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Executive – Summary & Overview



1. Some pattern exists
2. No exact mathematical formula
3. Data exists
 Idea ‘Learning from Big Data‘

 Shared with a wide variety
of other disciplines

 E.g. signal processing, 
big data mining, etc.

 Challenges 
 Data is often complex
 Requires ‘Big Data analytics‘
 Learning from data requires 

processing time  Clouds or
High Performance Compuing

[25] Python

Machine Learning, Data Mining & Statistics overlap to enable Data Science

 Machine learning is a very broad subject and goes from very abstract theory to extreme practice 
(‘rules of thumb’)

 Training machine learning models needs processing time (clouds or high performance computing)
 While data analysis is more describing the process of analysin the data, the term data analytics also 

includes and the necessary scalable or parallel infrastructure to perform analysis of ‘big data’
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[24] Jupyter



ON4OFF Review – Executive Summary – Machine Learning in ON4OFF

 Part II - Deep Learning to ‘mine’ product tags for DBs Part I – Association Rule Mining

[12] Big Data Tips, Association Rules

(APRIORI uses
frequent itemsets &
iterative approach)

[13] Performance Evaluation Apriori vs. FP-Growth

sup = 0.5

(FP-GROWTH uses 
requent pattern

tree-based approach)

(customer question in store: I want to have a perfume that looks like a ‘gold bar‘)

(name unknown,
but shape &
color known
by customer)

(databases - DBs – have
no color or shape info)

(shapes)

(colors with 
another script)



KI Part I: Unpersonalisierte Vorschläge

Anonymisierte
Verkaufsdaten

per Händler
ohne Kunde

Analyse mit 
Algorithmen

der Künstlichen
Intelligenz

Verbesserte
Datenauswahl &

KI Modell
Parameter

Regeln welche
Produkte zusammen

gekauf werden

Händler Gibt
Transaktionen mit:
Produkt-IDs im Warenkorb

KI Algorithmen
Association Rule Mining
Apriori, FP-Growth, MAFIA

Modell-Tuning
KI Algorithmen-Parameter zur 
Anpassung beim Händler:
confidence, support, lift, Filiale

Händler Bekommt
Liste mit Regeln nach Muster:

Gekauft Produkt A  Kauf Produkt B & C

Gekauft Product D & E  Kauf Produkt F

ON4OFF



ON4OFF

KI Part III: Personalisierte Vorschläge (Details in Folien)

Anonymisierte

Verkaufsdaten

per Kunde

Analyse mit 
Algorithmen

der Künstlichen
Intelligenz

Verbesserte
Datenauswahl &

KI Modell 
Parameter

Für jeden Kunden
individuelle

Kaufvorschläge

Händler Gibt
Transaktionen mit:
Kunden-ID
Produkt-IDs
Rating (falls vorhanden)

KI Algorithmen
Collaborative Filtering
Singular Value Decomposition 
(SVD), Deep Learning

Modell-Tuning
KI Algorithmen-Parameter zur 
Anpassung beim Händler:
Rating-Modell, Filiale, Saison

Händler Bekommt
Liste mit Vorschlägen nach Muster:

Kunde A  Kauft Produkt B & C

Kunde A  Ähnlich wie Kunde B



Part III – Collaborative Filtering



Executive Summary – Collaborative Filtering & Clustering Approaches

 Example: K-Means Clustering  Example: Recommendation Engine
 Using Collaborative Filtering via Google ‘Colab‘

[10] YouTube video, 
Visualization of K-Means Clustering

[8] Collaborative Filtering
Recommender System on Colab

[9] Google 
Colaboratory

(similar 
personality?)



Another Form of ‘Data Mining‘ using Recommender Systems – Overview

 Content-based / Product-based Recommendation Systems
 E.g. Netflix user has watched many cowboy movies in the past (focus on product feature)
 Recommendation: movie classified in the database as having the ‘cowboy‘ genre tag
 (not covered here as relatively straightforward to implement: e.g., DB lookup)
 Might be still useful in combination with more elaborate systems if space in GUI is available

 Collaborative Filtering-based / Customer-based Recommendation Systems
 E.g. Similiarity of the customer ratings for products (not focus on product feature)
 Identify: looking at other customers that are most similar to this customer
 Recommendation: products that are liked or preferred by the other ‘similiar customers‘
 Focus in this lecture and on one concrete algorithm: matrix factorization

(e.g., 
vegan tag)

[14] Pieper.de Duefte

(similar 
personality?)



