

Relevance of LSTM & GRU Models in CoE RAISE

Prof. Dr. – Ing. Morris Riedel

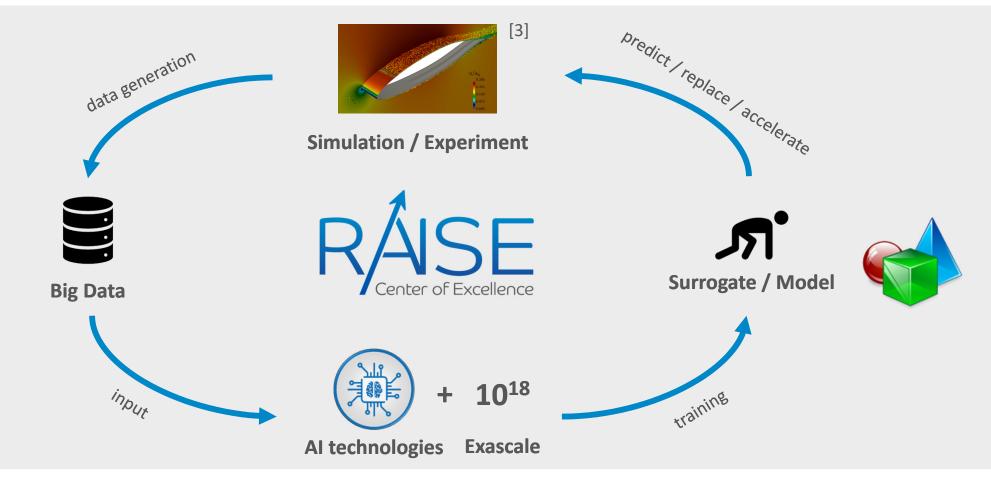
School of Engineering & Natural Sciences, University of Iceland, Iceland Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany 2022-10-31, RAISE CoE Training LSTM & GRU Models, Online

@MorrisRiedel

@MorrisRiedel



CoE RAISE Web Page & More Information

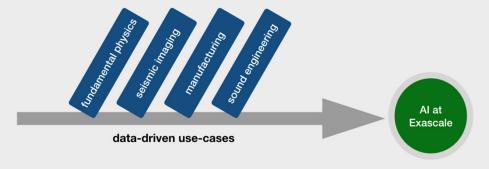


https://www.coe-raise.eu

CoE RAISE – Motivation & Approach

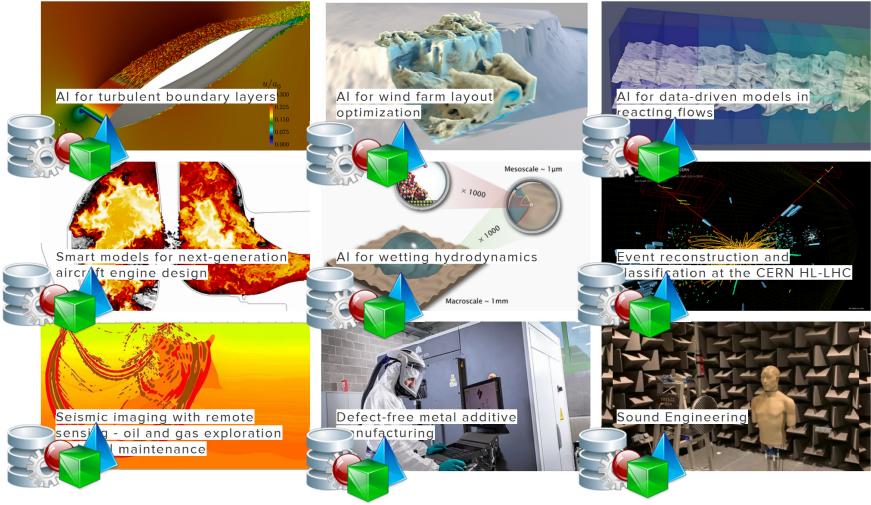


Use Cases in CoE RAISE



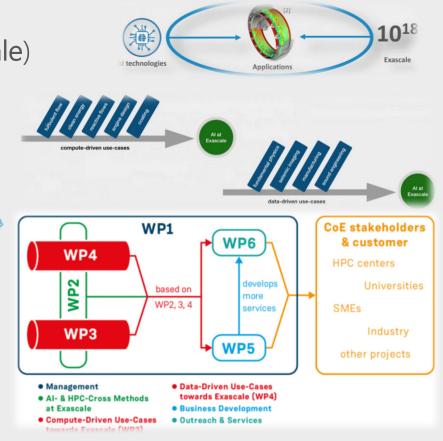
> Two kinds of use cases:

Example from use case "Al for wind farm layout": Turbulence generated by a cliff on Bolund Island, Denmark.

