine Learning Models — Understanding Parallel Benefits

Classification Clustering Regression

~
Y ow
- -
=  Groups of data exist = No groups of data exist = |dentify a line with
= New data classified » Create groups from a certain slope
to existing groups data close to each other describing the data

. Machine learning methods can be roughly categorized in classification, clustering, or regression augmented with various techniques for data
exploration, selection, or reduction — despite the momentum of deep learning, traditional machine learning algorithms are still widely relevant today

[1] www.big-data.tips, ‘Data Classification’
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Terminologies & Different Dataset Elements & Processes — Overview

= Machine Learning Models (O ot . o, then testia oxam)
= Based on various algorithms that learn from existing data sets

= Labelled Dataset (samples) ',tmmmg set’ i test set’ .
= ‘in-sample’ data given to us: (X,, 4, ), .-, (X, Yy ) TraininéExamples

= Learning vs. Memorizing (0 91): o (s i)
= The goal is to create a system that works well ‘out of sample’ (nistorical records, groundiruth data, examples)

* |n other words we want to classify ‘future data’ (ouf of sample) correct

Classification

= Dataset Part One: Training set
= Used for training a machine learning algorithms
= Result after using a training set: a trained system

= Dataset Part Two: Test set
= Used for testing whether the trained system might work well
= Result after using a test set: accuracy of the trained model

(exact separation is rule of thumb, but different in each data analysis case: e.g., 10% training data, 90% test data)

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2 65 /94




Parallel and Scalable Machine Learning — Parallel Support Vector Machine (SVM)

Class Training Test

Buildings 18126 163129
Blocks 10982 08834
Roads 16353 147176

Light Train 1606 14454

= ‘Different kind‘ of parallel algorithms
= ‘learn from data’ instead of modelling/approximate reality with physics

H ( H H Vegetation 6962 62655
= Parallel algorithms often useful to reduce ‘overall time for data analysis goulon 002 oa0w
Bare Soil 8127 73144
M M Soil 1506 13551
= E.g. Parallel Support Vector Machines (SVMs) Technique e 93 oo
oo . o . . ( . e . ( Total 77542 697859
= Data classification algorithm PiSVM using MPI to reduce ‘training time
= Example: classification of land cover masses from satellite image data
#!/bin/bash -x #1/bin/bash -x
#SBATCH- -nodes=4 #SBATCH- -nodes=4
#SBATCH. -ntasks=96 ﬁ:gﬂg:-::::g:gzr node=24
i #SBATCH- -ntasks-per-node=24 - “per-node=2
: FSBATCH. output-mpiout. % AT, outputm ot
#SBATCH- -error=mpi-err.%j #SBATCH- -time=04:00:00
- 19 @ ¥ - #SBATCH- -time=04:00: 00 #SBATCH- -partition=batch
#SBATCH- -partition=batch #SBATCH- -mail-user=m. riedel@fz-juelich.de
#SBATCH- -mail-user=m.riedel@fz-juelich.de #SBATCH- -mail-type=ALL
T T T L 2 N v T T T #SBATCH- -mail-type=ALL #SBATCH- - job-name=pred-indianpines-4-96-24
3 L 2 1 1 4 4 5 6 #SBATCH- - job-name=train-indianpines-4-96-24 #SBATCH- -reservation=ml-hpc-2
. ’1" L -~ #SBATCH- -reservation=ml-hpc-2 ### location executable
X PISVMPRED=/homea/hpclab/traineol/tools/pisvm-1.2.1/pisvm-predict
### location executable
-2 PISVM=/homea/hpclab/train00l/tools/pisvm-1.2.1/pisvm-train ### location data
TESTDATA=/homea/hpclab/train00l/data/indianpines/indian_raw_test.el
### location data .
TRAINDATA=/homea/hpclab/train001/data/ indianpines/indian_raw_training.el ::ﬁﬁEEgi#zthmg:}hg:t:b/trainﬂGl/tocls/pisvm-1.2. 1/indian_raw_training.el.model
. ### submit .
[35] €. Cortes & V. Vapnik, ‘Support Vector Networks’, SrunS;PEVM -D -0 1024 -q 512 -c 100 -g 8 -t 2 -m 1024 -s O STRAINDATA zfﬁnsgg?gMPRED $TESTDATA $MODELDATA results.txt
Machine Learning, 1995
[34] G. Cavallaro & M. Riedel & J.A. Benediktsson et al., ‘On Understanding Big Data Impacts in Remotely Sensed Image Classification Using Support
[36] www.big-data.tips, ‘SVM Train* Vector Machine Methods’, Journal of Applied Earth Observations and Remote Sensing, 2015
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Overview Machine Learning Terminologies & Computing-intensive Processes

