





## Towards adoptions of a Unique AI Framework for the EuroHPC JU Systems Ecosystem

Prof. Dr. – Ing. Morris Riedel et al. Full Professor, School of Engineering & Natural Sciences, University of Iceland Lead of CoE RAISE WP2 – AI- and HPC-Cross Methods at Exascale 2022-12-01, AI & Simulation-based Engineering Workshop, Prague

🗧 @ProfDrMorrisRiedel ท @Morris Riedel

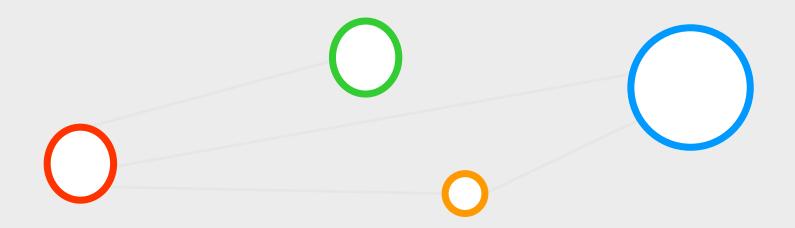
Morris Riedel

@MorrisRiedel

https://www.youtube.com/channel/UCWC4VKHmL4NZgFfKoHtANKg

morris@hi.is

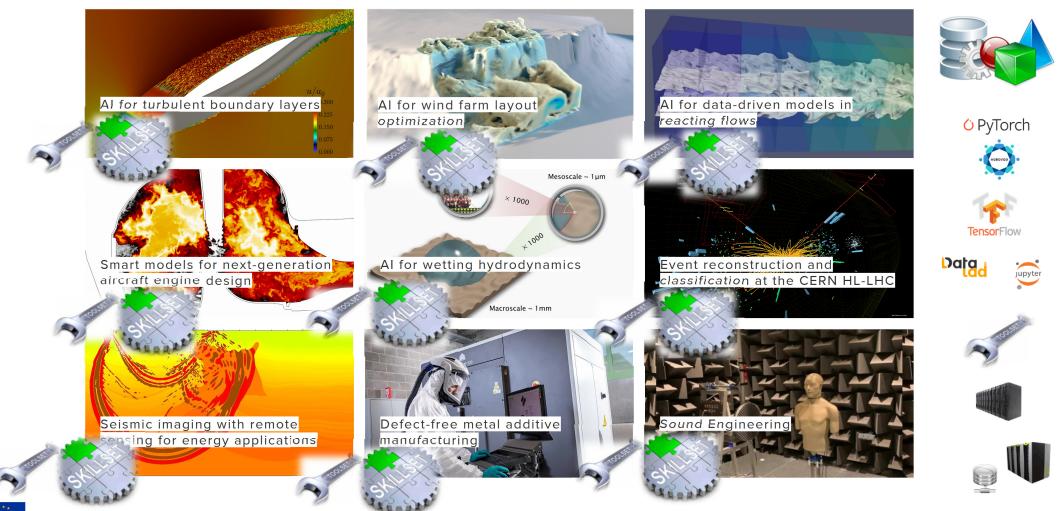
### Outline


- Challenges in using AI Methods on HPC at Scale
  - Review Toolset & Skillset Challenges
- Unique Al Framework (UAIF) Co-Design Process
  - UAIF Co-Design at A Glance
  - Factsheets & Interaction Rooms
- CoE RAISE UAIF Evolution & Blueprint
  - Evolution of Versions
  - Current Blueprint
- Adoption Roadmap of the Framework
  - Cooperation with NCCs & EuroHPC JU Hosting Sites
- Summary & Q&A
  - Feedback from NCCs
- Selected References





### **Challenges in using AI Methods on HPC at Scale**








### **Compute & Data-driven Use Cases – Complex Challenges**





2022-12-01 Towards adoptions of a Unique AI Framework for the EuroHPC JU Systems Ecosystem

4



### **Requirements Gathering Process – Version Challenges**

### > Example: TensorFlow

- Can we create an automated module checker for the SW Framework RAISE?
- Specific versions of TensorFlow require specific versions of underlying HPC modules or other AI frameworks to work in specific versions together
- Python versions must be correct as well
- E.g., differences in Python3.8.x and 3.9.x
- Support AI developers for many other tools like PyTorch, Horovod, Ray Tune, etc.

| 1 Build from source   Tenso                    | rFlow × + |                                     |                |           |              |             |             | - 🗆 ×                                        |
|------------------------------------------------|-----------|-------------------------------------|----------------|-----------|--------------|-------------|-------------|----------------------------------------------|
| $\leftarrow$ $\rightarrow$ C $\textcircled{a}$ | $\circ$ a | https://www.tensorflow.org/install/ | source         |           |              |             | E \$        | lii\ 🖻 =                                     |
| 1 TensorFlow                                   | Install   | Learn  API  Reso                    | Durces  More   |           | Q Search     | BULCI U.4.2 | 🕀 English 👻 | GitHub Sign in                               |
| ₹ Filter                                       |           | GPU                                 | 2.7, 0.0 0.0   |           | 004.0        | Du2010.4.2  |             | On this page<br>Setup for Linux and<br>macOS |
| Install TensorFlow                             |           | Version                             | Python version | Compiler  | Build tools  | cuDNN       | CUDA        | Install Python<br>and the<br>TensorFlow      |
| Packages                                       |           | tensorflow-2.8.0                    | 3.7-3.10       | GCC 7.3.1 | Bazel 4.2.1  | 8.1         | 11.2        | package<br>dependencies                      |
| pip<br>Docker                                  |           | tensorflow-2.7.0                    | 3.7-3.9        | GCC 7.3.1 | Bazel 3.7.2  | 8.1         | 11.2        | install Bazel                                |
|                                                |           | tensorflow-2.6.0                    | 3.6-3.9        | GCC 7.3.1 | Bazel 3.7.2  | 8.1         | 11.2        | Install GPU<br>support<br>(optional, Linux   |
| Additional setup<br>GPU support                |           | tensorflow-2.5.0                    | 3.6-3.9        | GCC 7.3.1 | Bazel 3.7.2  | 8.1         | 11.2        | only)<br>Download the                        |
| GPU device plugins                             |           | tensorflow-2.4.0                    | 3.6-3.8        | GCC 7.3.1 | Bazel 3.1.0  | 8.0         | 11.0        | TensorFlow<br>source code                    |
| Problems                                       |           | tensorflow-2.3.0                    | 3.5-3.8        | GCC 7.3.1 | Bazel 3.1.0  | 7.6         | 10.1        | Configure the build                          |
| Build from source                              |           | tensorflow-2.2.0                    | 3.5-3.8        | GCC 7.3.1 | Bazel 2.0.0  | 7.6         | 10.1        | Sample session<br>Configuration              |
| Linux / macOS<br>Windows                       |           | tensorflow-2.1.0                    | 2.7, 3.5-3.7   | GCC 7.3.1 | Bazel 0.27.1 | 7.6         | 10.1        | options                                      |
| SIG Build 🔀                                    |           | tensorflow-2.0.0                    | 2.7, 3.3-3.7   | GCC 7.3.1 | Bazel 0.26.1 | 7.4         | 10.0        | Build the pip<br>package                     |
| Language bindings                              |           | tensorflow_gpu-1.15.0               | 2.7, 3.3-3.7   | GCC 7.3.1 | Bazel 0.26.1 | 7.4         | 10.0        | TensorFlow 2.x<br>GPU support                |
| Java 🖄                                         |           | tensorflow_gpu-1.14.0               | 2.7, 3.3-3.7   | GCC 4.8   | Bazel 0.24.1 | 7.4         | 10.0        | TensorFlow 1.x                               |
| Java (legacy) 🛇<br>C                           |           | tensorflow_gpu-1.13.1               | 2.7, 3.3-3.7   | GCC 4.8   | Bazel 0.19.2 | 7.4         | 10.0        | Bazel build<br>options                       |
| Go 🖸                                           |           | tensorflow_gpu-1.12.0               | 2.7, 3.3-3.6   | GCC 4.8   | Bazel 0.15.0 | 7           | 9           | Build the<br>package                         |
|                                                |           | tensorflow_gpu-1.11.0               | 2.7, 3.3-3.6   | GCC 4.8   | Bazel 0.15.0 | 7           | 9           | Install the<br>package                       |
|                                                |           | tensorflow_gpu-1.10.0               | 2.7, 3.3-3.6   | GCC 4.8   | Bazel 0.15.0 | 7           | 9           | Docker Linux<br>builds                       |
|                                                |           | tensorflow_gpu-1.9.0                | 2.7, 3.3-3.6   | GCC 4.8   | Bazel 0.11.0 | 7           | 9           | CPU-only                                     |
|                                                |           | tensorflow_gpu-1.8.0                | 2.7, 3.3-3.6   | GCC 4.8   | Bazel 0.10.0 | 7           | 9           | GPU support                                  |
|                                                |           | tensorflow_gpu-1.7.0                | 2.7, 3.3-3.6   | GCC 4.8   | Bazel 0.9.0  | 7           | 9           | Tested build<br>configurations               |
|                                                |           | tensorflow_gpu-1.6.0                | 2.7, 3.3-3.6   | GCC 4.8   | Bazel 0.9.0  | 7           | 9           | Linux<br>macOS                               |
|                                                |           |                                     |                |           |              |             |             |                                              |





