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Machine Learning, Data Mining & Statistics overlap to enable Data Science

1. Some pattern exists

2. No exact mathematical formula

3. Data exists

" |dea ‘Learning from Big Data’

= Shared with a wide variety
of other disciplines

= E.g.signal processing,

big data mining, etc. [25] Python
" —
Challenges P —
= Data is often complex
= Requires ‘Big Data analytics’ =  Machine learning is a very broad subject and goes from very abstract theory to extreme practice

. . (‘rules of thumb?’)
= Learnlng from data requires - . . . . . .
- . . Training machine learning models needs processing time (clouds or high performance computing)
processing time 9 Clouds or . While data analysis is more describing the process of analysin the data, the term data analytics also

H igh Performance Com pu i ng includes and the necessary scalable or parallel infrastructure to perform analysis of ‘big data’



ONA4OFF Review — Executive Summary — Machine Learning in ON4OFF

= Part | — Association Rule Mining = Part || - Deep Learning to ‘mine’ product tags for DBs
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Kl Part I: Unpersonalisierte Vorschlage

ON4OFF

Anonymisierte Analyse mit Verbesserte Regeln welche

Produkte zusammen

Datenauswahl &
Kl Modell
Parameter

Verkaufsdaten Algorithmen

gekauf werden

per Handler der Kinstlichen

ohne Kunde Intelligenz

@ Hindler Gibt i @ KI Algorithmen ® Modell-Tuning | @ Handler Bekommt

Transaktionen mit: Association Rule Mining KI Algorithmen-Parameter zur Liste mit Regeln nach Muster:
Produkt-IDs im Warenkorb  : Apriori, FP-Growth, MAFIA Anpassung beim Handler: : Gekauft Produkt A = Kauf Produkt B & C

confidence, support, lift, Filiale : Gekauft Product D & E = Kauf Produkt F



ON4OFF
:h
e

Anonymisierte Analyse mit

Verbesserte Fiir jeden Kunden
Datenauswahl & ) individuelle

Kl Modell Kaufvorschlage
Parameter :

Verkaufsdaten Algorithmen

per Kunde der Kiinstlichen

Intelligenz

@ Hindler Gibt i @ KI Algorithmen ® Modell-Tuning | @ Handler Bekommt

Transaktionen mit: Collaborative Filtering KI Algorithmen-Parameter zur Liste mit Vorschldgen nach Muster:
Kunden-ID : Singular Value Decomposition Anpassung beim Handler: Kunde A = Kauft Produkt B & C
Produkt-IDs : (SVD), Deep Learning Rating-Modell, Filiale, Saison

: Kunde A = Ahnlich wie Kunde B
Rating (fa“s Vorhanden) T e T e e T e T VT e m T e T Va Y aTa et eVt Ta T aTa VT eV aTa T ala T eVt tn Tt alaTaTala Tt e aTa aTatala Tt a e Ta a e tatala ata e tatalatatalatatalatatalatatatatatalal
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Executive Summary — Collaborative Filtering & Clustering Approaches

= Example: K-IVleans Clustering

Classification Clustering

o’

)

-
(N X J

1. The data points

[10] YouTube video,

Regression

H

a

= Example: Recommendation Engine

-
Jupyter
S’

. . . . . p p [9] Google
= Using Collaborative Filtering via Google ‘Colab Colaboratory

(9] MovieLens27M-ALS-Recommender-System.ipynb
File Edit View Insert Runtime Tools Help

|‘ Table of content % *Code +Text & CopyloDrive
= Table of contents

<« Collaborative Filtering Recommender

Visualization of K-Means Clustering

MovieLens 27M . S .
System on MovieLens Collaborative Filtering Recommender System on MovieLens 27M
(] Configuration
D Name . . P
1 Nike Jones 1. Data Preprocessing Data Preprocessing / Exploration, Model Training & Results
2 Steve Thomas 2. Exploratory Data Analysis with Koalas Télécom Paris | MS Big Data | SD 701: Big Data Mining
3 Peter Sloan 3. Model Training
4 Vish Macnhi Transactions
3.1. Train/ Test Set Split
5 Tim Albright Customer ID] Movie ID m 29 Metrics This notebook summarizes results from a collaborative filtering recommender system implemented with Spark MLIib: how well it scales and
1 0 fares (for relevant user r datie on a new MovieLens 27,000,000 movie ratings dataset.
1 102 3| 3.3. Popularity-Based Model
1 103 25
2 101
2 102 H
2 108 item User 1 User 2 User 3 User 4 User 5
F] 104
101/
3 101 25 102 3 3
3 a 103 3
3 104
3 105 3.5 st
106 (similar
i 107 personality?)
D Name Category 4
101 [The Internship Comedy 4 4
102 |The Purge Thriller ﬁ |
103__[Much About Nothing__|Comedy 03 101 2
104 [Dirty Wars Drama 5 102 3|
105 |wish You Were Here  |Drama 5 103 . . . -
06 sy comedy : o8 H [8] Collaborative Filtering
107 _|Fast & Furios Thriller
L= | LELLLE 5 105 | 35|
5 106] 3l Recommender System on Colab



Another Form of ‘Data Mining’ using Recommender Systems — Overview

= Content-based / Product-based Recommendation Systems

= E.g. Netflix user has watched many cowboy movies in the past (focus on product feature)

= Recommendation: movie classified in the database as having the ‘cowboy’ genre tag
» (not covered here as relatively straightforward to implement: e.g., DB lookup)

= Might be still useful in combination with more elaborate systems if space in GUI is available

= Collaborative Filtering-based / Customer-based Recommendation Systems
= E.g. Similiarity of the customer ratings for products (not focus on product feature)
= |dentify: looking at other customers that are most similar to this customer
= Recommendation: products that are liked or preferred by the other ‘similiar customers’
= Focus in this lecture and on one concrete algorithm: matrix factorization

(e.g.,
vegan tag)

“o

(similar
personality?)