? Unknown Target Bistetinnion P(y |X) Probability Distribution Eﬁye;:z'(:scz,;
ol target function f X =Y plus noise Pon X (need to) know
.

! (ideal function) I

1

i ‘“ tants’
— constants

i ‘ X = (371, "‘7$d) X in learning

1

Training Examples

Elements we
must and/or

Error Measure

should have and
(Xuyl), ceey (XN; yN) G(X) ' that might raise
huge demands
(historical records, groyndtruth data, examples) for storage

Learning Algorithm (‘train a system’)

Final Hypothesis
A <

g=f

L o I ¢ Hvpothesis Set
:r:f"':;i %:{h},QEH
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Problem of Overfitting — Clarifying Terms

(‘generalization error’) ( )
A Eout g

Classification Error
.?‘
Y e :
: (“training error‘)
. >

. . - .. Training time
bad generalization < :9 overfitting occurs

= A good model must have low training error (E;,) and low generalization error (E, ;)

. Model overfitting is if a model fits the data too well (E;,) with a poorer generalization error (E_,)
than another model with a higher training error (E;,)

= The two general approaches to prevent overfitting are (1) validation and (2) regularization

[37] www.big-data.tips, ‘Generalization in Machine Learning’
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Validation Technique — Proper Model Selection Process is Compute-Intensive

Hypothesis Set

H=1{h}; g€H

(set of candidate formulas across models)

= Many different models
Use validation error to
perform select decisions

= Careful consideration:

‘Picked means decided’
hypothesis has already
bias (= contamination)

" Using Dy, M times

Final Hypothesis

G- |

(test this on unseen data
good, but depends on
availability in practice)

(training not on

full data

H,

set)

DT?"ain

Ho

a

1 (training)

(out-of-sample t

w.r.t. D) ,__

C4

: O

$

t‘

=2

(validate)

\ Evall

-
DVG,Z
3

(unbiased
estimates)

Evalg E’UalM }

(pick ‘best’ = bias)

Y (decides model selection)

D

Hm* E'Ualm*

—
Y

(final real training

L -

(final training on full set, use
the validation samples too)
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o

G mx

to get even better
out-of-sample)

(‘generalization error’) B G (g)

I

E, (9)

>

>

Training time

bad generalization€< & —) overfitting occurs

Model selection is
choosing (a) different types
of models or (b) parameter
values inside models

Model selection takes
advantage of the validation
error in order to decide 2>
‘pick the best*
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Validation Technique — Cross-Validation — Leave-more-out

. 10-fold cross validation is
mostly applied in practical

problems by setting K =

Training Examples
(x Y ) (X Y ) D N/10 for real data
AR *  Having N/K training

sessions on N — K points
each leads to long
runtimes (=2 use

® | eave-more-out Training Examples ,D parallelization)

(leave 1 point out at each run = many runs)

= | eave-one-out

= N training sessions on
N — 1 points each time

(generalization to leave k points out at each run)

. X ey | X
= Break data into number of folds (0 91), -0 (X, U) ' RGEREL

. . . H id bi & Error 4
= N/K training sessions on contammation. some ree for test V
N —_ K p0|nts eaCh t|me (fewer training sessions than above) as ‘unseen data’)

(‘training error‘)

E, (9)

