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PARALLEL & SCALABLE MACHINE & DEEP LEARNING WITH APPLICATIONS
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UNIVERSITY OF ICELAND Sl .

a}ﬁi It is extremely inspiring to be among the top 25 performers worldwide in

75 034" . . . . . . . N . e

i internationally in collaboration with industry and international universities
worldwide, according to a new evaluation from U-Multirank.

School of Engineering and Natural Sciences (SENS)

english.hi.is/news/at_the_fo...

2019 2019

TOP 25 PERFORMER TOP 25 PERFORMER
@& multirank @Y multirank

= Selected Facts

» Ranked among the top 300
universities in the world
(by Times Higher Education)

= ~2900 students at the
SENS school

» Long collaboration with
Forschungszentrum Juelich

= ~350 MS students and ~150 doctoral students.

= Many foreign & Erasmus students; english courses

C0-PUBLICATIONS 7 .
i Sl

11 You Retweeted
5\‘:/1"%'; University of Iceland @uni_iceland - Jun 4 v
‘a?j\((f A nasal spray for the acute treatment of seizures, developed by professor
ER4N
ey Sveinbjorn Gizurarson at @uni_iceland, was approved by the United States FDA,
recently; the first of its kind for this disease.

english.hi.is/news/universit...
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[2] University of Iceland Web page
SCHOOL OF ENGINEERING AND NATURAL SCIENCES
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FACULTY OF INDUSTRIAL ENGINEERING,
MECHANICAL ENGINEERING AND COMPUTER SCIENCE
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JUELICH SUPERCOMPUTING CENTRE (JSC) @) JULICH

Forschungszentrum

Institute of Multi-Disciplinary Research Centre Forschungszentrum Juelich of the Helmholtz Association

= Selected Facts

= One of EU largest
inter-disciplinary
research centres
(~5000 employees)

=i

= Special expertise in physics, materials science, nanotechnology, RESEARCH FOR GRAND CHALLENGES
neuroscience and medicine & information technology (HPC & Data)  [2]Holmholtz Association Web Page
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JUELICH SUPERCOMPUTING CENTRE (JSC) OF FZJ

Simulation & Data Labs (SDL) using High Performance Computing (HPC) @%

=== Smart Data
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Research
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Group High Rg:::l’(;h sensing & M T
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Processing
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FACULTY OF INDUSTRIAL ENGINEERING,
MECHANICAL ENGINEERING AND COMPUTER SCIENCE
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INTRODUCTION TO HIGH PERFORMANCE COMPUTING

Selected Basics of HPC and Relevance in the European & International Landscape
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HPC & DATA SCIENCE: A FIELD OF CONSTANT EVOLUTION

Perspective: Floating Point Operations per one second (FLOPS or FLOP/s)

1.000.000 FLOP/s

1 GigaFlop/s = 10° FLOPS
1 TeraFlop/s = 10'2 FLOPS
1 PetaFlop/s = 105 FLOPS
1 ExaFlop/s = 108 FLOPS

© Photograph by Rama,
Wikimedia Commons

1.000.000.000.000.000 FLOP/s
~295.000 cores~2009 (JUGENE)

>5.900.000.000.000.008
FLOP/s '
~ 500.000 cores
~2013 = end of service MS .y

NEtD mﬂﬁ%m
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HIGH PERFORMANCE COMPUTING (HPC)

In Comparison to High Throughput Computing (HTC)

= High Performance Computing (HPC) is based on computing resources that enable the efficient use of parallel computing techniques
through specific support with dedicated hardware such as high performance cpu/core interconnections.

“ .@ (network connection

very important & costly)
" High Throughput Computing (HTC) is based on commonly available computing resources such as commodity PCs and small clusters that
enable the execution of ‘farming jobs’ without providing a high performance interconnection between the cpul/cores.

I" m' "u (network connection = ]
J IJJJJ J @%@c less important) D |:| |:|
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USING PARALLEL COMPUTING ON HPC MACHINES

Concurrency & Computation

= All modern supercomputers depend heavily on parallelism

» Parallelism can be achieved with many different approaches

We speak of parallel computing whenever a number of ‘compute
elements’ (e.g. cores) solve a problem in a cooperative way

[5] Introduction to High Performance Computing for Scientists and Engineers

» Often known as ‘parallel processing’ of some problem space

» Tackle problems in parallel to enable the ‘best performance’ possible

» |[ncludes not only parallel computing, but also parallel input/output (1/0)
» “The measure of speed’ in High Performance Computing matters

» Common measure for parallel computers established by TOP500 list

= Based on benchmark for ranking the best 500 computers worldwide
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BUILDING BLOCKS OF HPC SYSTEMS

Multi-core CPU Processors

= Significant advances in CPU (or microprocessor chips)

= Multi-core architecture with dual,
quad, six, or n processing cores

» Processing cores are all on one chip
= Multi-core CPU chip architecture
» Hierarchy of caches (on/off chip)
» L1 cache is private to each core; on-chip
» |2 cache is shared; on-chip

» |3 cache or Dynamic random access memory (DRAM); off-chip

[Multicore processor

Core 1 Core2 | | - - Coren
L1 cache| |L1cache| | - - L1 cache
X 7
\\ /
X ¥
L2 cache
| one chip

L3 cache/DRAM

[22] Distributed & Cloud Computing Book

=  Clock-rate for single processors increased from 10 MHz (Intel 286) to 4 GHz (Pentium 4) in 30 years
=  Clock rate increase with higher 5 GHz unfortunately reached a limit due to power limitations / heat
" Multi-core CPU chips have quad, six, or n processing cores on one chip and use cache hierarchies
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SHARED MEMORY PROGRAMMING MODEL

Using OpenMP

[25] OpenMP API Specification
» Two varieties of shared-memory systems:

»  Unified Memory Access (UMA)
»  Cache-coherent Nonuniform Memory Access (ccNUMA)
» The Problem of ‘Cache Coherence’ (in UMA/ccNUMA)
= Different CPUs use Cache to ‘'modify same cache values’

= Consistency between cached data &
data in memory must be guaranteed

J ]|
1IINE
11431
Shared Memory

= ‘Cache coherence protocols’ ensure a consistent view of memory T1 T2 T3 T4 T5

= A shared-memory parallel computer is a system in which a number of CPUs work on a common, shared physical address space
" Shared-memory programming enables immediate access to all data from all processors without explicit communication

" OpenMP is dominant shared-memory programming standard today (v3)

=  OpenMP is a set of compiler directives to ‘mark parallel regions’
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DISTRIBUTED MEMORY PROGRAMMING MODEL

Using Message Passing Interface (MPI)

- Appro ach [26] MPI Standard

» No remote memory access on distributed-memory systems
» Require to ‘'send messages’ back and forth between processes PX
» Many free Message Passing Interface (MPI) libraries available
= Programming is tedious & complicated, but most flexible method
» Hybrid Programming
= Combine Shared memory with Distributed Memory often in practice

= Harder to program, but enables often more performance (if programmed well)
P1 P2 P3 P4 P5

. A distributed-memory parallel computer establishes a ‘system view’ where no process can access another process’ memory directly
= Distributed-memory programming enables explicit message passing as communication between processors

. Message Passing Interface (MPI) is dominant distributed-memory programming standard today (available in many different version)
. MPI is a standard defined and developed by the MPI Forum

18t February 2021 Page 11



BUILDING BLOCKS OF HPC SYSTEMS

Many-core GPGPUs

» Use of very many simple cores
= High throughput computing-oriented architecture

» Use massive parallelism by executing a lot of
concurrent threads slowly

» Handle an ever increasing amount of multiple
instruction threads

GPU

Multiprocessor 1 Multiprocessor N || |  ________

LR G G [T

[22] Distributed & Cloud Computing Book

» CPUs instead typically execute a single
long thread as fast as possible .