~

[14] Pieper.de Duefte



Collaborative Filtering — Methodology

= Methodology

= Recommendation systems that leverage
existing shopping/watching/listening behaviour patterns

= Predicts what customers could like in future
based on previous customers behavior patterns

= Assumes that customers like products similar
to other products they like, but also products
that are liked by other people with similar taste

= Approach
» Uses different machine learning methods c%;g,% % /,
= Collaborative filtering is a general concept ®P®‘_'ﬁ s
and there are many algorithms (e.g., singular i -
vector decomposition, neural networks, etc.) \\‘
o

= Two main techniques: memory & model-based

collaborative filteri ng [16] Towards Data Science, [15] Big Data Tips,
Various CFs Recommender Systems



Collaborative Filtering — Memory and Model-based Techniques

= Two quite different approaches for the same problem
= Popular approaches are based on low-dimensional factor models these days
= Different approaches have different advantages and disadvantages and could be used both (if needed)

o Advantage/
Techniques Definitions Disadvantage

Advantage
Easy creation and
explanability of results

Find similar users based on cosine
similarity or pearson correlation
and take weighted avg. of ratings

. Memory-based approaches for Collaborative
Filtering can quickly become computationally

. Disadvantage expensive, but enables better explainability

erformance reduces

when data is sparse.
So, non scalable

Collaborative [d
Filtering (CF) |
\ Advantage

\_ Dimentionality
reduction deals with
\ missing/ sparse data

= Model-based approaches work with
Use machine learning to find user - dlmensmnallt_y reduction, but results are not
ratings of unrated items. e.g. PCA, vantage easy to explain to store managers

SVD, Neural Nets, Matrix lnfere:ue is lntrfamble
Factorization ecause 0

hidden/latent factors
|

[16] Towards Data

(this lecture will focus on Matrix Factorization — with a simple demonstration) . )
Science, Various CFs



Collaborative Filtering — Famous Dataset Example & Challenges

= Famous Example in Retail

= |[lustrating the underlying assumption that
if a customer A has the same opinion/rating as fﬁ
a customer B on a certain product... == )

= ... Ais more likely to have B’s opinion on a different
product as well than that of a randomly chosen customer

= Challenges m

" |n real datasets millions or billions of transactions
are used, including ratings if possible (otherwise buy & not buy only)

= Unfortunately in practice not always ratings are existing ﬁ

= Algorithms Benefit
= Automation of the process using collaborative filtering algorithms

= Patterns help to identify new opportunities and

ways for cross-selling products to customers
[17] Towards Data
Science, CF & Embeddings



Matrix Factorization-based Algorithms & Tool Support Examples

RMSE: B.8778

Generic modeling Algorithms Python packages use for L1 e.sreosesrasaezess
approaches example implementations 251+ [data.head)

5]z «customer id product_id rating

o 1 1193 5

Surprise i 1@ 3

2 1 914 3

E 1 3408 4

4 1 2355 5

r_id'] == 50, 'product_id']

[[se, iid, 4] for
= algo.test(predi

iids_to_pred]

‘Matrix factorization based Probabilistic Matrix
algorithm Factorization

rediction(uid=56, iid=1, r_ui=4, est=3.7017768774834705, details={'was_inpossible': False})

: pred ratings = np.array([pred.est for pred in realpredictions])

Model based CF

stefans Gui shows for user 50 the product_id 2005 with predicted rating 4.381198237789029

Mutli-layered neural nets
Deep Learning (including embedding
layers)

surpr(se

[18] scikit-surprise library

A Python scikit for
recommender systems.

. 2. : index_max = pred_ratings.argmax()
Non-ve Matrix
. - 227: topprediction = iids to_pred[index_max]
Factorization
1237: print('Stefans Gui shows for user 56 the product_id {@} with predicted rating {1}'.format(topprediction, pred_ratings[index max]))

Deep Learning techniques change the experiences over the = Scikit-surprise is a package specifically
last decades and become more popular with very good designed for recommendation systems
accuracies and good packages (e.g., fast.ai) using innovative and includes a variety of algorithms in
HPC & Cloud computing Python useful for data mining tasks
[19] fast.ai library [16] Towards Data

Science, Various CFs



Systematic Process to Support Learning From Data — Revisited

= Systematic data analysis guided by a ‘standard process’
= Cross-Industry Standard Process for Data Mining (CRISP-DIMV)

= A data mining project is
guided by these six phases:
(1) Problem Understanding;
(2) Data Understanding;
(3) Data Preparation;

(4) Modeling;
(5) Evaluation;

(6) Deployment

(learning
takes place)

= Significant time goes into Steps 2-3 as well!

Problem

Deployment

2 J

» Data
Understanding ' Understanding

L' I
a- - Data
' Preparation

scientific

data sets “

Modelling

Evaluation '

[20] CRISP-DM Model




Collaborative Filtering in ON4OFF — General Understanding & Approach
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Movie Recommendation Example using Collaborative Filtering Techniques

® Given movie feedback matrix
" Row represents a user
= Column represents a movie

" Feedback encoding
= One of two categories: explicit & implicit feedback

= Example: feedback matrix is binary with
a value of 1 that indicates interest in the movie

=" Embeddings Approach

= Can be learned automatically
(no need for hand-engineering of features)

= 1D Embedding Example

A children's <-> adult's

(assign scalar for
movies [-1,1])

LU

Memento

The Dark
Knight Rises

Harry Potter

8¢

Practical Lecture 11.1 — Using Data Mining & Recommender Techniques in Clouds

The Triplets of

Shrek Belleville

-1 +1

Children @ \

b

Adut  (3ssign scalar for

users [-1,1])

’ preference for children's <-> adult's

Collaborative filtering uses similarities between users and items
simultaneously to provide recommendations

Collaborative filtering models can recommend an item to user A
based on the interests of a similar user B

Explicit feedback in collaborative filtering means that users
specify how much they liked a particular movie by providing a
numerical rating

