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Setting the Scene



 Wikipedia: ‘redirects from HPC to Supercomputer’ 
 Interesting – gives us already a hint what it is generally about

 HPC includes work on ‘four basic building blocks’
 Theory (numerical laws, physical models, speed-up performance, etc.)
 Technology (multi-core, supercomputers, networks, storages, etc.)
 Architecture (shared-memory, distributed-memory, interconnects, etc.)
 Software (libraries, schedulers, monitoring, applications, etc.)

 Enables Parallel & Scalable Computing
 Used in Simulation Sciences using numeric methods based on known physical laws
 Used in Artificial Intelligence (AI) for parallel & scalable machine/deep learning

Background: What means High-Performance Computing (HPC)?
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 A supercomputer is a computer at the frontline of contemporary
processing capacity – particularly speed of calculation [6] Wikipedia on ‘Supercomputer’
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Relevance of HPC for Machine Learning & Deep Learning vs. Big Data
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Contact Us: Icelandic HPC (IHPC) National Competence Center for HPC & AI
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[2] IHPC SimDataLab CFD Web Page

[1] Icelandic HPC Community Web page: ihpc.is

[3] IHPC SimDataLab Computational Chemistry Web Page
[4] IHPC SimDataLab ACUTE Web Page

Elvar Atli Ævarsson

Eric Michael Sumner

[5] Cooperation Partner Juelich 
Supercomputing Centre, Simlabs

[8] European Digital Innovation Hub of Iceland (EDIH-IS)

[9] EuroCC – Access Web Page



Cooperation towards Exascale HPC Systems – Juelich Supercomputing Centre
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[26] YouTube, ’flexible and energy-efficient supercomputer: 
JUWELS is faster than 300 000 modern PCs

[25] DEEP Series of Projects Web Page

Application Co-Design
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First Exascale system in Europe – JUPITER 
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[5] Cooperation Partner Juelich 
Supercomputing Centre, Simlabs



Technology Advancements



CoE Research on AI- and Simulation-Based Engineering at Exascale (RAISE)
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[10] CoE RAISE Web Page

[11] EuroHPC JU Web Page

 Using the Interaction Room 
Methodology based on interactive 
Mural Boards was the basis to 
perform use case application co-
design of a unique AI framework

[13] M. Book, M. Riedel & H. Neukirchen et al., ‘Facilitating 
Collaboration in Machine Learning and High-Performance 
Computing Projects with an Interaction Room’, IEEE eScience 2022



CoE RAISE Unique AI Framework & Approved Technologies towards Exascale
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Continously 
Updating!

[12] M. Riedel, M. Book & 
H. Neukirchen et al., 
‘Practice and Experience 
using High Performance 
Computing and Quantum 
Computing to Speed-up 
Data Science Methods in 
Scientific Applications’,
IEEE MIPRO 2022



Example of Implementation Component of the CoE RAISE Unique AI Framework
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[10] CoE RAISE Web Page

[11] EuroHPC JU Web Page

 Researchers & PhD Students 
spend 2-3 days/month to 
setup their correct HPC/AI
environments on one
HPC machine & job scripts

 Development of an automated HPC 
job script generator is under way

 Initial repository of scripts available:
https://gitlab.jsc.fz-juelich.de/CoE-
RAISE/FZJ/ai-for-hpc-oa



Parallel & Scalable Machine Learning Approaches



General Lessons Learned: PyTorch – Distributed Data Parallel (DDP) Analysis

 Parallel performance using PyTorch-DDP 
on HPC System JUWELS – Booster 
 4 x NVIDIA A100 GPUs per one

JUWELS Booster node
 Application Example: Autoencoders for 

Turbulent Boundary Layer Flows
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[14] JUWELS HPC System Web Page



General Lessons Learned: Importance of DALI Data Loader & ‘Batch Sizes‘

 TensorFlow & Horovod vs. PyTorch-DDP
 Both using DALI Data Loader

 Addressing the known ‘large batch issue’
 E.g., different learning rates, different batch sizes, etc.
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Parallel efficency over number of GPUs Validation accuracy over batch size showing impact of 
learning rate schedulers

Changing batch size:
start small,

then increase

[16] M. Aach & M. Riedel et al., ‘ACCELERATING 
HYPERPARAMETER TUNING OF A DEEP 
LEARNING MODEL FOR REMOTE SENSING IMAGE 
CLASSIFICATION’, IGARSS 2022



Selected Scientific & Engineering Application Impacts



Icelandic HPC (IHPC) Community – Simulation & Data Lab Remote Sensing
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[21] IHPC SimDataLab Remote Sensing Web Page
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Ernir Erlingsson
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Research on Parallel & Scalable Machine Learning Algorithms – SVM 

 Parallel Support Vector Machine (SVM) piSVM
 Being most scalable SVM (open source) still today
 Significantly improved from original piSVM authors
 Maintained by Simulation & Data Lab Remote Sensing
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Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