Collaborative Filtering – Methodology 

 Methodology
 Recommendation systems that leverage 

existing shopping/watching/listening behaviour patterns 
 Predicts what customers could like in future 

based on previous customers behavior patterns
 Assumes that customers like products similar 

to other products they like, but also products
that are liked by other people with similar taste

 Approach
 Uses different machine learning methods
 Collaborative filtering is a general concept 

and there are many algorithms (e.g., singular 
vector decomposition, neural networks, etc.)

 Two main techniques: memory & model-based 
collaborative filtering [15] Big Data Tips,

Recommender Systems
[16] Towards Data Science,
Various CFs



Collaborative Filtering – Memory and Model-based Techniques

 Two quite different approaches for the same problem
 Popular approaches are based on low-dimensional factor models these days
 Different approaches have different advantages and disadvantages and could be used both (if needed)

[16] Towards Data 
Science, Various CFs

(this lecture will focus on Matrix Factorization – with a simple demonstration)

 Memory-based approaches for Collaborative 
Filtering can quickly become computationally 
expensive, but enables better explainability

 Model-based approaches work with 
dimensionality reduction, but results are not 
easy to explain to store managers



Collaborative Filtering – Famous Dataset Example & Challenges

 Famous Example in Retail
 Illustrating the underlying assumption that

if a customer A has the same opinion/rating as 
a customer B on a certain product…

 … A is more likely to have B’s opinion on a different
product as well than that of a randomly chosen customer

 Challenges
 In real datasets millions or billions of transactions

are used, including ratings if possible (otherwise buy & not buy only)
 Unfortunately in practice not always ratings are existing

 Algorithms Benefit
 Automation of the process using collaborative filtering algorithms
 Patterns help to identify new opportunities and 

ways for cross-selling products to customers
[17] Towards Data 
Science, CF & Embeddings 



Matrix Factorization-based Algorithms & Tool Support Examples

[16] Towards Data 
Science, Various CFs

 Deep Learning techniques change the experiences over the 
last decades and become more popular with very good 
accuracies and good packages (e.g., fast.ai) using innovative 
HPC & Cloud computing

 Scikit-surprise is a package specifically 
designed for recommendation systems 
and includes a variety of algorithms in 
Python useful for data mining tasks

[18] scikit-surprise library

[19] fast.ai library

Non parametric 
approach



Systematic Process to Support Learning From Data – Revisited 

 Systematic data analysis guided by a ‘standard process‘
 Cross-Industry Standard Process for Data Mining (CRISP-DM)

 Significant time goes into Steps 2-3 as well!
[20] CRISP-DM Model

 A data mining project is 
guided by these six phases: 
(1) Problem Understanding; 
(2) Data Understanding; 
(3) Data Preparation; 
(4) Modeling; 
(5) Evaluation; 
(6) Deployment

(learning
takes place)



Collaborative Filtering in ON4OFF – General Understanding & Approach



Movie Recommendation Example using Collaborative Filtering Techniques

 Given movie feedback matrix
 Row represents a user
 Column represents a movie

 Feedback encoding
 One of two categories: explicit & implicit feedback
 Example: feedback matrix is binary with 

a value of 1 that indicates interest in the movie

 Embeddings Approach
 Can be learned automatically

(no need for hand-engineering of features)
 1D Embedding Example 

 Collaborative filtering uses similarities between users and items 
simultaneously to provide recommendations

 Collaborative filtering models can recommend an item to user A 
based on the interests of a similar user B

 Explicit feedback in collaborative filtering means that users 
specify how much they liked a particular movie by providing a 
numerical rating

 Implicit feedback in collaborative filtering means that if a user 
watches a movie, the system infers that the user is interested

 The goal of collaborative filtering systems in movie ratings are to 
recommend (1) similarity to movies the user has liked in the past, 
and (2) movies that similar users liked and are not seen yet

Practical Lecture 11.1 – Using Data Mining & Recommender Techniques in Clouds

[1] Google Colab Exercise

(assign scalar for 
movies [-1,1])

(assign scalar for 
users [-1,1])

product of movie embedding & 
user embedding should be 
higher (closer to 1) for movies 
that we expect the user to like

users watched these 
movies & preferences 
are well explained 
by this feature



 Embeddings can be learned 
automatically, which is the power 
of collaborative filtering models

 Embeddings of users with similar 
preferences will be close together

 Embeddings of movies liked by 
similar users will be close in the 
embedding space

