
CoE RAISE
HDCRS Summer School

31.05.2022

Rocco Sedona, Marcel Aach

Jülich Supercomputing Centre - Forschungszentrum Jülich GmbH

University of Iceland

Speaker Introduction

- Rocco Sedona: PhD student at Juelich Supercomputing Centre and
University of Iceland (Supervisors: Dr. Cavallaro, Prof. Riedel, Prof.
Book)

- Marcel Aach: PhD student at Juelich Supercomputing Centre and
University of Iceland (Supervisors: Prof. Riedel and Dr. Lintermann)

Juelich Supercomputing Centre

- Supercomputing center as as
part of the Juelich Research
Centre

- Hosts one of the most
powerful supercomputers in
Europe (JUWELS BOOSTER)

- First D-Wave Quantum
Annealer in Europe

Motivation

5

Applications

Motivation

- AI technologies are key to
- extract knowledge from big data collections
- reason from existing knowledge
- find hidden features and detect unseen correlations in massively large data

sets
- High-Performance Data Analytics (HPDA) requires

- intelligent analytic tools
- scalable systems

1018

ExascaleAI technologies

31.05.2022 – HDCRS 2022 – Rocco Sedona, Marcel Aach

Introduction
to CoE
RAISE

CoE RAISE: Motivation

7

1018

ExascaleAI technologies

+

Simulation / Experiment

Big Data Surrogate / Model

data generation

tra
ining

predict / replace / accelerate

input

31.05.2022 – HDCRS 2022 – Rocco Sedona, Marcel Aach

8

CoE RAISE: Modularity of Next-Generation HPC
Systems

Simulation
workflow

- Find the most suitable hardware for a specific task
- Enable intertwined AI- and HPC-workflows

Complex

task

Complex hardware

31.05.2022 – HDCRS 2022 – Rocco Sedona, Marcel Aach

9

- Development of AI methods towards Exascale
- Connect

- hardware infrastructure,
- software infrastructure,
- compute-driven use cases,
- and data-driven use cases

to create a Unique AI framework for academia
and industry

CoE RAISE’s Major Objectives

31.05.2022 – HDCRS 2022 – Rocco Sedona, Marcel Aach

Partners in CoE RAISE

1031.05.2022 – HDCRS 2022 – Rocco Sedona, Marcel Aach

CoE RAISE
Use Cases

Use Cases in CoE RAISE

12

- Two kinds of use cases:

Example from use case ”AI for wind farm layout”: Turbulence

generated by a cliff on Bolund Island, Denmark.

Example from use case ” Seismic imaging with remote sensing for

energy applications”: Snapshot from a wavefield.

31.05.2022 – HDCRS 2022 – Rocco Sedona, Marcel Aach

Remote Sensing

Problem: long time to create new
thematic maps

Goal: more frequent update of maps

How: using satellite imagery

https://land.copernicus.eu/pan-european/corine-land-cover

https://land.copernicus.eu/pan-european/corine-land-cover

Remote Sensing: Framework

C. Paris, L. Bruzzone, D. Fernández-Prieto, “A Novel Approach to the Unsupervised Update of Land-Cover Maps by Classification of Time Series of Multispectral Images,” IEEE Transactions
on Geoscience and Remote Sensing, Vol. 57, No. 7, pp. 4259-4277, 2019,
Rocco Sedona, Claudia Paris, Liang Tian, Morris Riedel, Gabriele Cavallaro, “An automatic approach for the production of a time series of consistent land-cover maps based on long-short term
memory”, IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2022 (accepted)

Remote Sensing: Land Cover Classification

Predicted map of
TPS32 with RF (2018)

Original CORINE map
of TPS32 (2018)

Remote Sensing: Study Area

Retrieval of Sentinel-2 time series for the Netherlands and related
CORINE thematic maps

drive. enable. innovate.