Implicit feedback in collaborative filtering means that if a user
watches a movie, the system infers that the user is interested
The goal of collaborative filtering systems in movie ratings are to

recommend (1) similarity to movies the user has liked in the past,
and (2) movies that similar users liked and are not seen yet

[1] Google Colab Exercise

o
, 72 BN T
Harry Potter  The Triplets of The Dark
TR eBenlepvﬁltes ° S Knigeht F?i;es Memento
A product of movie embedding &
o v s ' .
O user embedding should be
higher (closer to 1) for movies
) Y v that we expect the user to like
@ v v X' users watched these
-3 movies & preferences
v < are well explained
by this feature

A children’s <-> adult's < preference for children's <-> adult's



Collaborative Filtering Techniques & Automatically Learned Embeddings

- EmbEddlngS Approach . = "E“% bk ) Al __ I [1] Google Colab Exercise
- A L P g@ Bl T
= 1D feature not enough to - o - _ o S
i i i tched these
eXpIaln prefe rences well product of movie embedding & B 1IN v v users wa
) utser embedding should be . , ' . , ;:v;ii &;:;Ilrzfer:e;;zs;
= 2D Embeddmg Examp|e: higher (closer to 1) for movies ' ot well explai
that we expect the user to like A v v v by this feature
add a second feature B o
N < v v

u E.g. the deg ree to Which each movie is a A children's <-> adult's 0preferencefcrchildren’s<—>adu\t’s

blockbuster or an arthouse movie = The embedding space is an abstract representation

o common to both items and users, in which we can
Blockbuster measure similarity or relevance using a similarity metric

for each (user, item) pair, the dot product of the user embedding & the item embedding

Knight Ri . .
igRes should be close to 1 when the user watched the movie, and to 0 otherwise

Shrek

Harry Potter

>

: of collaborative filtering models
Children Adult

Harry Potter Tthllf Shrek TI’\Dk
Bel Knight Rises_Memente

& 2 Il - & *  Embeddings can be learned
-1 (handcrafted features as|an example) = +1 » : : automatically, which is the power
[ ]

= 7 7 . Embeddings of users with similar
"“ ) ) preferences will be close together
“‘:ﬂ‘ Ha 1 =  Embeddings of movies liked by
R o it o = ¥ similar users will be close in the
The Triplets of ’ 1 Memento EI v v embedding space
Belleville

¥ Arthouse Warthouse <> © for arthous

Achvldrens<->adu\('s Q;reference'srchildre:stladmt’s EXample: (0.1 X 1) + (1 * -1) =-0.9




Matrix Factorization Approaches as Simple Embedding Model

= Given movie feedback matrix A

= Row represents a user: m users
= Column represents a movie: n movies

= Model learns automatically:

= User embedding matrix U
(row i is the embedding for user i)

= Movie embedding matrix V
(row j is the embedding for movie j)

= Learning = minimize ‘errors’

=" Embeddings

= Have an embedding dimension d
(here we have a 2D example)

= Learned such that the product UV’
is a good approximation of matrix A

[1] Google Colab Exercise

h o 4 B T .
Hari ryP otter The Triplets of Shrek The Dark Memento (Iearnlng)
A Belleville Knight Rises
oot 4 v 4
’ v v ~
Al v v v
- 1
v v
U R

(objective function, cf. Lecture 6)

> (4 -

4,j)Eobs

min (U;, V))?
UERmxd’ VeRnxd
(minimize the sum of squared errors
over all pairs of observed entries =

Observed Only MF)

(optimization
problem can

be solved with
SGD for example)

.9

A E Rmxn

dot product (UZ,VJ) — A

(learning goal)

(treat the unobserved values as zero,
and sum over all entries in the matrix)

Observed Only MF

Weighted MF

Z (Aij_ i) J

i,j)€obs

min
UeR™ 4, yecRn<d (

2,

%,j) ¢obs

=26)

min |A-UvT2

SVD UeR™¢, yeRr

(SVD = singular value
decomposition, poor
generalization in
sparse movie

rating matrix setup)

IA-UVT| 2

(AU, V)2

(U3, V) 2 (sum over observed entries + sum over not
(2]

observed entries using hyperparameter w,)



Google Colab — Movie Rental Recommendation Notebook & Porting Juelich

Recommendation Systems

Q mgien ~ & @

Crash Course ProblomFraming  DataPrep  Clustering  Recommendation  Testing and Debugging  GANs

= ntioduction

Home > Products > Machine Learning > Courses > Recommendstion

Rate znd review & o
Colab: Build a Movie Recommendation System

Y — (save copy in Drive & rename & save) ¢ .\/Iorris Recommendation Systems Colab
J— - N )
o e e g e G e y ©) Recommendation Systems Colab ‘ File Edit View Insert Runtime Tools Help Allchanges saved oo i B E
Toles covered: m Edit View Insert Runtime Tools Help
« Extoring h Movitens Dt
« Metix fctorzation using SGD + Code + Text 2 Copy 1o Drive Connect ~ 2" Editing A
. Em"e""‘"‘i VIM;F o |EE Table of contents X

ol o Copyright 2018 Google LLC.
L, | SepmpTitifiasgs » Copyright 2018 Google LLC.

