Selected Parallel and Scalable Methods for Scientific Big Data Analytics

Federated Systems and Data Division

Research Group

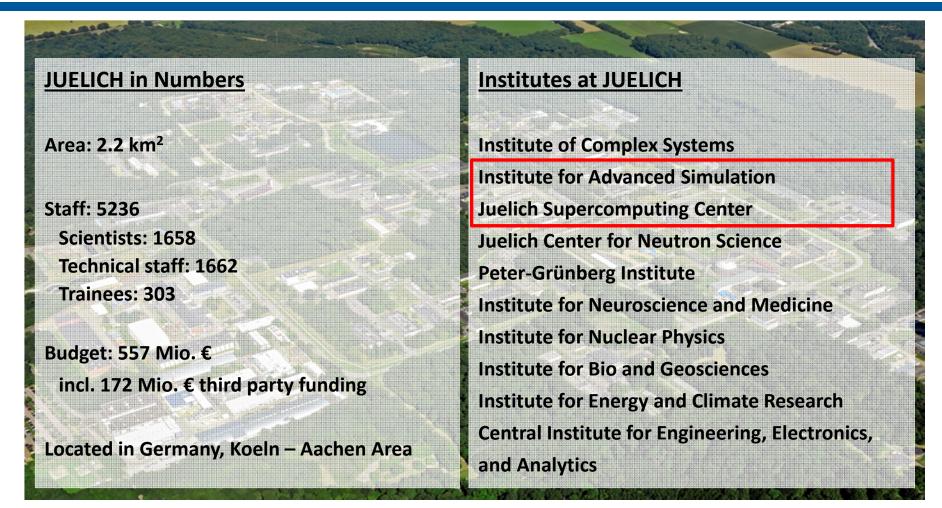
High Productivity Data Processing

Dr.-Ing. Morris Riedel et al.

Research Group Leader, Juelich Supercomputing Centre Adjunct Associated Professor, University of Iceland

> ZIH Kolloquium, 21th May 2015 Technical University of Dresden

Research Centre Juelich



Research for generic key technologies of the <u>next</u> generation

Scientific & Engineering Application-driven Problem Solving

University of Iceland

Schools of the University

School of Education

School of Humanities

School of Engineering and Natural Sciences

School of Social Sciences

School of Health Sciences

Interdisciplinary Studies

Full programmes taught in English

Staff: ~ 1259

Students: ~14.000

Located in Reykjavik Capital Center, Iceland

Faculties of the School

Civil and Environmental Engineering

Earth Sciences

Electrical and Computer Engineering

Industrial Engineering

Mechanical Engineering

Computer Science

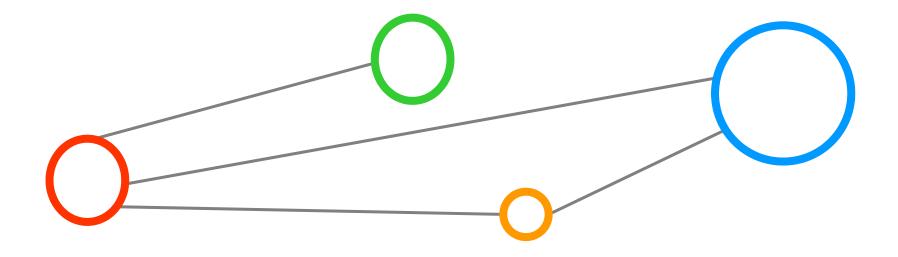
Life and Environmental Sciences

Physical Sciences

Teaching of key technologies in engineering & sciences

University Courses: Statistical Data Mining & HPC-A/B

Outline



Outline

Data Analytics @ Juelich

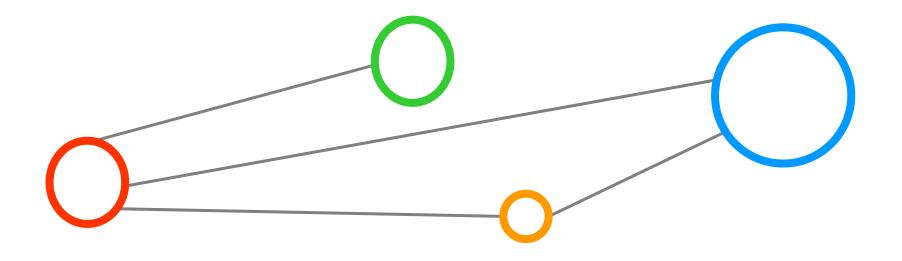
- Driven by Scientific & Engineering Demands
- Understanding of Terms & Key Focus

- Clustering DBSCAN
- Classification SVM
- Scientific Applications in Context

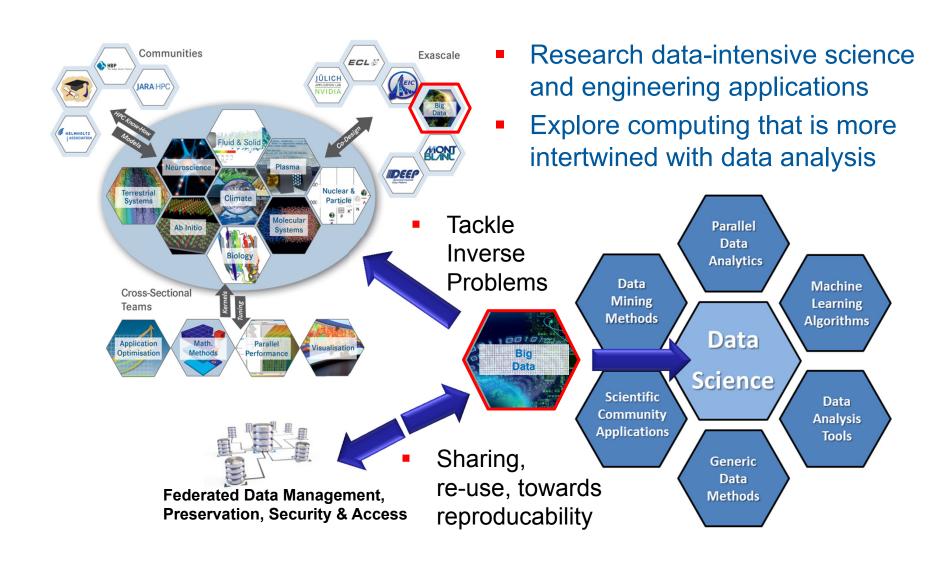
Recent Research Directions

- 'Brain Analytics'
- Deep Learning
- Conclusions
- References & Backup Slides

Data Analytics @ Juelich



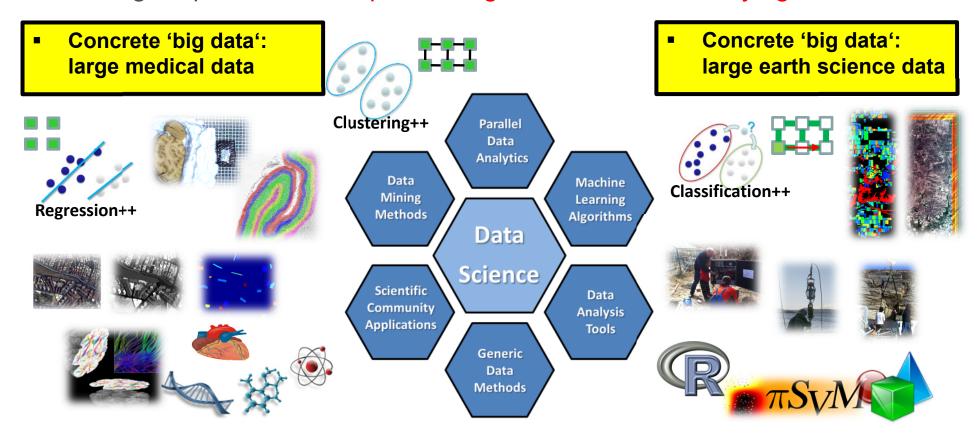
Data Analytics - Context JSC



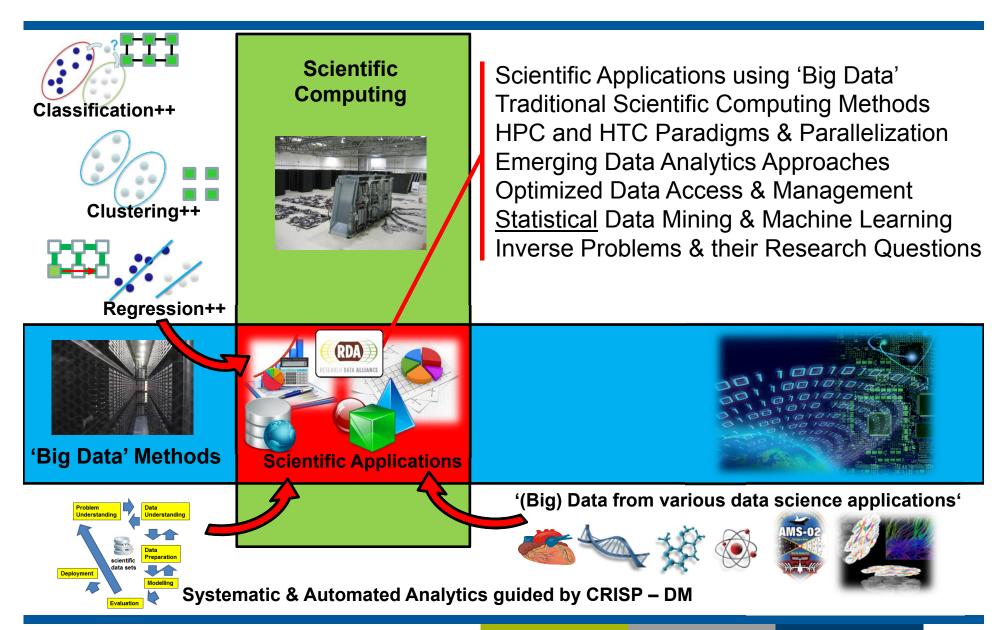
Data Analytics – Term Clarification

'Data Analytics' is an 'interesting mix' of different approaches

- Analytics: Whole methodology; Analysis: data investigation process itself
- 'Big' requires scalable processing methods and underlying infrastructure



