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Selected Software Engineering Challenges in HPC

Software is a ‘side-effect’ of scientific studies
Science domain developers driven by PHD student funds
Key goal is to create high impact papers, less on software

Partially unknown requirements at software design time (10} . segal and c. Morris,
‘Developing Scientific
Software’, IEEE Software

Different from traditional software development Vol 25(4), pp. 18-20, 2008
Rapid changes of underlying complex hardware systems
Inherent parallelism design and concurrency effects
Skills of software engineering rarely applied in scientific domains

Establishing long-term tools & re-usability problems
Different workflows and software lifecycle driven by studies g
Once PHD finished and moves, lack of expert knowledge gy
Cost of maintenance for software rarely in research grants
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Context Juelich Supercomputing Centre — Germany

:“ Communities

Research data-intensive science
and engineering applications

Explore computing that is more
intertwined with data analysis

gECE Parallel ///p EE’%

Projects
Data

Analytics

Data Machine
Mining Learning

Tackle Methods Algorithms

Problems

Scientific Data
Community Analysis

Federated Data Management,

Preservation, Security & Access _ .« & Applications i
B OET f g ools
COMFALLSE — | = Sharing, re-use, eeneric

Data

towards reproducability [ZE sos o mart Data
[1] Th. Lippert, D. Mallmann, M. Riedel, ‘Scientific Big o Innovation Lab
Data Analytics by HPC’, Publication Series of the John w s m I t h

von Neumann Institute for Computing (NIC) NIC Series | U DAT ... Informatien
48, 417, ISBN 978-3-95806-109-5, pp. 1 - 10, 2016 Technology for Healthcare

Software Engineering Practices in JUML, M. Riedel et al. 3717



Juelich Machine Learning Library (JUML) — Key Facts

Machine learning library for High Performance Computing (HPC)

Leverages HPC key technologies: (extensions of gtest baseline test framework
para||e| /O & fast interconnects for different computational backends & test fixtures)

1 // original fixture class of Google Test

Implements common machine ‘”{
learning algorithms: e.g. Gaussian ¢ )

1 1Fi1/1 8 // forward definition inheriting from the fixture
Nalve Bayes (GNB), K_Meansj ArtIfICIaI 9 #defin:} INTECEPTOR_FORWARD_DEFINITION(FIXTURE) \
10 class FIXTURE## _Interceptor : public FIXTURE { \

Neural Networks (ANN), etc. 0 protected: \

12 void test(); \
13 Tz

Includes a set of help functions, e.g. &

15 // per-backend test generator
#define TEST_BACKEND_F (FIXTURE, BACKEND) \

data normalization, distributed sorting = resr_rimmuies_iterceptory ¢\

18 // set backend
19 juml::setBackend(BACKEND); \

Enables usability for non-HPC experts = /< o e e

21 this->test (); \

via high-level APIs for C++/Python 5

24 // definition of the main macro for all backends
. vy 55 #define TEST_ALL_F(FIXTURE) \
Abstracts Of teChn|Ca| CompleX|t|eS 26 TEST_INTERCEPTOR_FORWARD_DEFINITION(FLIXTURE) \
27 TEST_BACKEND_F (FIXTURE, juml::Backend::CPU) \

28 #ifdef OTHER_BACKEND M

by Simply ChOOSing CPUS Or GPUS 20 TEST_BACKEND_F (FIXTUREm OTHER_BACKEND) \

30 tendif \

Designed using software engineering = ™ e
principles, modularity, structured tests [ e ¢

%}

Available as open source [6] JUML Open Source GitHub Repository
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JUML - Software Engineering Perspective

#Project Mame

Re-use of software libraries [7] Cmake Build, Test,

# Set minimum CMAKE version# and PaCkaging TOOII
. CMAKE_MINIMUM_REQUIRED(VERSION 2.8.11)
Arrayfire, MPI, HDF5 .

cuda, opencl, python, numpy, mpidpy, |5
SET{CMAKE_C_COMPILER ${MPI_C_COMPILER})

SWig (for python bindingS)’ gtest SET{CMAKE_CXX_COMPILER ${MPI_CXX_COMPILER})
ENDIF (MPI_FOUND)

Offers proper building environment,

via cmake, i.e. CMakelLists.txt - Sertcws ¢ coenes wicc™

SET{CMAKE_CXX_COMPILER "mpicxx")