Recommendation Systems with

<> TensorFlow [ 1 417 cell hidden
¢ navamages 2 ol s SoftmaxHodel > Introduction
= Imports (run this cell)
‘ Recommendation Systems with TensorFlow
Load the MovielLens data (run this
cell).
) This Colab notebook complements the course on Recommendation Systems. Specifically, we'll be using matrix factorization to learn user and
|. Exploring the Movielens Data . 2
movie embeddings.
File Edit View Insert Runtime Users l—_l
. : TV el W
[1] Google COIab Exercise Viewen Gt Altair visualization code (run this .
New notebook cell) ~ Introduction
Open notebook .
load notebook Movies
tploa T T We will create a movie recommendation system based on the MovieLens dataset available here. The data consists of movies ratings (on a

scale of 1to 5).
Sparse Representation of the Rating

i -
Ceed, o foutine
save a copy n it Exercise 1: Build a )

o) o :)ff.?gzrs;Ti:gs“c;;{:E-resemat»on 1. Exploring the MovieLens Data (10 minutes)
Jupyter _ 2. Preliminaries (25 minutes)
™ Revision history oluion 3. Training a matrix factorization model (15 minutes)

[9] Google Download ipynb Calculatin.g mé error 4. Inspecti-ng t.he I.Embedfiings (1 5 mi-nutes) .

laborator Download py Exercise 2: Mean Squared Error 5. Regularization in matrix factorization (15 minutes)
Cola y Solution 6. Softmax model training (30 minutes)

Print



Google Colab — Movie Rental Recommendation Notebook — Connect & Setup

& Morris Recommendation Systems Colab

File Edit View Insert Runtime Tools Help

= Table of contents

% + Code

+ Text

~
Q Copyright 2018 Google LLC.

Recommendation Systems with
TensorFlow

Introduction
Imports (run this cell)

Load the MovieLens data (run this
cell).

1. Exploring the Movielens Data
Users

Altair visualization code (run

numpy as np
pandas as pd
collections
mpl_toolkits.mplot3d i
from IPythen i display

from matplotlib t pyplot as plt
sklearn

Zxes3D

sklearn.manifold
tensorflow.compat.vl as tf
tf.disable_v2_behavior()
tf.logging.set_verbosity(cf.logzing.ERROR)

this cell)y
Movies
I. Preliminaries

Sparse Representation of the Rating
Matrix

Exercise 1: Build a
tf. SparseTensorr epresentation
of the Rating Matriz

Solution
Calculating the error
Exercise 2: Mean Squared Error
Solution
Altemate Solution

Exercise 3 (Optional): adding
your own ratings to the data set

alt.renderers.enable ’
Run to create a spreadsheet, K T ("Done install ltair.
then use it to enter your I ——
ratings S—— - — = - -

Run to load your ratings.
11l. Training a Matrix Factorization model

CFModel helper class (run this celly

4 Bdd some e fu o Pandas DataFrams.
pd.options.display.max_row
pd.opuions.display.float_format = '{:.3f
def mask(df, key, function):
"nwReturns a filtered dataframe, by
df[function (df [keyl)]

}'.formac

applying function to key"""

s(af):

' '.join(col).strip() for col in df.columns.values

pd.DataFrame.mask = mask
pd.DataFrame.flatten cols = flatten cols

its

p install git+git://github.
altair as alc

com/altair-viz/altair.git

USER_RATIN
Ipip install —-upgrade -g gspread
& google.colab import auch
gspread
cauthZclient.client impo:

rt GoogleCredentials

[23] gspread API

" Installing and importing gspread that is a
Python API for Google Sheets

" Optional as this enables own ratings to inject
into the recommendation system (if needed)

-

Imports (run this cell)

—_%
——

£ comment 2% Share £} e
" Recommendation engine is built using

® TensorFlow deep learning package
Recommendation engine script requires imports
from various useful libraries: e.g., pandas,
numpy, sklearn, etc.

# Editing ~

Connect to hosted runtime
Connect to local runtime:
L
p——
M Saasimn

Focus the last run cell

. Manipulating Pandas DataFrame options and

-
___—"’— adding selected convenient functions
————————
____——" = Installing Altair and importing the library
- " Altair is a library for declarative visualization in
__,——” Python and offers very good interactive
/__—" visualizations for data analysis
—”———
—“‘——

‘python/compat/v2_compat.py:96: dissble_resource variables (from tensorflow.python.ops.variable scope) is deprecated and will be removed in a future version.

non-rescurce variables are not supperted in the long temm
Installing Altair...
Collecting git+git://github.com/altair-viz/altair.git

Cloning git://github.com/altair-viz/altair.git to /tmp/pip-reg-build-Thujxoat

Running command git clome -g git://github.com/altair-viz/altair.git /tmp/pip-req-build-Thujxoat

Installing build dependencies ... done
Getting requivements to build vheel ... done & )\
reparing wheel metadata one ¥ !

satisfi
satisfi
satisiy

Requirenent already
Requirement already
Requirenent already
Requirement already
Requirement already
Requirement already
Requirement already
Requirement already
Requirement already
Requirement already
Suilding wheels for collected package:
Building wheel for (pEP 517) ...
Created wheel for altair: filename=altair-4.2.0.dev0-cp3é-none-any.whl
Stored in directory: /tmp/pip-ephem-whesl-cache-tfh3Scna/wheels/01/£d/21/025
Successfully built altair
Installing collected packag:
Found existing installa
Uninstalling altair-4
Successfully uninst:
Successfully installed altaiz-4.2.0.dev
Done installing Altair.

sonschena in /usr/local/lib/python3.6/dist-packages (from altal

2.0.dev0) (2.6.0)
)

unpy in /usz/local/lib/py

By
satisfis zypoints in /usz/local/lib/)

satisfi

satisfi /dist-packages (from alt
non3.6/dist-packages (from

fpython3. 6/dist-packages

satisfi
satisfi
satisfi

[21] Altair
Visualization

library

altair done

046ec4046345511
b3b3cecaSbflichdebcdtfadsfsect

[1] Google Colab Exercise



Google Colab — Movie Rental Recommendation Notebook — Data Understanding

plens about datasets publications blog

‘ Problem ‘

Training Examples

5 (X0, 41), s ( )
&~ XY, ) y (X N Y N .
et MovielLens Datasets
data sets - -
(historical records, groundtruth data, examples)
‘ ’ g ’ p GroupLens Research has collected and made available rating data sets from the MovieLens web site
(http //movielens org). The data sets were collected over various periods of time, depending on the size of the
set. Before using these data sets, please review their README files for the usage licenses and other details WikiLens

