

AN AUTOMATIC APPROACH FOR THE PRODUCTION OF A TIME SERIES OF CONSISTENT LAND-COVER MAPS BASED ON LONG-SHORT TERM MEMORY

WE4.O2: Classification and Clustering I

ROCCO SEDONA_{1,2}, CLAUDIA PARIS₃, LIANG TIAN₂, MORRIS RIEDEL_{1,2}, GABRIELE CAVALLARO_{1,2}

1. UNIVERSITY OF ICELAND, ICELAND

2. FORSCHUNGSZENTRUM JÜLICH, GERMANY

3. UNIVERSITY OF TWENTE, THE NETHERLANDS

OF ICELAND

OUTLINE

- Introduction and motivation
- Framework for generation of multi-year training set
- A case study
- Scaling on modular supercomputing architectures
- Conclusions

INTRODUCTION

- Problem:
 - Need for frequent update of land cover maps
 - Changes on the ground (i.e., due to new buildings or infrastructures, extreme meteorological events, deforestation, ...)
 - Consistency of the output products
 - Large scale (national or even continental level)
 - t large scale

MOTIVATION

- Aim: Update Land Cover maps more frequently
- How?
 - Using time series of S2 data
 - Extract reliable multi-year dataset for training
 - Use LSTM to exploit temporal information

C. Paris, L. Bruzzone, D. Fernández-Prieto, "A Novel Approach to the Unsupervised Update of Land-Cover Maps by Classification of Time Series of Multispectral Images," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 7, pp. 4259-4277, 2019

Step 1: Data retrieval

- Input Sentinel-2 data downloaded with Sentinelsat API
 - L2A (atmospherically corrected)
 - Excluding clouds and partial orbits
 - Scaling data
- Extraction of corresponding Corine LC (CLC) of 2018

Map **M**^{y₁}

TS^{y₁}

https://sentinelsat.readthedocs.io/en/stable/

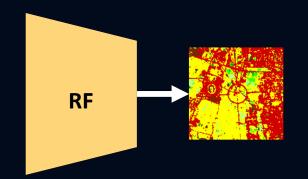
Step 2: Clustering

- K-means clustering to retrieve most reliable samples
- Associate with labels from CLC
- Feature space made up of a set of spectral indices (i.e., vegetation, water snow and soil indices)

Crop Forest Soil

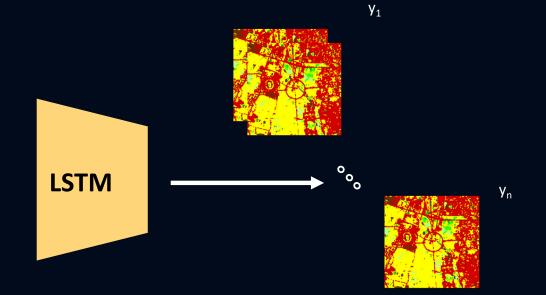
MULTIYEAR TRAINING SET Step 3: RF

- RF trained on acquisitions of one year
- Produce maps with pseudo-labels for three years
- Extract a multi-year set of samples only where the labels agree
- Stratified random sampling

