

9th of September 2022 WP2 "AI- and HPC-Cross Methods at Exascale" Morris Riedel, UOI

WP2 Objectives

- > Build the AI / HPC Exascale backbone by providing the hardware & software infrastructure needed for the implementation of the WP3/WP4 use-cases
- > Provide access to available production systems and new prototypes & disruptive technologies for testing, porting, and benchmarking
- Develop and tune cross-sectional HPC/AI methods with WP3/WP4 use cases
- > Co-design, implement, and deploy a unique AI framework for Exascale

JÜLICH JUNIQ

Managerian for

WE COMPUTE WITH QUANTUM COMPUTERS H Gräussen

Partners and Tasks of WP2

Partner	FZJ	UOI	RWTH	BSC	CERN	BULL	RTU	FM
PM	43	13	10	8	8	8	22	12

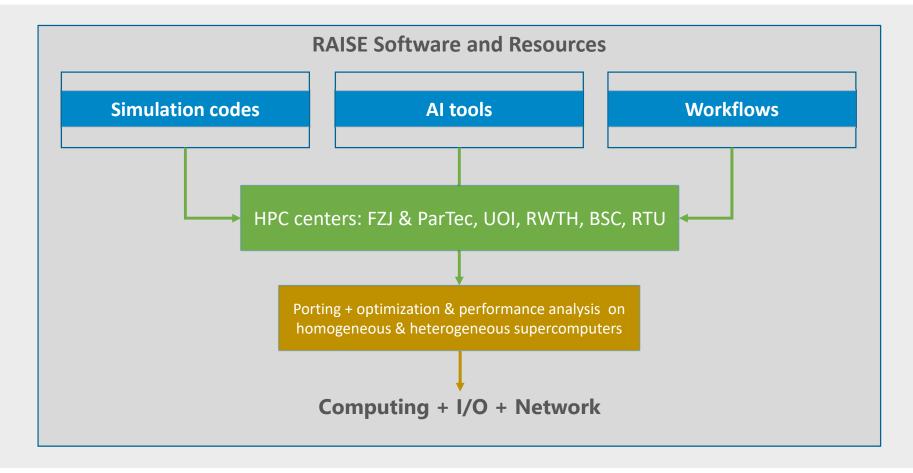
Task	Title	Lead	Duration	Status
2.1	Modular and heterogeneous supercomputing architectures	BSC	M1-M36	Ongoing
2.2	Hardware prototypes	FZJ	M1-M18	Done
2.3	Benchmarking on disruptive technologies	FZJ	M19 – M36	Ongoing
2.4	Software design of a unique AI framework	UOI	M4 – M36	Ongoing
2.5	Cross-Sectional AI Methods	UOI	M3 – M36	Ongoing

Deliverables of WP2 (1/2)

ID	Title	Due	Lead	Status
D2.1	Best practice guidelines/tutorials for MSA/heterogeneous systems	M2	BSC	Submitted
D2.2	Report on porting and performance analysis	M12	BSC	Submitted
D2.3	Report on porting and performance analysis	M24	BSC	Not started
D2.4	Report on porting and performance analysis	M36	BSC	Not started
D2.5	Best practice guidelines / tutorials prototype	M2	FZJ	Submitted
D2.6	Report on support activities	M6	FZJ	Submitted
D2.7	Report on support activities	M18	FZJ	Submitted
D2.8	Report on benchmarking AI technologies (QA) and on support activities	M24	FZJ	Not started
D2.9	Report on benchmarking AI technologies (QA) and on support activities	M36	FZJ	Not started
D2.10	Monitoring Report	M18	UOI	Submitted

Deliverables of WP2 (2/2) and Milestones

ID	Title	Due	Lead	Status
D2.11	Monitoring Report	M36	UOI	Not started
D2.12	Software Layout Plan for a unique Al Framework	M9	UOI	Submitted
D2.13	Software Layout Plan for a unique Al Framework	M26	UOI	Not started
D2.14	Report on Novel AI Technologies	M12	UOI	Submitted
D2.15	Report on Novel AI Technologies	M24	UOI	Not started
D2.16	Report on Novel AI Technologies	M36	UOI	Not started

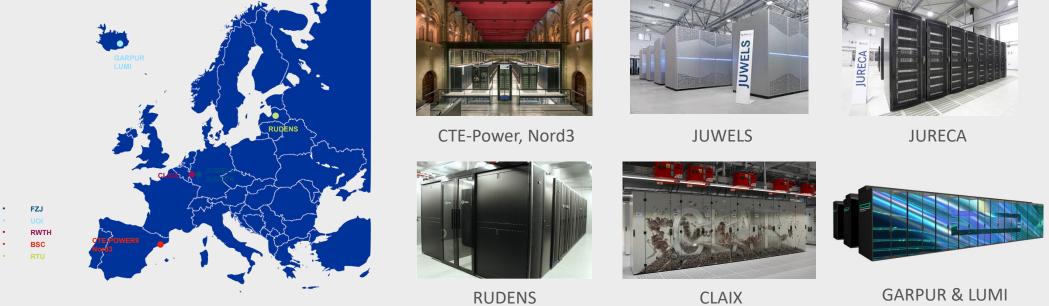

ID	Title	Due	Lead	Status
MS2	AI/HPC Methods	M7	UOI	Achieved
MS4	Technical implementations functional	M24	FZJ	Not yet achieved
MS6	All final reports	M36	FZJ	Not yet achieved