### **Requirements Gathering Process – Module Challenges**

### Example of Setups

Description: The NVIDIA Collective Communications Library (NCCL) implements multi-GFU and multi-node collective com

For detailed information about a specific "NCCL" module (including how to load the modules) use the module's full name. For example:

- Many different versions / combinations
- E.g. FZJ JSC DEEP-EST HPC System

| [irederidab_agmoi =]* modare abidet canuu                                                                                                                                                                                                    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| cuDNN:                                                                                                                                                                                                                                       |  |
| Description:<br>The NVIDIA CUDA Deep Neural Network library (cuDNN) is a GFU-accelerated library of primitives for deep neural networks.                                                                                                     |  |
| <pre>Version:<br/>cuDNM// 5.1.5-CUDA-9.2.88<br/>cuDNM// 5.1.10-CUDA-10.1.105<br/>cuDNM// 5.4.39-CUDA-10.1.105<br/>cuDNM// 6.3.33-CUDA-10.2.89<br/>cuDNM// 6.3.33-CUDA-11.6<br/>cuDNM// 8.3.1.22-CUDA-11.5</pre>                              |  |
| For detailed information about a specific "cuDNN" module (including how to load the modules) use the module's full name. For example:                                                                                                        |  |
| <pre>\$ module spider cuDNN/7.6.5.32-CUDA-10.2.89</pre>                                                                                                                                                                                      |  |
| [riedell@dp-dam01 ~]\$ module spider tensorflow                                                                                                                                                                                              |  |
| TensorFlow:                                                                                                                                                                                                                                  |  |
| Description:<br>An open-source software library for Machine Intelligence                                                                                                                                                                     |  |
| Versions:<br>TensorFlow/1.12.0-GFU-Fython-2.7.15<br>TensorFlow/1.12.0-GFU-Fython-3.6.6<br>TensorFlow/2.2.0-GFU-Fython-3.6.8<br>TensorFlow/2.2.0-GFU-Fython-3.6.8-1<br>TensorFlow/2.5.0-GFU-Fython-3.6.5<br>TensorFlow/2.6.0-GFU-Fython-3.6.5 |  |

For detailed information about a specific "TensorFlow" module (including how to load the modules) use the module's full name. For example:

\$ module spider TensorFlow/2.2.0-GPU-Fython-3.6.8-1

[riedel1@dp-dam01 ~]\$ module spider cuda

\$ module spider NCCL/2.7.3-1-CUDA-10.2.89

[riedel1@dp-dam01 ~]\$ module spider nccl

NCCL/2.4.2-1-CUDA-9.2.88 NCCL/2.4.6-1-CUDA-10.1.105 NCCL/2.4.8-CUDA-10.1.05 NCCL/2.4.8 NCCL/2.4.8 NCCL/2.7.3-1-CUDA-10.2.89 NCCL/2.8.3-1-CUDA-11.0 NCCL/2.10.3-1-CUDA-11.3 NCCL/2.10.3-1-CUDA-11.3

NCCL:

Description: CUDA (formerly Compute Unified Device Architecture) is a parallel computing platform and programming model created by NVIDIA and implemented by the graphics processing units (GFUs) that they produce. CUDA gives developers access to the virtual instruction set and memory of the parallel computational elements in CUDA GFUs.

munication primitives that are performance optimized for NVIDIA GPUs

Versions: CUDA/9.2.88 CUDA/10.1.105 CUDA/10.2.89 CUDA/11.0 CUDA/11.0.207 CUDA/11.3 CUDA/11.5

For detailed information about a specific "CUDA" module (including how to load the modules) use the module's full name.