= Example: ‘10-fold cross-valdation’ with K= N/10 multiple times (N/K)

(use 1/10 for validation, use 9/10 for training, then another 1/10 ... N/K times) bad generalization €& E-) overfitting occurs

D Training Examples l
(dataset) Dl Dg Dg - D5 Dﬁ D7 Dg Dg Dm

R

(involved in training now) (involved in training now)

[38] www.big-data.tips, ‘Cross Validation
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Parallel Support Vector Machine (SVM) — piSVM MPI Implementation & Impact

//Jeder Prozess hat 1 Werte an die Stelle Rang *
for(int k = 0; k < p; ++k)
32 {

1l in p_cache_status geschrieben

//Jeder Prozess broadcastet sein Ergebnis zu allen anderen Prozessen

. Original piSVIVI 1.2 Version (2011) : optimised :%ﬁ’ - MPI,Bcast(&pfcache,status[k * 1], 1, MPI_CHAR, k, comm);
o ! Using MPI_Allgather() instead
u Open_sou rce and based On IibSVM |ibrary’ C :Z fcr(i?‘zr;n}:(zi i)<{Pj’/;;ri)sindende i’rozess kopiert in den Sendebereich
" for(int j = 0; j < lmn; ++j

= Message Passing Interface (MPI)

= New version appeared 2014-10v. 1.3

(no major improvements)

o‘/l

148 16

10:00
09:00
08:00

b

07:00
06:00 If

05:00

= Lack of ‘big data‘ support (e.g. memory) o= 1\

" Tuned scalable parallel piSVM tool 1.2.1

02:00
01:00
00:00

= Highly scalable version maintained by Juelich

= Based on original piSVM 1.2 tool

= Optimizations: load balancing; MPI collectives

148 16

memory access problems

32 64 128

TSYM
optimized 7SyM

memory access problems

32 64 128

@SVM

G_buf[j] = G_n[j];
i
//Alle anderen Prozesse erhalten die Daten
MPI_Bcast(G_buf, lmn, MPI_DOUBLE, i, comm);

//Und addieren sie auf

for(int j = 0; j < lmn; ++j)
G[not_work_set[jl] += G_buf(j];

Using MPI_Allreduce() instead

Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

v/C 1

10

100

1000

10000

2 48.90 (18.81)
4 57.53 (16.82)
8 64.18 (18.30)
16  68.37 (23.21)
32 70.17 (34.45)

65.01 (19.57)
70.74 (13.94)
74.45 (15.04)
76.20 (21.88)
75.48 (34.76)

73.21 (20.11)
75.94 (13.53)
77.00 (14.41)
76.51 (20.69)
74.88 (34.05)

75.55 (22.53)
76.04 (14.04)
75.78 (14.65)
75.32 (19.60)
74.08 (34.03)

74.42 (21.21)
74.06 (15.55)
74.58 (14.92)
74.72 (19.66)
73.84 (38.78)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

yIC 1 10 100 1000 10000
R P e 2 7526(1.02) 65.12 (1.03) 73.18 (1.33) 75.76 (2.35) 74.53 (4.40)

"SI T oI ] 4 57.60 (1.03) 70.88 (1.02) 75.87 (1.03) 76.01 (1.33) 74.06 (2.35)

ML EEEE v | | E  zZEEE I 8  64.17 (1.02) 7452 (1.03) 77.02 (1.02) 75.79 (1.04) 74.42 (1.34)

e |- o T p____EEEN —= 16 6857 (1.33) 76.07 (1.33) 76.40 (1.34) 7526 (1.05) 74.53 (1.34)

.-.‘:1:1:]1:[[:[_ == I = 32 7021 (1.33) 75.38 (1.34) 74.69 (1.34) 73.91 (1.47) 73.73 (1.33)

] - I ) - S P[] _ _ _

I i ] mTTTT[T] First Result: best parameter set from 14.41 min to 1.02 min

Second Result: all parameter sets from ~9 hours to ~35 min

[34] G. Cavallaro & M. Riedel & J.A. Benediktsson et al., ‘On Understanding Big Data Impacts in Remotely Sensed Image Classification Using Support