Task 2.1

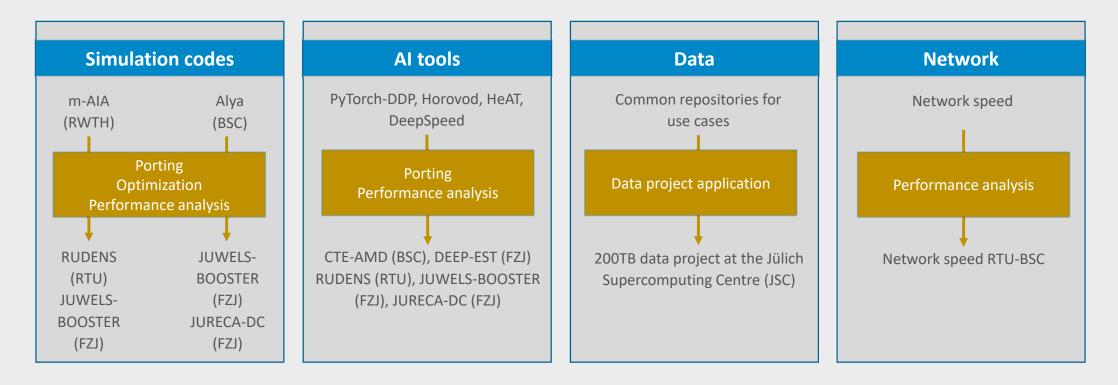
Modular and heterogeneous supercomputing architectures

Where do the supercomputing resources come from?

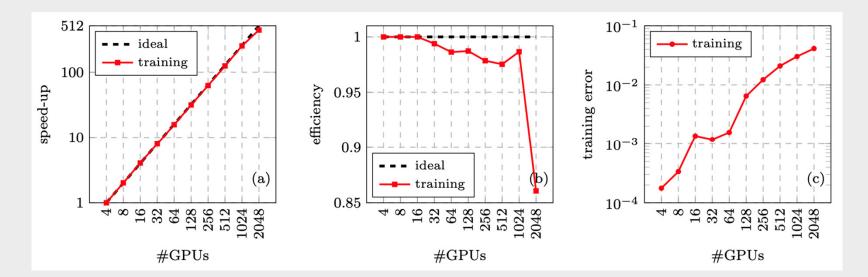
- Local supercomputers
 - > TIER-3, TIER-2: UOI, RWTH, RTU
 - ▶ TIER-1, TIER-0: FZJ, BSC
- > PRACE specific access calls to COEs:
 - ▶ 2021-1: 1.6M
 - ▶ 2021-2: 0.6M
 - ▶ 2022-1: 0.5M)
- Competitive access calls


Partner	HPC System	Hours
CERFACS	GENCI Jean Zay	20k GPU
CERFACS	GENCI Jean Zay	20k GPU
CYI	Cyclone, acNational	1M CPU
CYI	VEGA, EuroHPC	12M CPU
FM	Cloud, regional center	35k CPU
FZJ	JURECA-DC GPU, JARA	8.6M GPU
FZJ / CERN / UOI	JURECA-DC GPU, JARA	8.3M GPU
FZJ / CERN / UOI	JUPSI, JARA	5 hours
RTU	In-kind for RAISE	550k CPU
RWTH	JUWELS, GCS	6M CPU

Deliverable D2.1: Best practice guidelines and tutorials for the various HPC systems> 4 countries

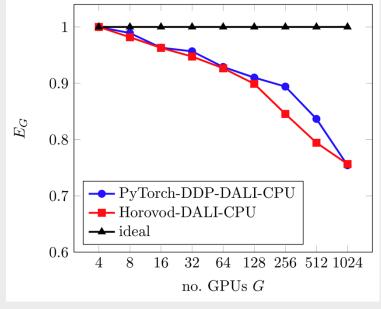

> 8 systems

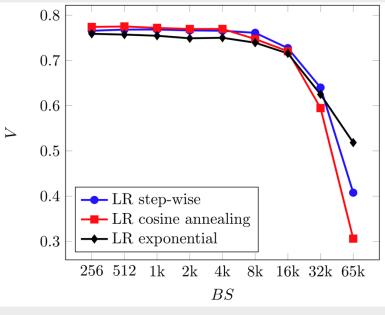
Deliverable D2.1: Report on porting and performance engineering activities