Graphics Processing Unit (GPU) is great for data parallelism and task parallelism

Compared to multi-core CPUs, GPUs consist of a many-core architecture with
hundreds to even thousands of very simple cores executing threads rather slowly

= Many-core GPUs are used in large

clusters and within massively parallel supercomputers today
» Named General-Purpose Computing on GPUs (GPGPU)

» Different programming models emerge
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GPGPU PROGRAMMING MODEL

Using Host & Device Memory

Processing Flow
CPU — GPU — CPU

Scheduler

CPU Memory

Transfer data from CPU memory to GPU memory, transfer
program

Load GPU program, execute on SMs, get (cached) data from
memory; write back

Transfer results back to host memory

18t February 2021 Page 13

Interconnect

DRAM

—

CPU acceleration
means that GPUs
accelerate computing
due to a massive
parallelism with
thousands of threads
compared to only a
few threads used by
conventional CPUs

GPUs are designed to
compute large
numbers of floating
point operations in
parallel

The Processing flow is
(a) transfer data from
CPU memory to GPU
memory; (b) Load GPU
program and execute
on GPU device using
device memory; (c)
transfer results back to
host memory

[27] JSC GPU Course




SIMULATION SCIENCES APPLICATIONS

Traditional Supercomputing and HPC Impact in Scientific Computing

= Known physical laws
= Numerical methods
» Parallel Computing
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WORLDWIDE HPC ROADMAP TO EXASCALE

Coordinated Activities

4 « Flagship 2020: Post-K h

e 2020
e Fujitsu+ARM

AN

e TaihuLight
e 2020
e Lenovo+ShenWei/FeiTeng CPU

AN

e CORAL: 2 Exascale machines
e 2023
e Intel+Cray and IBM+NVIDIA

/

e H2020 + IPCEI + EuroHPC + EU Cloud initiative
e 2022

e Technology and design not fixed yet
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EUROPEAN HPC STRATEGY

Coordinated Activities
/

« PRACE )
PRACE  Computing infrastructures for European Users

e Operation, support and training

/
e ETP4HPC A
¢ Industry-driven Roadmap (SRA)
¢ Pushing for Extreme Scale Demonstrators
/
e EuroHPC h

e EU-based technology development, eg. processor

¢ Pushing for EU-made machine by 2022

EN NI

4 )
 H2020
“ e Technology (HW+SW) development in Co-design
N e FETHPC + Flagships + Quantum Computing )
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EUROPEAN UNION & COMMISSION PLANS

Supporting Artificial Intelligence & Supercomputers — Relevance of HPC & Al in Europe

“Bv su rti Tl You Retweeted @ Mariya Gabriel & e o N L
. y .ppo _Ing . European Commission M & @EU Commission - Apr 25 s @GabrielMariya
Strateg’c prolects in frontline B How can Europe be at the forefront of artificial intelligence, #dataeconomy, W d of @fj isc for th
areas such as artificial = | and digital healthcare? € are prouid of you iz Jsc Tor the

intelligence, supercomputers #f.| rstclass #supercomputmg facility you run.
in g . 1 @Ansip_EU @GabrielMariya @EBienkowskaEU @Moedas Itis by efforts like yours that we reaffirm

cybersecurity or #DigitalSingleMarket %Al #EUaddedvalue and leadership in

industrial digitisation, and

help to complete the Digital
Single Market, a key priority of

j 1al digitis: é - groundbreaking technologies. It is by
investing in digital sKills, _ " P : » cooperating that we will achieve our
the new programme will e & S, . ' : objectives for #EU leader in #HPC

Boosting snnovation

the Union.” SR S Mackat
- - - m
A N )
[9] COMMUNICATION FROM ’ - L. - -
THE COMMISSION TO THE . L
EUROPEAN PARLIAMENT, -,
THE EUROPEAN COUNCIL, 45:15 | 4K viewers v
THE COUNCIL, THE EUROPEAN T - T
Digital Single Market proposals: artificial intelligence, data econ...
ECONOMIC AND SOCIAL e o o
uropean Commission @EU_Commission
COMMITTEE AND THE
COMMITTEE OF THE REGIONS, o - v =
EC, 2018, 2 May 2018 8 Ll 109 124 8:28 AM - 5 Mar 2018
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IMPACTS OF ARTIFICIAL INTELLIGENCE IN HPC

HPC System Design Influence
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ARTIFICIAL INTELLIGENCE OVERVIEW

Terminology & Methods

Artificial Intelligence (Al)

A wide area of techniques and tools that enable
computers to mimic human behaviour (+ robotics)

Classification

Machine Learning (ML)

Learning from data without explicitly being
programmed with common programming languages

Deep Learning (DL)

Systems with the ability to learn underlying
features in data using large neural networks

Clustering

Regression

18t February 2021 Page 19




INNOVATIVE DEEP LEARNING TECHNOLOGIES

Short Introduction & Role of Cross-Sectional Team Deep Learning @ JSC

Engeneer

K‘ . . Transform Learn Traditional
. Reduce Machine

: e S E " Learning

N

N

N I Learn Deep

T Learning

N — |1 .

b 1580 L

[3] M. Riedel, ‘Deep Learning - Using a Convolutional Neural Network’,
Invited YouTube Lecture, six lectures, University of Ghent, 2017

...............

[4] M. Riedel et al., ‘Introduction to Deep Learning Models,
JSC Tutorial, three days, JSC, 2019

@) JULICH 2=
SUPERCOMPUTING
Forschungszentrum | CENTRE [5] H. Lee et al., ‘Convolutional

Deep Belief Networks for

Scalable Unsupervised
Provide deep learning tools that work with HPC machines (e.g. Python/Keras/Tensorflow) Learning of Hierarchical

= Advance deep learning applications and research on HPC prototypes (e.g. DEEP-EST, SMITH, etc.) Representations’
" Engage with industry (industrial relations team) & support SMEs (e.g. Soccerwatch, ON4OFF)
. Offer tutorials & application enabling support for commercial & scientific users (e.g. YouTube)
=  Cooperate in a artificial intelligence network across Helmholtz Association (e.g. HAICU)

Cross-
Sectional

Team Deep
Learning
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DEEP LEARNING TECHNIQUE EXAMPLE

Convolutional Neural Network (CNN) for Image Analysis

O HI /g A3 0] ¥ [3]
A3 e 1] 7] [ [F) 6] (5] M
R o
deg el DEORRENGN
b=}
R EEE LD B nan A
# 6l 8 4 & f] Qlgl [l
ZI 1] el 3] 82 [/ 2]zl 8
g 8l el 75 R g0 e
2l Yl (& (g 0 [7] & 3] [/] 5]

Innovation via specific layers and architecture types

C'_ -‘51 (': ‘} my n
e A [ i

Dl:l[;ll]T [7] A. Rosebrock

[6] Neural Network 3D Simulation

_ "0,
[ ) . " 'L;mﬁp
® g \ \ "'-:_. 1) \
Lo NN ay N\
® \\ connected A
feature extraction classification
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ARTIFICIAL INTELLIGENCE — COMPLEX RELATIONSHIPS

Big Data & Machine/Deep Learning & HPC

High Performance
Computing & Cloud

i ‘ Computin
«small datasets® Large Deep Learning Networks . puting

manual feature

engineering’ Medium Deep Learning Networks

changes the
ordering

Small Neural Network

Traditional LearnirﬁModels

Model Performance / Accuracy

. : Statistical MatLab
et 16 @ atistica
Random Q}}’ % ol D<; SVMs ¥ W Computing with R
Forests | | ’ ofe 0/ oy
O T R YA scikit-learn Weka Octave

f input space feature space

Y
Dataset Volume - ‘Big Data‘ /8] www.big-data.tips
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DEEP LEARNING STARTUP EXAMPLE

Understanding the Different Factors that all Combined Provide new Chances — NOW

1952

1958

1985

1995

Stochastic Gradient

Descent

* Solving optimization
problems

Perceptron Learning

Model

* Learning
weights

‘Backpropagation of Error*

approch in learning

* Artificial Neural
Networks

Deep Convolutional

Neural Networks

« Significant
improvements in
image analysis

Impact in Al & HPC
in industry & science

Big Data

Large datasets
Easy access
More storage
for less cost

I N — g
1 . \“//

Hardware

More memory .