For example:

\$ module spider CUDA/11.0.207



### **Example: Detailed Knowledge of Modules Necessary**



3 months age

6 months ago

#### Modules

- > Vary heavily between different HPC systems
- > 2-3 Days/Months spend by researchers for getting the right environment / HPC system
- Goal: UAIF simplify setup of components
- > E.g., automated job script generator for right module setup
- > E.g., re-usable scripts

|                                                                                                                         | Deep_DeepSpeed       | Deepspeed in Deep                            | 6 months ago |
|-------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------|--------------|
| #!/usr/bin/env bash                                                                                                     | Deep_HeAT            | Jureca additions                             | 5 months ago |
|                                                                                                                         | Deep_Horovod         | Deep modifications for Horovod and fex bu    | 6 months ago |
| <pre># Slurm job configuration</pre>                                                                                    | Deep_TensorFlow      | initial TF push                              | 5 months ago |
| #SBATCHnodes=1                                                                                                          | HELPER_Scripts       | fix tqdm bug                                 | 4 months ago |
| #SBATCHntasks-per-node=4<br>#SBATCHcpus-per-gpu=20<br>#SBATCHaccount=hai so2sat                                         | Dureca_DDP           | latest fixes                                 | 1 month ago  |
|                                                                                                                         | 🗅 Jureca_DeepSpeed   | latest fixes                                 | 1 month ago  |
| #SBATCHoutput=output.out                                                                                                | Dureca_Graphcore     | added Graphcore dir and fixed Irank in CASES | 2 months ago |
| #SBATCHerror-er                                                                                                         | D Jureca_HeAT        | latest fixes                                 | 1 month ago  |
| #SBATCHtime=6:00:00                                                                                                     | 🗅 Jureca_Horovod     | latest fixes                                 | 1 month ago  |
| #SBATCHjob-name=BENTF2<br>#SBATCHgres=gpu:1partition=booster                                                            | 🖹 Jureca_LibTorch    | initial libtorch push                        | 1 month ago  |
| isbaren gres-gpuri purcicion-booster                                                                                    | 🖹 Jureca_RayTune     | Update Jureca_RayTune/create_jureca_env.sh   | 3 months ago |
| #load modules                                                                                                           | Luwels_DDP           | Update README.md                             | 3 months ago |
| ml Stages/2020 GCC/9.3.0 OpenMPI/4.1.0rc1                                                                               | Duwels_Turbulence    | merge                                        | 9 months ago |
| ml Horovod/0.20.3-Python-3.8.5                                                                                          | PARAMETER_TUNING     | Update PARAMETER_TUNING/Autoencoder/         | 3 months ago |
| <pre>ml TensorFlow/2.3.1-Python-3.8.5 #activate my virtualenv #source /p/project/joaiml/remote_sensing/rocco_sedo</pre> | na/ben_TF2/scripts/@ | env_tf2_juwels_booster/bin/activa            | ite          |
| <pre>#export relevant env variables #export CUDA_VISIBLE_DEVICES="0,1,2,3"</pre>                                        |                      |                                              |              |

important bug fix

Deepspeed in Deep

Deep DDF

Deep DeepSpeed

#run Pvthon program srun --cpu-bind=none python -u train\_hvd\_keras\_aug.py

#### Already available for the community: https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai-for-hpc-oa





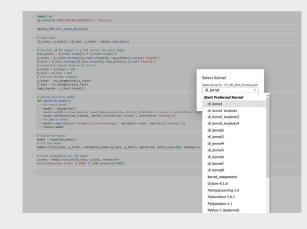
### **Requirements Gathering Process – Jupyter Challenges**

### Initial ideas collected on WP2 RAISE

- Should be transformed in a proper GIT structure (new WP2 RAISE programmer & RAISE folks → next slide)
- Selected artefacts of different types: Jupyter notebooks of AI codes, Kernel for Jupyter notebooks, infos links to Nvidia drivers
- > Context: Concrete HPC machines and porting code between them
- > Practice & experience: Shows highly unstable environments for AI configuration and setups (not deterministic behaviours) → room for framework idea
- Lessons learned: PIs / PHDs invested many hours to identify issues in kernel developments with new stages and new python versions -> we need improvements!

|                                                                                                                                                                     | orris Riedel 1 day                                                             | y ago                                      |                 |                    |        |               |                      | Page history | New p |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------|-----------------|--------------------|--------|---------------|----------------------|--------------|-------|
| Software F                                                                                                                                                          | ramewoi                                                                        | rk Co [                                    | Design          | I                  |        |               |                      |              |       |
| Thor:                                                                                                                                                               |                                                                                |                                            |                 |                    |        |               |                      |              |       |
| 2022-03-28                                                                                                                                                          |                                                                                |                                            |                 |                    |        |               |                      |              |       |
| HPC Resource: DE                                                                                                                                                    | EP-EST (and Cola                                                               | ib)                                        |                 |                    |        |               |                      |              |       |
| <ul> <li>Usually ML-0</li> </ul>                                                                                                                                    | 2011                                                                           |                                            |                 |                    |        |               |                      |              |       |
| <ul> <li>DAM (not ac</li> </ul>                                                                                                                                     |                                                                                |                                            |                 |                    |        |               |                      |              |       |
| <ul> <li>ESB (not acce</li> </ul>                                                                                                                                   |                                                                                |                                            |                 |                    |        |               |                      |              |       |
| <ul> <li>check with so</li> </ul>                                                                                                                                   | queue and see wh                                                               | y not logging                              | ; in is possibl | e (e.g., reserv    | ed for | maintenance): |                      |              |       |
|                                                                                                                                                                     | JOBID P                                                                        | ARTITION                                   | NAME            |                    |        | TIME          | NODES NODELI         | ST(REA       |       |
| SON)                                                                                                                                                                | 207142                                                                         | do-co                                      | Execute.        | aeiss1             |        | 0:00          | 32 (Resou            | rces)        |       |
|                                                                                                                                                                     |                                                                                |                                            |                 |                    |        |               |                      |              |       |
|                                                                                                                                                                     | 207821<br>207822                                                               |                                            | UNICORE_        | riedel1<br>curtis1 |        | 16:44<br>0:00 | 1 dp-dam<br>1 (ReaNo |              |       |
| vail. Re:                                                                                                                                                           | 207822<br>served for m                                                         |                                            |                 | curtist            |        | 0:00          | T (Kedwo             | denotA       |       |
| 1                                                                                                                                                                   |                                                                                |                                            |                 | snaebjar           |        |               | 16 dp-esb            | [12-27       |       |
|                                                                                                                                                                     |                                                                                | dp-esb                                     | pegasus_        |                    |        |               | 24 dp-esb            | [32-55       |       |
| curtis1                                                                                                                                                             | 207818<br>@deepv ~]\$                                                          | ml-gpu                                     | UNICORE_        |                    |        |               | 1 ml-gpu             | 01           |       |
| <ul> <li>Jupyter-JSC is use</li> <li>Kernel script:</li> <li>batch system was</li> <li>RayTune needs ar</li> </ul>                                                  | Create_Jupyter                                                                 | Kernel_DEEP<br>ig (raytune or<br>v version | _RS-2.ipynb     |                    |        |               |                      |              |       |
|                                                                                                                                                                     |                                                                                |                                            |                 |                    |        |               |                      |              |       |
| <ul> <li>Marcel provided a</li> </ul>                                                                                                                               | t here: 🛿 Ray_Tun                                                              | e_Jupyter.ipy                              | nb              |                    |        |               |                      |              |       |
| Marcel provided a     Jupyter script                                                                                                                                |                                                                                |                                            |                 |                    |        |               |                      |              |       |
|                                                                                                                                                                     | n Forest reproduc                                                              | oed from Heli                              | opas            |                    |        |               |                      |              |       |
| <ul> <li>Jupyter script</li> <li>modeling: Randor</li> <li>Random Fore</li> </ul>                                                                                   | est via TensorFlow                                                             |                                            |                 |                    |        |               |                      |              |       |
| <ul> <li>Jupyter script</li> <li>modeling: Randor</li> <li>Random Fore</li> </ul>                                                                                   |                                                                                |                                            |                 | NO.ipynb           |        |               |                      |              |       |
| <ul> <li>Jupyter script</li> <li>modeling: Randor</li> <li>Random Fore</li> </ul>                                                                                   | est via TensorFlow                                                             |                                            |                 | NO.ipynb           |        |               |                      |              |       |
| <ul> <li>Jupyter script</li> <li>modeling: Randor</li> <li>Random Fore</li> <li>Jupyter notel</li> </ul>                                                            | est via TensorFlow<br>book: 🛿 2022_03                                          |                                            |                 | NO.ipynb           |        |               |                      |              |       |
| <ul> <li>Jupyter script</li> <li>modeling: Randor</li> <li>Random Fore</li> <li>Jupyter notel</li> <li>modeling: ANN</li> </ul>                                     | est via TensorFlow<br>book: <b>(</b> 2022_03<br>en layers                      |                                            |                 | NO.ipynb           |        |               |                      |              |       |
| Jupyter script     modeling: Randor     Random Fore     Jupyter notel     modeling: ANN     several hidde     work in prog                                          | est via TensorFlow<br>book: <b>(</b> 2022_03<br>en layers                      | r<br>_28_RF_newe                           | st_data_TERE    |                    |        |               |                      |              |       |
| Jupyter script     modeling: Randor     Random Fore     Jupyter notel     modeling: ANN     several hidde     work in prog                                          | est via TensorFlow<br>book: 2022_03<br>en layers<br>ress<br>hannes): Upload ju | r<br>_28_RF_newe                           | st_data_TERE    |                    |        |               |                      |              |       |
| Jupyter scrip:     modeling: Randor     Random For     Jupyter notel     modeling: ANN     o several hidde     work in prog     TBD(Thor, Jol      modeling: RNN/12 | est via TensorFlow<br>book: 2022_03<br>en layers<br>ress<br>hannes): Upload ju | r<br>_28_RF_newe<br>upyter code (          | st_data_TERE    |                    |        |               |                      |              |       |