Task 2.1 – Al Benchmarking: PyTorch-DDP

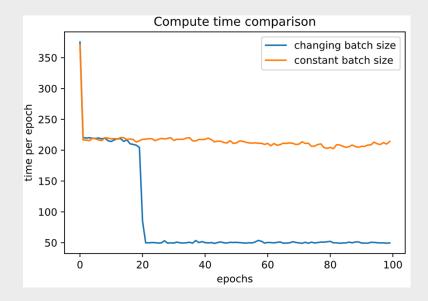
Parallel performance using PyTorch-DDP on JUWELS Booster (4 x NVIDIA A100 / node):

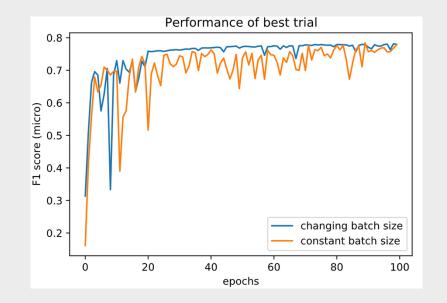

Application use case Task 3.1: Autoencoders for Turbulent Boundary Layer Flows


Task 2.1 – Al Benchmarking: ImageNet

Performance of Horovod and PyTorch-DDP (with DALI dataloader) on up to 1,024 GPUs:

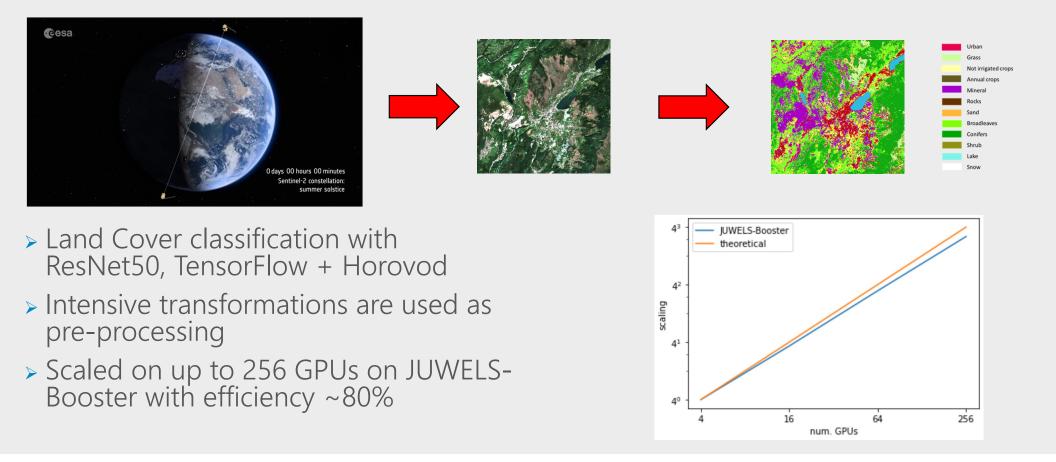
Parallel efficency over number of GPUs


Validation accuracy over batch size showing impact of learning rate schedulers



Task 2.1 – Al Benchmarking: Batchsize Problem

Addressing the batch size problem by changing the batch size during the training: start small, then increase



Task 2.1 – AI Benchmarking: Application Example (Task 4.2)

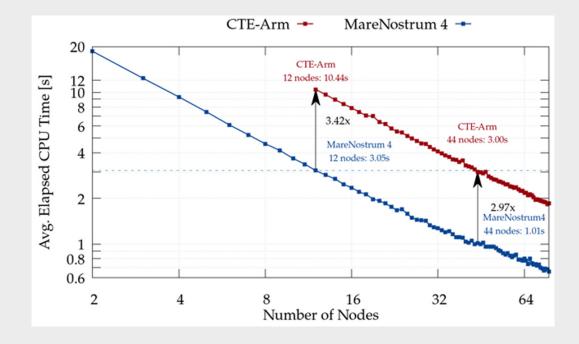
R. Sedona, C. Paris, L. Tian, M. Riedel, G. Cavallaro , AN AUTOMATIC APPROACH FOR THE PRODUCTION OF A TIME SERIES OF CONSISTENT LAND-COVER MAPS BASED ON LONG-SHORT TERM MEMORY, IGARSS2022