Data Analytics – Research Key Focus



Data Analytics – Selected Research Group Activities

John von Neumann Institute for Computing (NIC)

- Peer-review of scientific big data analytics (SBDA) proposels
- Jointly work with SBDA users (first projects starting, prototyping process)

John von Neumann - Institut für Computing

Research Data Alliance (RDA)

Chairing activities of the Big Data Analytics Interest Group

- Collaboration with a variety of EU and US partners
- Geoffrey Fox, UoIndiana (map-reduce), Kuo Kwo-Sen (NASA, SciDB)

Smart Data Innovation Lab (SDIL)

- Driving activities in the personalised medicine community (with Bayer)
- Collaboration with partners from industry (e.g. IBM, SAP, Siemens, etc.)

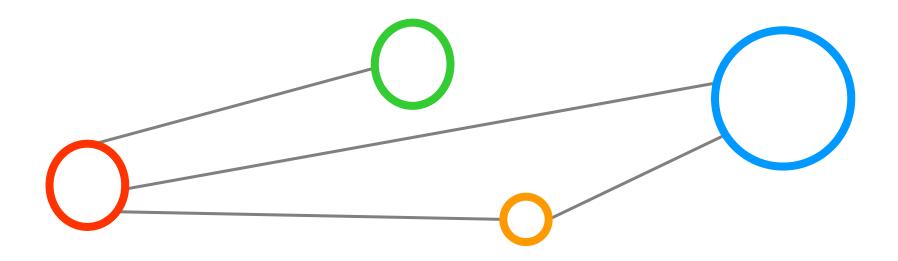
Data Analytics – Selected Research Expertise

Key expertise making algorithms parallel & scalable for 'big data'

- Driven by scientific and engineering cases, e.g. understanding the human brain, remote sensing applications, marine measurements analysis, ...
- Automate and/or support the data analysis process
- Example codes: Density-based Spatial Clustering of Applications with Noise (DBSCAN), Support Vector Machines (SVMs),

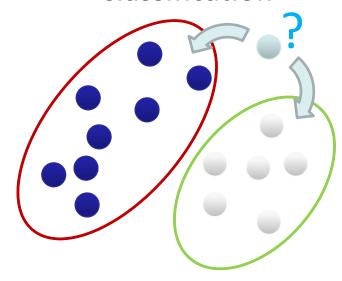
Parallel & Scalable SVM classification tool Parallel & Scalable DBSCAN clustering tool Problem: Classification of buildings Problem: Automatic outlier from multi-spectral images detection for data quality **Parallel** Data Analytics Enable smooth transition from Tailor solution for community Data Machine 'manual Matlab SVM scripts' Scalability towards Big Data Mining Learning Research on parallel SVM Methods Algorithms Design and improve automatic Data methods (map-reduce, HPC) data analytics approaches Science Data Community **Analysis Applications** Tools Generic Data [2] G. Cavallaro, M. Riedel et al., 'Smart Data Analytics Methods [1] R. Huber, M. Riedel et al., 'Research data enters for Remote Sensing Applications', IGARSS2014 scholarly communication and big data analysis', EGU2014'

Scalable & Parallel Tools: Clustering



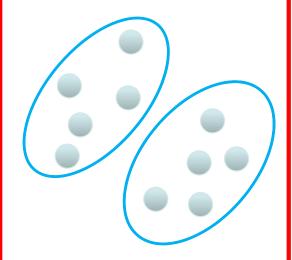
Learning From Data – Clustering Technique

Classification



- Groups of data exist
- New data classified to existing groups

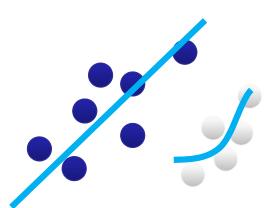
Clustering



No groups of data exist

Create groups from data close to each other

Regression



 Identify a line with a certain slope describing the data

Selected Clustering Methods

K-Means Clustering – Centroid based clustering

Partitions a data set into K distinct clusters (centroids can be artificial)

K-Medoids Clustering – Centroid based clustering (variation)

Partitions a data set into K distinct clusters (centroids are actual points)

Sequential Agglomerative hierarchic nonoverlapping (SAHN)

■ Hiearchical Clustering (create tree-like data structure → 'dendrogram')

Clustering Using Representatives (CURE)

Select representative points / cluster; as far from one another as possible

Density-based spatial clustering of applications + noise

(DBSCAN) Reasoning: density similiarity measure helpful in our driving applications

Assumes clusters of similar density or areas of higher density in dataset

Technology Review of Open & Available Tools

Technology	Platform Approach	Analysis
HPDBSCAN	C; MPI; OpenMP	Parallel, hybrid, DBSCAN
(authors implementation)		
Apache Mahout	Java; Hadoop	K-means variants, spectral, no DBSCAN
Apache Spark/MLlib	Java; Spark	Only k-means clustering, No DBSCAN
scikit-learn	Python	No parallelization strategy for DBSCAN
Northwestern University PDSDBSCAN-D	C++; MPI; OpenMP	Parallel DBSCAN

M. Goetz, M. Riedel et al., 6th Workshop on Data Mining in Earth System Science, International Conference of Computational Science (ICCS), Reykjavik, to be published

Parallel & Scalable DBSCAN MPI/OpenMP Tool (1)

DBSCAN Algorithm

Introduced 1996 by Martin Ester et al.

- [4] Ester et al.
- Groups number of similar points into clusters of data
- Similarity is defined by a distance measure (e.g. euclidean distance)

Distinct Algorithm Features

- Clusters a variable number of clusters
- Forms arbitrarily shaped clusters
- Identifies outliers/noise

Understanding Parameters for MPI/OpenMP tool

- Looks for a similar points within a given search radius
 - → Parameter epsilon
- A cluster consist of a given minimum number of points
 - → Parameter *minPoints*

Unclustered Data

Clustered Data

[3] M.Goetz & C. Bodenstein, HPDBSCAN Tool

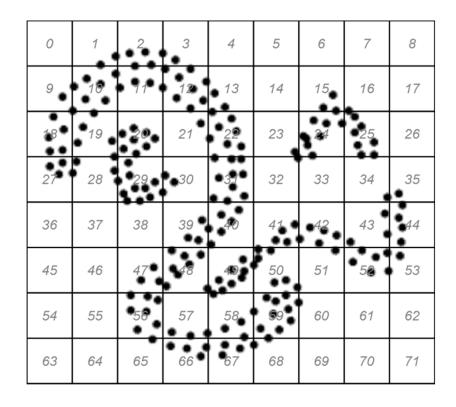
Parallel & Scalable DBSCAN MPI/OpenMP Tool (2)

Parallelization Strategy

- Smart 'Big Data' Preprocessing into Spatial Cells
- OpenMP standalone
- MPI (+ optional OpenMP hybrid)

Preprocessing Step

- Spatial indexing and redistribution according to the point localities
- Data density based chunking of computations



Computational Optimizations

[3] M.Goetz & C. Bodenstein, HPDBSCAN Tool

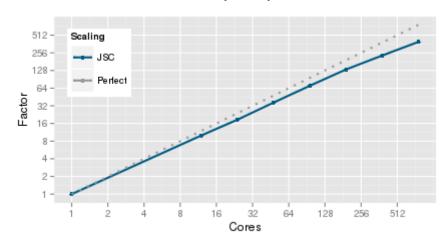
- Caching of point neighborhood searches
- Cluster merging based on comparisons instead of zone reclustering

Parallel & Scalable DBSCAN MPI/OpenMP Tool (3)

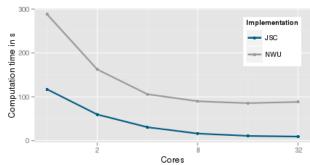
Performance Comparisons

- With another open-source parallel
 DBSCAN implementation
 (aka 'NWU')
- 3.7056.351 data points (2 dimensions)
- Use of Hierarchical Data Format (HDF)
 v.5 for scalable input/output of 'big data'