[28] G. Cavallaro & M. Riedel & J.A. Benediktsson et al., ‘On Understanding Big Data Impacts in Remotely Sensed Image 
Classification Using Support Vector Machine Methods’, Journal of Applied Earth Observations and Remote Sensing, 2015

Machine 
& Deep
Learning

big
data

HPC

[27] C. Cortes & V. Vapnik, ‘Support Vector Networks’, 
Machine Learning, 1995

research challenges:
smart load balancing schemes for scaling up
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Adoption Example of the CoE RAISE Unique AI Framework for Remote Sensing
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[29] M. Riedel et al., Practice & Experience in using Parallel & Scalable Machine Learning with Heterogenous Modular Supercomputing Architectures, in proceedings of IEEE IPDPS, 2021
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 RESNET-50 Architecture: Case for interconnecting GPUs
 RESNET-50 is a known neural network architecture that has 

established a strong baseline in terms of accuracy
 Computational complexity of training the RESNET-50 

architecture relies in the fact that is has ~ 25.6 millions 
of trainable parameters

 RESNET-50 still represents a good trade-off between 
accuracy, depth and number of parameters

 Distributed training challenges (i.e. large batch size)

Research on Deep Learning Architectures using Distributed Training Approaches
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24 nodes x 4 GPUs = 96 GPUs

Partition of the JUWELS system 
has 56 compute nodes,

each with 4 NVIDIA V100 GPUs
(equipped with 16 GB of memory)

Horovod distributed training via MPI_Allreduce()

[30] R. Sedona, G. Cavallaro, M. Riedel, J.A. Benediktsson et al.: Remote Sensing Big Data Classification with High 
Performance Distributed Deep Learning, Journal of Remote Sensing, Multidisciplinary Digital Publishing Institute (MDPI), 
Special Issue on Analysis of Big Data in Remote Sensing, 2019
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[15] S. Kesselheim, R. Sedona, G. Cavallaro & M. 
Riedel et al., ‘JUWELS Booster – A Supercomputer 
for Large-Scale AI Research‘, 2021



 Convolutional Neural Networks (CNNs)
 Used with hyperspectral remote sensing data
 Rare labeled/annotated data in science 

(e.g. 36,000 vs. 14,197,122 images ImageNet)
 Scene vs. pixel-wise classification challenges

 Combining Machine Learning Models
 Using CNNs basic principle
 Apply SVMs in different layers of CNN

Research on Deep Learning Architectures for Remote Sensing – CNNs 

[32] G. Cavallaro, M. Riedel et al., IGARSS 2019
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[31] J. Lange, G. Cavallaro, M. Riedel et al., IGARSS Conference, 2018

research challenges:
rare groundtruth and surrounding

labels bias in training, but key challenge 
remain: hyper-parameter tuning
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Summary & Outlook



Summary
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 HPC needed for science & engineering, including machine & deep learning 
 Machine/Deep Learning benefits from HPC, Clouds & Quantum Computing

 Landscape of HPC, Clouds & Quantum Computing gets increasingly complex
 Inter-disciplinary teams strive: Technologists, machine learning experts, etc.

 Wide variety of great tools exist for HPC, Clouds, and Quantum Computing
 Mastering the many toolsets is not trivial for machine learning experts

Urgent need of more parallel & scalable HPC/AI experts on the intersection of AI, HPC and specific scientific & engineering 
domains: ‘finding good talent in HPC is a world-wide problem we all face in academia & industry (PhD recruiting problem)‘



Outlook Technology – Utilizing Quantum Computing for Machine Learning

 Concrete Approach: Quantum Annealing
 Solving complex optimization problems for machine/deep learning
 Instead of running for hours on HPC; solutions just take seconds (!)

[17] E. Pasetto & M. Riedel et al., ‘QUANTUM 
SUPPORT VECTOR REGRESSION FOR 
BIOPHYSICAL VARIABLE ESTIMATION IN REMOTE 
SENSING’, IGARSS 2022
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[18] G. Cavallaro & M. Riedel et al., ‘HYBRID QUANTUM-
CLASSICAL WORKFLOWS IN MODULAR SUPERCOMPUTING 
ARCHITECTURES WITH THE JÜLICH UNIFIED INFRASTRUCTURE 
FOR QUANTUM COMPUTING’, IGARSS 2022

[19] JUNIQ Facility Web Page

[20] M. Riedel, G. Cavallaro, J.A. Benediktsson, 
‘Practice and Experience in Using Parallel and Scalable 
Machine Learning in Remote Sensing from HPC Over 
Cloud to Quantum Computing‘, IGARSS 2021

[23] A. Delilbasic, G. Cavallaro, F. Melgani, M. Riedel, K. Michielsen: 
QUANTUM SUPPORT VECTOR MACHINE ALGORITHMS FOR REMOTE 
SENSING DATA CLASSIFICATION, IGARSS 2021

[24] G. Cavallaro & M. Riedel et al., Approaching Remote Sensing 
Image Classification with Ensembles of SVMs on the D-Wave 
Quantum Annealer, IGARSS 2020



Outlook Policy – Ministry Report on HPC & Reykjavik Institute
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