## RASE

### **Requirements Gathering Process – Time Efforts Challenges**

### Example of Setups

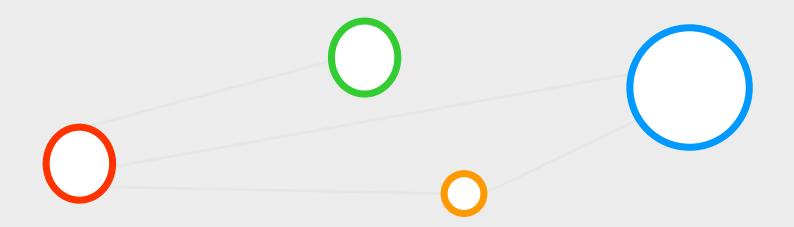
- > Tried many varieties of kernels
- Developers /PIs / PhD Students loose
   ~3-4 hours average by trying new
   HPC machine just to get new modules
   right and/or setup kernels that work
   with modules
- Selected debug/solution tools not known always, e.g., nvidia-smi, really scalable components, etc.
- Note: Jupyter framework itself seems not to be the problem, rather complex hardware/software configurations

| JÜLICH<br>SUPERCOMPUT<br>CENTRE        | NG                                                                                                                                                 |      |         |        |        |           | Last login: 14:13:14 2022- | -03-29    |  |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|--------|--------|-----------|----------------------------|-----------|--|--|--|
| Forschungszentrum   CENTRE             | Start Links                                                                                                                                        |      |         |        |        |           | m.riedel@fz-juelich.de     | (+ Logout |  |  |  |
|                                        |                                                                                                                                                    |      |         |        |        |           |                            |           |  |  |  |
| configurations                         |                                                                                                                                                    |      |         |        |        |           |                            |           |  |  |  |
| This way you can run multiple instance | asse give each of your configurations a name.<br>Is way you can run multiple instances at the same time,<br>portacid characters are a 2, 0 9 and " |      |         |        |        |           |                            |           |  |  |  |
| JupyterLab                             | AngyleLab                                                                                                                                          |      |         |        |        |           |                            |           |  |  |  |
| Name your JupyterLab Add ne            | w JupyterLab                                                                                                                                       |      |         |        |        |           |                            |           |  |  |  |
| Name                                   | Name         Version         System         Account         Project         Partition         Details         Actions                              |      |         |        |        |           |                            |           |  |  |  |
| jupyterlab_1                           | JupyterLab 2 (2020b)                                                                                                                               | DEEP | riedel1 | joaiml | dp-dam | ► Details | Start delete               |           |  |  |  |
| jupyterlab_2                           | JupyterLab 2 (2020b)                                                                                                                               | DEEP | riedel1 | joaiml | ml-gpu | ► Details | Start delete               |           |  |  |  |
| jupyterlab_3                           | JupyterLab 2 (2020b)                                                                                                                               | DEEP | riedel1 | joaiml | ml-gpu | ► Details | Start delete               |           |  |  |  |
| jupyterlab_4                           | JupyterLab 2 (2020b)                                                                                                                               | DEEP | riedel1 | joaiml | ml-gpu | ► Details | Start delete               |           |  |  |  |