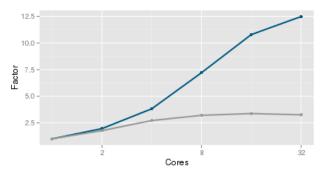
Speedup



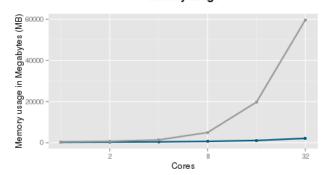
Computation time comparison



Speedup



Memory usage

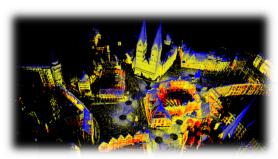


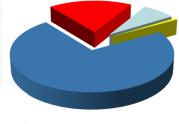
JSC: Data Analytics: m.riedel@fz-juelich.de

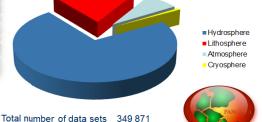
Parallel & Scalable DBSCAN MPI/OpenMP Tool (4)

Selected 'Big Data' Applications

- London twitter data (goal: find density centers of tweets)
- Bremen thermo point cloud data (goal: noise reduction)
- PANGAEA earth science datasets (goal: automated outlier detection)







[6] Open PANGAEA Earth Science Data Collection

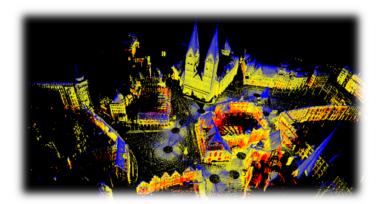
	Cores					
Computation time	1	2	4	8	16	32
JSC-HPDBSCAN	117,18 s	59,64 s	30,68 s	16,25 s	10,86 s	9,39 s
NWU-PDSDBSCAN	288,35 s	162,47 s	105,94 s	89,87 s	85,37 s	88,42 s
Speed-Up						
JSC-HPDBSCAN	1,00 x	1,96 x	3,82 x	7,21 x	10,79 x	12,48 x
NWU-PDSDBSCAN	1,00 x	1,77 x	2,72 x	3,21 x	3,38 x	3,26 x
Memory						
JSC-HPDBSCAN	251,064 MB	345,276 MB	433,340 MB	678,248 MB	1,101 GB	2,111 GB
NWU-PDSDBSCAN	500,512 MB	725,104 MB	1,370 GB	4,954 GB	19,724 GB	59,685 GB

Parallel & Scalable DBSCAN MPI/OpenMP Tool (5)

Free tool available

- Public bitbucket account open-source
- Tool Website with more information
- Maintained on best effort basis

[3] M.Goetz & C. Bodenstein, HPDBSCAN Tool



3D Point Cloud of Bremen/Germany

→ Usage via simple jobscripts

Usage

module load hdf5/1.8.13

mpiexec -np 1 ./dbscan e 300 -m 100 t 12 bremenSmall.h5

Parameter *epsilon*

Parameter *minPoints*

Parallel & Scalable DBSCAN MPI/OpenMP Tool (6)

Usage via jobscript

- Using MOAB job scheduler
- Important: module load hdf5/1.8.13
- Important: library gcc-4.9.2/lib64
- np = number of processors
- t = number of threads

JUDGE @ Juelich

```
mriedel@judge:/homeb/zam/analytic/bigdata/hpdbscan/jsc mpi/mriruns> more datajobscript.sh
#!/bin/bash
#MSUB -N HPDBSCAN BremenSmall 1 12
#MSUB -l nodes=1:ppn=12:qpus=0:performance
#MSUB -l walltime=00:03:00
#MSUB -M m.riedel@fz-juelich.de
#MSUB -m abe
#MSUB -v tpt=12
                                DBSCAN
#MSUB -l vmem=64qb
                                Parameters
#MSUB -a devel
module load hdf5/1.8.13
export LD LIBRARY PATH=/homeb/zamenalytic/bigdata/hpdbscan/gcc-4.9.2/lib64:$LD LIBRARY PATH
DBSCAN=/homeb/zam/analytic/bigda//hpdbscan/jsc mpi/dbscan
SMALLBREMENDATA=/homeb/zam/ana/cic/bigdata/hpdbscan/jsc mpi/mriruns/bremenSmall.h5
cd /homeb/zam/analytic/bigdsta/hpdbscan/jsc_mpi/mriruns
mpiexec -np 1 $DBSCAN (-e 300 Ym 100)-t 12 $SMALLBREMENDATA
```

Parallel & Scalable DBSCAN MPI/OpenMP Tool (7)

Output with various information

- Run-times of different stages
- Clustering task information (e.g. number of identified clusters)
- Noise identification
- Data volume (small Bremen): ~72 MB
- Data volume (large Bremen): ~1.9 GB

JUDGE @ Juelich

mriedel@judge:/homeb/zam/analytic/bigdata/hpdbscan/jsc_mpi/mriruns> more HPDBSCAN_BremenSmall_1_12.o2208066 Calculating Cell Space...

Computing Dimensions... [OK] in 0.011853 Computing Cells... [OK] in 0.073445 Sorting Points... [OK] in 0.124476 Distributing Points... [OK] in 0.000000

DBSCAN...

in 90.606330 [OK] in 90.606364

Merging Neighbors... [OK] in 0.000000

Adjust Labels ... [OK] in 0.004972

Rec. Init. Order ... [OK] in 1.255420

Local Scan... I am ready 0

Rec. Init. Order ... [OK] in 1.255420 Writing File ... [OK] in 0.019120

Result...

65 Clusters 2973821 Cluster Points 26179 Noise Points 2953129 Core Points

Took: 92.214843s

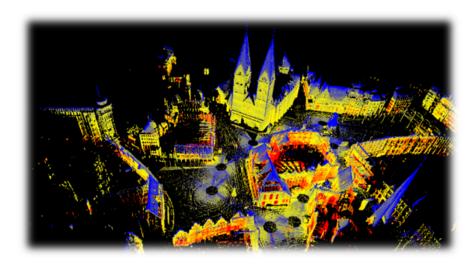
Output results written in same input data:

cluster number & noise label (depends on parameters)

Parallel & Scalable DBSCAN MPI/OpenMP Tool (8)

Visualization Example

- Using Point Cloud Library (PDL) toolset
- Transformation of Data to PCD format (python script on the right)



Usage

- python H5toPCD.py bremenSmall.h5
- pcl_viewer bremenClustered.pcd

```
import h5py as h5
                                      H5toPCD.py
import numpy as np
import sys
                                          python
if len(sys.argv) < 2:
   INPUT="bremen.h5"
                                           script
   INPUT = sys.argv[1]
FILE = "bremenClustered.pcd"
print"loading H5"
bremen = h5.File("bremenSmall.h5")
points = bremen["DBSCAN"]
clusters = bremen["Clusters"]
colors = bremen["COLORS"]
                              Take advantage
print "Transform to numpy"
points = np.array(points)
                               of NumPy library
clusters = np.array(clusters)
colors = np.array(colors)
#print "Remove Noise"
#points = points[clusters!=0]
#clusters = clusters[clusters!=0]
#data = np.concatenate((points,colors.reshape((-1,1))),axis=1)
data = np.concatenate((points,clusters.reshape((-1,1))),axis=1)
clusters[clusters!=0]=1
data = np.concatenate((data,clusters.reshape((-1,1))),axis=1)
print "Write PCD"
with open(FILE, "w+") as out:
   out.write("""# .PCD v0.7 - Point Cloud Data file format
FIELDS x v z rgb noise
TYPE F F F F F
COUNT 1 1 1 1 1
WIDTH %d
HEIGHT 1
VIEWPOINT 0 -50000 -50000 1 0 0 0
POINTS %d
DATA ascii
""" % (len(data),len(data),))
   np.savetxt(out, data)
```

Parallel & Scalable DBSCAN MPI/OpenMP Tool (9)

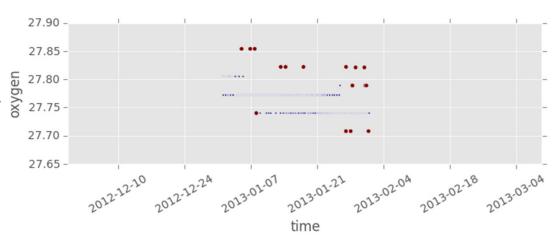
Earth Science Application

'Automated outlier detection in time series'

- Collaboration with MARUM, Bremen (work in progress)
- Example: water quality data of Koljoefjords
- Connected underwater device
- Measurements: oxygen, temperature, salinity, ...