# COMPILER FLAGS

mkdir build && cd build && cmake .. && make SET(CMAKE_CXX_FLAGS "-std=ce+11 -g")
FIND_PACKAGE(Thresds REQUIRED)
FIND_PACKAGE (OpenMP REQUIRED)

Includes proper source code - (orewr._rouo)

SET{CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpentP_C_FLAGS}")

dOCU me ntatIOﬂ Via doxygen fo I’mat EHD::IE;;EP-:;:E;EE:E)LAGS "§{CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")

# ADD ARRAYFIRE
[8] Doxygen format SET(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_SOURCE_DIR}/CMakeModules™)
FIND_PACKAGE{ArrayFire REQUIRED)
IF (ArrayFire_FOUND)
INCLUDE_DIRECTORIES{${ArrayFire_INCLUDE_DIRS})

Enables test-driven developments | SIS o e s D) Saraeice L)
via ctest distributed test runner (cmake)

make doc

# ADD HDFS
FIND_PACKAGE({HDFS REQUIRED)
IE (HDFS_FOUND)

make vtest ctest -R <TEST_NAME> INCLUDE_DIRECTORIES(${HDF5_INCLUDE_DIRS})

ENDIF (HDFS_FOUND)
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JUML Architecture — Modularity & Extensibility

(Parallel 1/0O)

=dnterface>>
<<pptimizes>> ; <<used by=>
: --------------- S e s s b Algpnthm CLERR R T RN N NI T T E RN RN LYY Backend h Dataset ﬁ HODF5
: 4 o <<used by>=> 4 L)
n 1 s sEsEEsE s s ss s s S S S EE S S S S S EEEES S SESEEEEEEEEE =
L] - - gm 1 -
; (simplifies :
. . :
: design of new : Arrayfire [
[ ] s EESESEE S S S S S S S EEE SIS S I EESEEEEEEER
: parallel : :
. : .
: algorithms) : :
Optimizer Clusterer Classifier
+optimize (in grid :ParameterGrid, +fit (in data :Dataset) Igtrégga{::g a[;?ga-s[?ati;ﬁf;s-[gggéfn wvoid
LSRR o *+predict (in data :Dataset) +accuracy (in data :Dataset, in labels :Dataset) :double
l T | J
ParameterGrid GridSearch KMeans HPDBSCAN At el M e Doe MPI
| I | A A

Y A \L . N ¢

Probability Balanced
Distributions PRSSorting

ClassMormalizer Distance low-level routines

1 juml::Dataset data("/home/analysis_data.hb", "samples");

[5] M. Goetz & M. Riedel et al., ‘Supporting Software Engineering Practices in the Development of Data-Intensive HPC
Applications with the JUML Framework’, CoDeSe Workshop, Supercomputing 2017, Denver, USA
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Classification Technique used in JUML Examples

Classification Clustering Regression
" Groups of data exist = | No groups of data exist = |dentify a line with
* New data classified = | Create groups from a certain slope
to existing groups data close to each other describing the data

Parallel & Scalable Machine Learning Tutorial
[9] M. Riedel, ‘Machine Learning Tutorial for . . ) ] .
Supervised Classification using SVMs/, Tutorial, PRACE PATC Training, Registration — Deadline:
Barcelona Supercomputing Centre, 2016 2017-12-31 @ https://events.prace-ri.eu/event/679/
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Gaussian Naive Bayes (GNB) — Technique

‘Naive Bayes' simple approach to prediction in classification

Applies Bayes' Theorem > naive assumption p(Cy | x) = PR Px | C)
of independence between every pair of features o p(x) o
Despite of simplicity works well often in practice (assign Instance probabilities)
Gaussian Naive Bayes p(Ci | 21, @) = %p(CkJHp(ﬁi 1Cy)
1=1
Assumes that the values associated
) o Z = = C C
with each class are distributed p(x) Zk:p{ ) plx | Gi)
according to a Gaussian distribution (conditional class distribution over class
variable C; note Pi product notation)
Segment data by class, then compute .
the mean and variance for each class § = kgg:ma;}p(ﬂ}[[p(mf | Cr).
Computational complexity (decision rule used for classification)
Fast training, no coefficients (gaussian naive bayes) (v )?
need to be fitted by optimizations p(z = v | Cy) = L e

Calculates only P(each class) and \/ 270}
P(each class given different input x)

(v = data value, u,= mean, o, = variance)
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JUML Usage Example — GPUs or CPUs