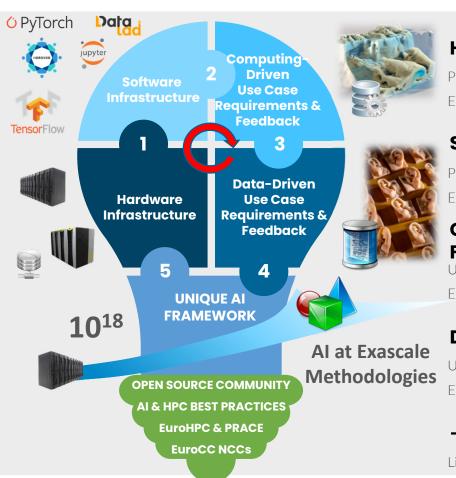


Example from use case "Seismic imaging with remote sensing - oil and gas exploration and well maintenance": Snapshot from a wavefield.

Compute- and Data-driven Use Cases – Data & Modeling



WP2 - AI- & HPC-Cross Methods at Exascale in a nutshell


- > WP3 (Compute-Driven Use-Cases towards Exascale)
- > WP4 (Data-Driven Use-Cases towards Exascale
- Developments in these WPs will be supported by the cross-linking activities of WP2
 - E.g. scaling machine & deep learning codes with frameworks like Horovod/Deepspeed
 - E.g. introduction to new AI methods such as Long-Short Term Memory (Time series)
 - > E.g. data augmentation approaches
 - E.g. benchmarking HPC machines and offer also pre-trained Al algorithms (i.e., transfer learning)
 - E.g. offer neural architecture search methods for hyperparameter – tuning in semi-automatic way

Towards AI & HPC at Exascale with CoE RAISE Results

Hardware Infrastructure

Prepare & Document available production systems at partners' HPC centers Examples: JUWELS (JUELICH), LUMI (UoICELAND), DEEP Modular Prototypes, JUNIQ (JUELICH), etc.

Software Infrastructure

Prepare & Document available open source tools & libraries for HPC & Al useful for implementing use cases Examples: DeepSpeed and/or Horovod for interconnecting N GPUs for a scalable deep learning jobs

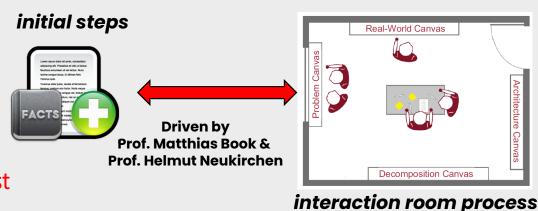
Computing-driven Use Cases Requirements & Feedback

Use cases with emphasize on computing bring in co-design information about AI framework & hardware Examples: Use feedback that TensorFlow does not work nicely, so WP2 works with use cases on pyTorch

Data-driven Use Cases Requirements & Feedback

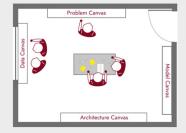
Use cases with emphasize on data bring in co-design information about AI framework & hardware Examples: Deployment blueprint by using AI training on cluster module & inference/testing on booster

→ UNIQUE AI FRAMEWORK


Living design document & software framework blueprint for HPC & Al also with pretrained Al models

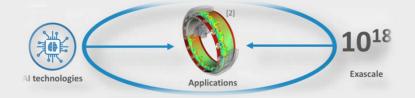
Selected Techniques to Identify Cross-Methods for HPC & AI RASE

- > Fact Sheets
 - Foster initial understanding
 - Living document & each Fact Sheet per WP3/WP4 Use Case
 - > (Experience from many other EU projects)
- Selected Contents
 - Short Application Introduction
 - Clarify Primary Contacts
 - Codes/Libraries/Executables
 - > HPC System Usage Details
 - > Specific Platforms & 'where is what data'?
 - Machine/Deep Learning Approaches of Interest



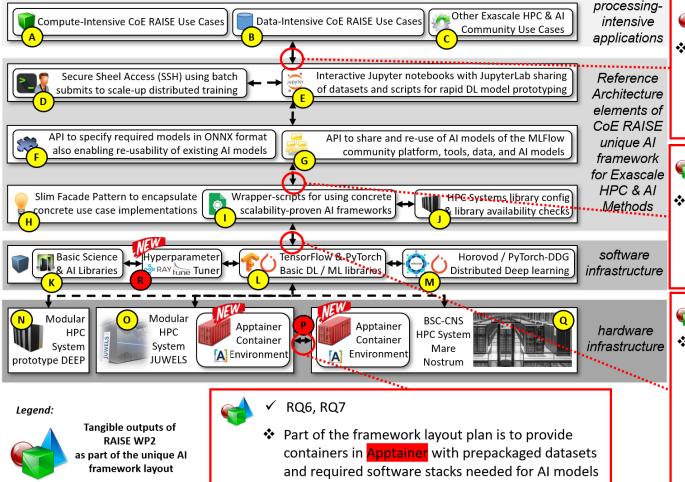
HPC Systems Engineering in the Interaction Room Seminar