[39] pisVM on SourceForge, 2008 Vector Machine Methods’, Journal of Applied Earth Observations and Remote Sensing
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HPC Relationship to ‘Big Data‘’ in Machine & Deep Learning — Scalability

‘small datasets’

[42] JUWELS Supercomputer

Large Deep Learning Networks

High Performance
Computing & Cloud
Computing

Training
Time

>
(8}
©
S
-
(S}
U 15
Nyl manual feature __@Dﬁ@mlbj _
Y engineering’ Medium Deep Learning Networks e\ |
= changes the
g ordering
S ‘J JULICH | &boupumso Small Neural Networks
& Forschungszentrum CENTRE
2 Traditional Learning Models
§ MatlLab
et Statistical
Random Computing with R
Forests @
scikit-learn ~ Weka  Octave
Dataset Volume - ‘Big Data’ [22] wuw. big-data. tips
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HPC Relationship to ‘Big Data‘ in Machine & Deep Learning — Complexity

processing-
Compute- & Data-Intensive CoE RAISE Use Cases]!f- %omain—speciﬁc CoE Use Cases NCC & Industrial Use Cases intensive
A) {B) C) applications
q . N A N
‘ co-design inputs ‘ adoptions adoptions
©  Secure Shell Access (SSH) using batch 7 Interactive Jupyter notebooks with JupyterlLab sharing ,EE Application Workflows (e.g., Apache Airflow),
E submits to scale-up distributed training e of datasets & scripts for rapid DL model prototyping k /(';\ including task pre- & post data processing Reference
\—/ N T N Architecture
. ! — elements of
\/
LAMEC API to specify models in ONNX format LAMEC API to share & enable re-use of Al models with i OpenML Community | #= ClearML MLOps COI:T RAISE
also enabling re-usability of existing Al models community platforms & industry tools & datasets ~ Platform & Pipelines latform & Models unique Al
H ) U K} framework
-3 for Exascale
: HPC & Al
LAMEC API Facade pattern RCJEW LAMEC API Batch script repository LAMEC API generates HPC script modules, Open HPC/AI Job Script Methods
encapsulates use case instances M & scalability-proven Al frameworks N Al library setups & automated testing $ Generator Web Page(s)
L L 0 L
A ; Ew
r'] Basic Science & Al OTensorFlow & PyTorch ¢ Horovod / PyTorch-DDP / DeepSpeed ‘ .o%: RAY - Hyperparameter Tuner software
B ibraries (NumPy, etc.) 3 (& DALI Data Loader) 1 r Distributed Deep learning tools Ray Tune, Optuna, Deep Hyper || jnfrastructure
L I
\—/ \—/ x S
L e—————— R 3 ‘adopt:’ons
s Mo e C
Prototype I odular Apptainer EuroHPCJU | iy ywmi [ vEGA [ karoLiNA [fBDEUCALION | 0
HPC Systems | | HPC Container Hosting Sites Sust
System - stems
, - y JJWELS FA] Environment ST B LonARDO [ MELUXINA B DISCOVERER Y
. Modular HPC L ‘ . Rudens \ hardware
(__System DEEP w infrastructure
1 CTE-ARM D-Wave Quantum Annealing System {5 ] BSC-CNS o .VSC HPC
t. HPC System | IIII' Apptainer HPC System JUPITER [ Systems
\ Quantum SVM - Container M Aachen
. CTE-AMD (SVR) Python Code ] Al Environment are Exascale ’
L HPC System — Nostrum System /| Systems
s

[57] M. Riedel, C. Barakat, S. Fritsch, M. Aach, J. Busch, A. Lintermann, A. Schuppert, S. Brynjolfsson, H. Neukirchen, M. Book: Enabling
Hyperparameter-Tuning of Al Models for Healthcare Using the CoE RAISE Unique Al Framework for HPC, in proceedings of IEEE MIPRO 2023, Croatia
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[58] CoE RAISE Web Page