Use of HPBSCAN algorithm

- Detect outliers and anomalies/events
- Compare with manually s annotated data by domain-scientist
- Needs auomation



Parallel & Scalable DBSCAN MPI/OpenMP Tool (10)

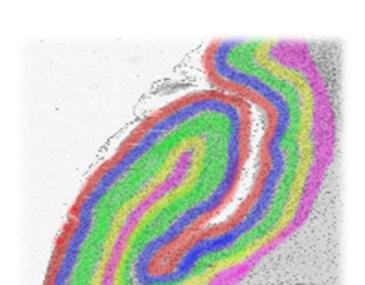
Neuroscience Application

'Cell nuclei detection and tissue clustering'

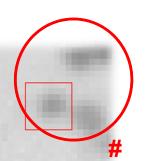
- Scientific Case: Detect various layers (colored)
- Layers seem to have different density distribution of cells
- Extract cell nuclei into 2D/3D point cloud
- Cluster different brain areas by cell density

Use of HPBSCAN algorithm

- First 2d results detect various clusters
- Work in progress, not very good results
- Approach: Several iterations (with 3D) with potentially different parameter values
- Investigate other methods (e.g. OPTICS)

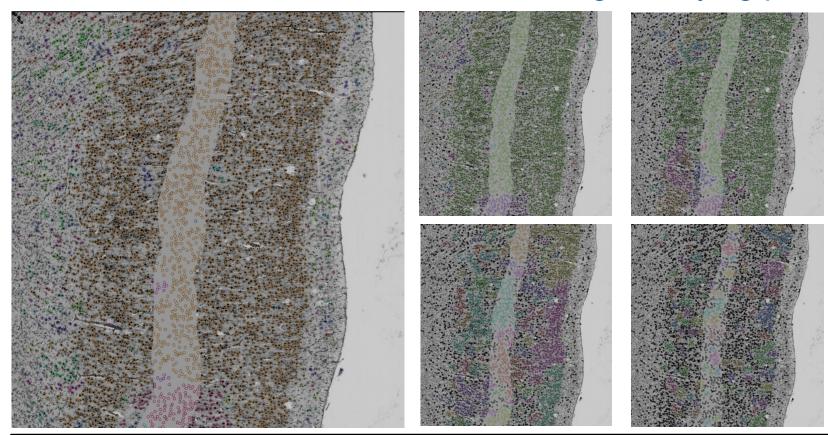


Research activities jointly with T. Dickscheid et al. (Juelich Institute of Neuroscience & Medicine)



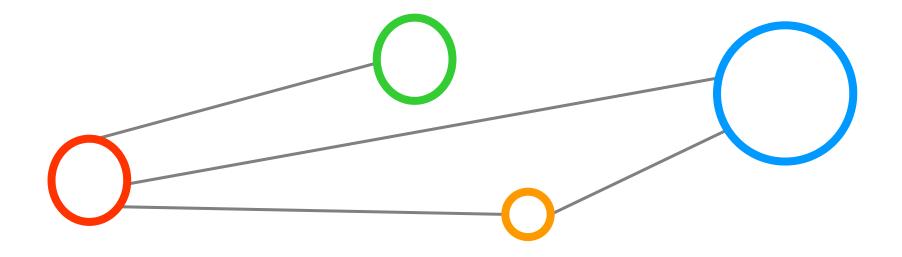
Parallel & Scalable DBSCAN MPI/OpenMP Tool (11)

Neuroscience Application – Work in progress (e.g. 3120x3288) 'Cell nuclei detection and tissue clustering' – varying parameters



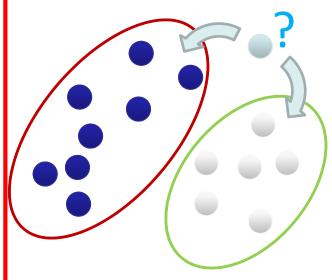
Research activities jointly with T. Dickscheid et al. (Juelich Institute of Neuroscience & Medicine)

Scalable & Parallel Tools: Classification



Learning From Data – Classification Technique

Classification



- Groups of data exist
- New data classified to existing groups

Clustering



- No groups of data exist
- Create groups from data close to each other
- Identify a line with a certain slope describing the data

Regression

Selected Classification Methods

Perceptron Learning Algorithm – simple linear classification

Enables binary classification with 'a line' between classes of seperable data

Support Vector Machines (SVMs) – non-linear ('kernel') classification

Enables non-linear classification with maximum margin (best 'out-of-the-box')

Reasoning: achieves often better results than other methods in remote sensing application

Decision Trees & Ensemble Methods – tree-based classification

Grows trees for class decisions, ensemble methods average n trees

Artificial Neural Networks (ANNs) - brain-inspired classification

Combine multiple linear perceptrons to a strong network for non-linear tasks

Naive Bayes Classifier – probabilistic classification

Use of the Bayes theorem with strong/naive independence between features

Technology Review of Open & Available Tools

Technology	Platform Approach	Analysis
Apache Mahout	Java; Hadoop	No parallelization strategy
		for SVMs
Apache Spark/MLlib	Java; Spark	Parallel linear SVMs
		(no multi-class)
Twister/ParallelSVM	Java; Twister;	Parallel SVMs, open source;
	Hadoop 1.0	developer version 0.9 beta
scikit-learn	Python	No parallelization strategy
		for SVMs
piSVM 1.2 & piSVM 1.3	C; MPI	Parallel SVMs; stable;
		not fully scalable
GPU LibSVM	CUDA	Parallel SVMs; hard to
		programs, early versions
pSVM	C; MPI	Parallel SVMs; unstable;
		beta version

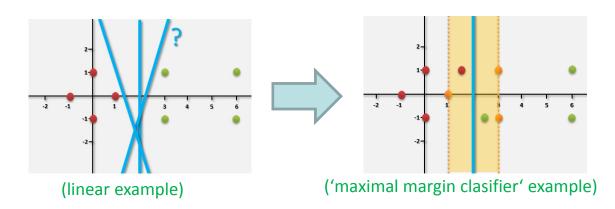
M. Goetz, M. Riedel et al., 6th Workshop on Data Mining in Earth System Science, International Conference of Computational Science (ICCS), Reykjavik, to be published

Parallel & Scalable SVM MPI Tool (1)

SVM Algorithm Approach

[7] C. Cortes and V. Vapnik et al.

- Introduced 1995 by C.Cortes & V. Vapnik et al.
- Creates a 'maximal margin classifier' to get future points ('more often') right
- Uses quadratic programming & Lagrangian method with N x N



(use of soft-margin approach for better generalization)

$$\min_{w,\xi_i,b} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i \xi_i \right\}$$

$$y_i(\mathbf{w} \cdot \mathbf{x_i} - b) \ge 1 - \xi_i, \quad \xi_i \ge 0$$

(maximizing hyperplane turned into optimization problem, minimization, dual problem)

$$\mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_n \mathbf{x}_n^T \mathbf{x}_m$$
 (max. hyperplane \Rightarrow dual problem, using quadratic programming method)
$$\mathbf{k}(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle \begin{bmatrix} y_1 y_1 x_1^T x_1 & y_1 y_2 x_1^T x_2 & \dots y_1 y_N x_1^T x_N \\ \dots & \dots & \dots \\ y_N y_1 x_N^T x_1 & y_N y_2 x_N^T x_2 & \dots y_N y_N x_N^T x_N \end{bmatrix}$$

(kernel trick, quadratic coefficients – Computational Complexity & Big Data Impact)

Parallel & Scalable SVM MPI Tool (2)

- True Support Vector Machines are Support Vector Classifiers combined with a non-linear kernel
- Non-linear kernels exist mostly known are polynomial & Radial Basis Function (RBF) kernels

[8] An Introduction to Statistical Learning

Understanding the MPI tool parameters

- Selecting non-linear kernel function K type as RBF → parameter –t 2
- Setting RBF Kernel configuration parameter $\gamma \rightarrow$ e.g. parameter –g 16
- Setting SVM allowed errors parameter → e.g. parameter –c 10000

Major benefit of Kernels: Computing done in original space

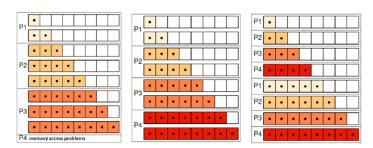
- Linear Kernel $K(x_i, x_{i'}) = \sum_{j=1}^{r} x_{ij} x_{i'j}$ (linear in features)
- Polynomial Kernel $K(x_i, x_{i'}) = (1 + \sum_{j=1}^p x_{ij} x_{i'j})^d$ (polynomial of degree d)
- **RBF Kernel** $K(x_i,x_{i'}) = \exp(-\gamma \sum_{j=1}^p (x_{ij}-x_{i'j})^2) \quad \text{(large distance, small impact)}$

Parallel & Scalable SVM MPI Tool (3)

Original parallel piSVM tool 1.2

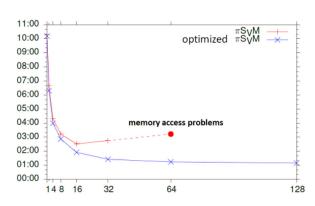
- Open-source and based on libSVM library, C, 2011
- Message Passing Interface (MPI)

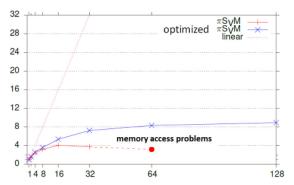
- [9] piSVM Website, 2011/2014 code
- New version appeared 2014-10 v. 1.3 (no major improvements)
- Lack of 'big data' support (memory, layout, etc.)