Task 2.2

Hardware prototypes

Task 2.2 – Status

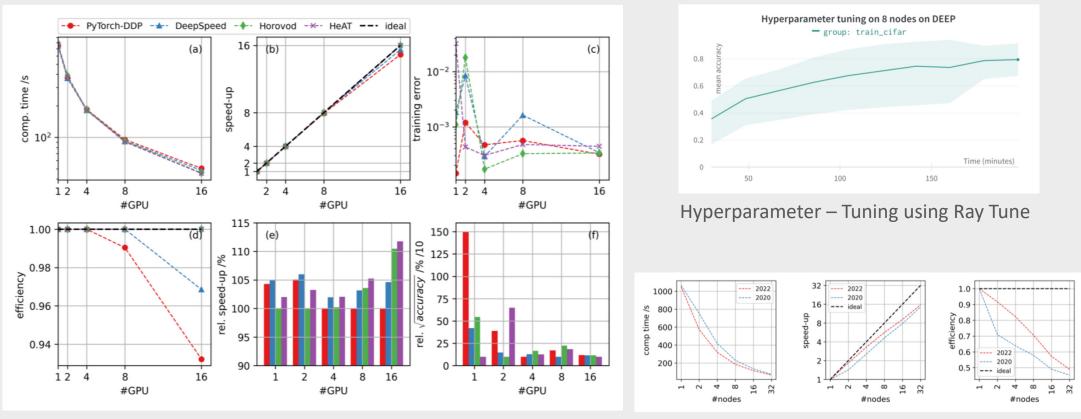
Prototype systems:DEEP-EST (FZJ)


- Intel CPU + NVIDIA GPU + FPGA
- > CTE-AMD (BSC)
 - > AMD CPU + AMD GPU
- > JUAWEI (FZJ)
 - > ARM + Intel CPU
- > CTE-ARM (BSC)
 - > ARM
- > HUAWEI (BSC)
 - > ARM

Porting + Testing + Benchmark + Optimization

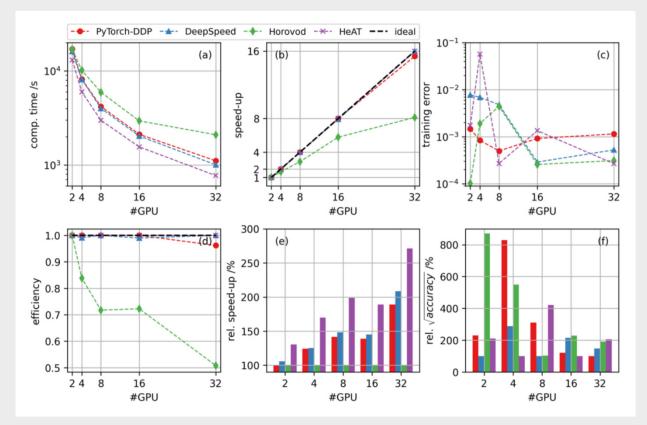
- Simulation codes:
 - m-AIA (Task 3.1)
 - > Alya (Task 3.2)
 - Basilisk (Task 3.5)
- > ML Frameworks:
 - PyTorch-DDP
 - Horovod
 - > HeAT
 - > DeepSpeed
 - > Hyperparameter tuning

Task 2.2 – Simulation Code Benchmarking: Alya

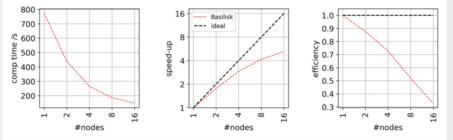


No. cores	Time [s]	Speed-up	Efficiency
128	1202.70	1.0	100%
256	658.85	1.8	91%
512	332.72	3.6	90%
1,024	182.57	6.6	82%

Task 2.2 – MSA Prototype System DEEP-EST Examples


Actuated Turbulent Boundary Layer dataset

Basilisk Simulation Sciences Code



Task 2.2 – Prototype Systems CTE-AMD Examples

Actuated Turbulent Boundary Layer dataset

Basilisk Simulation Sciences Code

CTE-AMD

System Overview

CTE-AMD is a cluster based on AMD EPYC processors, with a Linux Operating System and an Infiniband interconnection network.

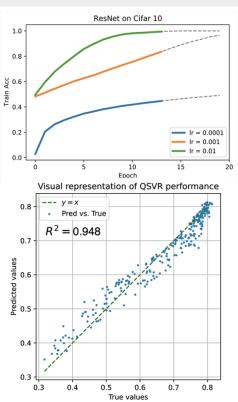
It has the following configuration:

- 1 login node and 33 compute nodes, each of them:
 - $^\circ\,$ 1 x AMD EPYC 7742 @ 2.250GHz (64 cores and 2 threads/core, total 128 threads per node)
 - 1024GiB of main memory distributed in 16 dimms x 64GiB @ 3200MHz
 - 1 x SSD 480GB as local storage
 - $\,\circ\,$ 2 x GPU AMD Radeon Instinct MI50 with 32GB
 - Single Port Mellanox Infiniband HDR100
 - GPFS via two copper links 10 GBit