Load Modules,
Environments,
and Containers
(LAMEC)

73 /94



http://www.iconarchive.com/show/real-vista-data-icons-by-iconshock/objects-icon.html

Multispectral Remote Sensing Dataset Example used in Deep Learning

Image Image per| Scene Annotation Total Spatial

. . Image sizes| Year
type class classes type images |resolution (m) g

Datasets

328 to 10 120x120 | 2018
BigEarthNet | Satellite MS 43 Multi label 590,326 20 60x60
217119
60 20x20

[40] G. Sumbul et al.

=

non-irrigated arable land.
o fruit trees and berry
plantations, agro-forestry
b arcas, transitional

permanently irrigated land.
sclerophyllous vegetation,
beaches, dunes, sands,

[41] Big Earth Net Dataset

O estuaries, sea and ocean
0O woodland/shrub
20
60 20 o
§ permanently irrigated land.
&0 vineyards, beaches, dunes, non-irrigated arable land
120 sands, water courses
120 : ; o
discontinuous urban fabric,

10m 20m 60m

non-irrigated arable land,
land principally occupied
[ by agriculture,
broad-leaved forest

coniferous forest, mixed
forest, water bodies
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Deep Learning via RESNET-50 Architecture — A Case for interconnecting GPUs

= Classification of land cover in scenes in Remote Sensing
= Very suitable for parallelization via distributed training on multi GPUs

i
K .
L
. .
f '
i L
L ¥
— — — — 1 — — — — — .—I — — — — :_ gy ]| — — — — — — — 1 — — :.— — — — — — —
" L]
o o a e
- @ = = = = o o [T} w w w o =) w w w w =) o~ el o~ ™ ™
~ A uA uf uf ui el A il uA uA ral > — - - — —
L $ ~ g__ 3__ 3__ 3__ & ) = — — — — — b b ﬁ ~ ~ ~ ~ ~ o~ o~ ~ ~ i~ ~ =) w i (7] uA uA g
T, = k1 k3 = = = — = . . = - - ] - - - - . = = - . . i -~ - - - §
z = = = = = = = = = = = = = = = = = = = = = = =
E—b—-"‘-’rﬁ 5 5 5*5 E E P T e 5 = e = [ [ [ [ 5 E [ [ e 5 = = e E E e e =
£ = a o o o o o o = a a a a a a a = a a a a a a a =] a a a £ a a a a a o
2 E a o o o ey on P =] o L¥) L¥] L ¥} L%} (W] (W] =] L¥) L= L= L= L= L¥] LN L= L= L ¥} L¥] o L¥] o o L¥) L¥) = E
- = = ] ] 'w ‘. ¥ ] L] ™ ™ ™ ™ ™ ™ a ™ | | m L ™ L) m | ™ ™ Q ™ m L) ™ ) m
L] L] 23] o L) L] m = = | > = = o -1 = = o = " = = = b b
= ' o Lo Ll L [l [l [l Lo o o o o L L o o L L = Ll [l fal Lo Ll
= faz] tﬁ Ll
[45] RESNET
[ ]

RESNET-50 is a known neural network architecture that has established a strong baseline in terms of accuracy

The computational complexity of training the RESNET-50 architecture relies in the fact that is has ~ 25.6 millions of trainable parameters
RESNET-50 still represents a good trade-off between accuracy, depth and number of parameters

The setups of RESNET-50 makes it very suitable for parallelization via distributed training on multi GPUs
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HPC Enables Faster Training of Al Models: Distributed Training (Benefit #1)

Time per epoch [sec]

Jube_wp_iteration
]

-1

A partition of the JUWELS system
has 56 compute nodes,
each with 4 NVIDIA V100 GPUs
(equipped with 16 GB of memory)

24 nodes x 4 GPUs = 96 GPUs

| I I
] . - -—‘
- ~ - @ @ =
nodes

DeepSpeed is a deep learning optimization library that makes
distributed training easy, efficient, and effective.