Easy usability & resource specification [6] JUML Open Source GitHub Repository
E.g. using C++ API, specify resources: all available GPU nodes

1 #include <juml.h>
2 #include <mpi.h>
3
4 int main(void) { (goal: abstract
. ) : from low-level
5 juml : : GaussianNaiveBayes gnb( llelizati
6 juml ::Backend::GPU, // local gpu backend parZ(:I.Ta on
7 MPI_COMM_WORLD // select global node allocation etails)
8 );
9 return 0;
10 1
(goal: simplify
E.g. using Python API, specify resources: single node CPU porting
: : small-scale
1 import juml data analysis
2 from mpid4py import MPI code known
3 from
4 gnb = juml.GaussianNaiveBayes/( scikit-learn
5 juml.Backend.CPU, # local cpu backend or others
6 MPI.COMM_SELF # global node allocation to HPC
7 ) systems)
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Key Building Block

Perceptron learning model
Simplest linear learning model
Linearity in learned weights w;

Artificial Neural Network (ANN) — Technique

One decision boundary

ANN — aka Multi-Layer Perceptron

Enable the modelling of more complex
relationships in the datasets

May contain several intermediary layers
E.g. 2-4 hidden layers with hidden nodes

Use of activation function that can
produce output values that are
nonlinear in their input parameters

[4] M. Riedel, ‘Introduction to Deep Learning with Convolutional
Neural Networks & Applications’, PRACE 2017 Spring School

(decision
boundary)
Wi
output
: —Q\w/d
w
X, O z Ly
)(3 W; 1 (acti\;ation
. function)
input nodes X, (bias)

(perceptron model)

(input
layer)

(hidden
layer)

(output
layer)
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Application Example — ANN Classification & Speed-Up

Remote Sensing Application Domain — City of Rome
E.g. scientific case: automatically generate parts of street maps [today]
E.g. scientific case: monitor urban planning efforts [over years/decades]
Input: labelled data, hyperspectral images taken from satellites
Output: classification of land cover type per pixel in 9 different classes
Architecture: image pixels input, 1000 hidden neurons, 9 output neurons

12 -

NVIDIA DUAL K80/node
100 batch size in
training, ~91%

8 - accuracy) SO

(JURECA, multiple GlPUs,

6.59

Nodes

12

¢ & 2
‘ . u‘ ‘:. P "LI//

(a) Satellite image.

| Buildings M Blocks [ Roads
| Vegetation M Trees

M Ligh Train M Tower M Soil

[3] Rome Image dataset

(b) Land cover types.

I Bare soil

(geometrical
resolution of
1.3m and 55
different
frequency
bands,
feature
engineered
using a self
dual attribute
profile)

- (@o0) B2SHARE
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Research Modular Supercomputing Concept & JUML

(IDEEP

Projects Module 1 General | | MEM

Purpose
[2] DEEP Projects Web page Cluster Module@ CPU
CN

- -\ | Service Module i / Module 2
Scalable Storage Extreme Scale Booster

General

Purpose MEM -
CPU Storage Storage
system system)
HREA NVRAM 0

DN

BN

Module 3
Data Analytics Maodule

Network \ -/

Federation

General
Purpose
CPU

FPGA NVRAM MEM

NAM GCE
\2
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Summary

Scientific Peer Review is essential to progress in the field b

Work in the field needs to be guided & steered by communities
NIC Scientific Big Data Analytics (SBDA) first step (learn from HPC)
Enabling reproducability by uploading runs and datasets (increase quality)

., 2 SFTANRE ohn von Neumann - Institut fiir Computing NIC y
Explore benefits from software engineering in HPC %ﬁ
Application-domain scientists can focus on science ! z BV
Enables long-term maintenance as community effort \'(‘«.?f.w,t

Generic JUML framework design & re-usable components - f
Number of ‘'machine learning et al.” technologies incredible high
(Less) open source & working versions available, often paper studies
Evaluating approaches hard: HPC, map-reduce, Spark, SciDB, MaTex, ...
Increasing number, uptake, and development of deep learning frameworks
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Appendix: Current Research Questionaire for Studies

HPC sof tware IjE"-"E].ImeEn‘I‘_ 15 hard. . .
...can we make it easier?

We need your input on gaps 1in
Software Engineering for HPC!

Fill out the survey, ..

... takes S minutes. ..
... Scan OR code now!

http://bit.ly/2zLd32I
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Thanks

Talk available at: http://www.morrisriedel.de/talks
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