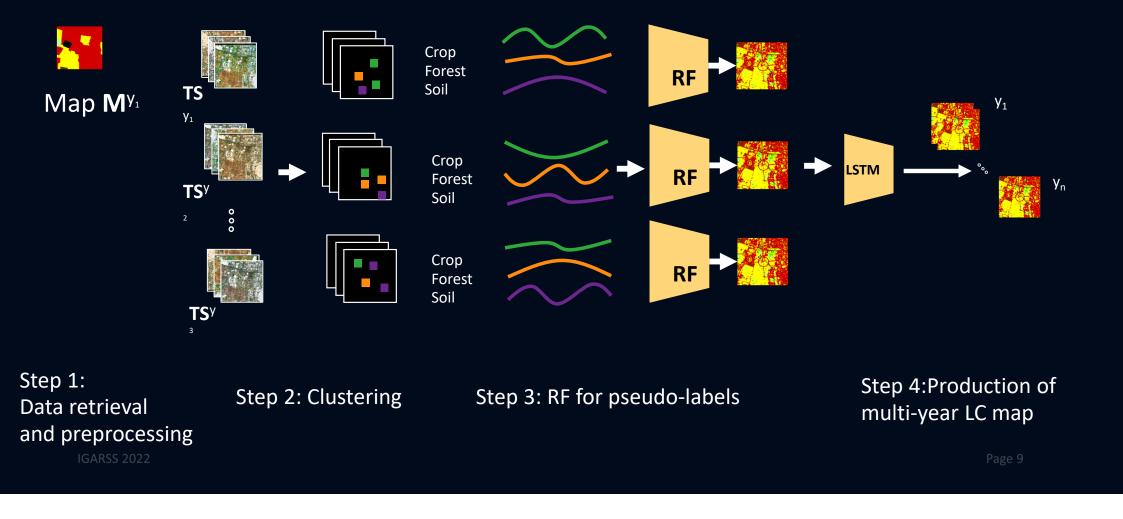


Step 4: LSTM

LSTM trained on multi-year TS



Creation of dataset encompassing multiple years



A CASE STUDY Area

Sentinel-2 data of Trentino, Italy

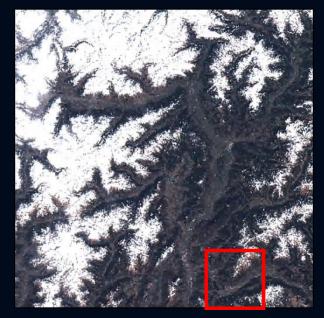
September 2018

A CASE STUDY

Why

- Area where manual assessment con be performed
- Vaja Storm in late October 2018

https://efi.int/news/aftermath-vaia-storm-italy-2018-12-17



March 2019

A CASE STUDY

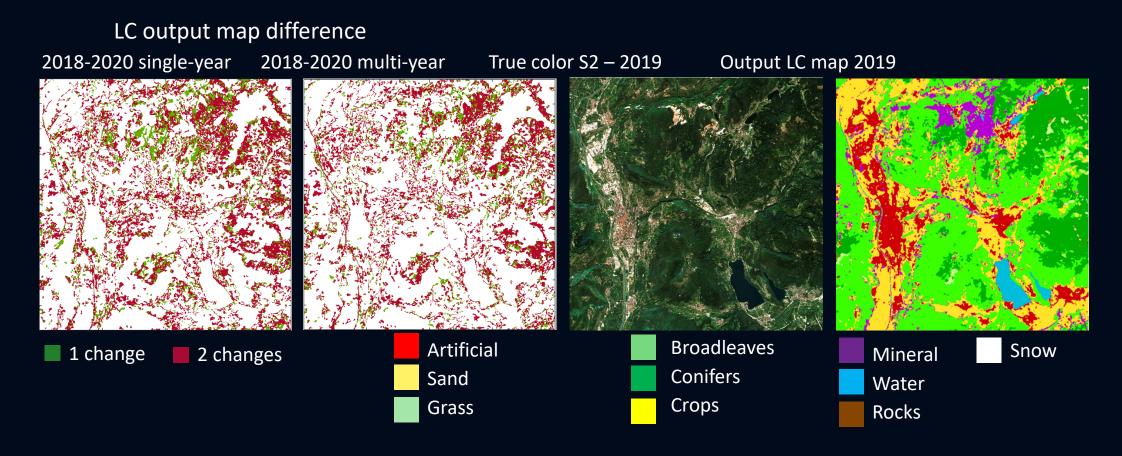
Setup

- From 2018 to 2020
 - 20 acquisitions per year
 - 24.000 samples for training, 12.000 for validation
 - Prediction on disjoint set from training
 - 10 classes from CLC i.e., "Artificial", "Grass", "Crops"," Mineral", "Rocks", "Sand", "Broadleaves", "Conifers"," Water", "Snow"

https://land.copernicus.eu/pan-european/corine-land-cover

A CASE STUDY

Preliminary results



A CASE STUDY Preliminary results

- Analysis of agreement of output LC maps produced by LSTM
- Increased consistency of the multiyear model compared to single-year model

Class	Multi-Ye	ar LSTM	Single-Ye	ar LSTM
	2018-2019	2019-2020	2018-2019	2019-2020
Artificial	0.89	0.68	0.93	0.62
Grass	0.69	0.60	0.61	0.42
Crops	0.76	0.81	0.65	0.85
Mineral	0.33	0.51	0.34	0.43
Rocks	0.43	0.46	0.45	0.43
Sand	0.14	0.31	0.05	0.16
Broadleaves	0.85	0.87	0.79	0.84
Conifers	0.81	0.78	0.79	0.77
Shrubland	0.64	0.66	0.63	0.62
Water	0.97	0.98	0.98	0.95
Overall	0.78	0.78	0.74	0.74

SCALING ON HPC

- The framework can scale on modular supercomputing architectures
- Enhanced processing steps:
 - Pre-processing (i.e., data retrieval and training set extraction)
 - Distributed deep learning with multiple GPUs (i.e., training, inference)
- Enable to work at larger scale

https://www.fzjuelich.de/en/ias/jsc/systems/supercomputers/juwels

CONCLUSIONS

- Scalable framework to generate multi-year training set
- Preliminary results with longer TS
- Open questions:
 - How to include samples with changing pseudo-labels into the training set?
 - Increase consistency of the model while preserving ability to detect change
 - Validation (LUCAS, street level information?)
- Modular framework -> add new functionalities

Thank you for your attention

Terima kasih atas perhatian anda