Graphical
Processing
Units (GPUs)

HPC & parallel

systems

NVIDIAS

[10] NVIDIA

Software

Scalable data
science tools

* New learning
models

Open Source &
free software
packages

Keras
[11] Keras ““

Tensor!
[12] TensorFlow

-
-
Pl
B
m D
=

oursBuRG eX I S T

Existenzgriandungen
aus der Wissenschaft

[13] soccerwatch.tv

Page 23

Combination: St 1

[14] C. Bodenstein & M. Riedel et al., Automated Soccer Scence Tracking using Deep Neural Networks
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IMPACTS OF ARTIFICIAL INTELLIGENCE IN APPLICATIONS

Success in Image & Time Series Analysis Examples

¢ 9 o

JERIERIEN

x X

Using Long Short-Term Memory (LSTMs) I-.
with electric power production time series data

Landsvirkjun

National Power Company of Iceland

—— LJO Innmatun

14 —— LJO OSK-KairosDB
—— JO Keras
12

Using Deep Learning to enable o =
automatic camera tracking of soccer

MW - Innmotun

Vi A "
/"
12 ¥

&,
> (YN SOCCERWATE.
aus der Wissenschaft

[14] C. Bodenstein, M. Goetz and M. Riedel et al., NIC Symposium, 2016

2

0
Jan 2015 Jul 2015 Jan 2016 Jul 2016 Jan 2017 Jul 2017 Jan 2018
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MODULAR SUPERCOMPUTING ARCHITECTURE CO-DESIGN

Shape the HPC Systems of the Future & towards Exascale

— ‘:}"'ﬂhﬁ'ﬂ‘ O .-ﬁhu L oAt

3 R
. e \
: y 0 W
¥
T f ' e
Y ¥
l N
= i’
¥ L 1Y - 3
R g d
3 - -
i tE - | I |
B 4B samw,
p ~ K o ~\ "'— e
’
)
¢ 3
- \8
. 0 A A
¥ ot ' i
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S

HPC Roadmap &
Key Vendors

JURECA Cluster
(2015) 2.2 PFlop/s

@& nvipia,

JUWELS Cluster,
Module (2018)
12 PFlop/s

CLUSTER
COMPETENCE
PArRTEC ‘ MPETER

General Purpose Cluster

(IDEEP

Projects

IBM Power 4+
JUMP (2004), 9 TFlop/s

IBM Power 6 IBM Blue Genel/L

JUMP, 9 TFlop/s JUBL, 45 TFlop/s
JUROPA IBM Blue Gene/P
200 TFlop/s JUGENE, 1 PFlop/s

HPC-FF e, Eieit

[Hiie
100 TFlop/s | IBM Blue Gene/Q

JUQUEEN (2012)
5.9 PFlop/s

JURECA Booster
(2017) 5 PFlop/s

Hierarchita

Stogage Server JUWELS Scalable

- M3dular Module (2019/20)
““““““ Upercompyter 50+ PFlopls

Highly scalable
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DEEP SERIES OF PROJECTS

EU Projects Driven by Co-Design of HPC Applications

3 EU Exascale projects

DEEP, DEEP-ER, DEEP-EST

27 partners
Coordinated by JSC

EU-funding: 30 M€
JSC-part > 5,3 M€

Nov 2011 — Dec 2020

Sate
:%i;? UNIVERSITY OF ICELAND
%tq

Strong collaboration —
with our industry partners C( Come
Intel, Extoll & Megware

18t February 2021

Juelich Supercomputing Centre
implements the DEEP projects designs
in its HPC production infrastructure

Page 27

Norwegian University
of Life Sciences

NNNNNNNNNNNNNN
—

@_m“gg Z Fraunhofer

ITWM

wEnsTh

EXTOLL. .

@nesa

[15] DEEP Projects Web Page



IMPACTS OF ARTIFICIAL INTELLIGENCE IN HPC DESIGN

Co-Design via Requirements from Machine/Deep Learning Applications & Innovative Simulation Sciences

[DEEP

" Module 1
- Central
Cluste

High Energy Physics Earth Science Space Weather

NETWORK Module 5
FEDERATION Data Analytics Module Eeep .
earning
DATA ‘ |
Molecular D i Neuroscience Radio Astronom oRdGE ANALYTICS % \—1 L‘
olecular Dynamics y SToRace AL /" \ L workflow
MODULE 1P
4 Module 4 Module
Quantum Neuromorphic .
HBP Annealer system  Climatology

Data Analytics _ . workflow
workflow m — m m

ekt

CIEEIEE
S
ESSES

A

The modular supercomputing architecture (MSA)
enables a flexible HPC system design co-designed
by the need of different application workloads

[15] DEEP Projects Web Page
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EU HPC PROJECTS OVERVIEW

DEEP-EST Modular Supercomputing Architecture

A
/ @ SAGE

| @NEXTGenl0

DEEP/
DEEPER

| @ExaNEST

NETWORK
FEDERATION

SCALABLE DATA

STORAGE
SERVICE
MODULE

MODULE

. «EXTRA

NAM GCE b
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:\‘;:NLAFET R
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HPC ECOSYSTEM
EXDGI Eurolab-4-HPG

EPIGRAM

' ExaHYPE

 READEXe |

i
k\

NLAFET

ExaFLOWe |
 ExCAPEe

 EXA2CT

CRESTA

 ComPATe
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| ;;MANGO_-/
' [16] ETP4HPC
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INNOVATIVE HPC HARDWARE VIA CO-DESIGN FOR Al

Co-Design of Innovative HPC Memory Designs and GPU/CPU Communications in Modular Supercomputing

.......

EeP |- L) (o
is —t H i i Mem. BW PCle gen3 x 16 =
\ or 4 ~100 GByte/s 16 GB/s Mem. BW
. < s CPU Accelerator | 900 B/s e
. ' ARCTTPPELL -
u
e As of today, PCle gen3 restricts
w achievable latency and bandwidth

Explore more scalability with NVIDIA GPUDirect beyond
one node compared to NVIDIA NVLink/NVSwitch ‘islands’

Conventional CPU/GPGPU Optimized CPU/GPGPU
Offload Offload
DATA
ANALYTICS m\ @ Data
Data

MODULE
NW

NW
Results comm. Results

comm. e ¥
—p
E Data A

Explore Network Attached Memory (NAM)

NETWORK
FEDERATION

SCALABLE
STORAGE
SERYICE
MODULE

a)ndwo)

P1 P2 P3 P4 PS

jouiey|

jousay

»—
|/i/o 1/0 |/c;/o

|

% NAM )
BEEEF =] 3
P1 P2 P3 P4 PS5 E .(}\ E Data NW Results
comm. E—
g A——
=
The modular supercomputing architecture (MSA) W Results et
[17] E. Erlingsson, M. Riedel et al., enables a flexible HPC system design co-designed comm. E 3
IEEE MIPRO Conference, 2018 by the need of different application workloads -
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PARALLEL & SCALABLE ALGORITHM DEVELOPMENT

Example of a Co-Design Application using Modular Supercomputing Architecture Concepts

.......

i Y 256
:‘-I order l‘ 128
" . ,l' o 64
I.'".".l' ~~~~~~ - >
T 32
o 8
a 16
8
4
2
processor 1 processor 2 1
O O
18 )y 24 6 2
Q Or O 0 @]
P S
16 09200 51 Q) 2 (
O
O d O o
2% 1065 | Oz 1 O 2
oig g
ES(CO8! raconsar 1)~ 196 B(C08lyrocessor 2= 106

o Hybrid DS
—+ Hybrid DS2
—« MPIDST 2
Linear 7
v d
2 8 32 128 512

number of cores

Parallel & Scalable Clustering with DBSCAN

[18] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing
Conference, 2015

18t February 2021
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PARALLEL & SCALABLE ALGORITHM DEVELOPMENT

Parallelizing Feature Engineering & Machine Learning Algorithms in Remote Sensing Applications

Parallel & Scalable Classification
with SVMs based on Message Passing
Interface (MPI) using HPC resources

Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

~/C 1

10

100

1000

10000

2 48.90 (18.81)
4 57.53 (16.82)
8 64.18 (18.30)
16 68.37 (23.21)
32 70.17 (34.45)

65.01 (19.57)
70.74 (13.94)
74.45 (15.04)
76.20 (21.88)
75.48 (34.76)

73.21 (20.11)
75.94 (13.53)
77.00 (14.41)
76.51 (20.69)
74.88 (34.05)

75.55 (22.53)
76.04 (14.04)
75.78 (14.65)
75.32 (19.60)
74.08 (34.03)

74.42 (21.21)
74.06 (15.55)
74.58 (14.92)
74.72 (19.66)
73.84 (38.78)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

1 ~IC I 10 100 1000 10000

: : . 2 7526(1.02) 65.12 (1.03) 73.18 (1.33) 75.76 (2.35) 74.53 (4.40)
: : \ 4 57.60 (1.03) 70.88 (1.02) 75.87 (1.03) 76.01 (1.33) 74.06 (2.35)
: : 8  64.17(1.02) 74.52 (1.03) 77.02 (1.02) 75.79 (1.04) 74.42 (1.34)
: : ‘ 16 68.57 (1.33) 76.07 (1.33) 76.40 (1.34) 7526 (1.05) 74.53 (1.34)
: : 32 7021 (1.33) 7538 (1.34)  74.69 (1.34) 73.91 (1.47) 73.73 (1.33)

. . . First Result: best parameter set from 14.41 min to 1.02 min

Parallel & Scalable Feature Engineering with Component Trees P

Second Result: all parameter sets from ~9 hours to ~35 min

[19] M. Goetz and M. Riedel et al., Journal of Transactions on Parallel [20] G. Cavallaro and M. Riedel et al., Journal of Selected Topics in Applied

and Distributed Systems, 2018 Earth Observation and Remote Sensing, 2015

> Appendix offers details on understanding Support Vector Machines (SVMs) & Kernel Methods with a geometric SVM interpretation
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DISTRIBUTED DEEP LEARNING

From Apache Spark to Horovod using the Message Passing Interface (MPI) on HPC

Ru.;a

18
Ei
|;l:‘:= = T
Sk
= 3s
‘agl |

18t February 2021 Page 33



Reconstructed B

Output

X} ERMbands
i

Performing parallel
computing with
Apache Spark across
different worker nodes

[24] J. Haut, G. Cavallaro and M. Riedel et al.,
IEEE Transactions on Geoscience and Remote Sensing, 2019

Using Autoencoder deep
neural networks with
Cloud computing

Output

Layer
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[23] Apache Spark Web page

Hyperspectral image data
X ER ™ M2 Npands

Client Node
Driver JVM

Spark Context

Controls spark.driver.memory RAM

‘Worker Node 1 ‘Worker Node N
| Data partitions ENEMIEIE | | Data paritions SIS |
Node Memory Pool Node Memory Pool
Executor JVM #1 Executor JVM #1
Task #1 Task #1 Task #1 Task #1

Controls spark executor.cores CPU cores and
spark.executormemory RAM

Controls spark.executor.cores CPU cores and
spark executormemory RAM

Executor JVM #2

Executor JVM #2

Task #1

R rktask.