Other distributed training
approaches possible with DeepSpeed

[46] DeepSpeed

. Horovod is a distributed training framework used in combination with low-level
deep learning frameworks like Tensorflow

. Horovod uses MPI for inter-process communication, e.g., MPI_Allreduce()

. Distributed training using data parallelism approach means: (1) Gradients for
different batches of data are calculated separately on each node; (2) But averaged
across nodes to apply consistent updated to the deep learning model in each node

Data Store

10x Larger Models
10x Faster Training

Minimal Code Change

Horovod distributed training via MPI_Allreduce()

50

Introduction to HPC Applications, Systems, Programming Models & Machine Learning & Data Analytics — Part 2

.
-

’
-

-
-

1. Reai:l Data

Training Process node
Y
Averaged
poos ek Gradients
Training Process no d e
v 1
~ Averaged |
Model Gradients Gradients
¥ node
4 - Averaged
s Srdaats Gradients
2. cOmpl;q, Model 3. e Gradients 4, Upd;ie Model
Updates (Gradients)
[47] Horovod
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0days 00 hours 00 minutes
Sentinel-2 constellation:
summer solstice

Deep Learning Application Example — Using High Performance Computing

Using Convolutional Neural Networks (CNNs)
with hyperspectral remote sensing image data

[43] J. Lange and M. Riedel et al.,
IGARSS Conference, 2018

7

=3 | Forest
7

<5 River

X 1D Max Pooling Fully Connected Softmax Output:
3D Convolution (spectral dimension) Flatten Layers. Layer  Probabilities
— —_ u
[}
[ ]
@ oo
[ ] L] L] e ——>
D i
. . . .
e S e e e e 58
H . ™ ™ * ——>
[} L} n * ——>
éa n [ ] [ ] e ——>
- [ [
- - [ ]
— —~— — L]
3Ix

Feature

Representation / Value

Conv. Layer Filters
Conv. Layer Filter size
Dense Layer Neurons
Optimizer
Loss Function
Activation Functions
Training Epochs
Batch Size
Learning Rate
Learning Rate Decay

48, 32, 32
(3,3,5), (3,3,5), (3,3,5)
128,128
SGD
mean squared error
RelLU
600
50
1
5x107°

Find Hyperparameters & joint ‘new-old‘ modeling &
transfer learning given rare labeled/annotated data in
science (e.g. 36,000 vs. 14,197,122 images ImageNet)

[44] G. Cavallaro, M. Riedel et al., IGARSS 2019

(challenges of big data &
hyperparameter tuning)
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HPC Enables Better Al Models: Hyperparameter Tuning (Benefit #2)

< - = Run 3 (14 TeV), tt with PUS0
Distributed hypertuning 110 : = M lidation | ASHA: 100 Trials
CMS Simution refminary  ~% "Yperand Randamercn > Mean validation l0ss 0
Ray Tune . ~e- ASHA Bayesian Optimization d d b o/ g
ecrease y ~44% £ =t S
tﬁe 2 = i pe 80 g
Trial 1 Trial 2 Trial m i a — f
(e ) (2] (] (-] Hypertuning ; giving a significant
¥ <
evaluation 8
0 B oy ey i § i : peffofmarice i
Worker 1 > .
== ) e IMProvement " i
J U LI C H SUPERCOMPUTING
Forschungszentrum | CENTRE
» 0.90 '\_’/‘ 20
o
o 2000 4000 6000 8000 10000
8 Core-hours. CERN 0 Training Iteration
o
S = 5 10 15 20 25 30
Run 3 (14 TeV), tf, QCD with PUSO; 1, m, g,
CMS Simulation Preliminary )
Veldstion loss Eh Run 3 (14 TeV), tt, QCD with PUSO 2.50 Run 3 (14 Tev), tt, QCt
0100 PA x —— Training loss — :
. —— Validation loss
— = 2.25! 2.25
0.08 S ———
Validation classification loss CMS Simulation Prelimin: ¢
Top s 2.00f Aer hypertuning ¥
0.0010! T 5 z::r(:.‘:lz ndard d deviation of 1 g B
e k] Assess learnin . Final validation joss 0.873 10,091 3
0.0008 e = DoREy 8 175 Better learning ¥
U R variability - g
0.06/ a §1.50}
= " % 3 ;
ooef [ulli il 4 \!i&' A ” o ’
0.02¢ v R 2 = . ve = -
Validation classification accuracy 1250 1.00
0.94 CMS Simulation Preliminary i
0.75} ?’or'.ea%p:t;‘x:am deviation of 10 trainings 075 )
] p -
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Machine Learning Models — Short Overview & Introduction to Classification

