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UNIVERSITY OF ICELAND
School of Engineering and Natural Sciences (SENS)

[2] University of Iceland Web page

 Selected Facts
 Ranked among the top 300 

universities in the world 
(by Times Higher Education)

 ~2900 students at the 
SENS school

 Long collaboration with 
Forschungszentrum Juelich

 ~350 MS students and ~150 doctoral students.

 Many foreign & Erasmus students; english courses
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JUELICH SUPERCOMPUTING CENTRE (JSC)
Institute of Multi-Disciplinary Research Centre Forschungszentrum Juelich of the Helmholtz Association

[1] Holmholtz Association Web Page

 Selected Facts
 One of EU largest 

inter-disciplinary
research centres
(~5000 employees)

 Special expertise in physics, materials science, nanotechnology,
neuroscience and medicine & information technology  (HPC & Data)  
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JUELICH SUPERCOMPUTING CENTRE (JSC) OF FZJ
Simulation & Data Labs (SDL) using High Performance Computing (HPC)

Communities
(e.g. remote
sensing &

health)
Research 
Groups

Simulation Labs

Cross-Sectional Teams Data Life Cycle Labs Exascale co-Design

Facilities

PADC

DEEP-EST
EU 

PROJECT

Domain-specific 
SDLs

Cross-
Sectional 

Team Deep 
Learning

Modular
Supercomputer

JURECA

Modular 
Supercomputer 

JUWELS

Research 
Group High 
Productivity 

Data 
Processing

Industry
Relations

Team
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INTRODUCTION TO HIGH PERFORMANCE COMPUTING
Selected Basics of HPC and Relevance in the European & International Landscape
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HPC & DATA SCIENCE: A FIELD OF CONSTANT EVOLUTION
Perspective: Floating Point Operations per one second (FLOPS or FLOP/s)

© Photograph by Rama, 
Wikimedia Commons

1.000.000 FLOP/s

1.000.000.000.000.000 FLOP/s

~1984

~295.000 cores~2009 (JUGENE)

>5.900.000.000.000.000
FLOP/s
~ 500.000 cores
~2013  end of service in 2018

 1 GigaFlop/s = 109 FLOPS
 1 TeraFlop/s = 1012 FLOPS
 1 PetaFlop/s = 1015 FLOPS
 1 ExaFlop/s = 1018 FLOPS
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HIGH PERFORMANCE COMPUTING (HPC)
In Comparison to High Throughput Computing (HTC)

Page 7

 High Performance Computing (HPC) is based on computing resources that enable the efficient use of parallel computing techniques 
through specific support with dedicated hardware such as high performance cpu/core interconnections.

 High Throughput Computing (HTC) is based on commonly available computing resources such as commodity PCs and small clusters that 
enable the execution of ‘farming jobs’ without providing a high performance interconnection between the cpu/cores.

HPC

HTC

(network connection
very important & costly)

(network connection
less important)
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USING PARALLEL COMPUTING ON HPC MACHINES

 All modern supercomputers depend heavily on parallelism
 Parallelism can be achieved with many different approaches

 Often known as ‘parallel processing’ of some problem space
 Tackle problems in parallel to enable the ‘best performance’ possible
 Includes not only parallel computing, but also parallel input/output (I/O)
 ‘The measure of speed’ in High Performance Computing matters
 Common measure for parallel computers established by TOP500 list
 Based on benchmark for ranking the best 500 computers worldwide

Concurrency & Computation

 We speak of parallel computing whenever a number of ‘compute 
elements’ (e.g. cores) solve a problem in a cooperative way

[5] Introduction to High Performance Computing for Scientists and Engineers

P1 P2 P3 P4 P5
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BUILDING BLOCKS OF HPC SYSTEMS

 Significant advances in CPU (or microprocessor chips)
 Multi-core architecture with dual, 

quad, six, or n processing cores
 Processing cores are all on one chip

Multi-core CPU chip architecture  
 Hierarchy of caches (on/off chip)
 L1 cache is private to each core; on-chip
 L2 cache is shared; on-chip
 L3 cache or Dynamic random access memory (DRAM); off-chip

