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Speaker Introduction

- Rocco Sedona: PhD student at Juelich Supercomputing Centre and 
University of Iceland (Supervisors: Dr. Cavallaro, Prof. Riedel, Prof. 
Book)

- Marcel Aach: PhD student at Juelich Supercomputing Centre and 
University of Iceland (Supervisors: Prof. Riedel and Dr. Lintermann)



 

Juelich Supercomputing Centre

- Supercomputing center as as 
part of the Juelich Research 
Centre

- Hosts one of the most 
powerful supercomputers in 
Europe (JUWELS BOOSTER)

- First D-Wave Quantum 
Annealer in Europe 



Motivation
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Applications

Motivation

- AI technologies are key to
- extract knowledge from big data collections
- reason from existing knowledge
- find hidden features and detect unseen correlations in massively large data 

sets
- High-Performance Data Analytics (HPDA) requires 

- intelligent analytic tools
- scalable systems

1018

ExascaleAI technologies
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Introduction 
to CoE 
RAISE



 

CoE RAISE: Motivation
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ExascaleAI technologies

+

Simulation / Experiment

Big Data Surrogate / Model

data generation

tra
ining

predict / replace / accelerate

input
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CoE RAISE: Modularity of Next-Generation HPC 
Systems 

Simulation 
workflow

- Find the most suitable hardware for a specific task
- Enable intertwined AI- and HPC-workflows

Complex 

task

Complex hardware

31.05.2022 – HDCRS 2022 – Rocco Sedona, Marcel Aach
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- Development of AI methods towards Exascale
- Connect

- hardware infrastructure,
- software infrastructure,
- compute-driven use cases,
- and data-driven use cases

to create a Unique AI framework for academia 
and industry

CoE RAISE’s Major Objectives

31.05.2022 – HDCRS 2022 – Rocco Sedona, Marcel Aach



 

Partners in CoE RAISE
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CoE RAISE 
Use Cases



 

Use Cases in CoE RAISE
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- Two kinds of use cases:

Example from use case ”AI for wind farm layout”: Turbulence 

generated by a cliff on Bolund Island, Denmark.

Example from use case ” Seismic imaging with remote sensing for 

energy applications”: Snapshot from a wavefield.

31.05.2022 – HDCRS 2022 – Rocco Sedona, Marcel Aach



 

Remote Sensing

Problem: long time to create new 
thematic maps

Goal: more frequent update of maps

How: using satellite imagery

https://land.copernicus.eu/pan-european/corine-land-cover

https://land.copernicus.eu/pan-european/corine-land-cover


 

Remote Sensing: Framework

C. Paris, L. Bruzzone, D. Fernández-Prieto, “A Novel Approach to the Unsupervised Update of Land-Cover Maps by Classification of Time Series of Multispectral Images,” IEEE Transactions 
on Geoscience and Remote Sensing, Vol. 57, No. 7, pp. 4259-4277, 2019, 
Rocco Sedona, Claudia Paris, Liang Tian, Morris Riedel, Gabriele Cavallaro, “An automatic approach for the production of a time series of consistent land-cover maps based on long-short term 
memory”, IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2022 (accepted)



 

Remote Sensing: Land Cover Classification

Predicted map of 
TPS32 with RF (2018)

Original CORINE map 
of TPS32 (2018)



 

Remote Sensing: Study Area

Retrieval of Sentinel-2 time series for the Netherlands and related 
CORINE thematic maps



drive. enable. innovate.

The CoE RAISE project have received funding from
the European Union’s Horizon 2020 –
Research and Innovation Framework Programme
H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Follow 
us:

https://medium.com/@raise_info
https://www.researchgate.net/project/CoE-RAISE
https://www.youtube.com/channel/UCAdIZ-v6cWwGdapwYxdN7dg
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Outline

� Recap of basic concepts of Deep Learning

� Introduction to HPC

� MPI and other communication backends

� Introduction to Distributed Deep Learning

� Frameworks

� Final Remarks

31.05.2022 – HDCRS 2022 – Rocco Sedona



Recap of 
basic DL 
concepts



 