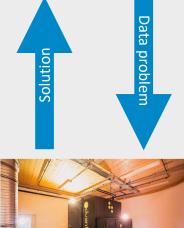
Task 2.3

Benchmarking on disruptive technologies

Task 2.3 – Benchmarking on disruptive technologies

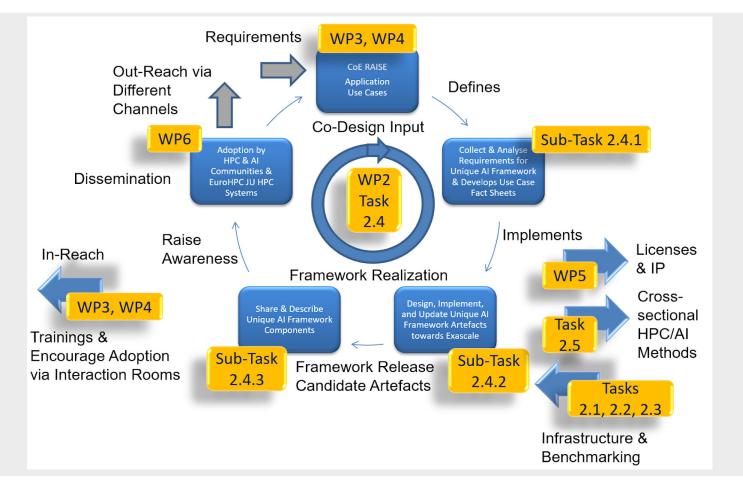


First 5,000 Qubits Quantum Annealer (JUPSI) in Europe (FZJ)


- > 5 hours of compute time for RAISE project
- problem size still very limited -> hybrid/modular supercomputing approach

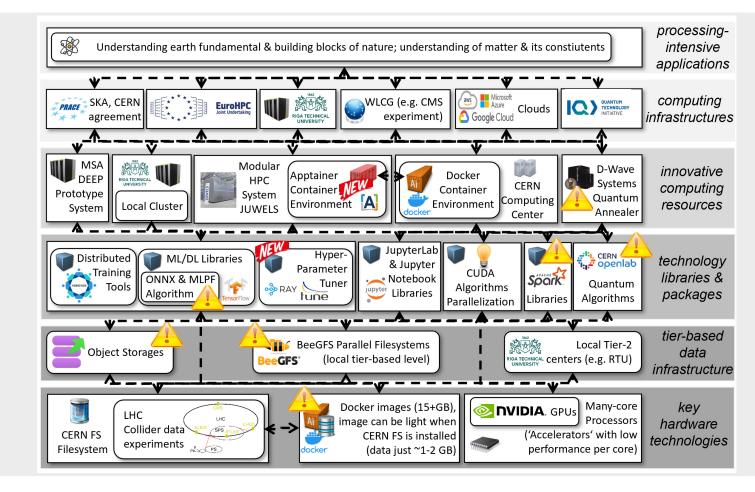
Applications:

- > Quantum accelerated hyperparameter tuning
- > Quantum clustering of energy particles
- > Quantum classification of satellite imagesFirst results:
- predicting the learning curves of neural network training with Quantum Support Vector Regression


Task 2.4

Software design of a unique Al framework

Task 2.4 – Status: Process towards Framework Realization



Task 2.4 – Co-Design Framework: Fact Sheets

3 months ago

6 months ago

Example: Detailed Knowledge of Modules Necessary

Modules

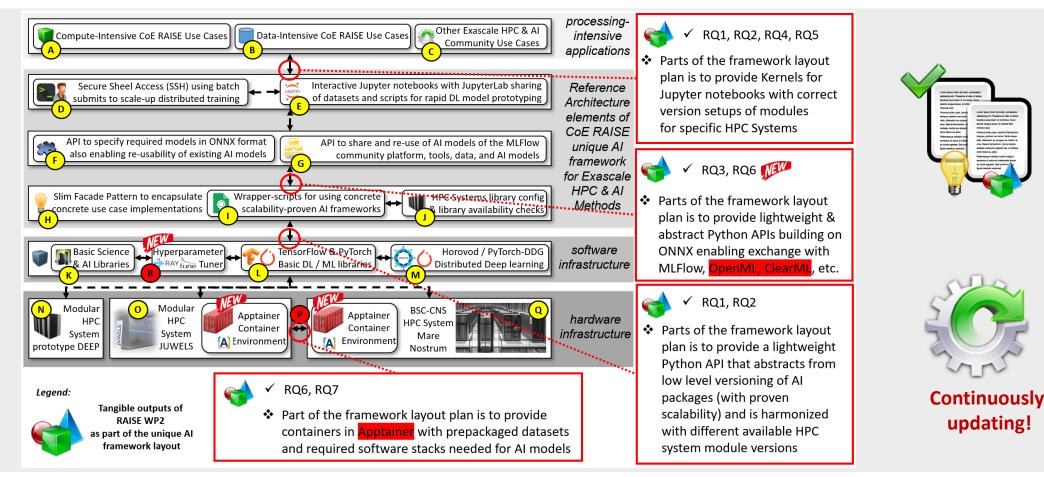
- > Vary heavily between different HPC systems
- > 2-3 Days/Months spend by researchers for getting the right environment / HPC system
- > Goal: UAIF simplify setup of components
- > E.g., automated job script generator for right module setup
- > E.g., re-usable scripts