Seeking permission? If you are interested in obtaining permission to use MovieLens datasets, please first read the
terms of use that are included in the README file. Then, please fill out this form to request use. We typically do not Book-Crossing
permit public redistribution (see Kaggle for an alternative download location if you are concerned about availability)

= Movielens Dataset

EachMovie

recommended for new research

= http://files.grouplens.org/datasets/movielens/ml-100k.zip Hottc 201

Movielens 25M Dataset
Serendipity 2018
MovieLens 25M movie ratings. Stable benchmark dataset. 25 million ratings and one million tag applications applied to

62,000 movies by 162,000 users. Includes tag genome data with 15 million relevance scores across 1,129 tags Personality 2018
Released 12/2019
# @title Load the MovieLens data (run this cell). + README txt Learning from Sets of Items
2019

= ml-25m.zip (size: 250 MB, checksum)

Permalink: hitps://grouplens.org/datasets/movielens/25m/

# Download MovieLens data.

print ("Downloading movielens data...")
from urllik.request import urlretrieve recommended for education and development
import zipfile

Movielens Latest Datasets

These datasets will change over time, and are not appropriate for reporting research results. We will keep the download

urlretrieve ("http://files.grouplens.org/datasets/movielens/ml-100k.zip", "movielens.zip") links stable for automated downloads. We will not archive or make available previously released versions
zip_IEf = Zipfile = ZipFile ("movielens. zip LI ] Smali: 100,000 ratings and 3,600 tag applications applied to 9,000 movies by 600 users. Last updated 9/2018.
zip ref.extractall() + README htm|

N - ml-latest-small zip (size: 1 MB,
print ("Done. Dataset contains:") » ml-latest-small.zip )

- - N Full: 27,000,000 ratings and 1,100,000 tag applications applied to 58,000 movies by 280,000 users. Includes ta
print(zip ref.read('ml-100k/u.info'}) g 9 app| pp Y 9

genome data with 14 million relevance scores across 1,100 tags. Last updated 9/2018.

« README html
« mllatest zip (size: 265 MB)

Permalink: htps://grouplens.org/datasets/movielens/latest/

[22] MovieLens Dataset [1] Google Colab Exercise
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= Check available data

= Users

Ratings
= Genre
= Movies

‘ Problem

=.
%-
scientific

data sets “

. The MovieLens dataset
consists of data about
.
users, ratings about &
movies, the genre of
movies and information

about movies
”

-
PR -

users = pd.read csv(

ml-100k/u.usexr", sep="

ratings_cols = ['user_ id’,
ratings = pd.read csv(

genre cols = [

"Crime "Documentary",
"Musical",

1

movies _cols = |

] + genre cols
movies = pd.read csv(

'ml-100k/u.item"', sep='

¥ Load each data set (users, movies, and ratings).

users cols = ['user_id', "age', 'sex', 'occupatiomn', 'zip code']
', names=users cols, encoding='latin-1")
'movie_id', 'rating', 'unix timestamp']
'ml-100k/u.data’, sep="\t', names=ratings cols, encoding="latin-1")
# The movies file contains a bina

"genre unknown", "Action",

n

"Mystery", "Romance", "Sci-Fi", "Thriller",

'movie_id', 'title', 'release_date', "video_release_date", "imdb url"

', names=movies cols, encoding='latin-1")

feature for each genre.

"Adventure"”, "Animation", dren", "Comedy",

"

'"Drama”, "Fantasy", "Fil

-Noir", "Horror",

"War", "Weztern"

‘ Problem

# Since the ids start at 1, we shift them to start at 0.

users["user_id"] = users["user_id"].apply(lambda x: str(x-1))

Deployment

movies["year"] = movies|['release_date'].apply(lambda x: str(x).split('-')[-1]) ‘

movies["movie id"] = movies["movie id"].apply(lambda x: str(x-1))

ratings ["movi d"] = ratings["movie_id"].apply(lambda x: str(x-1))

ratings["user 1 = ratings["user ].apply(lambda =: str(z-1))

ratings["rating”] = ratings["rating"].apply(lambda x: float(x))

# Compute the number of movies t

hich a genre is assigned.

genre_occurences = movies[genre_cols].sum().to_dict()

Since some movies can belong to more than one genre, we create different

'genre' columns as foll

EIE

- all genres: all the

ve genres of the movie.

randomly sampled from the active genres.

enres (movies, genres):

genre (gs) :

active = [genre for genre, g in zip(genres, gs) if g=—1]

if len{active)
return 'Other'

return np.random.choice (active)

def get _genres(gs):
active = [genre for genre, g in zip{genres, gs) if g=1]
if len{active) =

return 'Other'
return '-'.jeoin(active)

movies["genre'] = [

get_random genre (gs) for gs in zip(*[movies[genre] for genre in genres])]

movies['all genres'] = [

get_all genres(gs) for gs in zip(*[movies[genre] for genre in genres])]
mark genres(movies, genre cols)

# Create one merged DataFrame containing all the movielens data.
movielens = ratings.merge (movies, on="movie_id'}.merge(users, on='user_id')

[1] Google Colab Exercise
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# Utility to split the data inteo training and test sets. n Like in preVious
def"f:f_'_:_aa:af:a::’.e (df, holdout fraction=0.1}): examples Of machine

Splits a DataFrame inteo training and test =ets.