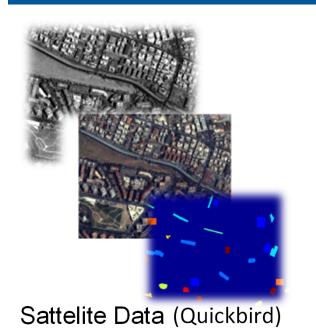
Tuned scalable parallel piSVM tool 1.2.1

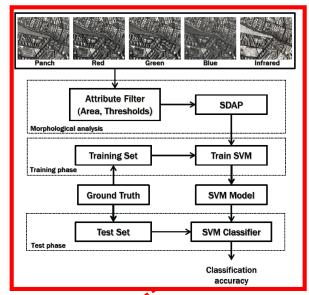
- Open-source (repository to be created)
- Based on piSVM tool 1.2
- Optimizations: load balancing; MPI collectives
- Contact: m.richerzhagen@fz-juelich.de





Parallel & Scalable SVM MPI Tool (4)





Class	Training	Test
Buildings	18126	163129
Blocks	10982	98834
Roads	16353	147176
Light Train	1606	14454
Vegetation	6962	62655
Trees	9088	81792
Bare Soil	8127	73144
Soil	1506	13551
Tower	4792	43124
Total	77542	697859

Parallel Support Vector Machines (SVM)

HPC / MPI

Classification
Study of
Land Cover
Types

Openly Shared Datasets

"Reference Data Analytics" for reusability & learning

Running Analytics Code

[10] Rome Image dataset

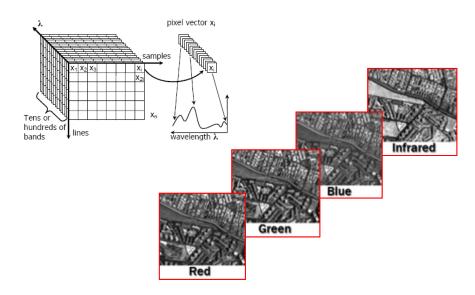
Parallel & Scalable SVM MPI Tool (5)

Example dataset: Geographical location: Image of Rome, Italy

Remote sensor data obtained by Quickbird satellite

High-resolution (0.6m) panchromatic image

Pansharpened (UDWT) low-resolution (2.4m) multispectral images

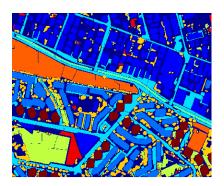


[10] Rome Image dataset

Parallel & Scalable SVM MPI Tool (6)

Labelled data available for train/test data

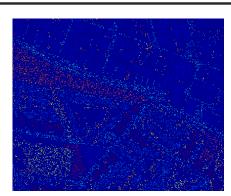
 Groundtruth data of 9 different land-cover classes available



Data preparation

- We generated a set of training samples by randomly selecting 10% of the reference samples (with labelled data)
- Generated set of test samples from the remaining labels (labelled data, 90% of reference samples)

Class	Training	Test
Buildings	18126	163129
Blocks	10982	98834
Roads	16353	147176
Light Train	1606	14454
Vegetation	6962	62655
Trees	9088	81792
Bare Soil	8127	73144
Soil	1506	13551
Tower	4792	43124
Total	77542	697859

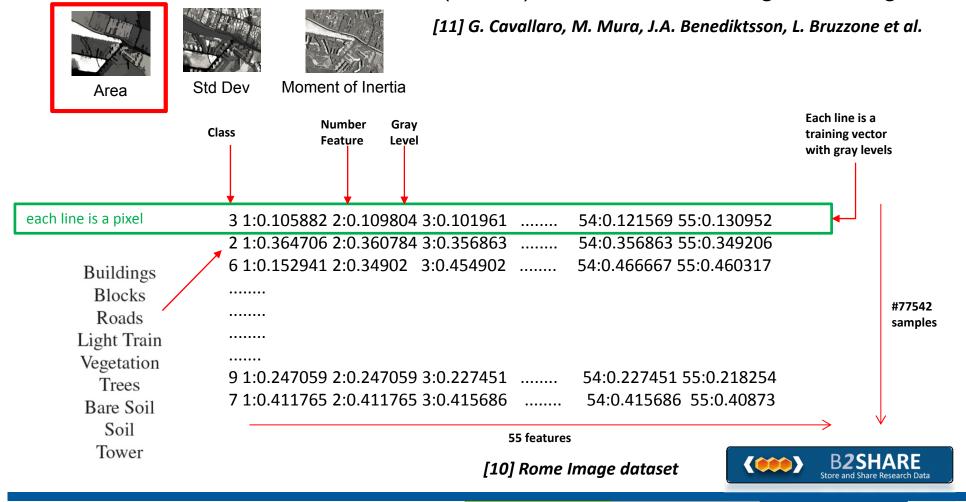


Training Image (10% pixels/class)

Parallel & Scalable SVM MPI Tool (7)

Based on 'LibSVM data format' (using feature extraction method)

Add 'Self-Dual Attribute Profile (SDAP) on Area on all images training file



Parallel & Scalable SVM MPI Tool (8)

Usage via jobscript

#MSUB -N Train-tune-rec86-4-16-32

#!/bin/bash

submit

1024 -s 0 \$TRAINDATA

- Using MOAB job scheduler
- np = number of processors; o/q partitioning

```
#MSUB -1 nodes=4:ppn=16:performance
#MSUB -1 walltime=03:00:00
#MSUB -M m.riedel@fz-juelich.de
#MSUB -m abe
#MSUB -W x=naccesspolicy:singlejob
#MSUB -v tpt=2
#MSUB -q devel
                              → Usage via simple jobscripts
### jobscript
cd $PBS O WORKDIR
echo "workdir: $PBS O WORKDIR"
NSLOTS=32
echo "running on $NSLOTS cpus..."
### location
```

-c 10000 -g 16 -t

PISVM=/homeb/zam/mriedel/pisvm-1.2/pisvm-1.2/pisvm-train

JUDGE @ Juelich

SVM Parameters

[12] Rome Analytics Results & job scripts

romeok/sdap area all training.el

TRAINDATA=/homeb/zam/mriedel/bigdata/86-

mpiexec -np \$NSLOTS \$PISVM -o 1024 -q 512

Parallel & Scalable SVM MPI Tool (9)

Training speed-up is possible when number of features is 'high'

Serial Matlab: ~1277 sec (~21 minutes)

Manual Parallel (16) Analytics: 220 sec (3:40 minutes) **SDAP** Accuracy remains Manual work: Obtain the Training vector SDAP for all 10 filtered image bands 77542 samples using attribute 'area' (10 thresholds) 10 filtered 10 filtered 1200 1000 X geolocation [1D] 800 10 filtered SDAP = bands + 10 filtered filtered images 13 16 [3D] Number of processes SUM = 55 Features [12] Rome Analytics Results & job scripts y geolocation [2D]

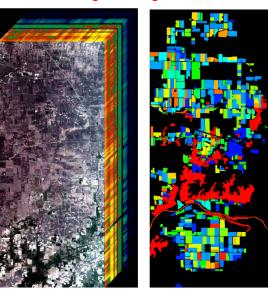
Parallel & Scalable SVM MPI Tool (10)

Another more challenging dataset: high number of classes

Parallelization challenges: unbalanced class representations

	Class	Number o	of camples		Class	Number o	of camples
	Class	Number	i samples		Class	Number of samples	
number	name	training	test	number	name	training	test
1	Buildings	1720	15475	27	27 Pasture		9347
2	Corn	1778	16005	28	pond	10	92
3	Corn?	16	142	29	Soybeans	939	8452
4	Corn-EW	51	463	30	Soybeans?	89	805
5	Corn-NS	236	2120	31	Soybeans-NS	111	999
6	Corn-CleanTill	1240	11164	32	Soybeans-CleanTill	507	4567
7	Corn-CleanTill-EW	2649	23837	33	Soybeans-CleanTill?	273	2453
8	Corn-CleanTill-NS	3968	35710	34	Soybeans-CleanTill-EW	1180	10622
9	Corn-CleanTill-NS-Irrigated	80	720	35	Soybeans-CleanTill-NS	1039	9348
10	Corn-CleanTilled-NS?	173	1555	36	Soybeans-CleanTill-Drilled	224	2018
11	Corn-MinTill	105	944	37	Soybeans-CleanTill-Weedy	54	489
12	Corn-MinTill-EW	563	5066	38	Soybeans-Drilled	1512	13606
13	Corn-MinTill-NS	886	7976	39	Soybeans-MinTill	267	2400
14	Corn-NoTill	438	3943	40	Soybeans-MinTill-EW	183	1649
15	Corn-NoTill-EW	121	1085	41	Soybeans-MinTill-Drilled	810	7288
16	Corn-NoTill-NS	569	5116	42	Soybeans-MinTill-NS	495	4458
17	Fescue	11	103	43	Soybeans-NoTill	216	1941
18	Grass	115	1032	44	Soybeans-NoTill-EW	253	2280
19	Grass/Trees	233	2098	45	Soybeans-NoTill-NS	93	836
20	Hay	113	1015	46	Soybeans-NoTill-Drilled	873	7858
21	Hay?	219	1966	47	Swampy Area	58	525
22	Hay-Alfalfa	226	2032	48	River	311	2799
23	Lake	22	202	49	Trees?	58	522
24	NotCropped	194	1746	50	Wheat	498	4481
25	Oats	174	1568	51	Woods	6356	57206
26	Oats?	34	301	52	Woods?	14	130

remote sensing cube & ground reference



G. Cavallaro, M. Riedel et al., Remote Sensing Journal – Big Data Special Issue, to be published

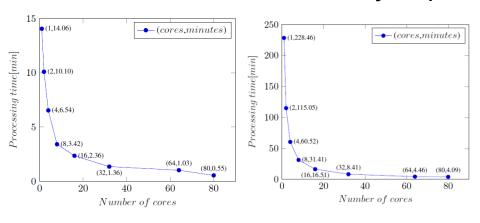


[20] Indian pines dataset, processed and raw

Parallel & Scalable SVM MPI Tool (11)

Another example dataset: high number of classes

Parallelization benefits: major speed-ups, ~interactive (<1 min) possible

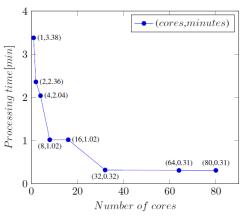


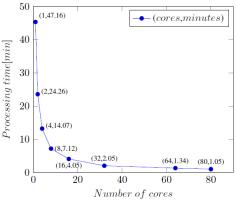
manual & serial activities (in minutes)

	kpca	esdap	nwfe	10x CSV	Training	Test	Total
(1) Scenario (2) Scenario				4.47×10^3 529.55		71,08 23.25	

'big data' is not always better data

	(1) Scenario	(2) Scenario
Number of features	200	30
Overall Accuracy (%)	40,68	77,96





[21] Analytics Results (raw)[22] Analytics Results (processed)

Can we automate feature extraction mechanism to some degree?