Multi-core CPU Processors

Page 9

 Clock-rate for single processors increased from 10 MHz (Intel 286) to 4 GHz (Pentium 4) in 30 years
 Clock rate increase with higher 5 GHz unfortunately reached a limit due to power limitations / heat
 Multi-core CPU chips have quad, six, or n processing cores on one chip and use cache hierarchies

one chip

[22] Distributed & Cloud Computing Book
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SHARED MEMORY PROGRAMMING MODEL

 Two varieties of shared-memory systems:
 Unified Memory Access (UMA)
 Cache-coherent Nonuniform Memory Access (ccNUMA)

 The Problem of ‘Cache Coherence’ (in UMA/ccNUMA)
 Different CPUs use Cache to ‘modify same cache values’
 Consistency between cached data & 

data in memory must be guaranteed
 ‘Cache coherence protocols’ ensure a consistent view of memory

Using OpenMP

Sh
ar

ed
 M

em
or

y

T1 T2 T3 T4 T5

 A shared-memory parallel computer is a system in which a number of CPUs work on a common, shared physical address space
 Shared-memory programming enables immediate access to all data from all processors without explicit communication
 OpenMP is dominant shared-memory programming standard today (v3)
 OpenMP is a set of compiler directives to ‘mark parallel regions’

Page 10

[25] OpenMP API Specification
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DISTRIBUTED MEMORY PROGRAMMING MODEL

 Approach
 No remote memory access on distributed-memory systems
 Require to ‘send messages’ back and forth between processes PX
 Many free Message Passing Interface (MPI) libraries available
 Programming is tedious & complicated, but most flexible method
 Hybrid Programming
 Combine Shared memory with Distributed Memory often in practice
 Harder to program, but enables often more performance (if programmed well)

Using Message Passing Interface (MPI)

P1 P2 P3 P4 P5

[26] MPI Standard

Page 11

 A distributed-memory parallel computer establishes a ‘system view’ where no process can access another process’ memory directly
 Distributed-memory programming enables explicit message passing as communication between processors
 Message Passing Interface (MPI) is dominant distributed-memory programming standard today (available in many different version)
 MPI is a standard defined and developed by the MPI Forum
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BUILDING BLOCKS OF HPC SYSTEMS

 Use of very many simple cores
 High throughput computing-oriented architecture 
 Use massive parallelism by executing a lot of 

concurrent threads slowly
 Handle an ever increasing amount of multiple 

instruction threads
 CPUs instead typically execute a single 

long thread as fast as possible

Many-core GPUs are used in large 
clusters and within massively parallel supercomputers today
 Named General-Purpose Computing on GPUs (GPGPU)
 Different programming models emerge

Many-core GPGPUs

Page 12

 Graphics Processing Unit (GPU) is great for data parallelism and task parallelism 
 Compared to multi-core CPUs, GPUs consist of a many-core architecture with 

hundreds to even thousands of very simple cores executing threads rather slowly

[22] Distributed & Cloud Computing Book
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GPGPU PROGRAMMING MODEL
Using Host & Device Memory

[27] JSC GPU Course

Page 13

 CPU acceleration 
means that GPUs 
accelerate computing 
due to a massive 
parallelism with 
thousands of threads 
compared to only a 
few threads used by 
conventional CPUs

 GPUs are designed to 
compute large 
numbers of floating 
point operations in 
parallel

 The Processing flow is 
(a) transfer data from 
CPU memory to GPU 
memory; (b) Load GPU 
program and execute 
on GPU device using 
device memory; (c) 
transfer results back to 
host memory
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SIMULATION SCIENCES APPLICATIONS

 Known physical laws
 Numerical methods
 Parallel Computing

Traditional Supercomputing and HPC Impact in Scientific Computing

Experiment
‘we observe
the nature‘

Numerical calculations…
…simulation over time

Model

Theory
‘we create
a model

of nature'
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WORLDWIDE HPC ROADMAP TO EXASCALE
Coordinated Activities 

• Flagship 2020: Post-K
• 2020

• Fujitsu+ARM

• TaihuLight
• 2020

• Lenovo+ShenWei/FeiTeng CPU  

• CORAL: 2 Exascale machines

• 2023

• Intel+Cray and IBM+NVIDIA

• H2020 + IPCEI + EuroHPC + EU Cloud initiative
• 2022

• Technology and design not fixed yet
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EUROPEAN HPC STRATEGY
Coordinated Activities 

• PRACE
• Computing infrastructures for European Users

• Operation, support and training

• ETP4HPC
• Industry-driven Roadmap (SRA)