Task #1

Task #1

R task.

Task #1

Controls spark executor.cores CPU cores and
spark.executormemory RAM

Controls spark.executor.cores CPU cores and
spark executormemory RAM

i
I

reshaping into
matrix l
XER Npixels™ Mbands

Worker node. 1"

0,
rows

Performs the forward and
backward of the neural

Partition 1

network

I
t

Master node

—

load into

Driver

Divides data
into partitions

Scheduler

DISTRIBUTED DEEP LEARNING WITH AUTO-ENCODERS

Using Cloud Computing and Auto-Encoder Neural Networks for Remote Sensing Applications

Collects the gradients and
sends the new gradient

G)(x)

Worker notje n

|
( ©d,
| ™4,

Performs the forward and l

backward of the neural
network

e

- & °

Worker node N

| ®a,

Performs the forward and l

®d
E

Urows

Partition P

backward of the neural
network

e
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DISTRIBUTED DEEP LEARNING TRAINING ON IMAGENET

Using a Standard Deep Learning Architecture for Image Classification

i uhes ), i okt ot High level # synset Avg # images per o images
|mageNet 2011 Fall Release :32325):; - I lb | category (subcategories) synset Total # g
= Dataset: ImageNet SR F—* ‘ N
natural object (1112) animal 3822 732 2793K
5:;‘";"""’:“;“265; appliance 51 184 S9K
T artifact, artefact (10504)

u Total number Of | 7 instrumentality, instrumentatior i ' | bird 856 949 812K
. ‘ dim;i;f;??r:shument inst L covering 946 819 4K
Images: 1 4 . 1 97 . 1 22 ;- acoustic device (27) device 2385 575 1810K

. . . . . fabric 262 690 181K

) ) (huge collectlon of images W|th high level Categorles) -

» Images with bounding =
. B R . food 1495 670 1001K

= Open source tool Horovod enables distributed deep learning with TensorFlow / Keras (ImageNet as a pp e cor 10ac

" Machine & Deep Learning: speed-up is just secondary goal after 1st goal accuracy benchmark in e = = e

. furniture 187 1043 195K
= Speed-up & parallelization good for faster hyperparameter tuning, training, inference deep learning JUE—— o o o
=  Third goal is to avoid much feature engineering through ‘feature learning community) nvetsbrate =z 73 e
mammal 138 821 934K
(setup 1.2 Mio Images 224x224 pixels: TensorFlow 1.4, pome - —~
plan
Python 2.7, CUDA 8, cuDNN 6, Horovod 0.11.2, - et - - -
112
MVAPICH-2.2-GDR on JURECA K80 GPUS) —@—Speedup sport 166 1207 200K
= structure 1239 763 845K
80 tool 316 551 174K
#GPUs  images/s  speedup  Performance per GPU [images/s] ;f tree 993 568 564K
1 55 1.0 55 ;’l’n = utensi 85 912 78K
4 178 32 4.5 48 vegetable 178 764 135K
8 357 6.5 44.63 wehicle 481 778 374K
16 689 12.5 43.06 32
person 2035 468 952K
32 1230 224 38.44
64 2276 414 35.56 °
128 5562 1011 43.45 o - . - . [34] J. Dean et al., ‘Large-Scale Deep Learning’
[30] Horovod #GPUs [35] ImageNet Web page
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DISTRIBUTED DEEP LEARNING WITH RESNET-50

Tune a ‘standard architecture‘ for Remote Sensing Applications

Article
Remote Sensing Big Data Classification with High
Performance Distributed Deep Learning

Rocco Sedona 12%%@* Gabriele Cavallaro 23%@([, Jenia Jitsev #4?(), Alexandre Strube 20,
Morris Riedel >3# and Jén Atli Benediktsson !

1" School of Engineering and Natural Sciences, University of Iceland, Dunhagi 5, Reykjavik 107, Iceland;

r.sedona@fz-juelich.de (R.S.); morris@hi.is (M.R.); benedikt@hi.is (J.A.B.)
Jilich Supercomputing Centre (JSC), Forschungszentrum Jiilich (FZ]), Wilhelm-Johnen-Strasse 1, Jiilich
52425, Germany; g.cavallaro@fz-juelich.de (G.C.), j jitsev@fz-juelich.de (].].); a.strube@fz-juelich.de (A.S.)

[N}

3 High Productivity Data Processing Research Group, JSC

4 Cross-Sectional Team Deep Learning (CST-DL), JSC

@ These authors contributed equally to this work. [28] R. Sedona et a"’ M_DPI ::1‘\:(1;%3;
*  Correspondence: r.sedona@fz-juelich.de; Tel.: +49 2461 61-1497 Journal Of Remote Sensmg

4.118

Moris Riedel v
€& oviorisriedel

The University of Iceland is one of the six best universities in
the world in the field of remote sensing!

P P P
s " s | s , & Haskoli islands @Haskoli Islands - Aug 14

: " : . & . Haskoli [slands er i 6. szeti yfir fremstu haskola heims 4 svidi fiarksnnunar samkvaemt

! ' : ' ! ' hinum virta Shanghai-lista. Skolinn er enn fremur  hopi hundrad bestu haskdlanna innan
; H ‘ ; H jardvisinda. Frabaerar fréttir fyrir starfsmenn, studenta og samfélagio allt!
: H : ] H H
M H M H H hiis/frettir/haskol.
3 H i 3 K P

[29] RESNET

pool, /2
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128

avg pool
fc 1000

image
A4

7x7 conv, 64, /2

3x3 conv, 128

3x3 conv, 128, /2
3x3 conv, 256, /2
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256

3x3 conv, 512, /2
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
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DEEP LEARNING VIA RESNET-50 ARCHITECTURE

Demand for Distributed Training because of Network Architecture Complexity

» Classification of land cover in scenes (cf. Invited Talk G. Cavallaro)

» Very suitable for parallelization via distributed training on multi GPUs

A VAVAVIAVAVAVAVIAYAVAVAVAVAVYEYAVYa
[ A\ L' -.!_ A\ L-' -.! AN N AL \.-' '-./ AL

8 (A D A ) A R e e
& = gz 2 2 z 2 2 . = = = = = = =z = = = = = = =1 &3 = = = n = = | S
§—>§->§+3»§+§+§+§+§+§+§+§+§+§+§+§->§+§+§+§+§+§+§+§+§+§+§+§+§+§+§+§+§+§+§»g*§
% 1151181 121151 18] 1=l 18] 13 13 13 13 13] 3] 2] 1] 13 13 3] (3] 13 13 18] 3] (& 13 2] 13] 2] (E] ]3] |3
L] ™ ™|

[29] RESNET

RESNET-50 is a known neural network architecture that has established a strong baseline in terms of accuracy

The computational complexity of training the RESNET-50 architecture relies in the fact that is has ~ 25.6 millions of trainable parameters
RESNET-50 still represents a good trade-off between accuracy, depth and number of parameters

The setups of RESNET-50 makes it very suitable for parallelization via distributed training on multi GPUs
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DISTRIBUTED DEEP LEARNING TRAINING VIA HOROVOD

Using MPI for Node Interactions in the Distributed Training Framework Horovod

Jube_wp_iteration

A partition of the JUWELS
system
has 56 compute nodes,
each with 4 NVIDIA V100 GPUs

(equipped with 16 GB of

24 nodes X T%BﬁgL 96

I I GPUs

" Horovod is a distributed training framework used in combination with low-level
deep learning frameworks like Tensorflow