. learning and data ‘training set’ ‘test set’
df: a dataframe. mining, also for
holdout fraction: fraction of dataframe rows to use in the test set. |earning the Trainin%ExampIes
Returns: o - .
train: dataframe for training reco_mmendat!on (X]_ 3 yl )7 = v (XN ’ yN)
test: dataframe for testing engine we Spllt the i
e available dataset into (historical records, groundtruth data, examples)
test = df.sample (frac=holdout fraction, replace=False) two disjunct datasets:
train = df [~df.index.i=in(test.index)] train and test datasets

Problem ‘ »

return train, test

[» Downloading movielens data...
Done. Dataset contains:
b'943 users\nlé82 items\nl00000 ratings\n'

Deployment

Problem 1 Data ‘ — [4] wusers.describe(include=[np.ckiject])

user id sex occupation =zip cede

[3] wusers.describe()

=
& count 043 043 943 943
— Preparation

scientific

s 2 » age unique 043 2 21 705
¢ count 943000 top 805 M student 55414 . .
Q mean 34052 freq 1 &0 106 0 (warning appears if

O —— you not use the

(understanding some basic statistics min 7000 H f; \ notebook)

describing numeric user features) 28% 25000 ’
50%  31.000 - Warning: you are connected to a GPU runtime, but not utilizing the GPU.  Change to a standard runtime X
75% 43.000 “

max 73.000

[1] Google Colab Exercise
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# @title Altair visualization code (run this cell)
# The follewing functions are used to generate interactive Altair
# We will display histograms of the data, sliced by a given att

# Create filters ti e used to slice the data.

occupation filter = alt.selection multi(fields=["cccupation"])
occupation_chart = alt.Chart().mark bar(}.encode (
x="count ()",

y=alt.¥("occupation:N"),

color=alt.cendition(
occupation_filter,
alt.Color("cccupation:N", scale=alt.Scale(scheme='category20')),
alt.value ("

) .properties (widt! 0, selection=occupation filter)
on that generates a histogram of filtered data.

i hist(field, label, filter):
d chart of histograms.

gray) contains the histogram of the full data, and the
second contains the histogram of the filtered data.
Args:
field: the field for which to generate the histogram.
label: String label of the histogram.
filter: an alt.Selection cbject to be used to filter the data.

base = alt.Chart().mark bar().encode(
x=alt.X(field, bin=alt.3in(maxbins=

y="count()",

), title=label),

) .properties|
width=:

)
return alt.layer(

base.transform filter(filter),

base.encode (color=alt.value('lightgray'), opacity=alt.value(.7}),
) . resclve_scale (y="independent')

6007 8o 4507 s saministrator occupation
srtist— M =dministrator
400 400 doctor—ll artist
500 500 educstor— W doctor
350 | 3s0 enginzer | EGG_—_—— - educetor
entettsinment- ::i”ﬂ:?ﬂ’ment
3 4007 400 2 = 300 300 9 heal(hrt,are— L :i:ﬁ:‘tl‘:m
g 5 g 260 k250 5 H hcmﬁ:‘j:::. L Ih:r"::"ake'
2 0 L0 2 8 R e — B e
E E E 200 [ 200 E § marketing - marketing
§ o I I P E
Prwa'r:ﬁr:_ u programmer
100 100 salesman parmiiog
100 100 scientist
5 %0 [ 5 meeveen
2 Chnicis W writer
0 100 200 300 400 500 800 700 800 10 15 20 25 3.0 35 4.0 45 50 0 20 40 60 80 100 120 140 160 180200
# ratings /user mean user rating Count of Records
]
I
- Interactive data visualization techniques are an important approach to have a better data understanding
= E.g. histograms to further understand the distribution of the users, distribution of ratings per user,
occupation in the right chart filters the data by that occupation
|}

E.g. data understanding observed: very high number of ratings from students > recommendation bias

‘ Problem

[6]

[21] Altair Visualization library

users_ratings = (
ratings
.groupby ("user
.agg({'zating':
.flatten_cols()
.merge (users, on='user_id')

', as_index=False)

['count’,

'mean']})

)

# Create a chart for the count, and one for the mean.

alt.hconcat (
filtered hist('ra
filtered hist('rating mean',

ng count', '# ratings us.

r', occupation filter),
'‘mean user rating', occupation filter),
occupation_chart,

data=users_ratings)

(students have a lot of records compared

to other users who rated movies)
[1] Google Colab Exercise




[71

81

Google Colab — Movie Rental Recommendation Notebook — Movie Data

movies_ratings = movies.merge (
ratings
.groupby ('movie_id', as_index=False)
.agg({'rating': ['count', 'mean']})
.flatten cols{(),
on='movie id')

genre filter = alt.selection multi(fields=['genre'])
genre_chart = alt.Chart().mark bar() .encode (
x="count ()",
y=alt.Y('genre'),
color=alt.condition (
genre_filter,
alt.Color("genre:N"),
alt.value('lightgray'))
) -properties (height=300, selection=genre filter)

(movies_ratings[['title', 'rating count', 'rating mean']]

.sort_values('rating count', ascending=False)
.head (10))

title rating count rating mean

49 Star Wars (1977) 583 4.358
257 Contact (1997) 509 3.804
99 Fargo (1996) 508 4.156
180 Return of the Jedi (1983) 507 4.008
293 Liar Liar (1997) 485 3.157
285 English Patient, The (1996) 481 3.657
287 Scream (1996) 478 3.441

0 Toy Story (1995) 452 3.878
299 Air Force One (1997) 431 3.631
120 Independence Day (ID4) (1996) 429 3.438

Count of Records

$PJ09 Ry JO JUNOD

1,400 1,400 550
500
1.200 |-1.200
450
1.000 1,000 400
9 gaso
g T
800 so0 2§ 300
s &
2 5
600 - 600 8 E 20
2§ 200
400 \-400 150
100
200 \-200
50
0 ¥ 0 0 u
0 100 200 300 400 500 600 10 15 20 25 30 35 40 45 50
# ratings / movie m ean m ovie rating

[10] # Display the number of ratings and average rating per movie.

alt.hconcat (
filtered hist('rating count', '# ratings / movie', genre filter)
filtered_hist('rating mean', 'mean movie rating', genre filter),
genre chart,

data=movies_ratings)

Problem ‘

-

o
scientific | reparation ¢
data sets

. . Harry Potter The Triplets of SHesk The Dark

Belleville Knight Rises

Deployment

My, 23 Bl T

el

Memento

Aaventure -

Animation i
Children

Com Em

Crime

Docum entaii-
Dram)|

Fantasy )
Film Noir

genre

Musical -l
mystery -l

Romance |

sai-Fi- Il

Thriller

war-Jl

Wesem
genre_unnown-{
]

Horror -

50

100 150 200 250 300 350
Count of Records

400

450

500 550

(movies ratings[['title', 'rating count', 'rating mean']]

.mask('rating count',

lambda x: x > 20)

.sort_values('rating mean', ascending=False)
-head(10))

407
317
168
482
113
63
602
1
49
177

genre

W Action

W Adventure

M Animation
Children

M Documentary
Drama

M Fantasy
Film -Noir

W Homor

W Muscal

W Mystery
Romance

M sciF
Thriller

W War
Western

W genre_unknown

title rating count rating mean

Close Shave, A (1995)
Schindler's List (1993)
Wrong Trousers, The (1993)
Casablanca (1942)

Wallace & Gromit: The Best of Aardman Animatio...