Optimization

● Optimizing loss (objective) of a (complex) model   on data 
● a (complex) model: function (or distribution) family
● parameters    are to adapt (“fit”) given the data 
● optimization: defining a loss 
● loss L: measure of quality (“fit”) of the model     in terms of a task 

solution on 
● Objective: minimize 

Scalable Learning & Multi-Purpose AI Lab, Helmholtz AI @ JSC



 

Generalization

● Estimate                                            : aiming for good generalization 
capability 

● General approach: split     into disjoint          and         , 
● train on 
● generalization error on          after training

Scalable Learning & Multi-Purpose AI Lab, Helmholtz AI @ JSC



HPC



 

Hardware Levels of Parallelism

● (a) Single-machine (shared memory) (b) Multi-machine (distributed 
memory)

https://www.researchgate.net/publication/302245489_Adaptation_Strat
egies_in_Multiprocessors_System_on_Chip



 

HPC

HPC at the frontline of computing power 
It includes work on ‘four basic building blocks’:

● Theory (numerical laws, physical models, 
speed-up performance, etc.)

● Technology (multi-core, supercomputers, 
networks, storages, etc.)

● Architecture (shared-memory, 
distributed-memory, interconnects, etc.)

● Software (libraries, schedulers, monitoring, 
applications, etc.)

Architecture: Shared-memory building blocks 
interconnected with a fast network (e.g., InfiniBand)

https://www.fz-juelich.de/de/ias/jsc

https://ebrary.net/206293/computer_science/distributed_shared_me
mory_multiprocessors_numa_model



Communication 
Backend



 

MPI

● MPI is a standard  for 
exchanging messages between 
multiple computers running a 
parallel program across 
distributed memory 

● Point-to-point and collective 
communication are supported 

● Different topologies can be 
implemented 

● Parallel I/O operations 
● Blocking and non blocking 

statements
 

 

Hoefler, T., Rabenseifner, R., Ritzdorf, H., de Supinski, B. R., Thakur, R., & Träff, J. L. (2010). The scalable process topology interface of 
MPI 2.2. Concurrency and Computation: Practice and Experience, 23(4), 293–310. https://doi.org/10.1002/cpe.1643

https://doi.org/10.1002/cpe.1643


 

NCCL

● NVIDIA Collective Communications Library (NCCL) 
[19] 

● Provides optimized implementation of inter-GPU 
communication operations, such as allreduce and 
variants 

● Optimized for high bandwidth and low latency 
over PCI and NVLink/NVSwitch high speed 
interconnect for intra-node communication (up to 
16 GPUs) 

● Sockets and InfiniBand for inter-node 
communication 

● For a comparison between communication 
backends look at: 
[https://mlbench.github.io/2020/09/08/communication-backend-c

omparison/] 
 

https://developer.nvidia.com/blog/scaling-deep-learning
-training-nccl/



 

RCCL

● AMD’s port of NCCL: ROCm 

Communication Collectives 
Library (RCCL) uses the same 
C API as NCCL

● NCCL APIs do not need to be 

converted
 https://github.com/RadeonOpenCompute/ROCm https://hwrig.com/amd-instinct-gpu-and-epyc-are-making-lumi-in-2021/

https://lumi-supercomputer.eu/easybuild-lumis-primary-softwar
e-installation-tool-introduced/ https://www.bsc.es/innovation-and-services/technical-information-cte-amd

https://github.com/RadeonOpenCompute/ROCm
https://hwrig.com/amd-instinct-gpu-and-epyc-are-making-lumi-in-2021/
https://lumi-supercomputer.eu/easybuild-lumis-primary-software-installation-tool-introduced/
https://lumi-supercomputer.eu/easybuild-lumis-primary-software-installation-tool-introduced/
https://www.bsc.es/innovation-and-services/technical-information-cte-amd


 

Benchmark

● For a comparison 
between 
communication 
backends look at:
[https://mlbench.gith
ub.io/2020/09/08/c
ommunication-backe
nd-comparison/]

● MPI vs Gloo vs NCCL
 



Motivation



 

Motivation 

In recent years almost exponential 
increase of number of parameters of 
the models 

https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances
-that-work-towards-harnessing-large-scale-power/