. Horovod uses MPI for inter-process communication, e.g., MPI_Allreduce()

" Distributed training using data parallelism approach means: (1) Gradients for
different batches of data are calculated separately on each node; (2) But averaged
across nodes to apply consistent updated to the deep learning model in each node

18t February 2021 Page 38

[29] RESNET
Training Process
' e node
A
Model Gradients Gradients
Data Store Training Process d
y noae
% Model Gradients ;rﬂ. . ll.:ntl :
Training Process
L]
: eraged node
Model Gradients e
1. Ftu;:;’bntn 2. cﬂmpl::te Model 3. Ayera . Gradients 4, Up;;ie Model
Updates (Gradients)
[30] Horovod

MPI_Allreduce()



DISTRIBUTED DEEP LEARNING TRAINING VIA HOROVOD

Generation of GPUs Matter - Kepler - Pascal = Volta

= JURECA

» 75 compute nodes equipped with two
NVIDIA K80 GPUs (four visible devices per node)

= JUWELS

= 56 accelerated

compute nodes dual core

equipped with four
NVIDIA V100 GPUs

18t February 2021
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16784
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DISTRIBUTED DEEP LEARNING TRAINING EVOLUTION

Selected Facts of using CPUs vs. GPUs and Communication Frameworks for Distribution

m CPU GPU FPGA mEE Specialized -
100+ posane = eepraducs Sockets *  Facts: GPUs are mostly used today for deep learning
— e compared to CPUs, FPGA, and specialized hardware
§ 18 . .
w 501 =  Facts: ~55% of all users that use deep learning use it
€ 2 16
g E, 1o with multiple nodes instead of just a single node
= 60 ]
g § 12 . Facts: The communication layer MPI is mostly used as
g 4 i 101 communication layer for distributed training
el
& E 81 compared to Spark, Remote Procedure Calls,
g 2 g ° MapReduce, or traditional Sockets
x © 47 . - oy
o] . Most users use deep learning today with minibatches
O hre- 2010 2011 2012 2013 2014 2015 2016 2017- 0 that are selected numbers of samples for performing
Pre- 2013 2014 2015 2016 2017- .. . ..
2010 oar Present 2013 Presest the optimization (e.g. SGD on minibatches)
Y . . .
ear =  Minibatches should be not too small to increate
mm Single Node Multiple Nodes A performance, but also not too large to increase
100 + validation error
S | | Performance
‘E‘ 80 5 40 -
£ - 5
E w0 S35
g y 3
2 a0 =0 [49] T. Ben-Nun &
B N = -
@ Validation Error :
- i | g N T. Hoefler
@ ] | | | | | R
@ | | | | | | | > ?;,
®©
A A B C Ll
Pre- 2010 2011 2012 2013 2014 2015 2016 2017- 64 128 256 512 1k 2k 4k 8k 16k 32k 64k
2010 Present Minibatch Size mini-batch size

Year
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REMOTE SENSING APPLICATIONS IN HPC & Al - SUMMARY

processing- Deep
N . . P . . : . . 3 5 "“ﬁ' Learning
i ;eir\] Real-Time Processing | .VhExploratlon of Qil Reservoirs E Earth Land Cover Classification Intensive
\AJ (8} - applications U A N
__________________________________________________________________ | ,
v v --------------------------------- W
T — Bl Microsoft . g
Infrastructure || = **ﬁ_; E‘.‘,[’.‘;ﬂ"c[ LUMI Supercomputer} Azure Commercial Cloud . computing
O PRACE 33 . s ) £) Google Cloud Vendors infrastructures| [ ]
A3 A i Ml =... big
v N ; - Y = data
MOd:::I(; IW“‘]I[-,I[:’lélar Singularity Docker || =~ ® AWS ECZ(& oL innovative ATATATATATATAS ”“--"h'
Container - Container WP Amazon Machine Image computing : 1 [ T | [ H i J T .
System System 8 ) (AMI) & Elastic Map reSOLICES Pt L e
DEEP - DAM JUWELS docker (™ | Reduce (EMR) Example
*—-—-—-—-i-—-—-—-—-—-— -:':.-—--q—."—.m—-—“_—._—m"‘-rh—-—iﬂ eaagegssinmsssnssEEEssTTaARiEaREEaREERRREAnE Df'rstr]:bf‘ted
= raining
MPI & s Distribute e ) JupyterlLab @ Apache technolo of ResNet-50
OpenMP - Training —# []s-Osl— & Jupyter ibraries . ) 9y
Libraries i Tools + ML/DL —+ Notebook cuDNN T aent libraries &
DeepSpeed o Libraries | ‘____ Libraries || & Spr packages -

o — S — r __* s R
v v @) ai'

= Parallel ™ Scalable Innovative @ Multi-core J Many £ ..., key el
Memory Processors

o e
Storage T Processors hafﬂWEFS-... #128
Hlterarchhes (high single thread Wumccelerators with low technologies GPUs

with NVMs o ¢ rmance: ~24 cores) performance, ~7000 cores) in parallel

Service
Module
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TRANSFER LEARNING APPROACHES

Selected Approaches when Facing Small Datasets
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PRE-TRAINED CONVOLUTIONAL NEURAL NETWORKS

Example for ImageNet Application

Conv Conv Conv Conv Conv Conv Conv MLP MLP

221x221x3  36x36x96  15x15x256  15x15x512  15x15x512  15x15x1024 5x5x1024 1x1x4096 1x1x4096 Using available Overfeat

as pre-trained network

— Pre-frained
Network

Overfeat is an improved version

Construct 2D feature-array i )
of AlexNet and is trained on
Conv Conv Conv MLP MLP ) 1.2 million labeled images from ImageNet
¥ 91x91x1 21x21x128 11x11x96  1x1x1000 1x1x1000 BN e T
Class 1
Class 2
Trainable
ﬁ- ~ Network
Class n
[46] D. Marmanis et al., ‘Deep Learning Earth Obervation Classification [47] P. Sermanet et al., ‘OverFeat: Integrated Recognition,
Using ImageNet Pretrained Networks’, 2016 Localization and Detection using Convolutional Networks’
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NEURAL ARCHITECTURE SEARCH

Finding Hyper-Parameters of Neural Network Architectures in a more Systematic Way

18t February 2021 Page 44



KEY CHALLENGE: FIND THE RIGHT PARAMETERS

Example of Remote Sensing Applications

Odays 00 hours 00 minutes
Sentinel-2 constellation:
summer solstice

Using Convolutional Neural Networks (CNNs)
with hyperspectral remote sensing image data

[36] J. Lange and M. Riedel et al.,
IGARSS Conference, 2018

* Find right set of hyper-parameters and the
right neural network architecture is a manual
time-consuming and error-prone process

= Needs urgently HPC, but a systematic and
automated way is required as trying out all
options of hyper-parameters and architectures
is computationally infeasible

=  What is the right optimization method?

=  How many convolutional layers we need?
=  How many neurons in dense layers?

=  What is the right filter size?

=  How do we train best?

18t February 2021

Input:
Window Tensor

1D Max Pooling Fully Connected Softmax Output:

3D Convolution Flatten

(spectral dimension) Layers Layer  Probabilities
—_ -— L]
n
L]
= [ [
[ ] u u o —>
] | | n o ——>
. . .
—> i —> 58
. " n o —>
™ [ ] [ ] o —>
™ [ ] [ ] o —>
= [ [
- - | |
u

Feature

Representation / Value

Conv. Layer Filters
Conv. Layer Filter size
Dense Layer Neurons

Optimizer
Loss Function
Activation Functions
Training Epochs
Batch Size
Learning Rate
Learning Rate Decay

48, 32, 32
3,3,5), (3,3,5), (3,3,5)
128,128
SGD
mean squared error
ReLU
600
50
1
5x107°

Find Hyperparameters & joint ‘new-old‘ modeling &
transfer learning given rare labeled/annotated data in
science (e.g. 36,000 vs. 14,197,122 images ImageNet)

%}m%@@( _
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[37] G. Cavallaro, M. Riedel et al., IGARSS 2019




NEURAL ARCHITECTURE SEARCH (NAS)

Massive Requirement for HPC Resources

O often a Architecture A € A
Recu rrent Searj Speos P Search Strategy
Neural . r—ys
erformance estimate of
Network (RNN) °

technique that
performs the
agent steps

Performance
Estimation
Strategy

" Employed neural networks architectures are often developed manually
by human experts that is time-consuming and error-prone

" Deep learning success has been accompanied by a rising demand for
architecture engineering, where increasingly more complex neural
architectures are designed manually

" Neural Architecture Search (NAS) methods can be categorized in (a)
search space, (b) search strategy, and (c) performance estimation
strategy