The CoE RAISE project have received funding from
the European Union’s Horizon 2020 –
Research and Innovation Framework Programme
H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Follow
us:

https://medium.com/@raise_info
https://www.researchgate.net/project/CoE-RAISE
https://www.youtube.com/channel/UCAdIZ-v6cWwGdapwYxdN7dg
https://www.facebook.com/CoERAISE2021
https://www.linkedin.com/company/coe-raise
https://twitter.com/CoeRaise

Distributed Deep Learning
HDCRS Summer School

31.05.2022

Rocco Sedona

Jülich Supercomputing Centre - Forschungszentrum Jülich GmbH

University of Iceland

2

Outline

� Recap of basic concepts of Deep Learning

� Introduction to HPC

� MPI and other communication backends

� Introduction to Distributed Deep Learning

� Frameworks

� Final Remarks

31.05.2022 – HDCRS 2022 – Rocco Sedona

Recap of
basic DL
concepts

Optimization

● Optimizing loss (objective) of a (complex) model on data
● a (complex) model: function (or distribution) family
● parameters are to adapt (“fit”) given the data
● optimization: defining a loss
● loss L: measure of quality (“fit”) of the model in terms of a task

solution on
● Objective: minimize

Scalable Learning & Multi-Purpose AI Lab, Helmholtz AI @ JSC

Generalization

● Estimate : aiming for good generalization
capability

● General approach: split into disjoint and ,
● train on
● generalization error on after training

Scalable Learning & Multi-Purpose AI Lab, Helmholtz AI @ JSC

HPC

Hardware Levels of Parallelism

● (a) Single-machine (shared memory) (b) Multi-machine (distributed
memory)

https://www.researchgate.net/publication/302245489_Adaptation_Strat
egies_in_Multiprocessors_System_on_Chip

HPC

HPC at the frontline of computing power
It includes work on ‘four basic building blocks’:

● Theory (numerical laws, physical models,
speed-up performance, etc.)

● Technology (multi-core, supercomputers,
networks, storages, etc.)

● Architecture (shared-memory,
distributed-memory, interconnects, etc.)

● Software (libraries, schedulers, monitoring,
applications, etc.)

Architecture: Shared-memory building blocks
interconnected with a fast network (e.g., InfiniBand)

https://www.fz-juelich.de/de/ias/jsc

https://ebrary.net/206293/computer_science/distributed_shared_me
mory_multiprocessors_numa_model

Communication
Backend

MPI

● MPI is a standard for
exchanging messages between
multiple computers running a
parallel program across
distributed memory

● Point-to-point and collective
communication are supported

● Different topologies can be
implemented

● Parallel I/O operations
● Blocking and non blocking

statements

Hoefler, T., Rabenseifner, R., Ritzdorf, H., de Supinski, B. R., Thakur, R., & Träff, J. L. (2010). The scalable process topology interface of
MPI 2.2. Concurrency and Computation: Practice and Experience, 23(4), 293–310. https://doi.org/10.1002/cpe.1643

https://doi.org/10.1002/cpe.1643

NCCL

● NVIDIA Collective Communications Library (NCCL)
[19]

● Provides optimized implementation of inter-GPU
communication operations, such as allreduce and
variants

● Optimized for high bandwidth and low latency
over PCI and NVLink/NVSwitch high speed
interconnect for intra-node communication (up to
16 GPUs)

● Sockets and InfiniBand for inter-node
communication

● For a comparison between communication
backends look at:
[https://mlbench.github.io/2020/09/08/communication-backend-c

omparison/]

https://developer.nvidia.com/blog/scaling-deep-learning
-training-nccl/

RCCL

● AMD’s port of NCCL: ROCm

Communication Collectives
Library (RCCL) uses the same
C API as NCCL

● NCCL APIs do not need to be

converted
 https://github.com/RadeonOpenCompute/ROCm https://hwrig.com/amd-instinct-gpu-and-epyc-are-making-lumi-in-2021/

https://lumi-supercomputer.eu/easybuild-lumis-primary-softwar
e-installation-tool-introduced/ https://www.bsc.es/innovation-and-services/technical-information-cte-amd

https://github.com/RadeonOpenCompute/ROCm
https://hwrig.com/amd-instinct-gpu-and-epyc-are-making-lumi-in-2021/
https://lumi-supercomputer.eu/easybuild-lumis-primary-software-installation-tool-introduced/
https://lumi-supercomputer.eu/easybuild-lumis-primary-software-installation-tool-introduced/
https://www.bsc.es/innovation-and-services/technical-information-cte-amd

Benchmark

● For a comparison
between
communication
backends look at:
[https://mlbench.gith
ub.io/2020/09/08/c
ommunication-backe
nd-comparison/]