2020

2022

https://huggingface.co/blog/large-language-models

https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances-that-work-towards-harnessing-large-scale-power/
https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances-that-work-towards-harnessing-large-scale-power/
https://huggingface.co/blog/large-language-models


 

Motivation

● Bigger models require bigger datasets 
● Consequence -> More resources are 

needed (both memory and computation 
power)

Kaplan et al., “Scaling Laws for Neural 
Language Models”, 2020, 
https://arxiv.org/abs/2001.08361

https://arxiv.org/abs/2001.08361


Distributed 
Deep Learning



 

Data Parallelism

● Concept: split the data
● The gradients for 

different batches of data 
are calculated 
separately on each node  

● But averaged across 
nodes to apply 
consistent updates to 
the model copy in each 
node A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed Deep Learning in TensorFlow”, arXiv:1802.05799, 

2018



 

Model Parallelism

Concept: split the model
Pipelining: 

● partitioning the DNN according to depth, 
assigning layers to specific processors 

● overlapping computations, i.e., 
between one layer and the next (as 
data becomes ready)

[https://huggingface.co/docs/transformers/parallelism] 



 

Model Parallelism

Tensor parallelism: 
● matrix operations (f.e. 

matrix multiplication) can 
be split between multiple 
GPUs 

● Scaling large transformers 
with multihead 
self-attention is based on 
this concept

[https://huggingface.co/docs/transformers/parallelism] [https://www.youtube.com/watch?v=iDulhoQ2pro&
ab_channel=YannicKilcher] 



 

Challenges

● Poor generalization due to sharp minima
[Hochreiter, Sepp and Schmidhuber, Jürgen. Flat minima. Neural Computation, 9(1):1–42, 1997]

● Time to accuracy does not decrease 

Shallue et al., 2019, https://arxiv.org/pdf/1811.03600.pdf

 

N. S. Keskar and D. Mudigere and J. Nocedal and M. Smelyanskiy and P.T.P. Tang, On Large-Batch Training for 
Deep Learning: Generalization Gap and Sharp Minima, 2016

https://arxiv.org/pdf/1811.03600.pdf


 

Solution

● For batch size < 8000
○ Scale learning rate 
○ Warm-up

● For batch size > 8000
○ Choice of the optimizer:

■ LARS
■ LAMB
■ post-local SGD

Osawa et al., 2020

Warm-up



 

Is that all?

● Still ongoing research
● Well-establish optimizers can 

match new ones with enough 
hyperparameter tuning

https://openreview.net/pdf?id=Kloou2uk_Rz

https://openreview.net/pdf?id=Kloou2uk_Rz


Frameworks



 

Horovod

Horovod 
● Data parallel, each GPU has a copy of the model 

and a chunk of the data 
● Efficient decentralized framework, 

based on MPI and NCCL libraries, where actors exchange 
parameters without the need of a parameter server 

● Works on top of Keras, TensorFlow, PyTorch and 
Apache MXNet 

 
Tensorflow 

● Parameter server for asynchronous training 
● Mirrored strategy for synchronous training 

 
Pytorch 

● Distributed Data-Parallel Training (DDP) 

A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed Deep Learning in 
TensorFlow”, arXiv:1802.05799, 2018.

https://www.youtube.com/watch?v=6ovfZW8pepo&ab_channel=TensorFlow

https://www.youtube.com/watch?v=6ovfZW8pepo&ab_channel=TensorFlow


 

Ring allreduce 
Two step process :

1. share-reduce step  
2. share-only step

A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed Deep Learning in TensorFlow”, arXiv:1802.05799, 2018

https://www.youtube.com/watch?v=4y0TDK3KoCA&t=585s&ab_channel=Uber
Engineering



 

Other Frameworks

[https://github.com/cc-hpc-itwm/tarantella] 

[https://github.com/hpcaitech/ColossalAI] 

[https://github.com/NVIDIA/Megatron-LM] 

https://github.com/helmholtz-analytics/heat

https://www.deepspeed.ai/

https://github.com/helmholtz-analytics/heat


A Remote 
Sensing Use 
Case



 