\
N . .
N . . =  Automated Neural Architecture (NAS) search methods aim to solve
Ch Id ArChlteFtures this problem as a process of automating Architecture engineering
i i [38] M. Riedel, ‘NAS with Reinforcement Learning’
—— | | O
— = Derived specific architectures that perform
Tusk-Dependent Objectives l: good for specific dataset samples
\
/ . “ = E.g. what is the accuracy or error rate we
= | @A \ obtain as metric to guide the search for
= i specific architectures for specific dataset
7, Architecture-Dependent Objectives samples
i ‘\~~~
= Reward s = E.g. what is the latency of the network for a

[39] A.C. Cheng et al., ‘InstaNAS: Instance-aware Neural Architecture Search’, 2018
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specific architectures that offer better latency
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MODULAR SUPERCOMPUTING ARCHITECTURE

Data Analytics Module (DAM) Prototype Example

JuDoor Your account Mentoring ® &riedell v @ Logout
= Data Analytics Module (DAM g e R
y Project title Joint Artificial Intelligence and Machine Learning Lab
Type [ Computeproject
. . Principal Investigator Prof. Dr. - Ing. Morris Riedel
- S p eci f ic req uiremen tS fo r d at a Pt Adivi . eni v,y Rkt . Gabeiele Cavalao
Project Mentor Prof. Dr. - Ing. Morris Riedel
. . Start date 01.03.2019
science & analytics frameworks . i
Address Jilich Supercomputing Centre
Wilhelm-Johnen-StraBe
52428 Juelich
Germany

= 16 nodes with 2x Intel Xeon AR S N i

As Pl or PA of the project you are obliged to follow data protection regulations, in particular to maintain confidentiality. That means not to
municate or make data accessible to other persons witt

'S,
Cascade Lake: 24 cores gt . BosseiEs b pa s s
)

Active Budgets

= 1x NVIDIA V100 GPU / node Budget oaint @

DEEP

NETWQR
FEDERATION

Soee | Avmes = 1X Intel STRATIX10 FPGA PCle3 / node (easy join via JOIAML lab with JuDoor)

SERVICE
MODULE

» 384 GB DDR4 memory / node

= 2 TB non-volatile memore / node

[DEEP

= DAM Prototype for teaching
= 3 x4 GPUs Tesla Volta V100

» Slurm scheduling system

[15] DEEP Projects Web Page
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SHORT INTRODUCTION TO QUANTUM COMPUTING FOR Al

Focus on Quantum Annealing Approach to Quantum Computing
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QUANTUM COMPUTING IS STILL VERY COMPLEX

Many different Approaches exist for Quantum Computing

D:LWaUR

The Quantum Computing Company

= Quantum Annealing (focus in this talk) (quantum annealer vs.

universal quantum
computer approaches)

= D-Wave System 2000Q (annealer system) will be part of the emerging
Juelich Unified Infrastructure for Quantum Computing (JUNIQ)

= Uses intrinsic effects of Quantum Physics (QP) to help in optimization . N—
I . . . . Topological Adiabatic
problems or probabilistic sampling (i.e., is not a mainstream computer!) SR ETTERTIRESET

= Setup a problem, then natural evolution of quantum states, and finally Gate Model

configuration at the end of evolution is one/some answer (but no control)

= Gate-Model Quantum Computing

= Much more ambitious to control and manipulate the evolution of quantum
states over time, but more difficult as quantum systems hard to work with

= But enables to solve bigger problems, ~ 10 Qubits only

= Hard to let Qubits working together coherently [50] Launch of JUNIQ
[51] D-Wave Systems
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MODULAR SUPERCOMPUTING ARCHITECTURE

Innovation through Cutting-Edge Technologies

(DEEP

[15] DEEP Projects
Web Page

GPU Module

Cluster
Module

/Many-core Booster \

~

~

Data Analytics
Module

Network Attached
Memory Module

Y-

Innovative

Ideas, e.g. trained
models in memory,
put/get store for data,
non-volatile memory,
etc.

Innovative computing
paradigms for
specific tasks, e.g.
solving optimization
tasks in machine
learning algorithms

Innovative

chips, e.g. use of
deep learning
optimized chip
designs

\ Quantum
Annealer
Module
/ (planned)
\ /'
Machine Neuromorphic
IL)eep : Learning Machine Learning Deep System &
earning Training Testing & Inference Learning Decp Leaming
\ \ J Chips -
\ /l\ // N
Storage | Data C IO O 1 > ‘Big data‘ /
o [wsee | | A[] [S=

18t February 2021

Page 50




QUANTUM ANNEALING FOR OPTIMIZATION PROBLEMS

Optimization Problems can be found in many machine & deep learning algorithms

» Key Problem(not only existing in Al)

» Trying to search for the best configuration out of
extremely many configurations

VGG-56 VGG-110

= E.g. optimization during training of deep neural networks  (ssj Gradient pescent
(i.e., error/loss minimization for learning correct weights) ™

= What is the best combination of all
the different configuration options?

~

Renset-56 Densenet-121

» Also called ‘energy minimization problem’
(i.e., low is good)

» Fundamental part of physics is trying to find its
minimum energy state

=  Quantum Annealing is using Quantum Physics to find the minimum energy state of a given problem
. Quantum Annealing is harnessing the natural evolution of quantum states (no direct control of evolution

[52] Loss Visualization

[51] D-Wave Systems
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ELEMENTS OF QUANTUM ANNEALING: SUPERPOSITION

Perform Calculations via Qubits by Exploiting ‘Superposition‘ Applying Magnetic Fields

= Quantum Bits

= The key element of quantum computers
are based on circuits that are called
‘quantum bits’ or ‘qubits’ for short

= Compared to traditional computers:
qubit not represent 0/1, but 0 and 1
simultaneously (‘superposition’)

= N qubits can represent 2N bits of information
(e.g., 2 = 4 states; 3 = 8 states)

circulating currents
quantum

superposition annealing

) — magnetic fields =~

figh
nergy

Superposition
State

Low
nergy

,nc}gy

Low
Energy

0 1 Higher probabili

of lower state

tds

(applied magnetic field
influences the probability)

[45] Big Data Tips,
Quantum Computing

Register for the webinar where speakers from @Accenture will discuss an
important problem and a promising quantum approach to solving it: the live
kidney donor exchange system.

bit.ly/32elloQ #QuantumComputing

©

Welcome! You are invited to join a webinar: Delivering Valu...
Since 2016, Accenture has been working on delivering value
through quantum computing. In this talk, speakers from ...
& dwavesys.zoom.us

1 93 &

[51] D-Wave Systems
[46] D-Wave Systems on Twitter

GPU Module Cluster Many-core Booster Data Analytics Network Attache
Module Module Memory Module
q N
Quantum )
Annealer
q Module
(planned)
-
Neuromorphic
Deep Learning P P Dee| System &
' Machine Learnin P .
e Training Testing & Inferengce Learning Deep L_earnlng
Chips
Storage | Data ‘Big data‘ /
Module Models parallel I/0
N
D-Wave Systems @dwavesys - 3h v



ELEMENTS OF QUANTUM ANNEALING: ENTANGLEMENT

Innovative Potential of Quantum Devices for Solving Difficult Optimization Problems with Entanglement

= Entanglement /qutnts

= Two quantum systems (e.g., like an electron or a nucleus) interaction: 1 1
both become connected (‘entanglement’) using a coupler

|
= They retain a very specific ‘correlation’ in their energy states coupler

= ‘Correlations’ represent combinations of 0 & 1

= Thus ‘entanglement’ enables qubits to work together to represent
multiple combinations of values simultanously
(e.g., compared to today with traditional computers:
just one combination at a time)

= Particular calculation finished in ~ ms time:

= Qubits can be observed as 0 or 1 values to determine
solutions almost like in classical computers today ©0 00 0 Vo)

[51] D-Wave Systems
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PROGRAMMING QUANTUM ANNEALING IN PRACTICE

Using Ocean SDK & Small Datasets (in the moment)

= Ocean SDK Python API
» Enables interaction from standard computer with Quantum Annealer
» E.g. formalization as a specific optimization problem

[51] D-Wave Systems
» (not like usual programming of just application logic)

» Most time consuming element of programming, 1) 1
requires rather thinking and math knowledge O
= Data View for Machine/Deep Learning
= Works only for small data in the moment (()1
(e.g. just 30 samples libsvm format)
» No access to parallel filesystem or
storage module directly from Annealer . . o
] PO @® 00 03 0@
= E.g. using Python data structures : . :
18t February 2021 Page 54

Cluster
Module

GPU Module

‘Big data‘/
parallel /O
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SUPPORT VECTOR MACHINE ON QUANTUM ANNEALER