● MPI vs Gloo vs NCCL

Motivation

Motivation

In recent years almost exponential
increase of number of parameters of
the models

https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances
-that-work-towards-harnessing-large-scale-power/

2020

2022

https://huggingface.co/blog/large-language-models

https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances-that-work-towards-harnessing-large-scale-power/
https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances-that-work-towards-harnessing-large-scale-power/
https://huggingface.co/blog/large-language-models

Motivation

● Bigger models require bigger datasets
● Consequence -> More resources are

needed (both memory and computation
power)

Kaplan et al., “Scaling Laws for Neural
Language Models”, 2020,
https://arxiv.org/abs/2001.08361

https://arxiv.org/abs/2001.08361

Distributed
Deep Learning

Data Parallelism

● Concept: split the data
● The gradients for

different batches of data
are calculated
separately on each node

● But averaged across
nodes to apply
consistent updates to
the model copy in each
node A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed Deep Learning in TensorFlow”, arXiv:1802.05799,

2018

Model Parallelism

Concept: split the model
Pipelining:

● partitioning the DNN according to depth,
assigning layers to specific processors

● overlapping computations, i.e.,
between one layer and the next (as
data becomes ready)

[https://huggingface.co/docs/transformers/parallelism]

Model Parallelism

Tensor parallelism:
● matrix operations (f.e.

matrix multiplication) can
be split between multiple
GPUs

● Scaling large transformers
with multihead
self-attention is based on
this concept

[https://huggingface.co/docs/transformers/parallelism] [https://www.youtube.com/watch?v=iDulhoQ2pro&
ab_channel=YannicKilcher]

Challenges

● Poor generalization due to sharp minima
[Hochreiter, Sepp and Schmidhuber, Jürgen. Flat minima. Neural Computation, 9(1):1–42, 1997]

● Time to accuracy does not decrease

Shallue et al., 2019, https://arxiv.org/pdf/1811.03600.pdf

N. S. Keskar and D. Mudigere and J. Nocedal and M. Smelyanskiy and P.T.P. Tang, On Large-Batch Training for
Deep Learning: Generalization Gap and Sharp Minima, 2016

https://arxiv.org/pdf/1811.03600.pdf

Solution

● For batch size < 8000
○ Scale learning rate
○ Warm-up

● For batch size > 8000
○ Choice of the optimizer:

■ LARS
■ LAMB
■ post-local SGD

Osawa et al., 2020

Warm-up

Is that all?

● Still ongoing research
● Well-establish optimizers can

match new ones with enough
hyperparameter tuning

https://openreview.net/pdf?id=Kloou2uk_Rz

https://openreview.net/pdf?id=Kloou2uk_Rz

Frameworks

Horovod

Horovod
● Data parallel, each GPU has a copy of the model

and a chunk of the data
● Efficient decentralized framework,

based on MPI and NCCL libraries, where actors exchange
parameters without the need of a parameter server

● Works on top of Keras, TensorFlow, PyTorch and
Apache MXNet

Tensorflow

● Parameter server for asynchronous training
● Mirrored strategy for synchronous training

Pytorch

● Distributed Data-Parallel Training (DDP)

A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed Deep Learning in
TensorFlow”, arXiv:1802.05799, 2018.

https://www.youtube.com/watch?v=6ovfZW8pepo&ab_channel=TensorFlow

https://www.youtube.com/watch?v=6ovfZW8pepo&ab_channel=TensorFlow

Ring allreduce
Two step process :

1. share-reduce step
2. share-only step

A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed Deep Learning in TensorFlow”, arXiv:1802.05799, 2018

https://www.youtube.com/watch?v=4y0TDK3KoCA&t=585s&ab_channel=Uber
Engineering

Other Frameworks

[https://github.com/cc-hpc-itwm/tarantella]

[https://github.com/hpcaitech/ColossalAI]

[https://github.com/NVIDIA/Megatron-LM]

https://github.com/helmholtz-analytics/heat

https://www.deepspeed.ai/

https://github.com/helmholtz-analytics/heat

A Remote
Sensing Use
Case

Dataset: BigEarthNet, Sentinel-2 Data Patches and
Annotated with CORINE Land Covers
Model: ResNet50