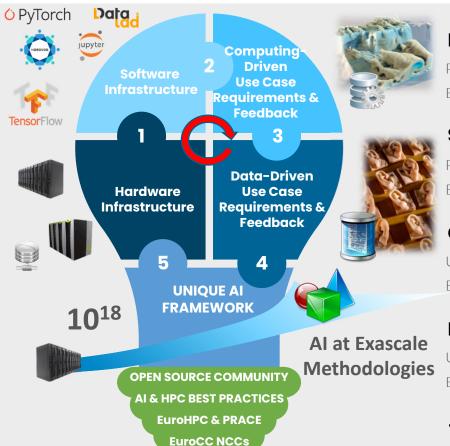


## RÁSE


### **Requirements Gathering Process – Initial Results**

| #   | Description                                                                                                                                                                                          | Level    | Affected Technologies                                                                      | RQ6 | Enable reproducibility by using open-source description of data                                                                     | Software | MLFlow and ClearML and associated deployments on HPC                                                         |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------|--|
| RQ1 | Applications need to run on<br>different HPC systems without<br>detailed knowledge of<br>underlying package versions.Hardware<br>SoftwareDL libraries, e.g., TensorFlow,<br>Keras, PyTorch, Horovod. |          | science tasks and AI models.                                                               |     | systems re-using container<br>technologies.                                                                                         |          |                                                                                                              |  |
|     |                                                                                                                                                                                                      |          |                                                                                            | RQ7 | Enable support for container technologie to enable portability                                                                      | Software | Technologies like Singularity and Docker enable the portability                                              |  |
| RQ2 | Proven scalability of the framework components.                                                                                                                                                      | Software | Horovod and PyTorch-DDP<br>should have shown good scaling<br>capabilities, see findings in |     | between different HPC centers<br>with different AI stacks.                                                                          |          | between HPC systems and are<br>used in HPC centers, e.g., at JS<br>and BSC-CNS.                              |  |
|     |                                                                                                                                                                                                      |          | Section 3.3.                                                                               | RQ8 | The framework should be<br>agnostic with respect to                                                                                 | Hardware | Accelerators, e.g., NVIDIA GPUs are instrumental for DL and                                                  |  |
| RQ3 | Support for ONNX for TL and model sharing.                                                                                                                                                           | Software | DL models need to store and re-<br>use ONNX models.                                        |     | accelerator types to use it with<br>DL applications without knowing<br>the details of different                                     |          | towards Exascale it is expected to<br>leverage other accelerator types<br>as well, e.g., AMD Instinct MI100. |  |
| RQ4 | High-level access via Jupyter<br>notebook for DL modeling                                                                                                                                            | Software | Jupyter notebook and JupyterLab<br>environments should be                                  |     | accelerator types and underlying libraries.                                                                                         |          |                                                                                                              |  |
|     | including Kernels aware/choice<br>of HPC modules.                                                                                                                                                    |          | supported by the framework.                                                                |     | The framework needs to support<br>cutting-edge I/O capabilities for<br>high performance and be able to<br>work with large datasets. | Hardware | Towards Exascale, large<br>quantities of datasets are<br>expected and the I/O capabilities                   |  |
| RQ5 | Low-level access via batch<br>submission enabling automation<br>and scaling of multi-GPU<br>setups.                                                                                                  | Software | SSH protocols to enable low-level access to HPC systems using their batch schedulers.      |     |                                                                                                                                     |          | of the framework need to leverage<br>the underlying hardware<br>infrastrastructure.                          |  |




### **Unique AI Framework (UAIF) Co-Design Process**







### Unique Al Framework (UAIF) Co-Design Process at a Glance



#### Hardware Infrastructure

Prepare & Document available production systems at partners' HPC centers Examples: JUWELS (JUELICH), LUMI (UOICELAND), DEEP Modular Prototypes, JUNIQ (JUELICH), etc.

#### Software Infrastructure

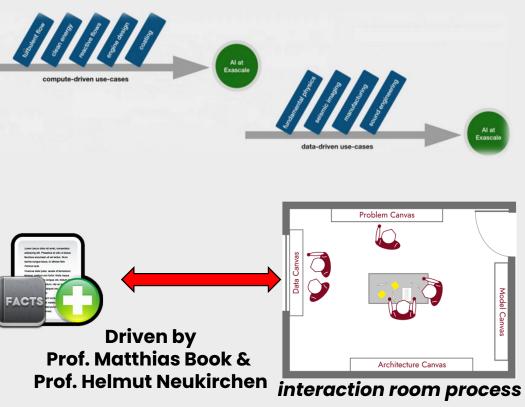
Prepare & Document available open source tools & libraries for HPC & Al useful for implementing use cases Examples: DeepSpeed and/or Horovod for interconnecting N GPUs for a scalable deep learning jobs

#### **Computing-driven Use Cases Requirements & Feedback**

Use cases with emphasize on computing bring in co-design information about AI framework & hardware Examples: Use feedback that TensorFlow does not work nicely, so WP2 works with use cases on pyTorch

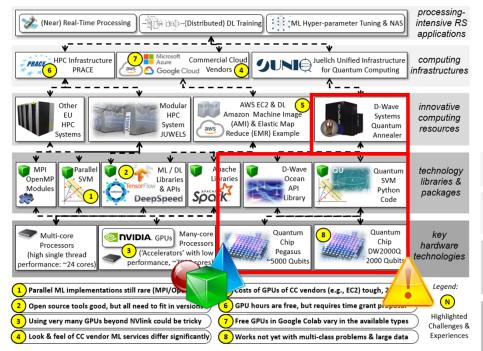
#### Data-driven Use Cases Requirements & Feedback

Use cases with emphasize on data bring in co-design information about AI framework & hardware Examples: Deployment blueprint by using AI training on cluster module & inference/testing on booster


#### $\rightarrow$ UNIQUE AI FRAMEWORK (UAIF)

Living design document & software framework blueprint for HPC & AI also with pretrained AI models




### Unique Al Framework (UAIF) Co-Design Process Approaches RASE

- Fact Sheets
  - Foster initial understanding
  - Living document & each Fact Sheet per WP3/WP4 Use Case
  - > (Experience from many other EU projects)
- Selected Contents
  - > Short Application Introduction
  - Clarify Primary Contacts
  - Codes/Libraries/Executables
  - > HPC System Usage Details
  - > Specific Platforms & 'where is what data'?
  - Machine/Deep Learning Approaches of Interest

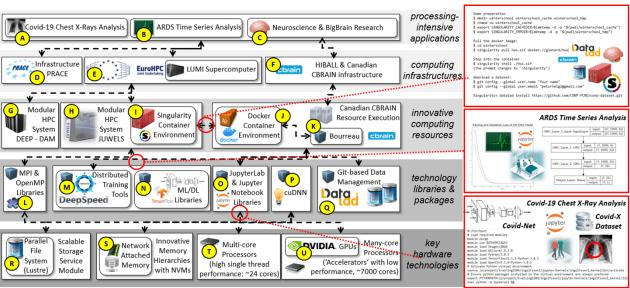




### **Including Innovative Quantum Computing Hardware**



[3] Riedel, M., Cavallaro, G., Benediktsson, J.A.: Practice and Experience in using Parallel and Scalable Machine learning in Remote Sensing from HPC over Cloud to


Quantum Computing, in conference proceedings of the IEEE IGARSS Conference, Brussels, Belgium, 2021

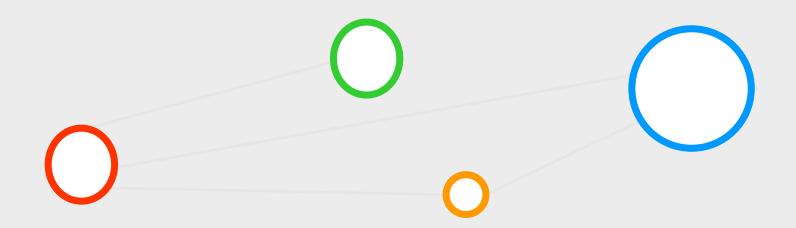




2022-12-01 Towards adoptions of a Unique AI Framework for the EuroHPC JU Systems Ecosystem