Shawshank Redemption, The (1994)

Rear Window (1954)

Usual Suspects, The (1995)
Star Wars (1977)

12 Angry Men (1957)

12
298
18
243

67
283
209
267
583
125

4.491
4.466
4.466
4.457
4.448
4.445
4.388
4.386
4.358
4.344

[1] Google Colab Exercise



Starting the Modeling Approach — Matrix Factorization — Revisited

" Factorize the ratings matrix A

" |nto the product of a user embedding
matrix U and movie embedding matrix V

Uy mn
A=UVTwithU = and V' = .
uN UM - - - - . - - - - -
Here =  Arating matrix used in collaborative filtering with matrix factorization U € pmxd Ac Rm™xm
o Nisthe number of in the movie recommendation example shows that most of the entries . .
is the number of users, . . . dot pl’OdUCt (Ui, ‘/J> A y 3 (Iearnlng goal)
« M is the number of movies, are unobserved, since users will only rate a small subset of all movies ~ 1,]

o Aj;j is the rating of the jth movies by the ith user,

® each row Uj is a d-dimensional vector (embedding) representing user z,
s each row VJ is a d-dimensional vector (embedding) representing movie j,
* the prediction of the model for the (2, ) pair is the dot product (U;, ;).

» Using TensorFlow (cf. Lecture 6 & 7) SparseTensor
= Sparse representation of the rating matrix A required

. ) .
Rating matrix could be very.large eficient Sparseransor
(many users and many movies) representation example)

] Example: (full rating matrix A example) Pe—— (

user_id movie_id rating

- - - 50 3.0 0 0 indices=[[0, 01, [0, 11, (1,311,
. . Y A — values=[5.0, 3.0, 1.0],
0 0 0 1.0 dense_shape=[2, 4])

1 3 1.0

[1] Google Colab Exercise



Google Colab — Movie Rental Recommendation Notebook — Rating Matrix & Error

[11] def build rating_sparse_tensor(ratings_df):
nan
Args:
ratings df: a pd.DataFrame with “user_id®, ‘movie id" and ‘rating” columns.
Returns:

A tf.SparseTensor representing the ratings matrix.

Complete this section

indices =

values =

.

return tf.SparseTensor(
indices=indices,
values=values,

dense_shape=[users.shape[0], movies.shape[0]])

(a function that maps from ratings (solution)
DataFrame to a TensorFlow SparseTensor)

def sparse_mean_ square_error (sparse_ratings, user_embeddings, movie_embeddings) :
wan
Args:
sparse_ratings: A SparseTensor rating matrix, of dense_shape [N, M]
user_embeddings: A dense Tensor U of shape [N, k] where k is the embedding
dimension, such that U i is the embedding of user i.
movie embeddings: A dense Tensor V of shape [M, k] where k is the embedding
dimension, such that V_j is the embedding of movie j.
Returns:
A scalar Tensor representing the MSE between the true ratings and the
model's predictions.

¥ Complete this section
# loss =
#

return loss

(solution, but infeasible for ‘big data’)

[12] #@title Solution
def bui

d rating sparse_ tensor{ratings df):

Args:
ratings df: a pd.DataFrame with ‘user id’, ‘"movie id’ and ‘rating® columns.
Returns:
a tf.SparseTensor representing the ratings matrix.
wun
indices = ratings df[['user_id', 'movie id"]].values
values = ratings df['rating'].values
return tf.SparseTensor(
indices=indices,
values=values,

dense shape=[users.shape[0], movies.shape[0]])

#@title Solution

def sparse mean square error(sparse ratings, user embeddings, movie embeddings):

Args:
sparse_ratings: A SparseTensor rating matrix, of dense_shape [N, M]
user_embeddings: A dense Tensor U of shape [N, k] where k is the embedding
dimension, such that U_i is the embedding of user i.
movie embeddings: A dense Tensor V of shape [M, k] where k is the embedding
dimension, such that V_j is the embedding of movie j.
Returns:
A scalar Tensor representing the MSE between the true ratings and the
model's predictions.
wnn
predictions = tf.gather_nd(
tf.matmul (user_embeddings, movie embeddings, transpose_b=True),
sparse_ratings.indices)
loss = tf.losses.mean_squared error(sparse_ratings.values, predictions)
return loss

[1] Google Colab Exercise



Google Colab — Movie Rental Recommendation Notebook — Mean Squarer Error

® Error to guide the learning process ) [cotprocuc (U, V) R A;; (learning goal
= Calculating the error to improve learning

. .
[15] #etitl 1t lution
and to measure the approximation error gl R —
. . . .
= Model approximates the ratings matrix A e i 8 Serecenies rating meein, o cenee e 4
user_embeddings: A dense Tensor U of shape [N, k] where k 1s the embedding
by a Iow_ra nk prod uct UVT dimension, suc h that U_i is the embedding of user i.

movie embeddings: A dense Tensor V of shape [M, K] where K is the embedding
dimension, suc h that V_Jj is the embedding of movie j.