Collaborative Filtering Techniques & Automatically Learned Embeddings

 Embeddings Approach
 1D feature not enough to 

explain preferences well
 2D Embedding Example:

add a second feature
 E.g. the degree to which each movie is a 

blockbuster or an arthouse movie

[1] Google Colab Exercise

users watched these 
movies & preferences 
are not well explained 
by this feature

product of movie embedding & 
user embedding should be 
higher (closer to 1) for movies 
that we expect the user to like

for each (user, item) pair, the dot product of the user embedding & the item embedding 
should be close to 1 when the user watched the movie, and to 0 otherwise

Example: (0.1 x 1) + (1 * -1) = - 0.9 

 The embedding space is an abstract representation 
common to both items and users, in which we can 
measure similarity or relevance using a similarity metric

(handcrafted features as an example)



Matrix Factorization Approaches as Simple Embedding Model

 Given movie feedback matrix A
 Row represents a user: m users
 Column represents a movie: n movies

 Model learns automatically:
 User embedding matrix U

(row i is the embedding for user i)
 Movie embedding matrix V

(row j is the embedding for movie j)
 Learning = minimize ‘errors‘

 Embeddings
 Have an embedding dimension d

(here we have a 2D example)
 Learned such that the product UVT

is a good approximation of matrix A
[1] Google Colab Exercise

c

(objective function, cf. Lecture 6)

(minimize the sum of squared errors 
over all pairs of observed entries = 
Observed Only MF)

(learning goal)

(learning)

c
(treat the unobserved values as zero, 
and sum over all entries in the matrix)

(SVD = singular value 
decomposition, poor
generalization in
sparse movie 
rating matrix setup)

(sum over observed entries + sum over not 
observed entries using hyperparameter w0)

(optimization
problem can
be solved with
SGD for example)



Google Colab – Movie Rental Recommendation Notebook & Porting Juelich

(save copy in Drive & rename & save)

[9] Google 
Colaboratory

[1] Google Colab Exercise



Google Colab – Movie Rental Recommendation Notebook – Connect & Setup

 Recommendation engine is built using 
TensorFlow deep learning package

 Recommendation engine script requires imports 
from various useful libraries: e.g., pandas, 
numpy, sklearn, etc.

 Installing Altair and importing the library
 Altair is a library for declarative visualization in 

Python and offers very good interactive 
visualizations for data analysis

 Manipulating Pandas DataFrame options and 
adding selected convenient functions

[21] Altair 
Visualization 
library

 Installing and importing gspread that is a 
Python API for Google Sheets

 Optional as this enables own ratings to inject 
into the recommendation system (if needed)

[23] gspread API

[1] Google Colab Exercise



Google Colab – Movie Rental Recommendation Notebook – Data Understanding

 Movielens Dataset
 http://files.grouplens.org/datasets/movielens/ml-100k.zip

[22] MovieLens Dataset

Training Examples

(historical records, groundtruth data, examples)

[1] Google Colab Exercise



 Check available data
 Users
 Ratings
 Genre
 Movies

Google Colab – Movie Rental Recommendation Notebook – Check Dataset

 The MovieLens dataset 
consists of data about 
users, ratings about 
movies, the genre of 
movies and information 
about movies

[1] Google Colab Exercise



Google Colab – Movie Rental Recommendation Notebook – Training & Testing

 Like in previous 
examples of machine 
learning and data 
mining, also for 
learning the  
recommendation 
engine we split the 
available dataset into 
two disjunct datasets: 
train and test datasets

Training Examples

(historical records, groundtruth data, examples)

‘test set’‘training set’

(understanding some basic statistics 
describing numeric user features)

(warning appears if
you not use the

notebook)

[1] Google Colab Exercise



Google Colab – Movie Rental Recommendation Notebook – Data Visualization

[21] Altair Visualization library

.

 Interactive data visualization techniques are an important approach to have a better data understanding
 E.g. histograms to further understand the distribution of the users, distribution of ratings per user, 

occupation in the right chart filters the data by that occupation
 E.g. data understanding observed: very high number of ratings from students  recommendation bias

[1] Google Colab Exercise

(students have a lot of records compared 
to other users who rated movies)



Google Colab – Movie Rental Recommendation Notebook – Movie Data

[1] Google Colab Exercise



Starting the Modeling Approach – Matrix Factorization – Revisited 

 Factorize the ratings matrix A 
 Into the product of a user embedding 

matrix U and movie embedding matrix V

 Using TensorFlow (cf. Lecture 6 & 7) SparseTensor
 Sparse representation of the rating matrix A required
 Rating matrix could be very large