• Pushing for Extreme Scale Demonstrators

• EuroHPC
• EU-based technology development, eg. processor

• Pushing for EU-made machine by 2022

• H2020
• Technology (HW+SW) development in Co-design

• FETHPC + Flagships + Quantum Computing
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EUROPEAN UNION & COMMISSION PLANS
Supporting Artificial Intelligence & Supercomputers – Relevance of HPC & AI in Europe

“By supporting 
strategic projects in frontline 

areas such as artificial 
intelligence, supercomputers, 

cybersecurity or
industrial digitisation, and 
investing in digital skills, 
the new programme will 

help to complete the Digital 
Single Market, a key priority of 

the Union.” 

[9] COMMUNICATION FROM 
THE COMMISSION TO THE 
EUROPEAN PARLIAMENT, 
THE EUROPEAN COUNCIL, 

THE COUNCIL, THE EUROPEAN 
ECONOMIC AND SOCIAL 
COMMITTEE AND THE 

COMMITTEE OF THE REGIONS, 
EC, 2018, 2nd May 2018
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IMPACTS OF ARTIFICIAL INTELLIGENCE IN HPC
HPC System Design Influence 
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ARTIFICIAL INTELLIGENCE OVERVIEW
Terminology & Methods

Artificial Intelligence (AI)

Machine Learning (ML)

Deep Learning (DL)

A wide area of techniques and tools that enable 
computers to mimic human behaviour (+ robotics)

Learning from data without explicitly being
programmed with common programming languages

Systems with the ability to learn underlying
features in data using large neural networks

Classification

Clustering

Regression
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INNOVATIVE DEEP LEARNING TECHNOLOGIES
Short Introduction & Role of Cross-Sectional Team Deep Learning @ JSC

 Provide deep learning tools that work with HPC machines (e.g. Python/Keras/Tensorflow)
 Advance deep learning applications and research on HPC prototypes (e.g. DEEP-EST, SMITH, etc.)
 Engage with industry (industrial relations team) & support SMEs (e.g. Soccerwatch, ON4OFF)
 Offer tutorials & application enabling support for commercial & scientific users (e.g. YouTube)
 Cooperate in a artificial intelligence network across Helmholtz Association (e.g. HAICU)

[3] M. Riedel, ‘Deep Learning - Using a Convolutional Neural Network‘, 
Invited YouTube Lecture, six lectures, University of Ghent, 2017

[5] H. Lee et al., ‘Convolutional 
Deep Belief Networks for 
Scalable Unsupervised 
Learning of Hierarchical 
Representations’Cross-

Sectional 
Team Deep 

Learning

[4] M. Riedel et al., ‘Introduction to Deep Learning Models‘, 
JSC Tutorial, three days, JSC, 2019
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DEEP LEARNING TECHNIQUE EXAMPLE
Convolutional Neural Network (CNN) for Image Analysis

[6] Neural Network 3D Simulation

[7] A. Rosebrock

 Innovation via specific layers and architecture types
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ARTIFICIAL INTELLIGENCE – COMPLEX RELATIONSHIPS
Big Data & Machine/Deep Learning & HPC

SVMs
Random
Forests

M
od

el
 P

er
fo

rm
an

ce
 / 

A
cc

ur
ac

y

Dataset Volume

Large Deep Learning Networks

Medium Deep Learning Networks

Small Neural Networks

Traditional Learning Models

 ‘Big Data‘

‘small datasets‘

manual feature
engineering‘
changes the

ordering

MatLab
Statistical 
Computing with R

Training
Time

OctaveWekascikit-learn

High Performance 
Computing & Cloud 

Computing

[8] www.big-data.tips

JURECA
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DEEP LEARNING STARTUP EXAMPLE

1952 Stochastic Gradient
Descent
• Solving optimization

problems
1958

Deep Convolutional 
Neural Networks
• Significant 

improvements in
image analysis

1995

…
…

Perceptron Learning
Model
• Learning

weights

1985 ‘Backpropagation of Error‘ 
approch in learning
• Artificial Neural

Networks

Big Data
• Large datasets
• Easy access
• More storage

for less cost

Hardware
• More memory
• Graphical 

Processing 
Units (GPUs)