Manual

WORK

Manual work:

Trade-off between

raw data

processing and

using feature

extraction

methods

G. Cavallaro, M. Riedel et al., Remote Sensing Journal – Big Data Special Issue, to be published

Parallel & Scalable SVM MPI Tool (12)

2x benefits of parallelization (shown in n-fold cross validation)

- Evaluation between Matlab (aka serial) and parallel piSVM
- 10x cross-validation (RBF kernel parameter and C, gridsearch)

raw	dataset	(serial)

processed dataset (serial)

γ / C	1	10	100	1000	10000	γ / C	1	10	100	1000	10000
2	27.30 (109.78)	34.59 (124.46)	39.05 (107.85)	37.38 (116.29)	37.20 (121.51)	2	48.90 (18.81)	65.01 (19.57)	73.21 (20.11)	75.55 (22.53)	74.42 (21.21)
4	29.24 (98.18)	37.75 (85.31)	38.91 (113.87)	38.36 (119.12)	38.36 (118.98)	4	57.53 (16.82)	70.74 (13.94)	75.94 (13.53)	76.04 (14.04)	74.06 (15.55)
8	31.31 (109.95)	39.68 (118.28)	39.06 (112.99)	39.06 (190.72)	39.06 (872.27)	8	64.18 (18.30)	74.45 (15.04)	77.00 (14.41)	75.78 (14.65)	74.58 (14.92)
16	33.37 (126.14)	39.46 (171.11)	39.19 (206.66)	39.19 (181.82)	39.19 (146.98)	16	68.37 (23.21)	76.20 (21.88)	76.51 (20.69)	75.32 (19.60)	74.72 (19.66)
32	34.61 (179.04)	38.37 (202.30)	38.37 (231.10)	38.37 (240.36)	38.37 (278.02)			75.48 (34.76)			

raw dataset (parallel, 80 cores)

processed dataset (parallel, 80 cores)

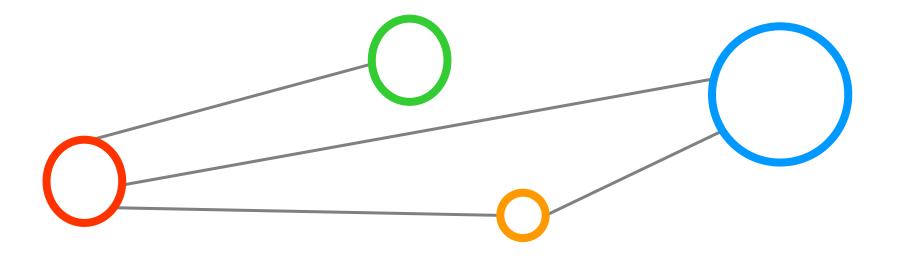
γ / C	1	10	100	1000	10000	γ / C	1	10	100	1000	10000
2	27.26 (3.38)	34.49 (3.35)	39.16 (5.35)	37.56 (11.46)	37.57 (13.02)	2	75.26 (1.02)	65.12 (1.03)	73.18 (1.33)	75.76 (2.35)	74.53 (4.40)
4	29.12 (3.34)	37.58 (3.38)	38.91 (6.02)	38.43 (7.47)	38.43 (7.47)	4	57.60 (1.03)	70.88 (1.02)	75.87 (1.03)	76.01 (1.33)	74.06 (2.35)
8	31.24 (3.38)	39.77 (4.09)	39.14 (5.45)	39.14 (5.42)	39.14 (5.43)	8	64.17 (1.02)	74.52 (1.03)	77.02 (1.02)	75.79 (1.04)	74.42 (1.34)
16	33.36 (4.09)	39.61 (4.56)	39.25 (5.06)	39.25 (5.27)	39.25 (5.10)	16	68.57 (1.33)	76.07 (1.33)	76.40 (1.34)	75.26 (1.05)	74.53 (1.34)
32	34.61 (5.13)	38.37 (5.30)	38.36 (5.43)	38.36 (5.49)	38.36 (5.28)	32	70.21 (1.33)	75.38 (1.34)	74.69 (1.34)	73.91 (1.47)	73.73 (1.33)

G. Cavallaro, M. Riedel et al., Remote Sensing Journal - Big Data Special Issue, to be published

[23] Analytics 10 fold cross-validation Results (raw)

[24] Analytics 10 fold cross-validation Results (processed)

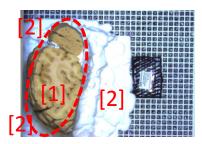
Recent Research Directions



Recent Research Directions – Brain Data Classification

- Build 'reconstructed brain (one 3d volume) that matches with sections & block images
- Understanding the 'sectioning of the brain' and support automation of reconstruction
- 1. Some 'pattern' exists
 - Image content classification (e.g. SVMs, RandomForst, etc.)

- 2. No exact mathematical formula exists
 - No precise formula for 'contour of the brain'
- 3. Dataset (next: 5 brains, >100.000 pixels, 2PB raw)
 - Block face images (of frozen brain tissue)
 - Every 20 micron (cut size), resolution: 3272 x 2469
 - ~ 14 MB / RGB image
 - ~ 8 MB / corresponding mask image ('groundtruth')
 - ~700 images → ~40 GB dataset

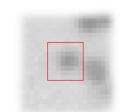


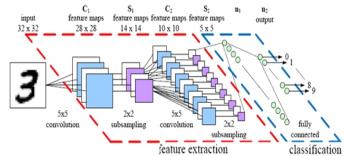
Smart Data

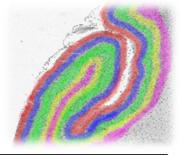
Research activities jointly with T. Dickscheid et al. (Juelich Institute of Neuroscience & Medicine)

Recent Research Directions – Deep Learning

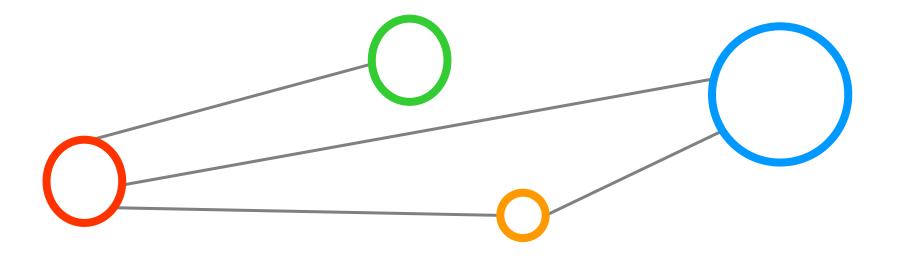
- Investigate a pipeline for cell nuclei detection and tissue clustering
- 1. Some 'pattern' exists
 - Image content <u>classification</u> & <u>clustering</u>
- 2. No exact mathematical formula exists
 - No precise formula for 'brain layers'
- 3. Dataset raw images exist
 - Needs to be properly prepared
 - Generate labeled data to learn from (manual tool supporting scientists)
 - Use Deep Learning (deep convolutional neural network, GPGPUs) to classify cell nuclei
 - Extract cell nuclei into 2D/3D point cloud
 - Cluster different brain areas by cell density (parallel DBSCAN)
- Research activities jointly with T. Dickscheid et al. (Juelich Institute of Neuroscience & Medicine)







Conclusions



Conclusions

Scientific Peer Review is essential to progress in the field

- Work in the field needs to be guided & steered by communities
- NIC Scientific Big Data Analytics (SBDA) first step (learn from HPC)
- Towards enabling reproducability by uploading runs and datasets

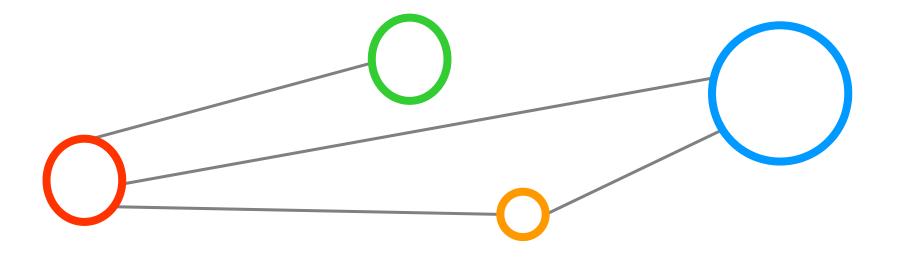
Selected SBDA benefit from parallelization

- Statistical data mining techniques able to reduce 'big data' (e.g. PCA, etc.)
- Benefits in n-fold cross-validation & raw data, less on preprocessed data
- Two codes available to use and maintained @JSC: HPDBSCAN, piSVM

Number of Data Analytics et al. Technologies incredible high

- Thorough analysis and evaluation hard (needs different infrastructures)
- (Less) open source & working versions available, often paper studies
- Still evaluating approaches: HPC, map-reduce, Spark, SciDB, MaTex, ...