5:
. M D M A scalar Tensor representing the MSE between the true ratings and the
I rS I | r a C a S S I e model's predictions.

ey . predictions = tf.reduce_sum(
" |nitially Mean Squared Error (MSE) T e
is=1)
of observed entries only e o 8. W o e e e S e, e

return loss

MSE(A,UV ") = I_flll D (A — (UVT)y)?
(

T o = Second Approach (above)
- @,,Z;En (Aij — (Ui, V3))?

where (2 is the set of observed ratings, and |{2| is the cardinality of £2. " Only gather the embeddings Of the Observed
pairs, then compute their dot products

= More efficient to fit into memory for ‘big data’

= Compute the full prediction matrix UVT costly,
then gather entries corresponding to the

observed pair'S not feasible for (big data’ O(|Q2|d) where d is the embedding dimension. (Note: next notebook steps in
( (embedding di . adding new ratings via spread
memory (simple example here ok —10° embedding dimension on sheets is not used here

O(NM) ‘ footprint) N =943, M = 1682 Q=10 )

since it fits into memory) order of 10) [1] Google Colab Exercise
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= Approach

= Class to train a matrix factorization model using
stochastic gradient descent (cf. Lecture 6)

[16] # @title CFModel helper class (run this cell
class CFModel {object) :
"rusimple class that represents a collaborative filtering model™™™
def init_ (self, embedding vars, loss, metrics=None):
""rTnitializes a CFModel.
Args:
embedding vars: A dictionary of tf.Variables.
loss: A float Tensor. The loss to optimize.
metrics: optional list of dictionaries of Tensors. The metrics in each
dictionary will be plotted in a separate figure during training.

num

self. embedding vars = embedding vars

self. loss = loss

self. metrics = metrics

self. embeddings = {k: None for k in embedding_vars}
self. session = None

Eproperty

def embeddings(self):
"""The embeddings dictionary.™""
return self. embeddings

def train(self, num iterations=100, learning_rate=1.0, plot_results=True,
optimizer=tf.train.GradientDescentOptimizer):
e

Args:
iterations: number of iterations to run.
learning_rate: optimizer learning rate.
plot_results: whether to plot the results at the end of training.
optimizer: the optimizer to use. Default to GradientDescentOptimizer.
Returns:
The metrics dicticnary evaluated at the last iteration.

nuw

with self. loss.graph.as default():
opt = optimizer(learning rate)
train op = opt.minimize(self. loss)
local init op = tf.group(
tf.variables initializer(opt.variables()),
tf.local variables initializer())
if self._session is None:
self. session = tf.Session()
with self. session.as default():
self. session.run(tf.global variables initializer())
self. session.run(tf.tables initializer())
tf.train. start_queue_runners()

with self. session.as_default():
local init op.run()

iterations = []
metrics = self. metrics or ({},)
metrics vals = [collections.defaultdict(list) for _ in self. metrics]

# Train and append results.
for i in range(num_iterations + 1):
_+ results self. session.run((train op, metrics))

if (i % 10 0) or i == num iterations:
print ("\r iteration %d: " % i + ", ".join(
"gs=%f" % (k, v) for r in results for k, v in r.items()]),
end="")

iterations.append (i)
for metric wal, result in zip(metrics vals, results):
for k, v in result.items() :
metric vallk].append(v)

for k, v in self. embedding vars.items():
self. embeddings[k] = v.eval()

if plot_results:
# Plot the metrics.
num subplots = len(metrics)+l
fig = plt.figure()
fig.set size inches(num subplots*10, &)
for i, metric vals in enumerate (metrics_vals):
ax = fig.add subplot(l, num subplots, i+l)
for k, v in metric vals.items():
ax.plot(iterations, v, label=k)
ax.set_xlim([1, num iterationsl)
ax.legend()
return results

‘ Problem ‘ »

Deployment

After training a matrix
factorization model
using stochastic
gradient descent (SGD)
we obtain the trained
embeddings via a
model.embeddings
dictionary that in turn
is used to perform
recommendations

(learning)

R

model . embeddings




Google Colab — Movie Rental Recommendation Notebook — Model Learning

[17] def build model(ratings, embedding dim=3, init stddev=l.):

Args: %
ratings: a DataFrame of the ratings
embedding dim: the dimension of the embedding vectors.
init_stddev: float, the standard deviation of the random initial embeddings. 14
Returns:
model: a CFModel.
o 12
# Split the ratings DataFrame into train and test.
train ratings, test ratings = split dataframe(ratings)
# SparseTensor representation of the train and test datasets. 0
Complete this section
A train =
A_test = 8

Initialize the embeddings using a normal distribution.
= tf.variable(tf.random_normal(
[A_train.dense_shape[0], embedding dim], stddev=init_stddev)) 6
V = tf.Variable(tf.random_normal (
[A_train.dense_shape[l], embedding dim], stddev=init_stddev))

#
#
#
#
#
u

# Complete this section 4
# train loss =

# test loss =

# 2
metrics = {

'train error': train_loss,
'test_error': test_loss
i
embeddings = {
"user_id": U,
"movie id": V

Ireturn CFModel (embeddings, train loss, [metrics]) I

(181 Solution (hidden solution)

(embedding dimension 30 parameter)

[19] # Build the CF model and trg
model = build model (ratings
model.train(num iterations=

iteration 1000: train_error=0.372467, test_error=1.334507[{'test_error':

(how good is the
model?)

(looks like we

lower the train
and test error
successfully)

— ftrain_emor
test_error

200 400 600

Problem

=
&
scientific
data sefs

Deployment

5

800 1000

1.334507, 'train_error': 0.37246665}]

] Latent features are learned, but are hard to explain

= Latent features are known as ‘hidden features’ to
distinguish them from observed features

" Latent features are computed from observed
features using matrix factorization techniques

[1] Google Colab Exercise
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= Evaluation Viewpoints
= Movie recommendation

Problem ‘ »

-
& - [paa
scientific

data sets “

* Nearest neighbors of some movies

= Norms of the movie embeddings

= (Visualizing the embedding
in a projected embedding space)

(how good is the
model really?)

= Computes the