 [2] Riedel, M., Sedona, R., Barakat, C., Einarsson, P., Hassanian, R., Cavallaro, G., Book, M., Neukirchen, H., Lintermann, A.: Practice and Experience in using Parallel and Scalable Machine learning with Heterogenous Modular Supercomputing Architectures, in conference proceedings of the IEEE IDPDS Conference, Heterogenous Computing Workshop (HCW), Portland, USA, 2021

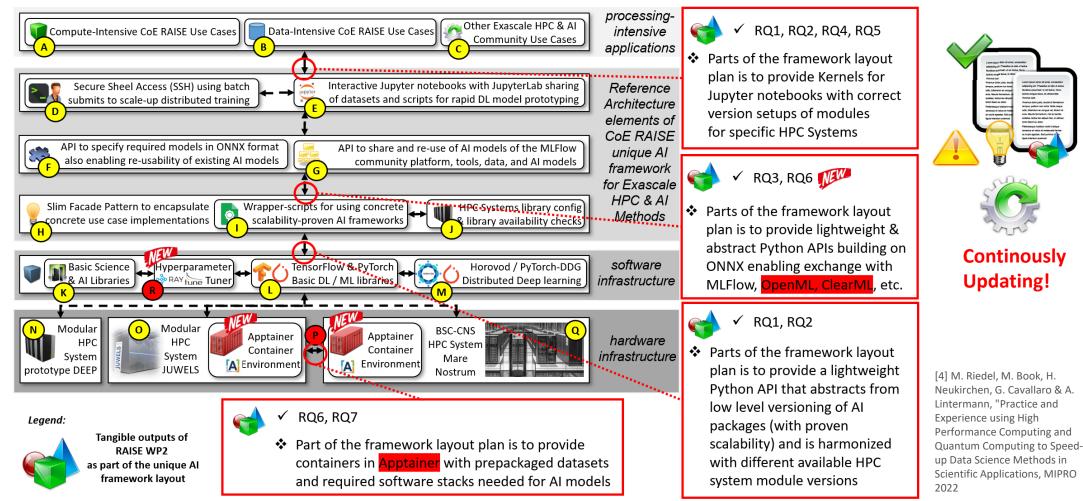





FACTS

Portland

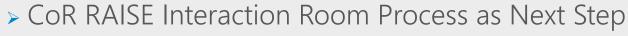
### **CoE RAISE UAIF Evolution & Blueprint**











### **Co-Design Evolution & Towards Realization of UAIF (V2)**



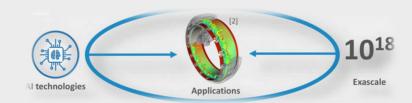


### **HPC Systems Engineering in the Interaction Room Seminar**

You Tube



- Supports the proper software engineering design of the unique AI framework blueprint
- Expecting to work with WP3
   & WP4 experts in an open minded way
- Process will be guided by Prof. Dr. Matthias Book (University of Iceland)
- Supported by Software Engineering & testing expert
   Prof. Dr. Helmut Neukirchen (University of Iceland)
- > CoE RAISE @ YouTube
- Methology as one CoE RAISE outcome



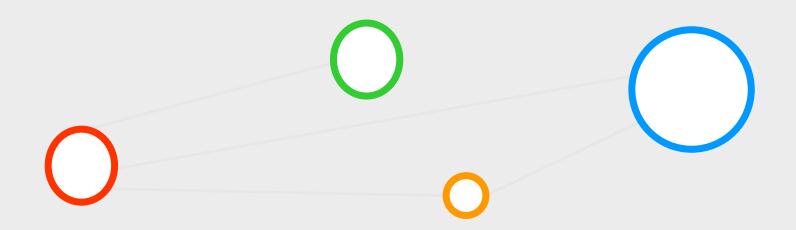



UNIVERSITY OF ICELAND

HOOL OF ENGINEERING AND NATURAL SCIENCES

Matthias Book with Morris Riedel, Jülich Supercomputing Centre / Uol and Helmut Neukirchen, University of Iceland

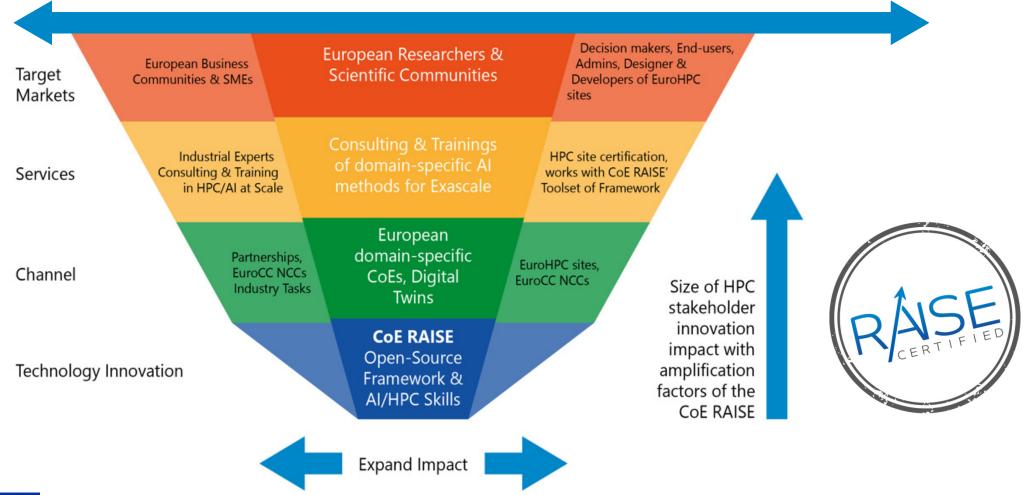



[1] Book, M., Riedel, M., Neukirchen, H., Goetz, M.: Facilitating Collaboration in High-Performance Computing Projects with an Interaction Room, in conference proceedings of the 4th ACM SIGPLAN International Workshop on Software Engineering for Parallel Systems (SEPS 2017), October 22-27, 2017, Vancouver, Canada

[5] Book, Riedel, Neukirchen, Erlingsson: Facilitating Collaboration in Machine Learning and High-Performance Computing Projects with an Interaction Room, International Workshop on Software Engineering for eScience, IEEE 2022