• HPC & parallel
systems

Software
• Scalable data

science tools
• New learning 

models
• Open Source &

free software
packages

[11] Keras

[12] TensorFlow[10] NVIDIA
[13] soccerwatch.tv

Combination: Start-up Example of my research group
Impact in AI & HPC 
in industry & science

Understanding the Different Factors that all Combined Provide new Chances – NOW 
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[14] C. Bodenstein & M. Riedel et al., Automated Soccer Scence Tracking using Deep Neural Networks
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Using Deep Learning to enable
automatic camera tracking of soccer

[14] C. Bodenstein, M. Goetz and M. Riedel et al., NIC Symposium, 2016

Using Long Short-Term Memory (LSTMs)
with electric power production time series data

IMPACTS OF ARTIFICIAL INTELLIGENCE IN APPLICATIONS
Success in Image & Time Series Analysis Examples
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MODULAR SUPERCOMPUTING ARCHITECTURE CO-DESIGN
Shape the HPC Systems of the Future & towards Exascale
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JSC
HPC Roadmap &
Key Vendors

General Purpose Cluster

File 
Server
GPFS, 
Lustre

IBM Power 6 
JUMP, 9 TFlop/s

IBM Blue Gene/P
JUGENE, 1 PFlop/s

HPC-FF
100 TFlop/s

JUROPA
200 TFlop/s

IBM Blue Gene/Q
JUQUEEN (2012)
5.9 PFlop/s

IBM Blue Gene/L
JUBL, 45 TFlop/s

IBM Power 4+
JUMP (2004), 9 TFlop/s

Highly scalable

Hierarchical
Storage Server JUWELS Scalable

Module (2019/20)
50+ PFlop/s

JUWELS Cluster 
Module (2018)
12 PFlop/s

JURECA Cluster 
(2015) 2.2 PFlop/s

JURECA Booster 
(2017) 5 PFlop/s
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DEEP SERIES OF PROJECTS
EU Projects Driven by Co-Design of HPC Applications

 3 EU Exascale projects
DEEP, DEEP-ER, DEEP-EST

 27 partners
Coordinated by JSC

 EU-funding: 30 M€
JSC-part > 5,3 M€ 

 Nov 2011 – Dec 2020

Juelich Supercomputing Centre
implements the DEEP projects designs
in its HPC production infrastructure

Strong collaboration
with our industry partners 
Intel, Extoll & Megware

[15] DEEP Projects Web Page
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IMPACTS OF ARTIFICIAL INTELLIGENCE IN HPC DESIGN
Co-Design via Requirements from Machine/Deep Learning Applications & Innovative Simulation Sciences

The modular supercomputing architecture (MSA)
enables a flexible HPC system design co-designed
by the need of different application workloads

[15] DEEP Projects Web Page
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EU HPC PROJECTS OVERVIEW
DEEP-EST Modular Supercomputing Architecture 

[16] ETP4HPC
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INNOVATIVE HPC HARDWARE VIA CO-DESIGN FOR AI
Co-Design of Innovative HPC Memory Designs and GPU/CPU Communications in Modular Supercomputing

The modular supercomputing architecture (MSA)
enables a flexible HPC system design co-designed
by the need of different application workloads

[17] E. Erlingsson, M. Riedel et al., 
IEEE MIPRO Conference, 2018

Explore Network Attached Memory (NAM)

Explore more scalability with NVIDIA GPUDirect beyond 
one node compared to NVIDIA NVLink/NVSwitch ‘islands‘
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PARALLEL & SCALABLE ALGORITHM DEVELOPMENT
Example of a Co-Design Application using Modular Supercomputing Architecture Concepts

[18] M. Goetz and M. Riedel et al, 
Proceedings IEEE Supercomputing 
Conference, 2015

Parallel & Scalable Clustering with DBSCAN
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PARALLEL & SCALABLE ALGORITHM DEVELOPMENT
Parallelizing Feature Engineering & Machine Learning Algorithms in Remote Sensing Applications

Parallel & Scalable Feature Engineering with Component Trees

[19] M. Goetz and M. Riedel et al., Journal of Transactions on Parallel 
and Distributed Systems, 2018

[20] G. Cavallaro and M. Riedel et al., Journal of Selected Topics in Applied 
Earth Observation and Remote Sensing, 2015

Parallel & Scalable Classification
with SVMs based on Message Passing 
Interface (MPI) using HPC resources

Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

Page 32

 Appendix offers details on understanding Support Vector Machines (SVMs) & Kernel Methods with a geometric SVM interpretation
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DISTRIBUTED DEEP LEARNING
From Apache Spark to Horovod using the Message Passing Interface (MPI) on HPC
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DISTRIBUTED DEEP LEARNING WITH AUTO-ENCODERS
Using Cloud Computing and Auto-Encoder Neural Networks for Remote Sensing Applications

[24] J. Haut, G. Cavallaro and M. Riedel et al.,
IEEE Transactions on Geoscience and Remote Sensing, 2019

Using Autoencoder deep 
neural networks with 
Cloud computing

Performing parallel 
computing with 
Apache Spark across 
different worker nodes

[23] Apache Spark Web page
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DISTRIBUTED DEEP LEARNING TRAINING ON IMAGENET

 Dataset: ImageNet
 Total number of 

images: 14.197.122
 Images with bounding 

box annotations: 1.034.908

Using a Standard Deep Learning Architecture for Image Classification

[35] ImageNet Web page

(huge collection of images with high level categories)

[34] J. Dean et al., ‘Large-Scale Deep Learning’

(ImageNet as a 
benchmark in 
deep learning 
community)

 Open source tool Horovod enables distributed deep learning with TensorFlow / Keras 
 Machine & Deep Learning: speed-up is just secondary goal after 1st goal accuracy
 Speed-up & parallelization good for faster hyperparameter tuning, training, inference
 Third goal is to avoid much feature engineering through ‘feature learning‘ 

[30] Horovod

(setup 1.2 Mio Images 224x224 pixels: TensorFlow 1.4, 
Python 2.7, CUDA 8, cuDNN 6, Horovod 0.11.2, 

MVAPICH-2.2-GDR on JURECA K80 GPUs)
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DISTRIBUTED DEEP LEARNING WITH RESNET-50
Tune a ‘standard architecture‘ for Remote Sensing Applications

[28] R. Sedona et al., MDPI
Journal of Remote Sensing

Page 36

[29] RESNET
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DEEP LEARNING VIA RESNET-50 ARCHITECTURE

 Classification of land cover in scenes (cf. Invited Talk G. Cavallaro)
 Very suitable for parallelization via distributed training on multi GPUs

Demand for Distributed Training because of Network Architecture Complexity

 RESNET-50 is a known neural network architecture that has established a strong baseline in terms of accuracy
 The computational complexity of training the RESNET-50 architecture relies in the fact that is has ~ 25.6 millions of trainable parameters
 RESNET-50 still represents a good trade-off between accuracy, depth and number of parameters
 The setups of RESNET-50 makes it very suitable for parallelization via distributed training on multi GPUs

Page 37

[29] RESNET
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DISTRIBUTED DEEP LEARNING TRAINING VIA HOROVOD
Using MPI for Node Interactions in the Distributed Training Framework Horovod

node 

node 

node 

[30] Horovod

 Horovod is a distributed training framework used in combination with low-level 
deep learning frameworks like Tensorflow

 Horovod uses MPI for inter-process communication, e.g., MPI_Allreduce()
 Distributed training using data parallelism approach means: (1) Gradients for 

different batches of data are calculated separately on each node; (2) But averaged 
across nodes to apply consistent updated to the deep learning model in each node

24 nodes x 4 GPUs = 96 
GPUs

MPI_Allreduce()

A partition of the JUWELS 
system 

has 56 compute nodes,
each with 4 NVIDIA V100 GPUs

(equipped with 16 GB of 
memory)

[29] RESNET
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DISTRIBUTED DEEP LEARNING TRAINING VIA HOROVOD

 JURECA 
 75 compute nodes equipped with two 

NVIDIA K80 GPUs (four visible devices per node)

 JUWELS
 56 accelerated 

compute nodes dual core
equipped with four
NVIDIA V100 GPUs

Generation of GPUs Matter  Kepler  Pascal  Volta
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DISTRIBUTED DEEP LEARNING TRAINING EVOLUTION
Selected Facts of using CPUs vs. GPUs and Communication Frameworks for Distribution

Page 40

[49] T. Ben-Nun & 
T. Hoefler

 Facts: GPUs are mostly used today for deep learning 
compared to CPUs, FPGA, and specialized hardware

 Facts: ~55% of all users that use deep learning use it 
with multiple nodes instead of just a single node