(many users and many movies)
 Example: 

[1] Google Colab Exercise

c

(learning goal)c

(learning)

 A rating matrix used in collaborative filtering with matrix factorization 
in the movie recommendation example shows that most of the entries 
are unobserved, since users will only rate a small subset of all movies

(full rating matrix A example)

(efficient SparseTensor 
representation example)



Google Colab – Movie Rental Recommendation Notebook – Rating Matrix & Error

[1] Google Colab Exercise

(solution)(a function that maps from ratings 
DataFrame to a TensorFlow SparseTensor)

(solution, but infeasible for ‘big data’)



Google Colab – Movie Rental Recommendation Notebook – Mean Squarer Error

 Error to guide the learning process
 Calculating the error to improve learning

and to measure the approximation error
 Model approximates the ratings matrix A

by a low-rank product UVT

 First Approach (last slide)
 Initially Mean Squared Error (MSE) 

of observed entries only

 Compute the full prediction matrix UVT costly,
then gather entries corresponding to the 
observed pairs not feasible for ‘big data’ 

[1] Google Colab Exercise

(learning goal)c

(memory 
footprint)

(simple example here ok 
since it fits into memory)

 Second Approach (above)
 Only gather the embeddings of the observed 

pairs, then compute their dot products
 More efficient to fit into memory for ‘big data’ 

(embedding dimension on 
order of 10)

(Note: next notebook steps in 
adding new ratings via spread 

sheets  is not used here)



Google Colab – Movie Rental Recommendation Notebook – Model Building

 Approach
 Class to train a matrix factorization model using 

stochastic gradient descent (cf. Lecture 6)

 After training a matrix 
factorization model 
using stochastic 
gradient descent (SGD) 
we obtain the trained 
embeddings via a 
model.embeddings 
dictionary that in turn 
is used to perform 
recommendations

c

(learning)



Google Colab – Movie Rental Recommendation Notebook – Model Learning

 Latent features are learned, but are hard to explain
 Latent features are known as ‘hidden features’ to 

distinguish them from observed features
 Latent features are computed from observed 

features using matrix factorization techniques

c

(learning)

[1] Google Colab Exercise

(hidden solution)

(embedding dimension 30 parameter)

(how good is the 
model?)

(looks like we 
lower the train 
and test error
successfully)



Google Colab – Movie Rental Recommendation Notebook – Model Evaluation

 Evaluation Viewpoints
 Movie recommendation
 Nearest neighbors of some movies
 Norms of the movie embeddings
 (Visualizing the embedding 

in a projected embedding space)

 Computes the scores of the candidates
 Different similarity measures will yield different results

[1] Google Colab Exercise

(hidden solution)

(how good is the 
model really?)



Google Colab – Movie Rental Recommendation Notebook – Model Evaluation

 Validating recommendations
 Using different score measures

(how good is the 
model really?)

(manual 
validation, would 
you assume this 

to be right?)

 Using the dot-product score for model evaluation in 
training a matrix factorization model the model tends to 
recommend popular movies

 Popular movies are explained by the fact that in matrix 
factorization models, the norm of the embedding is 
often correlated with popularity

 Popular movies have a larger norm that makes the 
model more likely to recommend more popular movies

(confirm this by 
sorting the movies 

by their 
embedding norm)

[1] Google Colab Exercise



Google Colab – Movie Rental Recommendation Notebook – Model Tuning

 Working on Hyperparameters
 Change initial standard deviation

hyperparameter init_stddev
 How does this affect the embedding 

norm distribution, and the ranking of 
the top-norm movies?

(manual 
validation, 
changes in 

recommendation
observed)

(new model training 
after tuning 

hyperparameter)

(how good is the 
model?)

(looks like we 
lower the train 
and test error
successfully)

(remember much 
more record 

counts for drama
in movies than 
others  bias) [1] Google Colab Exercise



Google Colab – Movie Rental Recommendation Notebook – Model ‘Visualization‘

 Evaluation Viewpoints
 Movie recommendation
 Nearest neighbors of some movies
 Norms of the movie embeddings
 Visualizing the embedding 

in a projected embedding space
 Example t-SNE approach

(how good is the 
model really?)