Dataset: BigEarthNet, Sentinel-2 Data Patches and 
Annotated with CORINE Land Covers  
Model: ResNet50

0.74 F1-score up to 24 nodes - 96 GPUs with a global 
batch size of 8K samples

R. Sedona et al., Remote Sensing Big Data Classification with 
High Performance Distributed Deep Learning, 2019

Patch and its dimension (px)  



 

● Adopted TensorFlow Dataset API to build a pipeline with 
integrated data augmentation, caching and prefetching of the 
data 

● Deploying on 64 nodes / 256 GPUs of the Juwels Booster (Nvidia 
A100) 

● New CNNs as EfficientNet, less parameters than ResNet, faster to 
train and higher accuracy 

● Testing newer optimizers: LARS, LAMB, NovoGrad 
● As the number of hyperparameters grows, there is the need to 

automatize the search for the optimal values (NAS)
● Hyper parameter tuning with Ray Tune (embedded in Horovod): 

'IGARSS2022 ACCELERATING HYPERPARAMETER TUNING OF A DEEP 
LEARNING MODEL FOR REMOTE SENSING IMAGE CLASSIFICATION', 
M. Aach, R. Sedona, A. Lintermann, G. Cavallaro, H. Neukirchen, M. 
Riedel, IGARSS2022 (accepted)

https://github.com/qubvel/efficientnet

https://github.com/qubvel/efficientnet


Final Remarks



 

Final Remarks

● The trend is to make distributed deep learning 
easier 

● Not only frameworks, but integrated products 
● Example: Dataflow-as-a-Service by 

SambaNova 
● Intel's OpenAPI for heterogeneous computing 

[https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.u1
eb1g] 

● AMD's GPUs using ROCm (similar to Nvidia’s 
NCCL) 

[f.e. https://www.bsc.es/innovation-and-services/technical-information-cte-amd] 

[https://www.hpcwire.com/2020/12/09/ai-newcomer-sambanova
-gas-product-lineup-and-offers-new-service/]



 

DL and Cloud Computing

 https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

https://www.youtube.com/watch?v=kpiY_LemaTc&ab_channel=LexFridman

● Trend towards cloud-based HPC
● What about costs?
● Let’s have a look at NCsv3-series [25] 
● 355 years to train GPT-3 on a Tesla V100 
● Training cost = 355Y×365D/Y×24H/D×0.9792$/H 

= 3.045.116$ 

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://www.youtube.com/watch?v=kpiY_LemaTc&ab_channel=LexFridman


 

Towards Exascale

Frontier (First supercomputer 
to Break the Exaflop Ceiling at 
Oak Ridge National Laboratory 
(ORNL) in the US

Exascale Application 
Readiness
[https://www.olcf.ornl.gov/caar/frontier-caar/?fbcli
d=IwAR0JvTHz9rc_um_OGQbN28J8MDw5sv5yMF2O
BWy2u5RKdMVyxODseWlnP7E]



 

Final Remarks

● Takeaways: 
● Frontier technology is fast paced 
● But successful solutions tend to become 

stable 
● Great opportunities for Distributed Deep 

Learning with the increased availability of 
computing resources

● Aknowledgement: Helmholtz AI 
Consultants 
[https://www.helmholtz.ai/themenmenue/our-research/consultant-teams/helmholtz-ai-consultants-fzj
/index.html] 

        [PRACE course “Introduction to Scalable Deep Learning” https://events.prace-ri.eu/event/1310/]

Carlota Perez, 2002. "Technological Revolutions and 
Financial Capital," Books, Edward Elgar Publishing, 
number 2640.
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Outline

- What are hyperparameters and why are they so important?
- Hyperparameter optimization (HPO) methods
- Running hyperparameter optimization on HPC with Ray Tune
- Remote sensing use-case



What Are 
Hyperparameters 
and Why Are They 
So Important?