#!/usr/bin/env bash	Deep_HeAT	Jureca additions	5 months ago				
	Deep_Horovod	Deep modifications for Horovod and fex bu	6 months ago 5 months ago 4 months ago 1 month ago 2 months ago 1 month ago 1 month ago 1 month ago 3 months ago 3 months ago				
<pre># Slurm job configuration</pre>	Deep_TensorFlow	initial TF push	5 months ago				
#SBATCHnodes=1	HELPER_Scripts	fix tqdm bug	4 months ago				
#SBATCH ntasks-per-node=4	D Jureca_DDP	latest fixes	1 month ago				
#SBATCHcpus-per-gpu=20 #SBATCHaccount=hai so2sat	D Jureca_DeepSpeed	latest fixes	1 month ago				
#SBATCHoutput=output.out	D Jureca_Graphcore	added Graphcore dir and fixed Irank in CASES	2 months ago				
#SBATCHerror=error.er	D Jureca_HeAT	latest fixes	1 month ago				
#SBATCHtime=6:00:00	🗅 Jureca_Horovod	latest fixes	1 month ago				
#SBATCHjob-name=BENTF2 #SBATCHgres=gpu:1partition=booster	D Jureca_LibTorch	initial libtorch push	1 month ago				
#SDATCHgres-gpu.1partition=booster	🗅 Jureca_RayTune	Update Jureca_RayTune/create_jureca_env.sh	3 months ago				
#load modules	Luwels_DDP	Update README.md	3 months ago				
ml Stages/2020 GCC/9.3.0 OpenMPI/4.1.0rc1	D Juwels_Turbulence	merge	9 months ago				
ml Horovod/0.20.3-Python-3.8.5	PARAMETER_TUNING	Update PARAMETER_TUNING/Autoencoder/	3 months ago				
<pre>ml TensorFlow/2.3.1-Python-3.8.5 #activate my virtualenv #source /p/project/joaiml/remote_sensing/rocco_sedo</pre>	na/ben_TF2/scripts/e	env_tf2_juwels_booster/bin/activa	ite				
#export relevant env variables #export CUDA_VISIBLE_DEVICES="0,1,2,3"							