 It is hard to visualize model embeddings in a higher-
dimensional space (>3, here in this example the embedding 
dimension is 30) so one idea is to project the embeddings to 
a lower dimensional space

 t-distributed Stochastic Neighbor Embedding (t-SNE) is an 
algorithm that projects the embeddings while attempting to 
preserve their pairwise distances

 t-SNE is used for visualization of models but should be 
handled with care (embeddings hard to visualize correctly)

[1] Google Colab Exercise[26] t-SNE information

(not good model because 
we trained only on the 

observed pairs and using no
regularization method, cf. 
Practical Lecture 3.1 & 7.1)

(idea: genre still 
somewhat close in 

the embedding space)

(poor quality model identified by interactive 
visualization: embeddings have not any 

notable structure: embeddings of genre are 
located all over the embedding space)

(observed pairs with bias)



Google Colab – Movie Rental Recommendation Notebook – Model Regularization

 Learned insights from Evaluation
 Poor model quality

 Regularization for Matrix Factorization
 Regularization often inherent in model building

(e.g., logistic regression, or support vector machines)
 Add two types of regularization terms that will address this issue:

(observed pairs with bias)

 In learning a recommendation engine with matrix 
multiplication a potential poor model quality can 
occur when learning only on the observed part of 
the rating matrix and not using regularization

 The reason for poor model quality in this case is 
known as ‘folding’: the model does not learn how 
to place the embeddings of irrelevant movies

(hidden solution)

(total loss with two new hyper-
parameters for tuning: the 
amount of regularization)



Google Colab – Movie Rental Recommendation Notebook – Model Tuning Again

 Hyper-Parameter Tuning
 Most complex aspect in 

machine learning & data mining
 Takes massive human time with a 

lot of possibilities to choose from
 E.g. regularization_coeff
 E.g. gravity_coeff
 E.g. embedding_dim
 E.g. init_stddev
 E.g. num_iterations (fitting over time)
 E.g. learning_rate (relevant for SGD)

(how good is the 
model?)

(looks like we 
lower the train 
and test error
successfully)

(using regularization 
gives us confidence 

into the model,
cf. (Practical) Lectures 

2, 3, 3.1 & 7.1)

 Several techniques have been established to help with 
a more systematic hyper-parameter tuning, like AutoML 
techniques or genetic algorithms for example

 Still many modeling activities require human 
intervention to really tune a machine learning or data 
mining model really right so that it generalizes well



Google Colab – Movie Rental Recommendation Notebook – Final Model?

 Back to Model Evaluation
 After Regularization and 

using different learning scheme
 E.g. dot-product, cosine, norms

(we seem to
improve the
modeling)

(exclude_rated: own rated ones 
via spread sheet)

(comparing norms between model 
& new regularized model)



Google Colab – Movie Rental Recommendation Notebook – Final Model!

 Continue Model Evaluation
 Visualizing the embedding 

in a projected embedding space
 Example t-SNE approach

 The final model evaluation after 
regularization reveals that the 
embeddings have a lot more structure 
than the unregularized model case

 Examples include different genres 
where one can observe how they tend 
to form clusters (e.g., Horror, Animation 
and Children), but ‘never perfect’

 More specialized algorithms such as 
Alternating Least Squares (ALS) might 
improve the modeling

(final step: deploy it
in a real movie 

recommendation
environment with

unseen data & 
new movies/users)



Appendix – Data Mining – Association Rule Mining



 Startup Remote Jupyter (Jupyter @ JSC)
 Understanding differences between local laptop vs. remote cloud or HPC system
 Understanding differences Jupyter vs. JupyterLab

Remote Access to HPC Systems: Jupyter @ Juelich Supercomputing Centre (JSC)

[2] Jupyter [3] Jupyter @ JSC



Jupyter @ JSC – Register & Access

(your email)

(after login press ‘join project‘ and fill out the information as below) [5] JuDoor



Jupyter @ JSC – Access via JuDoor Account & Use HDF – Cloud

 Helmholtz Data Federation (HDF) Cloud Computing Platform @ JSC
 Comprises OpenStack compute, network, and volume services as well as an integration 

with the DATA file system also available on the HPC systems
 Includes links to other services relevant for the EOSC Cloud (e.g., B2DROP academic dropbox)

[6] HDF-Cloud



Jupyter @ JSC using the HDF-Cloud – Startup & Install MLxtend Library 

[7] mlxtend lib, Apriori



Using Apriori Algorithm with Retail Shopping Data Example

(use configuration parameter
to finetune the results)

[7] mlxtend lib, Apriori

(load notebook &
example data)



Using FP-Growth Algorithm with Retail Shopping Data Example

[7] mlxtend lib, FP-Growth

(load notebook &
no data)

(simple 
transaction
generation)
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