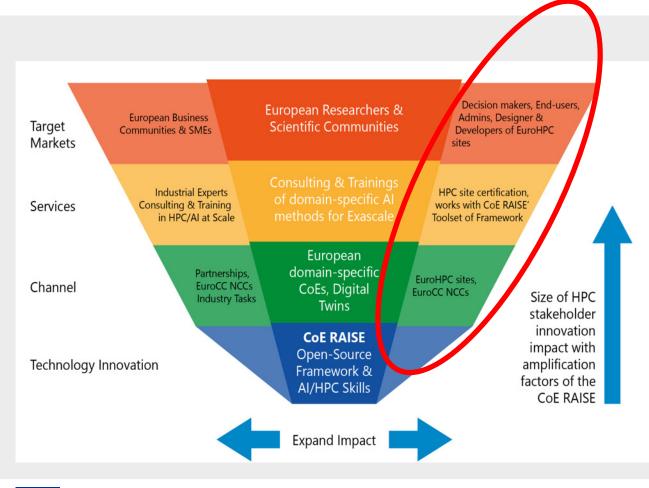


### **Adoption Roadmap of the Framework**









### **Impact: Enlarging Co-Design & Framework Adoption**







### **Adoption Roadmap of the Framework**

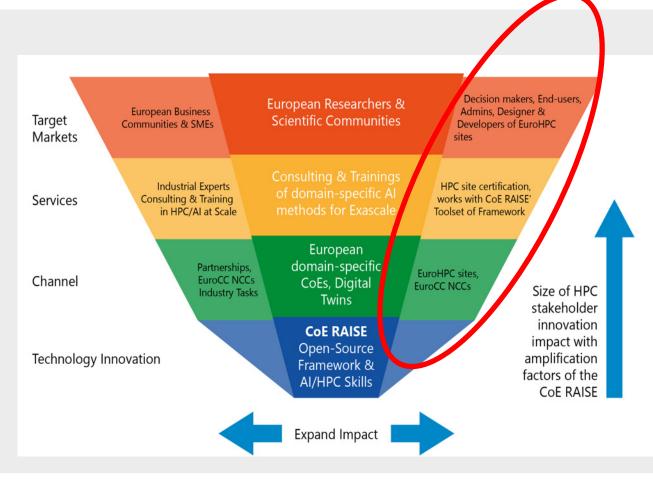


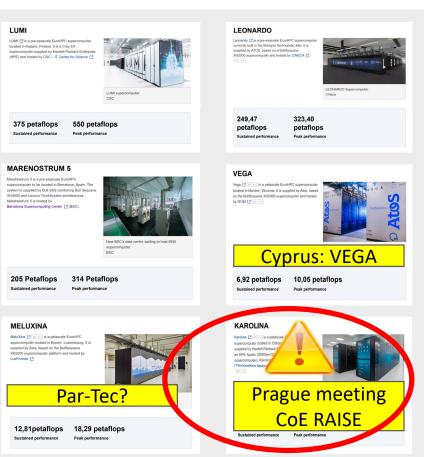






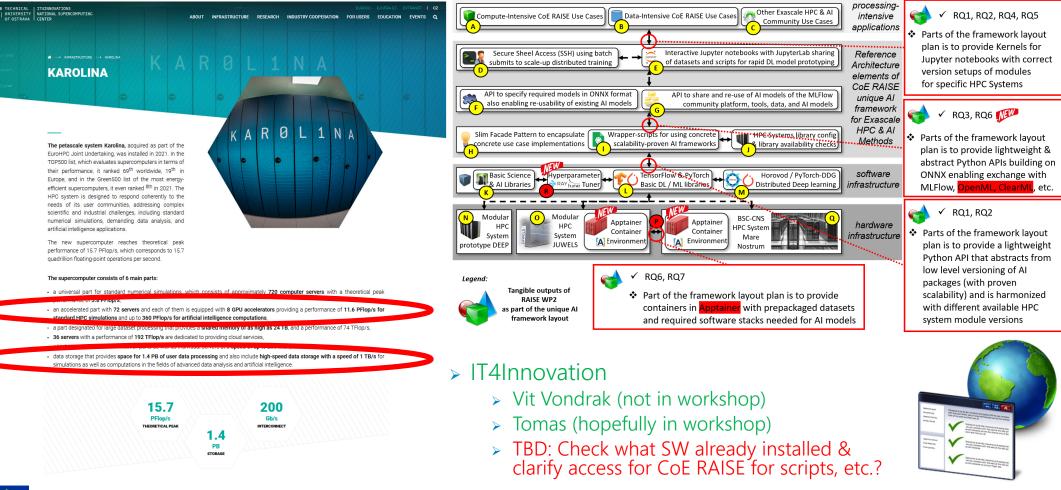
This workshop goals: Feedback from different NCCs working with EuroHPC JU Hosting sites & AI activities


- NCC Greece
- NCC Cyprus
- NCC Germany
- > NCC Iceland
- > NCC Czech Republic
- > Others?