0.74 F1-score up to 24 nodes - 96 GPUs with a global
batch size of 8K samples

R. Sedona et al., Remote Sensing Big Data Classification with
High Performance Distributed Deep Learning, 2019

Patch and its dimension (px)

● Adopted TensorFlow Dataset API to build a pipeline with
integrated data augmentation, caching and prefetching of the
data

● Deploying on 64 nodes / 256 GPUs of the Juwels Booster (Nvidia
A100)

● New CNNs as EfficientNet, less parameters than ResNet, faster to
train and higher accuracy

● Testing newer optimizers: LARS, LAMB, NovoGrad
● As the number of hyperparameters grows, there is the need to

automatize the search for the optimal values (NAS)
● Hyper parameter tuning with Ray Tune (embedded in Horovod):

'IGARSS2022 ACCELERATING HYPERPARAMETER TUNING OF A DEEP
LEARNING MODEL FOR REMOTE SENSING IMAGE CLASSIFICATION',
M. Aach, R. Sedona, A. Lintermann, G. Cavallaro, H. Neukirchen, M.
Riedel, IGARSS2022 (accepted)

https://github.com/qubvel/efficientnet

https://github.com/qubvel/efficientnet

Final Remarks

Final Remarks

● The trend is to make distributed deep learning
easier

● Not only frameworks, but integrated products
● Example: Dataflow-as-a-Service by

SambaNova
● Intel's OpenAPI for heterogeneous computing

[https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.u1
eb1g]

● AMD's GPUs using ROCm (similar to Nvidia’s
NCCL)

[f.e. https://www.bsc.es/innovation-and-services/technical-information-cte-amd]

[https://www.hpcwire.com/2020/12/09/ai-newcomer-sambanova
-gas-product-lineup-and-offers-new-service/]

DL and Cloud Computing

 https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

https://www.youtube.com/watch?v=kpiY_LemaTc&ab_channel=LexFridman

● Trend towards cloud-based HPC
● What about costs?
● Let’s have a look at NCsv3-series [25]
● 355 years to train GPT-3 on a Tesla V100
● Training cost = 355Y×365D/Y×24H/D×0.9792$/H

= 3.045.116$

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://www.youtube.com/watch?v=kpiY_LemaTc&ab_channel=LexFridman

Towards Exascale

Frontier (First supercomputer
to Break the Exaflop Ceiling at
Oak Ridge National Laboratory
(ORNL) in the US

Exascale Application
Readiness
[https://www.olcf.ornl.gov/caar/frontier-caar/?fbcli
d=IwAR0JvTHz9rc_um_OGQbN28J8MDw5sv5yMF2O
BWy2u5RKdMVyxODseWlnP7E]

Final Remarks

● Takeaways:
● Frontier technology is fast paced
● But successful solutions tend to become

stable
● Great opportunities for Distributed Deep

Learning with the increased availability of
computing resources

● Aknowledgement: Helmholtz AI
Consultants
[https://www.helmholtz.ai/themenmenue/our-research/consultant-teams/helmholtz-ai-consultants-fzj
/index.html]

 [PRACE course “Introduction to Scalable Deep Learning” https://events.prace-ri.eu/event/1310/]

Carlota Perez, 2002. "Technological Revolutions and
Financial Capital," Books, Edward Elgar Publishing,
number 2640.

drive. enable. innovate.

The CoE RAISE project have received funding from
the European Union’s Horizon 2020 –
Research and Innovation Framework Programme
H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Follow
us:

https://medium.com/@raise_info
https://www.researchgate.net/project/CoE-RAISE
https://www.youtube.com/channel/UCAdIZ-v6cWwGdapwYxdN7dg
https://www.facebook.com/CoERAISE2021
https://www.linkedin.com/company/coe-raise
https://twitter.com/CoeRaise

Distributed Hyperparameter Tuning
with HPC
HDCRS Summer School

31.05.2022

Marcel Aach

Jülich Supercomputing Centre - Forschungszentrum Jülich GmbH

University of Iceland

Outline

- What are hyperparameters and why are they so important?
- Hyperparameter optimization (HPO) methods
- Running hyperparameter optimization on HPC with Ray Tune
- Remote sensing use-case

What Are
Hyperparameters
and Why Are They
So Important?