Solving a Quadratic Optimization Problem that is inherent in this Machine Learning Technique

Support vector machines on the D-Wave quantum annealer

D ::‘ 'aue (a)_r,SVM (b)_qSVM-r‘fl

The Quantum Computing Company

D. Willsch,"*? M. Willsch,"? H. De Raedt,®> and K. Michielsen'?

'Tnstitute for Advanced Simulation, Jilich Supercomputing Centre,
Forschungszentrum Jilich, D-52425 Jilich, Germany
2RWTH Aachen University, D-52056 Aachen, Germany
3 Zernike Institute for Advanced Materials,
University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands
(Dated: November 11, 2019)

— —2

=2 0 2 -2 0 2

(c) aSVM#G (d) gSVM#16

Kernel-based support vector machines (SVMs) are supervised machine learning algorithms for
classification and regression problems. We introduce a method to train SVMs on a D-Wave 2000Q
quantum annealer and study its performance in comparison to SVMs trained on conventional com- (ensembles due to
puters. The method is applied to both synthetic data and real data obtained from biology experi- e
ments. We find that the quantum annealer produces an ensemble of different solutions that often snurm
generalizes better to unseen data than the single global minimum of an SVM trained on a conven-
tional computer, especially in cases where only limited training data is available. For cases with

small datasets compared
to full datasets on CPUs)

Calibration {Test
& train data idata

“alibration { Testing

Training
more training data than currently fits on the quantum annealer, we show that a combination of clas- T Combined (—lj AUROC
. . s op . Vo classifier Tes AUPRC
sifiers for subsets of the data almost always produces stronger joint classifiers than the conventional 20 slices oy E) Accuracy
SVM for the same parameters. 10460 Shuffle Shuffle
Monte-
Keywords: Support Vector Machine, Kernel-based SVM, Machine Learning, Classification, Quantum Com- e T ! —— ! ! !
putation, Quantum Annealing g ; \l \l \l
(B.K&) . | el
Shuffle Shuffle
. Trai 50 (‘nml'i}wtl AUR()(“
[54] Quantum SVM, D. Willsch et al. oy ot Test AUPRG

qSVM(B,K,§,~)——

Appendix offers details on understanding Support Vector Machines (SVMs) & Kernel Methods with a geometric SVM interpretation
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PARALLEL & SCALABLE ALGORITHM DEVELOPMENT

Using Support Vector Machines with Quantum Annealing with Remote Sensing (work in progress...)

E = E a’iQija'jf

i<j

K—-1
k
Oy = E B axntk
k=0

minimize

subject to

and

D:\wavk

The Quantum Computing Company
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=> an,
"
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Quantum Annealer requires the formulation
of the computational problem as a quadratic
unconstrained binary optimization(QUBO)
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Parallel & Scalable Classification
with SVMs based on Message Passing
Interface (MPI) using HPC resources

Scenario ‘pre-processed data‘’, 10xCV serial: accuracy (min)

~vI/C 1

10

100

1000

10000

2 48.90 (18.81)
4 57.53 (16.82)
8 64.18 (18.30)
16 68.37 (23.21)
2 70.17 (34.45)

65.01 (19.57)
70.74 (13.94)
74.45 (15.04)
76.20 (21.88)
75.48 (34.76)

73.21 (20.11)
75.94 (13.53)
77.00 (14.41)
76.51 (20.69)
74.88 (34.05)

75.55 (22.53)
76.04 (14.04)
75.78 (14.65)
75.32 (19.60)
74.08 (34.03)

74.42 (21.21)
74.06 (15.55)
74.58 (14.92)
74.72 (19.66)
73.84 (38.78)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

Second Result: all parameter sets from ~9 hours to ~35 min

. ~¥IC 1 10 100 1000 10000
2 7526 (1.02) 65.12 (1.03) 73.18 (1.33) 75.76 (2.35) 74.53 (4.40)
.8 4 57,60 (1.03) 70.88 (1.02) 75.87 (1.03) 76.01 (1.33) 74.06 (2.35)
= 8 64.17 (1.02) 74.52 (1.03 ) 77.02 (1.02) 75.79 (1.04) 74.42 (1.34)
u 16  68.57 (1.33) 76.07 (1.33) 76.40 (1.34) 7526 (1.05) 74.53 (1.34)
e 32 7021 (1.33) 75.38 (1.34) 74.69 (1.34) 7391 (1.47) 73.73 (1.33)
W
First Result: best parameter set from 14.41 min to 1.02 min

[20] G. Cavallaro and M. Riedel et al., Journal of Selected Topics in Applied

Earth Observation and Remote Sensing, 2015



IMPACTS OF ARTIFICIAL INTELLIGENCE IN APPLICATIONS

Emerging Medical Application Examples
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INTERTWINED HPC SIMULATIONS & MACHINE LEARNING

Enabling ‘full loop‘ in research — forward numerical simulations — backwards machine & deep learning

< - -
simufation|| [ HPC Simulation
Run (Computational Science/Engineering Application

Resull

HPCResource

Response from data Request for analytics

analysis/analytics to generate validation from HPC

more suitableparametersor  The “full loop of Scientific Big Data Analytics’ simulation (scientific

to refine model characteristica application)

[Data Analysis/Analytics (e.g. solving in-verse problems) ]
7 <

HPC/HTC Resource

- —
‘Big Data’ Processing Unit: Preparing & “Big Data’
Filtering data (e.g. empirical data) Previous HPC runs
Observations

[31] Th. Lippert, D. Mallmann, M. Riedel,
‘Scientific Big Data Analytics by HPC’,
NIC Series 48, 2016

Ml T
v v v v
Smart Megzizal Information
Technology for Healthcare

-.'L. MEDIZIN
«**# INFORMATIK

2 0o \
~--«",,’v‘°\|N|TIATI VE

SPONSORED BY THE

% Federal Ministry
of Education
and Research

UNIKLINIK
RWTH

Combine mechanistic/numeric modeling with machine learning modeling in one ‘full loop‘ (~ ‘hybrid modeling°)

Patient + state
paramters:
individualisation
(Machine Learning)

"Envlronmlmal 5":‘""
=
Model .

generic model
(mechanistic)

adaption of generic model
to available data (Machine Learning)

18t February 2021

Unsupervised Patient Stratification
- Dynamic clustering
- Critical state detection

Predictive modelling Machine for
Algorithmic Surveillance of ICU Patients

v

Prognosis for
S Individual patient
a
g v &
ik
|
v ;
Patient subgroups Machine Learning, Patient association,
& classifiers Subgroup specific prediction
[32] Alfred Winter, A. Schuppert, M. Riedel et al.,
Journal of Methods of Information in Medicine, 2018
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OVERVIEW OF HEALTH APPLICATIONS IN HPC & Al
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IMPACTS OF ARTIFICIAL INTELLIGENCE IN APPLICATIONS

Selected Commercial and Industry Application Examples
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IMPACTS OF ARTIFICIAL INTELLIGENCE IN APPLICATIONS

Retail Examples
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OVERVIEW OF RETAIL APPLICATIONS IN HPC & Al
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IMPACTS OF ARTIFICIAL INTELLIGENCE IN TEACHING

More and More Courses & Trainings for Machine & Deep Learning
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TEACHING & TRAINING PARALLEL & SCALABLE ML/DL

Selected University Lectures at University of Iceland & Training Courses @JSC & Online via YouTube

Cloud Computing & Big Data

PARALLEL & SCALABLE MACHINE LEARNING & DEEP LEARNING

Prof. Dr. — Ing. Morris Riedel
“ Adjunct Associated Professor

School of Engineering and Natural Sciences, University of Iceland
Research Group Leader, Juelich Supercomputing Centre, Germany

1. Cloud Computing & Big Data 11. Data Analytics & Cloud Data Mining
2. Machine Learning Models in Clouds [ 12. Docker & Container Management
3. Apache Spark for Cloud Applications |13, openstack Cloud Operating System
4. Virtualization & Data Center Design |14 pline Social Networking & Graphs P JULICH
5. Map-Reduce Comouting Paradigm | 15 e 61reaming Tools & Applications J Forschungszantrum
6. Deep Learning driven by Big Data
B & .Ele: 16. Epilogue
7. Deep Learning Applications in Clouds HELMHOLTZ
+additional practical lectures for our
8. Infrastructure-As-A-Service (IAAS)
hands-on exercises in context
9. Platform-As-A-Service (PAAS) l[w‘ EEP
10. Software-As-A-Service (SAAS) ®: |Practical Topics I Projects
* Theoretical / Conceptual Topics

[40] M. Riedel, ‘Cloud Computing & Big Data — Parallel
& Scalable Machine Learning & Deep Learning’, 2018

High Performance Computing
ADVANCED SCIENTIFIC COMPUTING

Dr. — Ing. Morris Riedel

Adjunct Associated Professor

School of Engineering and Natural Sciences, University of Iceland
Research Group Leader, Juelich Supercomputing Centre, Germany

1. High Performance Computing

UNIVERSITY OF ICELAND

#) JULICH

FORSCHUNGSZENTRUM

18. Epilogue

+additional practical lectures for our

[41] M. Riedel, ‘Higi; Performance Computing —
Advanced Scientific Computing’, 2017
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-

Morris Riedel y N
r% @MorrisRiedel &/ v

1 Parallel & Scalable Data Analysi:

Introduction to Machine Learning Algorithms

Thanks to all participants of our Introduction
to Deep Learning course organized by our
DEEP-EST project @DEEPprojects & Juelich
Supercomputing Centre @fzj_jsc & University e
of Iceland @Haskoli_Islands - slides are
publicly available at: morrisriedel.de/deep-
est-tutor ... - CU next time!