### **Adoption Roadmap of the Framework**

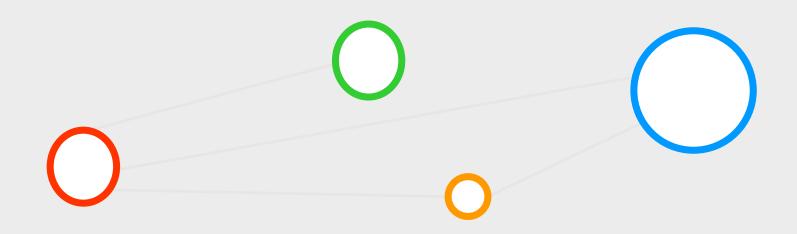








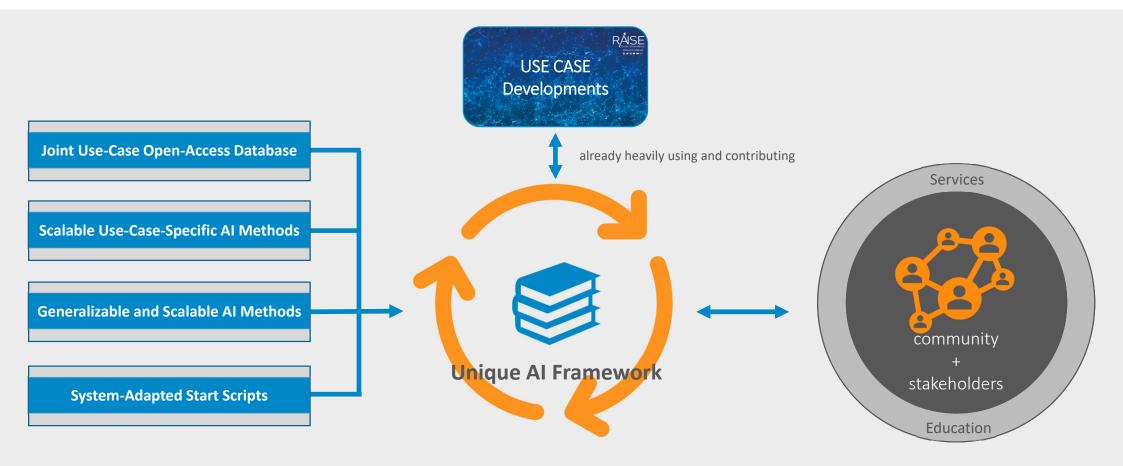




### Adoption Roadmap of the Framework: KAROLINA Example





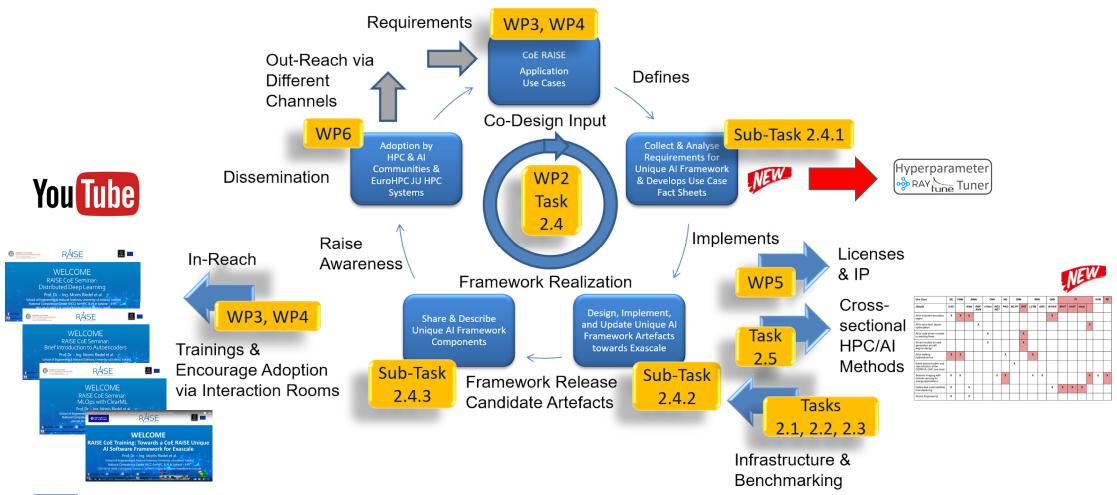
### Summary & Q&A



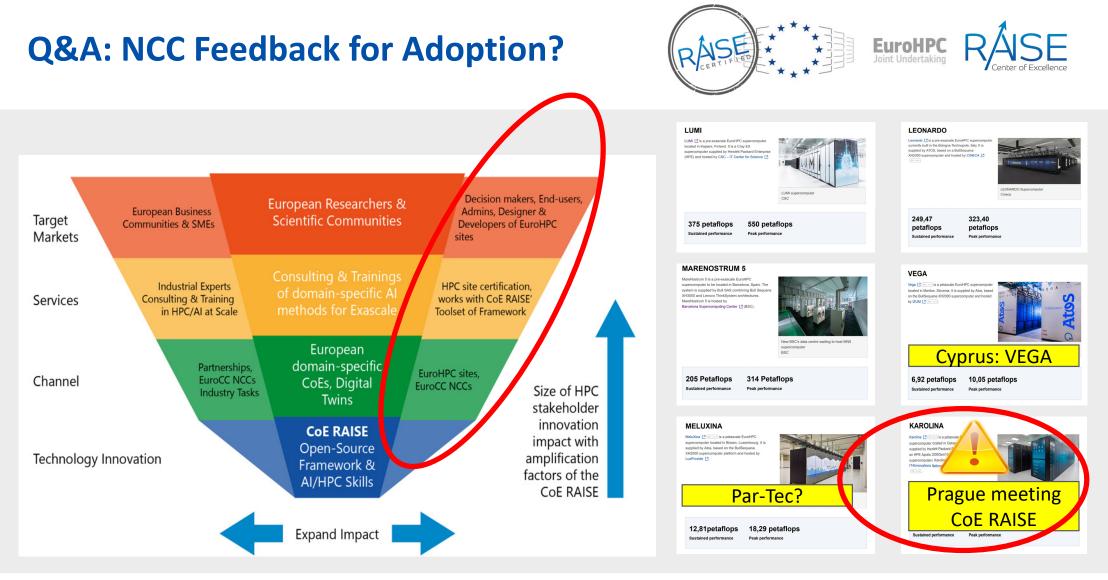





### **Summary: Unique Al Framework Overview**



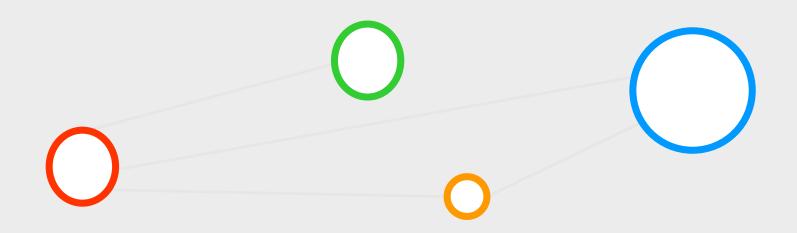



### **Summary of Framework Realization Process**












### **Selected References**







### **Selected References**



[1] Book, M., Riedel, M., Neukirchen, H., Goetz, M.: Facilitating Collaboration in High-Performance Computing Projects with an Interaction Room, in conference proceedings of the 4th ACM SIGPLAN International Workshop on Software Engineering for Parallel Systems (SEPS 2017), October 22-27, 2017, Vancouver, Canada,

Online: https://doi.org/10.1145/3141865.3142467

[2] Sedona, R., Barakat, C., Einarsson, P., Hassanian, Cavallaro, G., R., Book, M., Neukirchen, H., Lintermann, A. & Riedel, M. (2021). Practice and Experience in using Parallel and Scalable Machine Learning with Heterogenous Modular Supercomputing Architectures, 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Online: https://doi.org/10.1109/IPDPSW52791.2021.00019

[3] Riedel, M., Cavallaro, G., Benediktsson, J.A.: Practice and Experience in using Parallel and Scalable Machine learning in Remote Sensing from HPC over Cloud to Quantum Computing, in conference proceedings of the IEEE IGARSS Conference, Brussels, Belgium, 2021, Online: <u>https://doi.org/10.1109/IGARSS47720.2021.9554656</u>

[4] M. Riedel, M. Book, H. Neukirchen, G. Cavallaro and A. Lintermann, "Practice and Experience using High Performance Computing and Quantum Computing to Speed-up Data Science Methods in Scientific Applications," *2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO)*, 2022, pp. 281-286, Online: https://doi.org/10.23919/MIPRO55190.2022.9803802

[5] Book, Riedel, Neukirchen, Erlingsson: Facilitating Collaboration in Machine Learning and High-Performance Computing Projects with an Interaction Room, International Workshop on Software Engineering for eScience, IEEE 2022, online: <a href="https://iris.rais.is/en/publications/facilitating-collaboration-in-machine-learning-and-high-performan">https://iris.rais.is/en/publications/facilitating-collaboration-in-machine-learning-and-high-performan</a>





# drive. enable. innovate.





The CoE RAISE project have received funding from the European Union's Horizon 2020 – Research and Innovation Framework Programme H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Follow us: 🈏 in 🖪 🕩 👀 R<sup>G</sup>