 Facts: The communication layer MPI is mostly used as 
communication layer for distributed training 
compared to Spark, Remote Procedure Calls, 
MapReduce, or traditional Sockets

 Most users use deep learning today with minibatches 
that are selected numbers of samples for performing 
the optimization (e.g. SGD on minibatches)

 Minibatches should be not too small to increate 
performance, but also not too large to increase 
validation error
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REMOTE SENSING APPLICATIONS IN HPC & AI – SUMMARY 
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TRANSFER LEARNING APPROACHES
Selected Approaches when Facing Small Datasets
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PRE-TRAINED CONVOLUTIONAL NEURAL NETWORKS
Example for ImageNet Application

[46] D. Marmanis et al., ‘Deep Learning Earth Obervation Classification 
Using ImageNet Pretrained Networks’, 2016

Using available Overfeat 
as pre-trained network

Overfeat is an improved version 
of AlexNet and is trained on

1.2 million labeled images from ImageNet

[47]  P. Sermanet et al., ‘OverFeat: Integrated Recognition, 
Localization and Detection using Convolutional Networks’
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NEURAL ARCHITECTURE SEARCH
Finding Hyper-Parameters of Neural Network Architectures in a more Systematic Way
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KEY CHALLENGE: FIND THE RIGHT PARAMETERS
Example of Remote Sensing Applications

[36] J. Lange and M. Riedel et al., 
IGARSS Conference, 2018

[37] G. Cavallaro, M. Riedel et al., IGARSS 2019

 Using Convolutional Neural Networks (CNNs)
with hyperspectral remote sensing image data

 Find Hyperparameters & joint ‘new-old‘ modeling & 
transfer learning given rare labeled/annotated data in 
science (e.g. 36,000 vs. 14,197,122 images ImageNet)

 Find right set of hyper-parameters and the 
right neural network architecture is a manual 
time-consuming and error-prone process

 Needs urgently HPC, but a systematic and 
automated way is required as trying out all 
options of hyper-parameters and architectures 
is computationally infeasible

 What is the right optimization method?

 How many convolutional layers we need?

 How many neurons in dense layers?

 What is the right filter size?

 How do we train best?
Page 4518th February 2021



NEURAL ARCHITECTURE SEARCH (NAS)
Massive Requirement for HPC Resources

[39] A.C. Cheng et al., ‘InstaNAS: Instance-aware Neural Architecture Search’, 2018

 Often a 
Recurrent 
Neural 
Network (RNN) 
technique that 
performs the 
agent steps

 Derived specific architectures that perform 
good for specific dataset samples

 E.g. what is the accuracy or error rate we 
obtain as metric to guide the search for 
specific architectures for specific dataset 
samples

 E.g. what is the latency of the network for a 
given dataset sample to guide the search for 
specific architectures that offer better latency 
by keeping accuracy(!)

 Employed neural networks architectures are often developed manually 
by human experts that is time-consuming and error-prone

 Deep learning success has been accompanied by a rising demand for 
architecture engineering, where increasingly more complex neural 
architectures are designed manually

 Neural Architecture Search (NAS) methods can be categorized in (a) 
search space, (b) search strategy, and (c) performance estimation 
strategy

 Automated Neural Architecture (NAS) search methods aim to solve 
this problem as a process of automating Architecture engineering

[38] M. Riedel, ‘NAS with Reinforcement Learning’
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MODULAR SUPERCOMPUTING ARCHITECTURE

 Data Analytics Module (DAM)
 Specific requirements for data

science & analytics frameworks
 16 nodes with 2x Intel Xeon

Cascade Lake; 24 cores
 1x NVIDIA V100 GPU / node
 1x Intel STRATIX10 FPGA PCIe3 / node
 384 GB DDR4 memory / node
 2 TB non-volatile memore / node
 DAM Prototype for teaching
 3 x 4 GPUs Tesla Volta V100
 Slurm scheduling system

Data Analytics Module (DAM) Prototype Example

Page 47

[15] DEEP Projects Web Page

(easy join via JOIAML lab with JuDoor)
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SHORT INTRODUCTION TO QUANTUM COMPUTING FOR AI
Focus on Quantum Annealing Approach to Quantum Computing
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QUANTUM COMPUTING IS STILL VERY COMPLEX
Many different Approaches exist for Quantum Computing