 

Design of ML Models

- ML models are designed by humans
- Usually start from experience, then fine tune
- Trial and error  

ML model performance          
trainbuild

improve model design

improve parameters 



 

Hyperparameters in ML Models

- Architectural parameters: 
- Type of ML model (neural network, SVM?)
- Number and kind of layers (convolutional, dense, dropout?)
- Number of neurons per layer
- Activation functions (relu, sigmoid?)
- Weight initialization and regularization

- Optimizer parameters:
- Optimizer type (SGD, Adam?)
- Batch size
- Learning rate
- Learning rate schedule
- Momentum 

Image from opengenus.org



 

Hyperparameters in ML Pipeline

- Parameters of pre-processing
- Image size
- Image normalization
- Image crop
- Image rotation
- Number of spectral bands

- Mix of lots of discrete and continuous variables that influence each 
other

- Requires lots and lots of trials and error
- We optimize the “inner loop”, why not the “outer loop” as well?



 

Importance of Hyperparameters

HPO models beat human design (CV: [Real 2018] , NLP: [Melis 2017])



HPO 
Methods



 

HPO Terminology

- search space: hyperparameters and their sampling interval
- configuration: a set of hyperparameters sample from the search space
- trial: one training run of a configuration
- “inner loop” optimization: adjusting the parameters of a model (e.g. via 

SGD)
- “outer loop” optimization: adjusting the hyperparameters of a model 



 

The Easy Way

- Random Search:
- Sample a random 

configuration from the search 
space grid and look at the 
performance

- Grid Search:
- Sample every grid point

- Good starting point
- Embarrassingly parallel
- Burns lots and lots of 

resources
Image from [Bergstra 2012]



 

Accelerating HPO

- “Smart” choice of configurations:
- Bayesian Optimization (black box optimizer) 
- High dimensional search space
- Parallelism problem: some trials finish before others

- Acceleration of the trials:
- Distributed deep learning
- Early stopping “bad” trials
- “Smart” scheduling of the trials



 

Smart Scheduling: SHA 

- Successive Halving (or Thirding) Algorithm (SHA, Li 2018):
- Idea: Stop bad trials early and allocate resources to more promising trials
- Sample N trials randomly, keep only best N/2, then N/4 …
- Problem: What about late learners?/Run trials for longer or explore more trials?

Figure from AutoML.org



 

Smart Scheduling: HyperBand 

- Solution to exploration vs. exploitation trade-off: HyperBand [Li 2018]
- Perform multiple SHA runs with different budget allocations

n = number of 
configurations
r = resources allocated 
per configuration

tim
e

level of ”pruning aggression”



 

Improvements to HyperBand

- Bayesian Optimization + HyperBand 
(BOHB, [Falkner 2018]):

- Use HyperBand for scheduling but 
choose new trial parameters with 
Bayesian methods

- Asynchronous Successive Halving 
(ASHA, [Li 2020]):

- Like HyperBand but do not wait for 
all trials to finish before halving 

- Allocate resources faster massively 
parallel, very well suited for HPC 
applications

Image from [Li 2020]



 

SHA vs. ASHA

Slide from Ameet Talwalkar: Massively Parallel Hyperparameter Tuning



 

Other Options

- Population Based Training 
(PBT):

- Genetic algorithm - mutate best 
performing trials randomly 
[Jaderberg 2017]

- Reinforcement Learning:
- Agent selects the parameters - 

use trial performance as reward 
[Zoph 2016]

- Differentiable Architecture 
Search (DARTS):

- Continuous representation of 
the architecture search space, 
use gradient descent for 
optimization [Liu 2018]

Image from [Jaderberg 2017]



Hyperparameter 
Optimization on 
HPC



 

Library: Ray

● Universal python API for distributed computing
○ Simple primitives to run and build distributed applications
○ Parallelize single machine code with little code changes
○ Works with lots of different libraries

● Open source, maintained by Anyscale



 

Ray Framework

Figure taken from Anyscale website



 

Ray Tune

● Focus on distributed hyperparameter tuning 
● Support for multiple machine learning frameworks (PyTorch, 

Tensorflow, sklearn, MXNet, Horovod etc.) -> Trials in parallel on the 
outer loop, trials in parallel on the inner loop

● Logging via Tensorboard (or other frameworks)
● Debugging and monitoring via Ray Dashboard
● Compatible with lots of optimization algorithms



 

Ray Tune Workflow 

Figure taken from Anyscale website



 

How Does Ray Tune Distribute Work?