Deep DDF

Deep_DeepSpeed

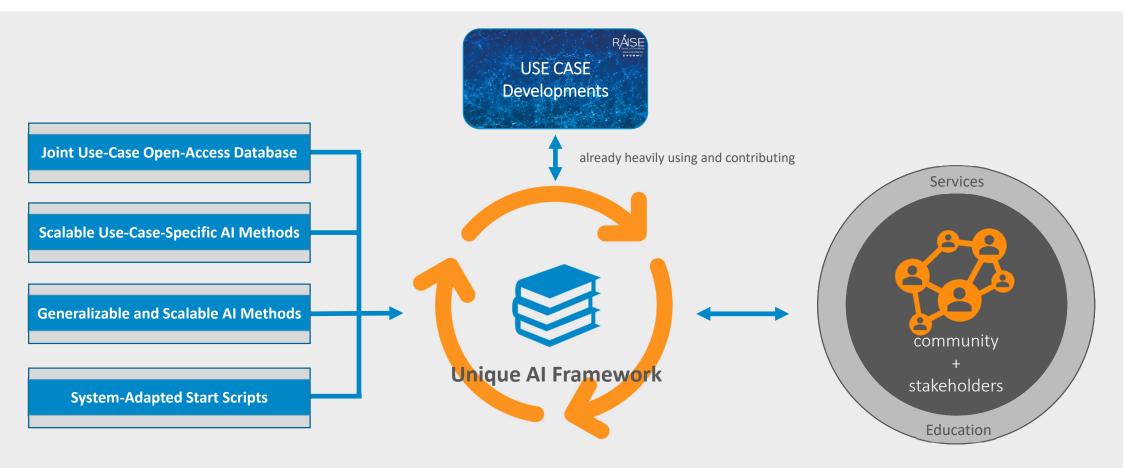
important bug fix


Deepspeed in Deep

#run Pvthon program srun --cpu-bind=none python -u train_hvd_keras_aug.py

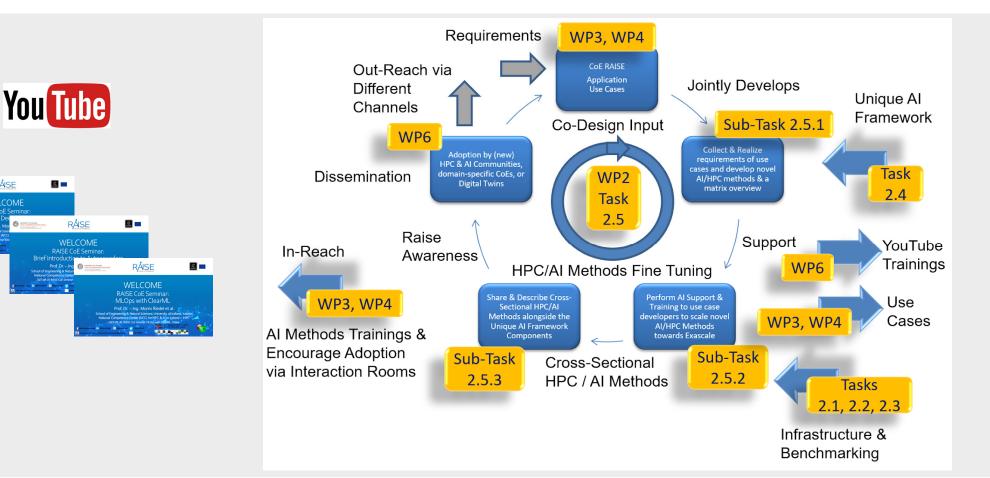
Already available for the community: https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai-for-hpc-oa

Task 2.4 – Realization Framework: Requirements & Revisions RÁSE



M. Riedel, M. Book, H. Neukirchen, G. Cavallaro, A. Lintermann, 'Practice and Experience using High Performance Computing and Quantum Computing to Speed-up Data Science Methods, MIPRO 2022, Croatia

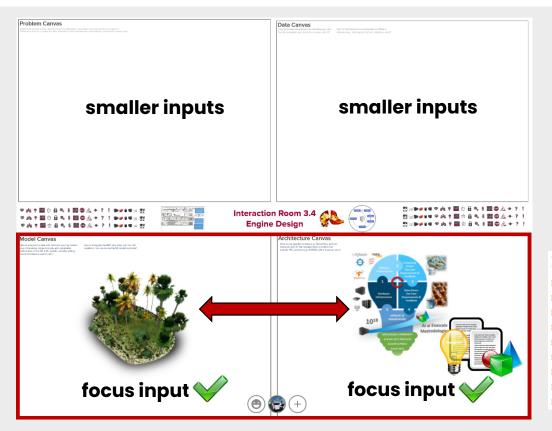
Unique AI Framework Overview

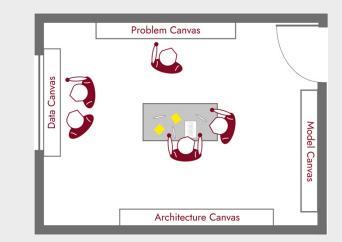


Task 2.5

Cross-Sectional Al Methods

Task 2.5 – Status: Process building AI/HPC Methods




RÁSE

@

Task 2.5 – Interaction Rooms with WP3/WP4 Teams

IR Mural Links

 IR3.1 Turbulent Flow: https://app.mural.co/t/matthiasbook8855/1621377887905/cb44cca3eedd3bb9964fbfa36af16b1bfcce085f?sender=u15c3008bb41d6628a5bb5701

 IR3.2 Clean Energy: <a href="https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621377887905/cb44cca3eedd3bb9964fbfa36af16b1bfcce085f?sender=u15c3008bb41d6628a5bb5701

 IR3.4 Engine Design: <a href="https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/162137795022/0c363886f24833ecb19b025d87324b57fd50c2db7sender=u15c3008bb41d6628a5bb5701

 IR3.4 Engine Design: https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621377991014/7a5d7c1eaf230178342d1e1d4a84d656d9055d522sender=u15c3008bb41d6628a5bb5701

 IR4.1 Fundamental Physics: <a href="https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621378007555/601d5288feace5cafa515b6676c84d8b48789d397sender=u15c3008bb41d6628a5bb5701

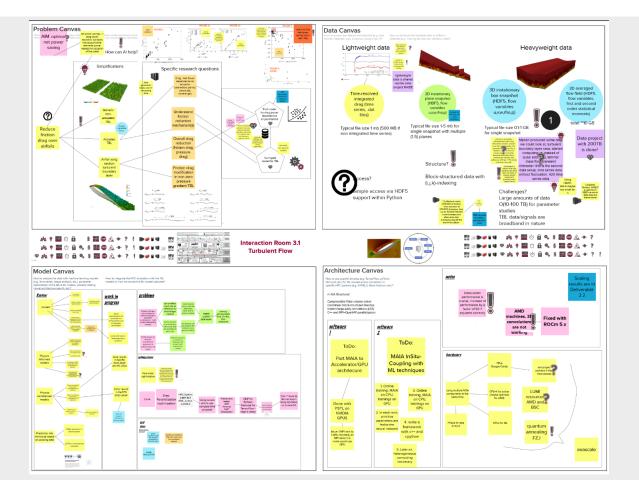
 IR4.2 Seismic Imaging: <a href="https://app.mural.co/t/matthiasbook8855/1621378023838/a0b953abb837ac3c28af4bb889adbec338749987sender=u15c3008bb41d6628a5bb5701