Page 49

[50] Launch of JUNIQ

[51] D-Wave Systems

 Quantum Annealing (focus in this talk)
 D-Wave System 2000Q (annealer system) will be part of the emerging

Juelich Unified Infrastructure for Quantum Computing (JUNIQ)
 Uses intrinsic effects of Quantum Physics (QP) to help in optimization 

problems or probabilistic sampling (i.e., is not a mainstream computer!)
 Setup a problem, then natural evolution of quantum states, and finally 

configuration at the end of evolution is one/some answer (but no control)

 Gate-Model Quantum Computing
 Much more ambitious to control and manipulate the evolution of quantum 

states over time, but more difficult as quantum systems hard to work with
 But enables to solve bigger problems, ~ 10 Qubits only
 Hard to let Qubits working together coherently

(quantum annealer vs.
universal quantum

computer approaches)
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MODULAR SUPERCOMPUTING ARCHITECTURE
Innovation through Cutting-Edge Technologies

Page 50

GPU Module Many-core BoosterCluster 
Module

BN

BN

BN

BN

BN BN

BN

BN

BN

CN

CN

Data Analytics 
Module

DN

Network Attached 
Memory Module

NAM NAM

Quantum
Annealer
Module

(planned)

Storage 
Module

GN

GN

GN

GN

GN GN

DiskDiskDisk Disk

Neuromorphic
System &

Deep Learning
Chips

DN

Machine 
Learning 
Training

Deep
Learning

Data
Models

Innovative
Ideas, e.g. trained 
models in memory, 
put/get store for data, 
non-volatile memory, 
etc.

Innovative
chips, e.g. use of 
deep learning 
optimized chip 
designs 

Deep
Learning

Machine Learning 
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QUANTUM ANNEALING FOR OPTIMIZATION PROBLEMS

 Key Problem(not only existing in AI)

 Trying to search for the best configuration out of 
extremely many configurations
 E.g. optimization during training of deep neural networks

(i.e., error/loss minimization for learning correct weights)
 What is the best combination of all 

the different configuration options?
 Also called ‘energy minimization problem‘ 

(i.e., low is good)
 Fundamental part of physics is trying to find its

minimum energy state

Optimization Problems can be found in many machine & deep learning algorithms

[51] D-Wave Systems
Page 51

[52] Loss Visualization

[53] Gradient Descent
Example

 Quantum Annealing is using Quantum Physics to find the minimum energy state of a given problem
 Quantum Annealing is harnessing the natural evolution of quantum states (no direct control of evolution
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 Quantum Bits
 The key element of quantum computers 

are based on circuits that are called 
‘quantum bits’ or ‘qubits’ for short

 Compared to traditional computers: 
qubit not represent 0/1, but 0 and 1 
simultaneously (‘superposition’)

 N qubits can represent 2N bits of information 
(e.g., 2 = 4 states; 3 = 8 states)

ELEMENTS OF QUANTUM ANNEALING: SUPERPOSITION
Perform Calculations via Qubits by Exploiting ‘Superposition‘ Applying Magnetic Fields

[45] Big Data Tips, 
Quantum Computing [46] D-Wave Systems on Twitter

Page 52

[51] D-Wave Systems(applied magnetic field
influences the probability)
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 Entanglement
 Two quantum systems (e.g., like an electron or a nucleus) interaction: 

both become connected (‘entanglement’) using a coupler
 They retain a very specific ‘correlation’ in their energy states
 ‘Correlations’ represent combinations of 0 & 1 
 Thus ‘entanglement’ enables qubits to work together to represent 

multiple combinations of values simultanously 
(e.g., compared to today with traditional computers: 
just one combination at a time)

 Particular calculation finished in ~ ms time: 
 Qubits can be observed as 0 or 1 values to determine 

solutions almost like in classical computers today

ELEMENTS OF QUANTUM ANNEALING: ENTANGLEMENT
Innovative Potential of Quantum Devices for Solving Difficult Optimization Problems with Entanglement

Page 53
[51] D-Wave Systems
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PROGRAMMING QUANTUM ANNEALING IN PRACTICE

 Ocean SDK Python API
 Enables interaction from standard computer with Quantum Annealer
 E.g. formalization as a specific optimization problem
 (not like usual programming of just application logic)
 Most time consuming element of programming,

requires rather thinking and math knowledge

 Data View for Machine/Deep Learning
 Works only for small data in the moment

(e.g. just 30 samples libsvm format)
 No access to parallel filesystem or

storage module directly from Annealer
 E.g. using Python data structures

Using Ocean SDK & Small Datasets (in the moment)

[51] D-Wave Systems
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SUPPORT VECTOR MACHINE ON QUANTUM ANNEALER
Solving a Quadratic Optimization Problem that is inherent in this Machine Learning Technique

Page 55

[54] Quantum SVM, D. Willsch et al.