Figure taken from Anyscale website



 

How Does Ray Tune Distribute Work?

Figure taken from Anyscale website



 

How Does Ray Tune Distribute Work?

Figure taken from Anyscale website



 

Integrating Ray Tune

ray.init()

config = {

        "num_layers_conv": tune.choice([2,3,4]),

        "num_layers_linear": tune.choice([1,2,3]),

        "num_filters": tune.choice([16,32,48,64]),

        "weight_init_conv": tune.loguniform(10e-4,10e-1),

        "weight_init_linear": tune.loguniform(10e-3,1),

        "weight_decay": tune.loguniform(10e-4,1),

        "batch_size": tune.choice([64, 128, 256, 512]),

        "lr": tune.loguniform(10e-5, 1)}

scheduler = ASHAScheduler(

        metric="accuracy",

        mode="max")

result = tune.run(

        function_to_train,

        resources_per_trial={"cpu": 9, "gpu": 1},

        config=config,

        num_samples=100,

        scheduler=scheduler)

ray.shutdown()



 

Ray Tune Output



 

ASHA with Ray Tune on a Supercomputer



 

ASHA with Ray Tune on a Supercomputer



 

Comparison with other Frameworks

Figure taken from Anyscale website



Application in 
Remote 
Sensing



 

Remote Sensing Datasets

- Lots of “raw” satellite data 
available

- BigEarthNet-19 dataset
- 600.000 image patches
- Classification problem, measure 

the F1 micro and macro score of 
ML models

- Idea: Use HPC to train 
classification models (and tune 
the hyperparameters of these 
models)!

Image from [Sumbul 2019] 



 

Scaling up Convolutional Neural Networks

- Network architecture: EfficientNet [Tan 2020]
- Distributed deep learning on HPC -> large batch size 
- Investigation by [Sedona 2020]:

- Drop in F1 score with larger batch sizes
- Batch size: 512 -> F1 score: 0.78
- Batch size: 8,192 -> F1 score: 0.74
- Batch size 16,384 and larger -> divergence



 

Adapting the Batch Size

idea: Adapt the batch size during training!
-> Use a small batch size in the beginning to stabilize training process, use a bigger 
batch size afterwards for efficient resource utilization

-> Paper: “ACCELERATING HYPERPARAMETER TUNING OF A DEEP LEARNING 
MODEL FOR REMOTE SENSING IMAGE CLASSIFICATION” accepted at IGARSS 2022



 

Implementation in TensorFlow



 

Setup on the Supercomputer (JURECA-DC-GPU)

- 16 GPUs per trial (data-parallel with Horovod)
- Batch size per GPU: 32 -> 1,024
- Total batch size: 512 -> 16,384
- 6 trials in parallel (96 GPUs in total in with Ray Tune)
- Hyperparameter search space:

- Learning rate in [0.001, 1]
- Weight decay in [0.0005, 0.1]
- Momentum in [0, 0.9]
- Nesterov momentum in [false, true]

- No search or scheduling algorithm



 

Results: Compute Time

- 4x speed-up
- Change the batch size after 20 

epochs



 

Results: Accuracy

BS (global) total runtime F1 scores

512 27 hrs 0.78 (0.72)

512->16,384 10 hrs 0.78 (0.70)



 

Pros and Cons of Adaptive Batch Size

- Strengths:
- 3x speed-up 
- No drop in final validation accuracy
- Efficient usage of HPC resources
- Metrics grounded in theory (gradient 

noise scale by [McCandlish,2018]) exist 
for better batch size adaptation 

  

- Limitations:
- So far just tested on one RS dataset
- Does not address issue of late learners



 

Summary Distributed HPO

- Optimize the “outer loop”
- Exploit full level of parallelism

- Distributed deep learning on the “inner loop”
- Distributed HPO on the “outer loop”

- Easy handling with Ray Tune library (also on HPC systems)
- Methods can be adapted to remote sensing use-cases
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