Design of ML Models

- ML models are designed by humans
- Usually start from experience, then fine tune
- Trial and error

ML model performance
trainbuild

improve model design

improve parameters

Hyperparameters in ML Models

- Architectural parameters:
- Type of ML model (neural network, SVM?)
- Number and kind of layers (convolutional, dense, dropout?)
- Number of neurons per layer
- Activation functions (relu, sigmoid?)
- Weight initialization and regularization

- Optimizer parameters:
- Optimizer type (SGD, Adam?)
- Batch size
- Learning rate
- Learning rate schedule
- Momentum

Image from opengenus.org

Hyperparameters in ML Pipeline

- Parameters of pre-processing
- Image size
- Image normalization
- Image crop
- Image rotation
- Number of spectral bands

- Mix of lots of discrete and continuous variables that influence each
other

- Requires lots and lots of trials and error
- We optimize the “inner loop”, why not the “outer loop” as well?

Importance of Hyperparameters

HPO models beat human design (CV: [Real 2018] , NLP: [Melis 2017])

HPO
Methods

HPO Terminology

- search space: hyperparameters and their sampling interval
- configuration: a set of hyperparameters sample from the search space
- trial: one training run of a configuration
- “inner loop” optimization: adjusting the parameters of a model (e.g. via

SGD)
- “outer loop” optimization: adjusting the hyperparameters of a model

The Easy Way

- Random Search:
- Sample a random

configuration from the search
space grid and look at the
performance

- Grid Search:
- Sample every grid point

- Good starting point
- Embarrassingly parallel
- Burns lots and lots of

resources
Image from [Bergstra 2012]

Accelerating HPO

- “Smart” choice of configurations:
- Bayesian Optimization (black box optimizer)
- High dimensional search space
- Parallelism problem: some trials finish before others

- Acceleration of the trials:
- Distributed deep learning
- Early stopping “bad” trials
- “Smart” scheduling of the trials

Smart Scheduling: SHA

- Successive Halving (or Thirding) Algorithm (SHA, Li 2018):
- Idea: Stop bad trials early and allocate resources to more promising trials
- Sample N trials randomly, keep only best N/2, then N/4 …
- Problem: What about late learners?/Run trials for longer or explore more trials?

Figure from AutoML.org

Smart Scheduling: HyperBand

- Solution to exploration vs. exploitation trade-off: HyperBand [Li 2018]
- Perform multiple SHA runs with different budget allocations

n = number of
configurations
r = resources allocated
per configuration

tim
e

level of ”pruning aggression”

Improvements to HyperBand

- Bayesian Optimization + HyperBand
(BOHB, [Falkner 2018]):

- Use HyperBand for scheduling but
choose new trial parameters with
Bayesian methods

- Asynchronous Successive Halving
(ASHA, [Li 2020]):

- Like HyperBand but do not wait for
all trials to finish before halving

- Allocate resources faster massively
parallel, very well suited for HPC
applications

Image from [Li 2020]

SHA vs. ASHA

Slide from Ameet Talwalkar: Massively Parallel Hyperparameter Tuning

Other Options

- Population Based Training
(PBT):

- Genetic algorithm - mutate best
performing trials randomly
[Jaderberg 2017]

- Reinforcement Learning:
- Agent selects the parameters -

use trial performance as reward
[Zoph 2016]

- Differentiable Architecture
Search (DARTS):

- Continuous representation of
the architecture search space,
use gradient descent for
optimization [Liu 2018]

Image from [Jaderberg 2017]

Hyperparameter
Optimization on
HPC

Library: Ray

● Universal python API for distributed computing
○ Simple primitives to run and build distributed applications
○ Parallelize single machine code with little code changes
○ Works with lots of different libraries

● Open source, maintained by Anyscale

Ray Framework

Figure taken from Anyscale website

Ray Tune

● Focus on distributed hyperparameter tuning
● Support for multiple machine learning frameworks (PyTorch,

Tensorflow, sklearn, MXNet, Horovod etc.) -> Trials in parallel on the
outer loop, trials in parallel on the inner loop

● Logging via Tensorboard (or other frameworks)
● Debugging and monitoring via Ray Dashboard
● Compatible with lots of optimization algorithms

Ray Tune Workflow

Figure taken from Anyscale website

How Does Ray Tune Distribute Work?

Figure taken from Anyscale website

How Does Ray Tune Distribute Work?