References



References (1)

- [1] R. Huber, M. Riedel et al., 'PANGAEA Data Publisher for Earth & Environmental Science Research data enters scholarly communication and big data analysis', presentation at EGU 2014, Vienna
- [2] G. Cavallaro, J.A. Benediktsson and M. Riedel et al. 'Smart Data Analytics Methods for Remote Sensing Applications', in proceedings of IGARSS 2014
- [3] M.Goetz & C. Bodenstein, Clustering Highly Parallelizable DBSCAN Algorithm, JSC, Online: http://www.fz-juelich.de/ias/jsc/EN/Research/DistributedComputing/DataAnalytics/Clustering/Clustering_node.html
- [4] Ester, Martin, et al. "A density-based algorithm for discoveringclusters in large spatial databases with noise." Kdd. Vol. 96. 1996.
- [5] Patwary, Md Mostofa Ali, et al. "A new scalable parallel dbscanalgorithm using the disjoint-set data structure." High Performance Computing, Networking, Storage and Analysis (SC), 2012 InternationalConference for. IEEE, 2012
- [6] PANGAEA Earth Science Data Collection, Online: http://www.pangaea.de/
- [7] C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20(3), pp. 273–297, 1995
- [8] An Introduction to Statistical Learning with Applications in R,

Online: http://www-bcf.usc.edu/~gareth/ISL/index.html

[9] Original piSVM tool, online: http://pisvm.sourceforge.net/

[10] B2SHARE data collection Rome Dataset,

online: http://hdl.handle.net/11304/4615928c-e1a5-11e3-8cd7-14feb57d12b9

- [11] G. Cavallaro, M. Mura, J.A. Benediktsson, L. Bruzzone 'A Comparison of Self-Dual Attribute Profiles based on different filter rules for classification', IEEE IGARSS2014, Quebec, Canada
- [12] B2SHARE data collection piSVM1.2 Analytics JUDGE Cluster Rome Images 55 Features, online: http://hdl.handle.net/11304/6880662c-1edf-11e4-81ac-dcbd1b51435e

References (2)

[13] Deep Learning Architecture, Online: http://parse.ele.tue.nl/cluster/2/CNNArchitecture.jpg

[14] UNICORE, online: http://www.unicore.eu

[15] DOE ASCAC Report, 'Synergistic Challenges in Data-Intensive Science and. Exascale Computing'

[16] M. Riedel and P. Wittenburg et al. 'A Data Infrastructure Reference Model with Applications:

Towards Realization of a ScienceTube Vision with a Data Replication Service', 2013

[17] Shearer C., 'The CRISP-DM model: the new blueprint for data mining', J Data Warehousing (2000); 5:13—22.

[18] Jeremy Ginsburg et al., 'Detecting influenza epidemics using search engine query data', Nature 457, 2009

[19] David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani,

'The Parable of Google Flu: Traps in Big Data Analysis', Science Vol (343), 2014

[20] B2SHARE data collection, remote sensing indian pines images, Online:

http://hdl.handle.net/11304/7e8eec8e-ad61-11e4-ac7e-860aa0063d1f

[21] B2SHARE data collection, piSVM remote sensing indian pines analytics results (raw), Online:

http://hdl.handle.net/11304/c06a8c7e-fe6c-11e4-8a18-f31aa6f4d448

[22] B2SHARE data collection, piSVM remote sensing indian pines analytics results (processed), Online:

http://hdl.handle.net/11304/c528998e-ff7c-11e4-8a18-f31aa6f4d448

[23] B2SHARE data collection, Analytics 10 fold cross-validation (raw), Online:

http://hdl.handle.net/11304/163ba8e8-fe60-11e4-8a18-f31aa6f4d448

[24] B2SHARE data collection, Analytics 10 fold cross-validation (processed), Online:

http://hdl.handle.net/11304/5bba8e36-fe63-11e4-8a18-f31aa6f4d448

Acknowledgements

PhD Student Gabriele Cavallaro, University of Iceland Tómas Philipp Runarsson, University of Iceland Kristján Jonasson, University of Iceland

Timo Dickscheid, Markus Axer, Stefan Köhnen, Tim Hütz, Institute of Neuroscience & Medicine, Juelich

Selected Members of the Research Group on High Productivity Data Processing

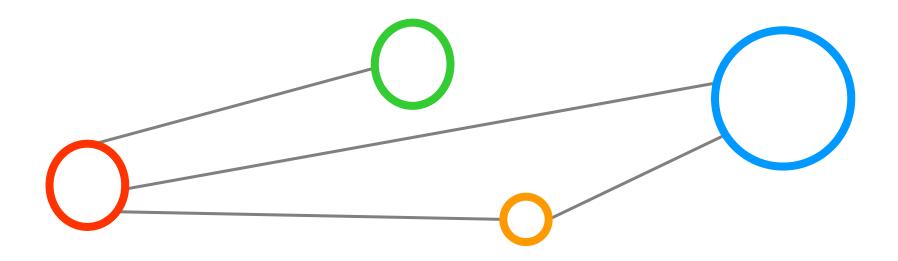
Ahmed Shiraz Memon
Mohammad Shahbaz Memon
Markus Goetz
Christian Bodenstein
Philipp Glock
Matthias Richerzhagen