 IR4.3 Manufacturing: <a href="https://app.mural.co/t/matthiasbook8855/1621378038069/93d16fa7a41093f4eac7bc9d72979d22ba2b9d7sender=u15c3008bb41d6628a5bb5701

 IR4.4 Sound Engineering: <a href="https://app.mural.co/t/matthiasbook8855/1621378038069/93d16fa7a41093f4eac7bc9d72979d22ba2b9d7sender=u15c3008bb41d6628a5bb5701

 IR4.4 Sound Engineering: <a href="https://app.mural.co/t/matthiasbook8

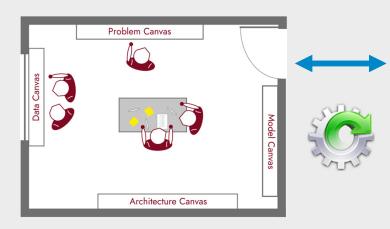
In addition to WP2 Monthly Meetings & Monthly Trainings



CoE RAISE Review – WP2 – Morris Riedel

Book, Riedel, Neukirchen, Erlingsson: Facilitating Collaboration in Machine Learning and High-Performance Computing Projects with an Interaction Room, International Workshop on Software Engineering for eScience, IEEE 2022

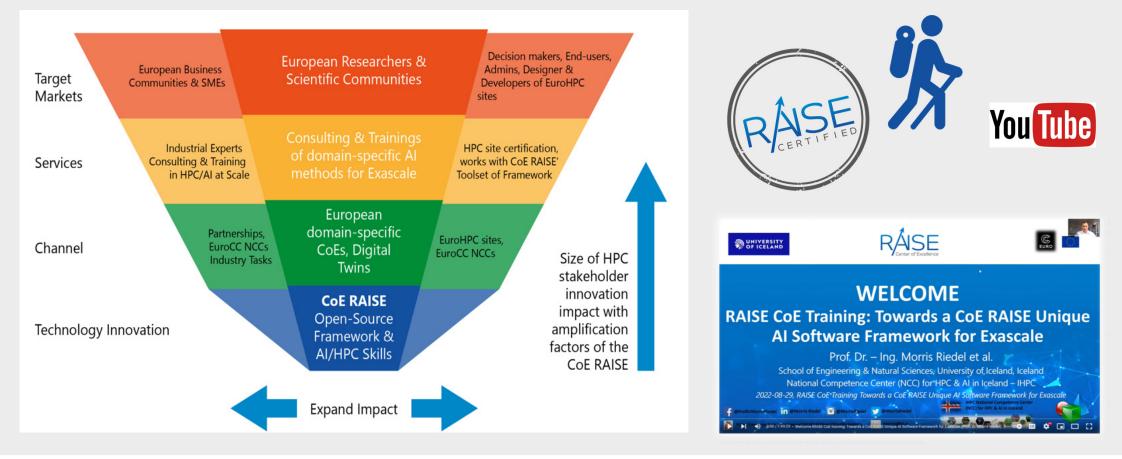
Task 2.5 – Interaction Room Example: Task 3.1



Task 2.5 – Cross HPC/AI Methods Table

Interaction Room results:

- > Update of Matrix
- Components relatively constant & common
- Methods change & new methods added (e.g., Transformers, RFs)



																		•
Use Case	AE	PINN	AN	INs	CN	IN	NO	GN	N	RN	IN	gan		TF			SVM	RF
Details	CAE		ANN	RBF- ANN	U-Net	RES NET	FNO	MLPF	GAT	LSTM	GRU	WGAN	MVIT	ViViT	Swin			
Al for turbulent boundary layers	х	х	x									х						
Al for wind farm layout optimization				x												x		
Al for data-driven models in reacting flows					x				x									
Smart models for next generation aircraft engine design					x				x									
Al for wetting hydrodynamics	x	x					x			x								
Event reconstruction and classification at the CERN HL-LHC use case								x										
Seismic imaging with remote sensing for energy applications	x	x				x	x			x	x					x	x	x
Detect-free metal additive manufacturing	x		х									х	x	x	x			
Sound Engineering	x		x															

WP 2 – Summary, Conclusions, and Outlook

Where is the summary and the conclusions? Andreas Lintermann; 2022-09-06T10:11:48.862 AL0

drive. enable. innovate.

The CoE RAISE project has received funding from the European Union's Horizon 2020 – Research and Innovation Framework Programme H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Follow us: 🍠 💼 🖪 🕩 R^G