(ensembles due to
small datasets compared
to full datasets on CPUs)

 Appendix offers details on understanding Support Vector Machines (SVMs) & Kernel Methods with a geometric SVM interpretation
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PARALLEL & SCALABLE ALGORITHM DEVELOPMENT
Using Support Vector Machines with Quantum Annealing with Remote Sensing (work in progress…)

[20] G. Cavallaro and M. Riedel et al., Journal of Selected Topics in Applied 
Earth Observation and Remote Sensing, 2015

Parallel & Scalable Classification
with SVMs based on Message Passing 
Interface (MPI) using HPC resources

Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 minQuantum Annealer requires the formulation 

of the computational problem as a quadratic 
unconstrained binary optimization(QUBO)
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IMPACTS OF ARTIFICIAL INTELLIGENCE IN APPLICATIONS
Emerging Medical Application Examples
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INTERTWINED HPC SIMULATIONS & MACHINE LEARNING
Enabling ‘full loop‘ in research – forward numerical simulations – backwards machine & deep learning

[31] Th. Lippert, D. Mallmann, M. Riedel, 
‘Scientific Big Data Analytics by HPC’, 
NIC Series 48, 2016

[32] Alfred Winter, A. Schuppert, M. Riedel et al., 
Journal of Methods of Information in Medicine, 2018

Combine mechanistic/numeric modeling with machine learning modeling in one ‘full loop‘ (~ ‘hybrid modeling‘)
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OVERVIEW OF HEALTH APPLICATIONS IN HPC & AI
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IMPACTS OF ARTIFICIAL INTELLIGENCE IN APPLICATIONS
Selected Commercial and Industry Application Examples
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Using Machine & Deep Learning to enable
better online-offline shopping in Germany

IMPACTS OF ARTIFICIAL INTELLIGENCE IN APPLICATIONS
Retail Examples

[33] ON4OFF Web page
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OVERVIEW OF RETAIL APPLICATIONS IN HPC & AI
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IMPACTS OF ARTIFICIAL INTELLIGENCE IN TEACHING
More and More Courses & Trainings for Machine & Deep Learning
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TEACHING & TRAINING PARALLEL & SCALABLE ML/DL
Selected University Lectures at University of Iceland & Training Courses @JSC & Online via YouTube

[43] M. Riedel, ‘Introduction to Machine Learning Algorithms‘, 
Invited YouTube Lecture, six lectures, University of Ghent, 2017

[44] M. Riedel, ‘Deep Learning - Using a Convolutional Neural Network‘,
Invited YouTube Lecture, six lectures, University of Ghent, 2017

[40] M. Riedel, ‘Cloud Computing & Big Data – Parallel 
& Scalable Machine Learning & Deep Learning‘, 2018

[41] M. Riedel, ‘High Performance Computing –
Advanced Scientific Computing‘, 2017

[42] M. Riedel et al., ‘DEEP-EST Tutorial: 
Introduction to Deep Learning’, 2018
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APPENDIX: SUPPORT VECTOR MACHINES
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GEOMETRIC SVM INTERPRETATION AND SETUP (1)
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GEOMETRIC SVM INTERPRETATION AND SETUP (2)
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GEOMETRIC SVM INTERPRETATION AND SETUP (3)
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CONSTRAINED OPTIMIZATION STEPS SVM (1)
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CONSTRAINED OPTIMIZATION STEPS SVM (2)
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CONSTRAINED OPTIMIZATION STEPS SVM (3)
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CONSTRAINED OPTIMIZATION STEPS SVM (4)
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CONSTRAINED OPTIMIZATION STEPS SVM (5)
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USE OF SVM CLASSIFIER TO PERFORM CLASSIFICATION
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CONSTRAINED OPTIMIZATION STEPS & DOT PRODUCT
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KERNEL METHODS & DOT PRODUCT DEPENDENCY
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