Figure taken from Anyscale website

How Does Ray Tune Distribute Work?

Figure taken from Anyscale website

Integrating Ray Tune

ray.init()

config = {

 "num_layers_conv": tune.choice([2,3,4]),

 "num_layers_linear": tune.choice([1,2,3]),

 "num_filters": tune.choice([16,32,48,64]),

 "weight_init_conv": tune.loguniform(10e-4,10e-1),

 "weight_init_linear": tune.loguniform(10e-3,1),

 "weight_decay": tune.loguniform(10e-4,1),

 "batch_size": tune.choice([64, 128, 256, 512]),

 "lr": tune.loguniform(10e-5, 1)}

scheduler = ASHAScheduler(

 metric="accuracy",

 mode="max")

result = tune.run(

 function_to_train,

 resources_per_trial={"cpu": 9, "gpu": 1},

 config=config,

 num_samples=100,

 scheduler=scheduler)

ray.shutdown()

Ray Tune Output

ASHA with Ray Tune on a Supercomputer

ASHA with Ray Tune on a Supercomputer

Comparison with other Frameworks

Figure taken from Anyscale website

Application in
Remote
Sensing

Remote Sensing Datasets

- Lots of “raw” satellite data
available

- BigEarthNet-19 dataset
- 600.000 image patches
- Classification problem, measure

the F1 micro and macro score of
ML models

- Idea: Use HPC to train
classification models (and tune
the hyperparameters of these
models)!

Image from [Sumbul 2019]

Scaling up Convolutional Neural Networks

- Network architecture: EfficientNet [Tan 2020]
- Distributed deep learning on HPC -> large batch size
- Investigation by [Sedona 2020]:

- Drop in F1 score with larger batch sizes
- Batch size: 512 -> F1 score: 0.78
- Batch size: 8,192 -> F1 score: 0.74
- Batch size 16,384 and larger -> divergence

Adapting the Batch Size

idea: Adapt the batch size during training!
-> Use a small batch size in the beginning to stabilize training process, use a bigger
batch size afterwards for efficient resource utilization

-> Paper: “ACCELERATING HYPERPARAMETER TUNING OF A DEEP LEARNING
MODEL FOR REMOTE SENSING IMAGE CLASSIFICATION” accepted at IGARSS 2022

Implementation in TensorFlow

Setup on the Supercomputer (JURECA-DC-GPU)

- 16 GPUs per trial (data-parallel with Horovod)
- Batch size per GPU: 32 -> 1,024
- Total batch size: 512 -> 16,384
- 6 trials in parallel (96 GPUs in total in with Ray Tune)
- Hyperparameter search space:

- Learning rate in [0.001, 1]
- Weight decay in [0.0005, 0.1]
- Momentum in [0, 0.9]
- Nesterov momentum in [false, true]

- No search or scheduling algorithm

Results: Compute Time

- 4x speed-up
- Change the batch size after 20

epochs

Results: Accuracy

BS (global) total runtime F1 scores

512 27 hrs 0.78 (0.72)

512->16,384 10 hrs 0.78 (0.70)

Pros and Cons of Adaptive Batch Size

- Strengths:
- 3x speed-up
- No drop in final validation accuracy
- Efficient usage of HPC resources
- Metrics grounded in theory (gradient

noise scale by [McCandlish,2018]) exist
for better batch size adaptation

- Limitations:
- So far just tested on one RS dataset
- Does not address issue of late learners

Summary Distributed HPO

- Optimize the “outer loop”
- Exploit full level of parallelism

- Distributed deep learning on the “inner loop”
- Distributed HPO on the “outer loop”

- Easy handling with Ray Tune library (also on HPC systems)
- Methods can be adapted to remote sensing use-cases

drive. enable. innovate.

The CoE RAISE project have received funding from
the European Union’s Horizon 2020 –
Research and Innovation Framework Programme
H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Follow
us:

https://medium.com/@raise_info
https://www.researchgate.net/project/CoE-RAISE
https://www.youtube.com/channel/UCAdIZ-v6cWwGdapwYxdN7dg
https://www.facebook.com/CoERAISE2021
https://www.linkedin.com/company/coe-raise
https://twitter.com/CoeRaise

	CoE RAISE
	Distributed Deep Learning with HPC
	Distributed Hyperparameter Tuning with HPC