- > Cor RAISE Interaction Room Process
 - > Supports the proper software engineering design of the unique AI framework blueprint
 - Expecting to work with WP3& WP4 experts in an open minded way
 - Process guided by Software Engineering Expert Prof. Dr. Matthias Book (University of Iceland)
 - Supported by Software Engineering & testing expert
 Prof. Dr. Helmut Neukirchen (University of Iceland)


HPC Systems Engineering in the Interaction Room

Matthias Book

with Morris Riedel, Jülich Supercomputing Centre / Uol and Helmut Neukirchen, University of Iceland


- > CoE RAISE @ YouTube: https://www.youtube.com/channel/UCAdIZ-v6cWwGdapwYxdN7dg
- Methology as one CoE RAISE outcome

Book, M., Riedel, M., Neukirchen, H., Goetz, M.: Facilitating Collaboration in High-Performance Computing Projects with an Interaction Room, in conference proceedings of the 4th ACM SIGPLAN International Workshop on Software Engineering for Parallel Systems (SEPS 2017), October 22-27, 2017, Vancouver, Canada

CoE RAISE Unique AI Software Framework for Exascale

✓ RQ1, RQ2, RQ4, RQ5

Parts of the framework layout plan is to provide Kernels for Jupyter notebooks with correct version setups of modules for specific HPC Systems

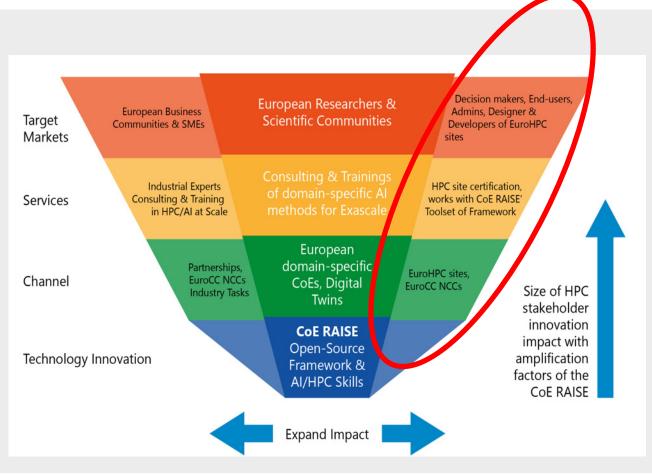
✓ RQ3, RQ6
▼

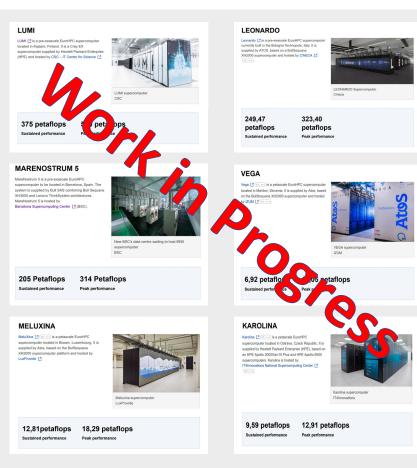
Parts of the framework layout plan is to provide lightweight & abstract Python APIs building on ONNX enabling exchange with MLFlow, OpenML, ClearML, etc.

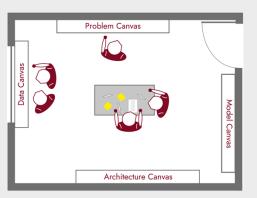
✓ RQ1, RQ2

❖ Parts of the framework layout plan is to provide a lightweight Python API that abstracts from low level versioning of AI packages (with proven scalability) and is harmonized with different available HPC system module versions

Continously Updating




Towards SW Framework Adoptions



Cross HPC/AI Methods Table – Transformer Models Interest RASE

- ✓ Update of Matrix
- Components relatively constant & common
- ✓ Methods change & new methods added (e.g., Transformer Models)

Use Case	AE	PINN	N ANNs		CNN		NO	GN	GNN		RNN		TF				SVM	RF
Details	CAE		ANN	RBF- ANN	U-Net	RES NET	FNO	MLPF	GAT	LSTM	GRU	WGAN	MVIT	ViViT	Swin			
Al for turbulent boundary layers	х	х	х									х						
Al for wind farm layout optimization				х												х		
Al for data-driven models in reacting flows					х				х									
Smart models for next generation aircraft engine design					х				х									
Al for wetting hydrodynamics	х	х					х			х								
Event reconstruction and classification at the CERN HL-LHC use case								х										
Seismic imaging with remote sensing for energy applications	х	х				х	х			х	х					х	х	х
Detect-free metal additive manufacturing	х		х									х	х	х	Х			
Sound Engineering	х		х															

The CoE RAISE project receives funding from the European Union's Horizon 2020 — Research and Innovation Framework Programme H2020-INFRAEDI-2019-1 under grant agreement no. 951733