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Selected Software Engineering Challenges in HPC

Software is a ‘side-effect‘ of scientific studies
 Science domain developers driven by PHD student funds
 Key goal is to create high impact papers, less on software
 Partially unknown requirements at software design time

Different from traditional software development
 Rapid changes of underlying complex hardware systems
 Inherent parallelism design and concurrency effects
 Skills of software engineering rarely applied in scientific domains

Establishing long-term tools & re-usability problems
 Different workflows and software lifecycle driven by studies
 Once PHD finished and moves, lack of expert knowledge
 Cost of maintenance for software rarely in research grants
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[10] J. Segal and C. Morris, 
‘Developing Scientific 
Software‘, IEEE Software 
Vol 25(4), pp. 18-20, 2008
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Context Juelich Supercomputing Centre – Germany 

Federated Data Management,
Preservation, Security & Access

 Research data-intensive science 
and engineering applications

 Explore computing that is more 
intertwined with data analysis

 Sharing, re-use, 
towards reproducability

[1] Th. Lippert, D. Mallmann, M. Riedel, ‘Scientific Big 
Data Analytics by HPC’, Publication Series of the John 
von Neumann Institute for Computing (NIC) NIC Series 
48, 417, ISBN 978-3-95806-109-5, pp. 1 - 10, 2016

 Tackle 
Inverse 
Problems
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Juelich Machine Learning Library (JUML) – Key Facts

Machine learning library for High Performance Computing (HPC)
 Leverages HPC key technologies: 

parallel I/O & fast interconnects
 Implements common machine 

learning algorithms: e.g. Gaussian 
Naive Bayes (GNB), K-Means, Artificial 
Neural Networks (ANN), etc.

 Includes a set of help functions, e.g. 
data normalization, distributed sorting

 Enables usability for non-HPC experts
via high-level APIs for C++/Python

 Abstracts of technical complexities 
by simply choosing CPUs or GPUs

 Designed using software engineering
principles, modularity, structured tests

 Available as open source [6] JUML Open Source GitHub Repository
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(extensions of gtest baseline test framework
for different computational backends & test fixtures)
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JUML – Software Engineering Perspective 

Re-use of software libraries
 Arrayfire, MPI, HDF5
 cuda, opencl, python, numpy, mpi4py, 

swig (for python bindings), gtest
 Offers proper building environment,

via cmake, i.e. CMakeLists.txt

 Includes proper source code 
documentation via doxygen format

 Enables test-driven developments
via ctest distributed test runner (cmake)

[7] Cmake Build, Test, 
and Packaging Tool, 

[8] Doxygen format
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JUML Architecture – Modularity & Extensibility

[5] M. Goetz & M. Riedel et al., ‘Supporting Software Engineering Practices in the Development of Data-Intensive HPC 
Applications with the JUML Framework’, CoDeSe Workshop, Supercomputing 2017, Denver, USA
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(simplifies 
design of new

parallel 
algorithms)

(Parallel I/O)
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Classification Technique used in JUML Examples

 Groups of data exist
 New data classified 

to existing groups

Classification
?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

[9] M. Riedel, ‘Machine Learning Tutorial for 
Supervised Classification using SVMs‘, Tutorial, 
Barcelona Supercomputing Centre, 2016

Parallel & Scalable Machine Learning Tutorial
PRACE PATC Training, Registration – Deadline:

2017-12-31 @ https://events.prace-ri.eu/event/679/

7 / 17



Software Engineering Practices in JUML, M. Riedel et al.

Gaussian Naive Bayes (GNB) – Technique 

‘Naive Bayes‘ simple approach to prediction in classification
 Applies Bayes‘ Theorem  naive assumption

of independence between every pair of features
 Despite of simplicity works well often in practice

Gaussian Naive Bayes
 Assumes that the values associated 

with each class are distributed 
according to a Gaussian distribution
 Segment data by class, then compute

the mean and variance for each class
Computational complexity
 Fast training, no coefficients

need to be fitted by optimizations
 Calculates only P(each class) and 

P(each class given different input x)
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(assign instance probabilities)

(conditional class distribution over class 
variable C; note Pi product notation)

(decision rule used for classification)

(v = data value, uk= mean, ℴk = variance)

(gaussian naive bayes)
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JUML Usage Example – GPUs or CPUs

Easy usability & resource specification
 E.g. using C++ API, specify resources: all available GPU nodes

 E.g. using Python API, specify resources: single node CPU

[6] JUML Open Source GitHub Repository
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(goal: simplify
porting

small-scale
data analysis 
code known

from 
scikit-learn 
or others
to HPC

systems)

(goal: abstract
from low-level
parallelization

details)
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Artificial Neural Network (ANN) – Technique 

Key Building Block
 Perceptron learning model
 Simplest linear learning model
 Linearity in learned weights wi

 One decision boundary
ANN – aka Multi-Layer Perceptron
 Enable the modelling of more complex 

relationships in the datasets
 May contain several intermediary layers 
 E.g. 2-4 hidden layers with hidden nodes
 Use of activation function that can 

produce output values that are 
nonlinear in their input parameters

(decision 
boundary)

wi

(perceptron model)

(input
layer)

(hidden
layer)

(output
layer)

[4] M. Riedel, ‘Introduction to Deep Learning with Convolutional 
Neural Networks & Applications’, PRACE 2017 Spring School
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Application Example – ANN Classification & Speed-Up

Remote Sensing Application Domain – City of Rome
 E.g. scientific case: automatically generate parts of street maps [today]
 E.g. scientific case: monitor urban planning efforts [over years/decades]
 Input: labelled data, hyperspectral images taken from satellites
 Output: classification of land cover type per pixel in 9 different classes
 Architecture: image pixels input, 1000 hidden neurons, 9 output neurons

[3] Rome Image dataset
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(geometrical
resolution of 
1.3m and 55 

different 
frequency 

bands,
feature

engineered
using a self 

dual attribute
profile)

(JURECA, multiple GPUs,
NVIDIA DUAL K80/node
100 batch size in
training, ~91% 
accuracy)
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Research Modular Supercomputing Concept & JUML
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Summary

Scientific Peer Review is essential to progress in the field
 Work in the field needs to be guided & steered by communities
 NIC Scientific Big Data Analytics (SBDA) first step (learn from HPC)
 Enabling reproducability by uploading runs and datasets (increase quality)

Explore benefits from software engineering in HPC
 Application-domain scientists can focus on science
 Enables long-term maintenance as community effort
 Generic JUML framework design & re-usable components

Number of ‘machine learning et al.‘ technologies incredible high
 (Less) open source & working versions available, often paper studies
 Evaluating approaches hard: HPC, map-reduce, Spark, SciDB, MaTex, …
 Increasing number, uptake, and development of deep learning frameworks
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Appendix: Current Research Questionaire for Studies
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Thanks
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Talk available at: http://www.morrisriedel.de/talks