Dr. - Ing. Morris Riedel
| Adjunct Associated Professor
| Sehcol of Engineering and Natural Sciences, University of celand
i ing Centre, Germany.

Machine Learning Fundamentals

November 235, 2017
Ghent, Belgium

I P > o) 008/15244

[43] M. Riedel, ‘Introduction to Machine Learning Algorithms’,
Invited YouTube Lecture, six lectures, University of Ghent, 2017

Deep Learning

Using a Convolutional Neural Network

Dr. - Ing. Morris Riedel
Adjunct Associated Professor

| chool o Engineering and Natural Sciences, University of Iceland
Research i ing Centre, Germany

Deep Learning Fundamentals & GPGPUs

November 30%, 2017
Ghent, Belgium

11:41 - 8. Juni 2018 aus Jilich, Deutschland

I« » Dl 4) 000/219:47

[42] M. Riedel et al., ‘DEEP-EST Tutorial:
Introduction to Deep Learning’, 2018

[44] M. Riedel, ‘Deep Learning - Using a Convolutional Neural Network,
Invited YouTube Lecture, six lectures, University of Ghent, 2017
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APPENDIX: SUPPORT VECTOR MACHINES

O 2 O

O
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GEOMETRIC SVM INTERPRETATION AND SETUP (1)

= Think ‘simplified coordinate system‘ and use ‘Linear Algebra’
= Many other samples are removed (red and green not SVs) @ &
» Vector W of ‘any length’ perpendicular to the decision boundary
= Vector u points to an unknown quantity (e.g. new sample to classify)
» |s u on the left or right side of the decision boundary?

"._(.projection)
' = Dotproduct w-u>C;C = —b
= With u takes the projection on the W
= Depending on where projection is it is
left or right from the decision boundary
= Simple transformation brings decison rule:
@ w-u+b>0 > means %
= (giventhatband W are unknown to us)

(constraints are not enough to fix particular b or w,
need more constraints to calculate b or w)
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GEOMETRIC SVM INTERPRETATION AND SETUP (2)

= (Creating our constraints to get b or w computed
= First constraint set for positive samples # WX, + b>1
= Second constraint set for negative samples® w-x_ + b <1

= For mathematical convenience introduce variables (i.e. labelled samples)
y; =+ for# and y; = —for@

"..(projection)

= Multiply equations by ¥
= Positive samples:  V; (xz- W+ b) 1
» Negative samples: %(Xz ' W+ b) 1
= Bothsamedueto ¥ = +and y; = —

(brings us mathematical convenience often quoted)

yi(xi -w+b)—1>0

(additional constraints just for support vectors itself helps)

@ yi(xi-w+b)—1=0
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GEOMETRIC SVM INTERPRETATION AND SETUP (3)

= Determine the ‘width of the margin’

= Difference between positive and negative SVs: X, — X_
= Projection of x; — X_ onto the vector w

= The vector W is a normal vector, magnitude is || W/||

V..
*s._(projection)

(Dot product of two vectors is a scalar, here the width of the margin)

= Unit vector is helpful for ‘margin width’

= Projection (dot product) for margin width:
X — X W \
@ '.’ X4+ — X 1 m (unit vector)
' ¥ ¥ — i@
. 1—b 14b 1wl

= When enforce constraint: Yi=+8®
@uilxi- w+b)—1=0 ¥yi=—9
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CONSTRAINED OPTIMIZATION STEPS SVM (1)

= Use ‘constraint optimization’ of mathematical toolkit

2

. p .. . P o . (drop the constant
* |deais to ‘maximize the width’ of the margin: max _HWH 2 is possible here)
W

V.. 1
', (projection) ._ ) .
" mar——  (equivalent)
.. W

» minllw (equivalent for max)

o .'0.)'5-}— — X » ,rnz-nl W 2 (mathematical
2

convenience)

X— = Next: Find the extreme values

- " Subject to constraints

1T
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CONSTRAINED OPTIMIZATION STEPS SVM (2)

= Use ‘Lagrange Multipliers® of mathematical toolkit
= Established tool in ‘constrained optimization’ to find function extremum

= ‘Get rid’ of constraints by using Lagrange Multipliers @

V..
*s,_ (projection)

1'\

" |ntroduce a multiplier for each constraint

L(a) = %HWHQ ~ N alyi(xi - w+ b) — 1]

(interesting: non zero for support vectors, rest zero)

" Find derivatives for extremum & set O
= But two unknowns that might vary

= First differentiate w.r.t. W

= Second differentiate w.r.t. b

(derivative gives the gradient, setting 0 means extremum like min)
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CONSTRAINED OPTIMIZATION STEPS SVM (3)

. 1 :
" Lagrange gives: [(a) = §HW||2 _ Zai[yi(xi w4+ b) — 1]

»  First differentiate w.r.tw

a E (derivative gives the

— =W — E ;Y Xl= 0 gradient, setting 0 means

()W extremum like min)

= Simple transformation brings:

.'... = . @W = E QO Y; X | (i.e. vector is linear sum of samples)
l" _+_ — —

V4

n Second differentiate w.r.t. §

Bb Zayl—o»z&l/l—o@

(recall: non zer , rest zero = even less samples)

1-\
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CONSTRAINED OPTIMIZATION STEPS SVM (4)

. 1 .
" Lagrange gives: £(a) = o||w||* = Y aulyil(xi - w +b) — 1]

. .. (plug into)
= Find minimum
v W = Quadratic optimization problem

(projection)

= Take advantage of @W = Z QY X

L= %(Z iYiX;) - (Z a;Y;X;)
: X+ —X_ B Z X - (Z v yX;)

= E a;yib + Z %
(b constant
in front sum) Z Y = O
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CONSTRAINED OPTIMIZATION STEPS SVM (5)

. 1§
» Rewrite formula: £ = B Z YiX;) - (Z a;y;X;)

— E X (Z Oéj?/jxj)

% S
(was 0)
(optimization
(results in) depends only on dot

"...x o = X product of samples)

1
| L= a;- EZZQinyiyEi %;(®
X ’ i
A \ = Equation to be solved by some
quadratic programming package
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USE OF SVM CLASSIFIER TO PERFORM CLASSIFICATION

= Use findings for decision rule
(decision rule also

@W = E ;Y X depends on

dotproduct)

’ Zaiyixi'ui‘l—bzo +
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CONSTRAINED OPTIMIZATION STEPS & DOT PRODUCT

_ 1
= Rewrite formula: £ = 5 Zaiyixi) ' (Z ;Y5 )

(the same)

— QU T (Z Odjijj)

— ;b + E Qo
(was 0)
(optimization
(results in) depends only on dot

"’.,X-f- — X product of samples)

‘ ; P = Z‘)"i — %Zzaﬂjyiy
- \ i
<

V.’
*+,_ (projection)

= Equation to be solved by some
quadratic programming package
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KERNEL METHODS & DOT PRODUCT DEPENDENCY

= Use findings for decision rule
(decision rule also

@W = E QG Y X depends on

dotproduct)
@Qw-u+b>0 # ’ Z@i?jixz"ui‘l-bEO*
"+, (projection) = Dotproduct enables nice more elements

= E.g. consider non linearly seperable data

= Perform non-linear transformation ® of the
samples into another space (work on features)

L= Zaz ——ZZ@ o,y ykx; - x)(6)

(optimization
‘ (I) Xz ) (in °Pt'm'zat|0ﬂ) depends only on dot
(for decision rule Eradic o Sumpies)
* (I) xl 11 ) above too)
(kernel trick is (trusted Kernel
substitution) K (xl x]) =X Xj I( X'l ) X]) ( ) ( ) avoids to know Phi)
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