Classification Clustering Regression
’?)
~
-y W
-
R
=  Groups of data exist = No groups of data exist = |dentify a line with
= New data classified » Create groups from a certain slope
to existing groups data close to each other describing the data

. Machine learning methods can be roughly categorized in classification, clustering, or regression augmented with various techniques for data
exploration, selection, or reduction — despite the momentum of deep learning, traditional machine learning algorithms are still widely relevant today

»EUPEX

European Pilot for Exascale
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Data Science Example: DBSCAN Clustering Algorithm

(MinPoints = 4)

= DBSCAN Algorithm

" Introduced 1996 and most cited clustering algorithm .
= Groups number of similar points into clusters of data O ../. 0\.'
® /

(DR = Density Reachable)

(DDR = Directly Density Reachable)

C : . . . L@ , o
= Similarity is defined by a distance measure (e.g. euclidean distance) N (DC = Density Connected)
. . e — [49] Ester et al.
= Distinct Algorithm Features -
_ Clustering 4SBATCH - - job-name=HPDBSCAN
= Clusters a variable number of clusters 4SBATCH o HPDBSCAN-%] . out
£ K-Means Clustering with K clusters) o < T o
(C . K-lvieans clustering wi clusters apary Lmoces=2
. . . #SBATCH --ntasks-per-node=4
= Forms arbitrarily shaped clusters (no ‘bow ties’) #SBATCH - -time=00:20:00
#SBATCH --cpus-per-task=4
oo . . . #SBATCH -- tion=ml-hpc-1
» |dentifies inherently also outliers/noise s
OMP_NUM_THREADS=4
# location executable
. Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering HPDBSCAN=/homea/hpclab/train001/tools/hpdbscan/dbscan
algorithm that requires only two parameters and has no requirement to specify number of clusters # your own copy of bremen small
=  Parameter Epsilon: Algorithm looks for a similar point within a given search radius Epsilon BREMENSHALLDATA=/homea/hpclab/traind6l/bremenSmall. h

=  Parameter minPoints: Algorithm checks that cluster consist of a given minimum number of points # your own copy of bremen big

BREMENBIGDATA=/homea/hpclab/train0G0l/bremen.h5
|srun $HPDBSCAN -m 100 -e 300 -t 12 $BREMENSMALLDATA I
[48] M. Goetz and M. Riedel et al,

Proceedings IEEE Supercomputing Conference, 2015 3 E U X__
]I

European Pilot for Exascale
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Data Parallelism Example: Smart Domain Decomposition in Data Sciences

0 eleiel s 5] 7 s 512 1 —e—Hybrid DS1
........ . Pt "'\_\ . ) ;..“:' .;. | as ‘. 7 286 + —=— Hybnd Dsz . 4
E , “\ 5
- i, ! A o | 194/ | Holee® 2 | 20 o0 128 + MP1 DS1 s
Clustering «t0 j e i e R E ~~ Linear 7
B Noise order I 7 ;‘. .‘30 EL ] K B “E g_ 64 + T
: K il LJ £
_______________ s ) 33. l-s’ g a2 | 22| aa g 32 | :
"""" e | e | 4 (B MR - Q
O bR . 45 | 46 | &7 .-‘. .,ﬂ &0 :: .33 % 16 €
/ \ - ohe |
@ /0 i ,' 54|55 |56 -..5 i:d”. r.%1:_ 8!
Q@ '\‘ Core "," 63 0; 3'5. ¥ .u.-..:sq. .8 D:. o 4
N ~ 72 (et e L3 Ul 4 o
Overlayed spatial grid 1 i ' i '
Y 2 8 32 128 512
number of cores
HPDBSCAN
o e e b e ~ 5 ~
:' ] :' ] 1 i cluster merge across
: ! halo regions/layers
Overlay | | Estimate | | Merge i
hypergrid splits halos !
o ' ] i ;
| 1 P ————tr e ——— ’ processor 1 i processor 2
1 H
[48] M. Goetz and M. Riedel et al, ] O : O _
Proceedings IEEE Supercomputing Conference, 2015 1 18 @) 28 24 6 2
Sort and Initial Local ! mporary @) O O b o)
[ distribute Q‘der DBSCAN |1 labels 3 O [®)
L L 1 £ /
Algorithm can be ! i 5 ch;' OD 20 | 3 Q
. . . ] ] H
used in many ?ppllcatlon L Preprocessing ‘,' g Clustering "u 3 ‘e BEEO) ®)
domains gy N | e YT 3674 Q6s | Oz 1 O 2
: — - i Oia O
1
L Cluster relabeling i BACOSt yucessor 1) =190 SCOSt processor 21=186
= = = 1
=EU
= EUPEX
- European Pilot for Exascale
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HPDBSCAN Clustering — Using Parallel File Formats & File Systems

[morris@jotunn hpdbscanl$ more HPDBSCAN-199947.out
Calculating Cell Space...
Computing Dimensions... [0K] in 0.054227
Computing Cells... [OK] in 0.022971
Sorting Points... [OK] in 0.133213
Distributing Points... [OK] in 0.111046

Local Scan... [0K] in 139.057375
Merging Neighbors... [OK] in 0.010089

Adjust Labels ... [OK] in 0.010476
Rec. Init. Order ... [OK] in 0.556270
Writing File ... [OK] in 0.170748

21 Clusters
2974394 Cluster Points
25606 Noise Points
2949094 Core Points

: 140.453795s

» The standard out of the HPDBSCAN
parallel & scalable DBSCAN
clustering algorithm is not the
result of the DBSCAN clustering
algorithm and only shows meta
information such as the numbers of
clusters found, noise, and running
time

[48] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

[morris@jotunn hpdbscan]$ h5dump -d /Clusters bremenSmall.h5
HDF5 "bremenSmall.h5" {
DATASET "/Clusters" {

DATATYPE

H5T_STD_I64LE

DATASPACE SIMPLE { ( 3000000 ) / ( 3000000 ) }
DATA {

(0): 0, 0

(23):
46):
69):

0
0
0
92): 0

(
(
(
(

Scheduler

Jétunn compute nodes

115): o, 0,

0

0
0
0
0

The real outcome of the parallel &
scalable HPDBSCAN algorithm is
directly written into the HDF5 file
assigning for each point cloud data
element a specific cluster ID, or
using minus numbers to indicate
noise points (no real clusters)

The input data for the parallel & scalable
HPDBSCAN clustering algorithm is a HDF5
file and all the processors read in parallel
chunks of the data

The HDFS5 file before the execution of
HPDBSCAN has 0 as Cluster Ids for its
specific initialization

-d /Clusters bremenSmall.h5

DF5 "bremenSmall.h5" {
DATASET "/Clusters" {

DATATYPE H5T_STD_I64LE

DATASPACE

DATA {
(0):
(8):
(17):
(25):
(33):
(41):
(49):
(57):
(65):
(73):
(81):
(89):
(97):
(105) :
(113):

-45205,
-45205,

-45205,
-45205,
-45205,
-45205,
-45205,
-45205,
-45205,
-45205,
-45205,
-45205,
-45205,

-45205,
-45205,

-45205, -45205,
-45205, -45205,
-4108, -45205,
-45205, -45205, -45205,
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