JSC: Data Analytics: m.riedel@fz-juelich.de

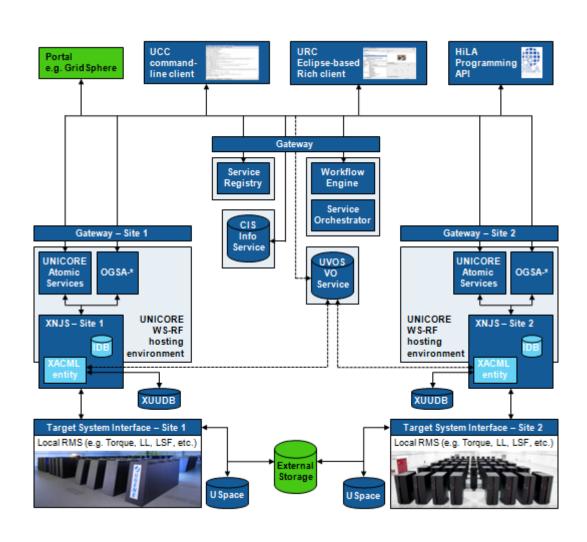
Thanks

Slides available at http://www.morrisriedel.de/talks

Selected Backup Slides for Discussions

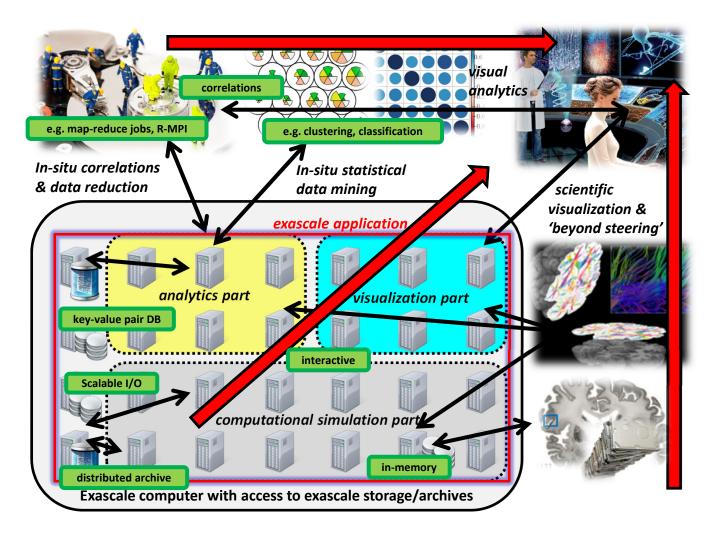


Distributed Large-scale Data Management



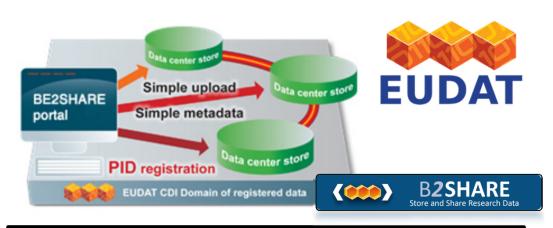
[14] UNICORE.eu

In-Situ Analytics for HPC & Exascale



[15] Inspired by ASCAC DOE report

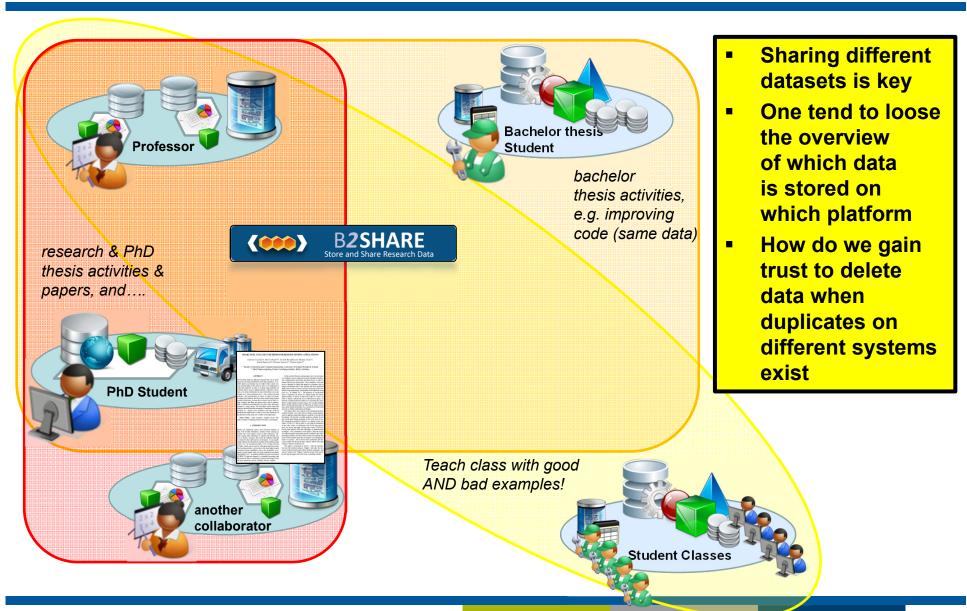
Tools for Large-scale Distributed Data Management



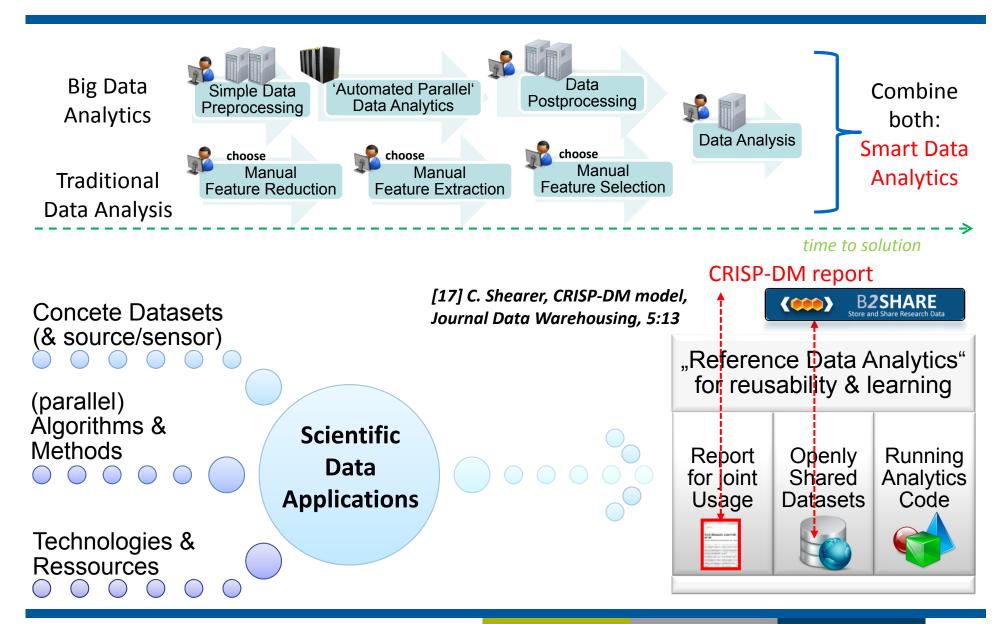
Useful tools for data-driven scientists & HPC users

[16] M. Riedel & P. Wittenburg et al.

Need for Sharing & Reproducability in HPC – Example



Smart Data Analytics Process



Selected Research Data Alliance (RDA) Activities

Big Data Analytics Interest Group –
 Establish something like UCI machine learning repository, but for big data analytics...

[2] G. Cavallaro and M. Riedel et al. 'Smart Data Analytics Methods for Remote Sensing Applications', IGARSS 2014

Future

Parallel
Support Vector
Machines (SVM)

Classification
Study of
Land Cover
Types

HPC & MPI

HPC & MPI

William Types

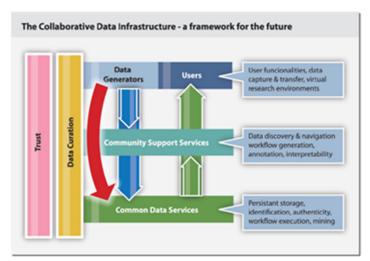
Types

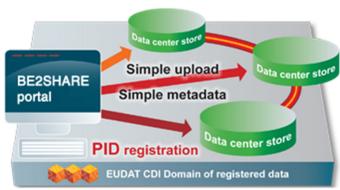
Study of Land Cover
Types

Types

Research activities with Gabriele Cavallaro (PhD thesis, Uolceland) on Self Dual Attribute Profile

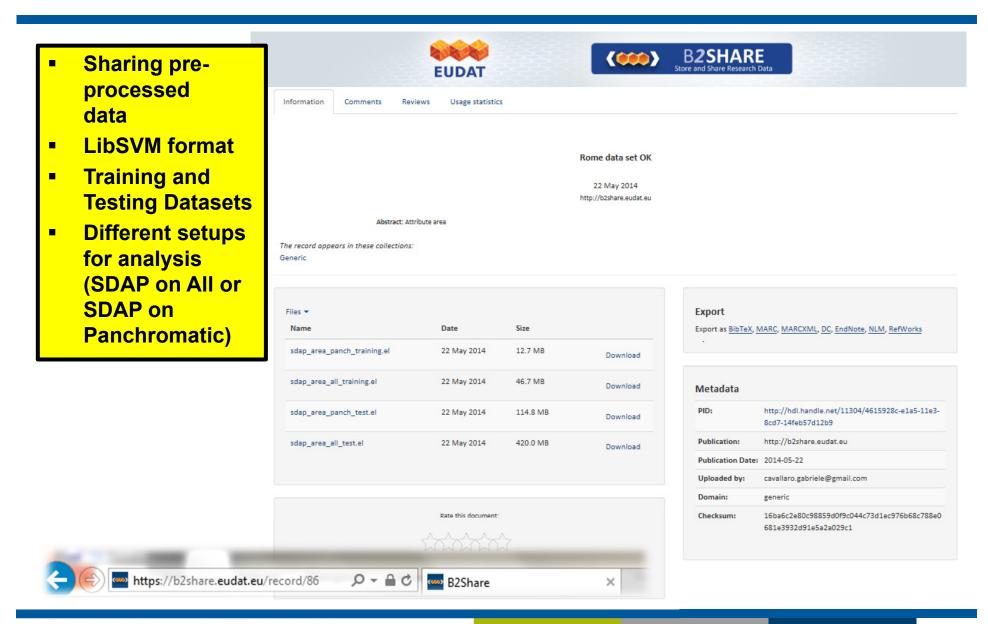
Reproducability Example in Data-driven Science (1)





- Having this tool available on the Web helps tremendously to save time for no research tasks
- Using the tool enables to focus better on the research tasks

Reproducability Example in Data-driven Science (2)



Reproducability Example in Data-driven Science (3)

Simple download from http using the wget command


```
mriedel@judge:~/bigdata> ls -al
      total 640
                                  32768 2014-09-17 22:20
      drwxrwxrwx 21 mriedel
                              zam
      drwxr-xr-x 19 mriedel
                              zam
                                   32768 2014-09-18 11:49 . .
                                   32768 2014-06-19 07:17 102-salinasindian
      drwxr-xr-x 2 mriedel
                              zam
                                     512 2014-06-19 20:11 107-salinasrescaled
      drwxr-xr-x 2 mriedel
                              zam
                                                                                      ...other
                                     512 2014-07-08 17:14 111-romemultispectral
      drwxr-xr-x 2 mriedel
                              zam
                                     512 2014-07-10 11:46 112-romeoriginalbands
      drwxr-xr-x 2 mriedel
                                                                                       open
                              zam
                  2 mriedel
                                     512 2014-09-17 22:31 120-indianpine
                                                                                    B2SHARE
      drwxr-xr-x
                              zam
                                     512 2014-09-17 22:14 121-salinas
      drwxr-xr-x
                  2 mriedel
                              zam
                                                                                     datasets
                                     512 2014-09-17 22:19 122-salinas2
                   2 mriedel
      drwxr-xr-x
                              zam
      drwxr-xr-x 2 mriedel
                              zam
                                     512 2014-09-17 22:24 123-indianpine2
                                     512 2014-07-09 11:03 86-romeok
      drwxr-xr-x 2 mriedel
                                   32768 2014-06-10 18:51 bigindianpines
      drwxr-xr-x
                 2 mriedel
                              zam
                     mriedel
                              zam
                                   32768 2014-05-28 10:59 indian
Simple
                     mriedel
                                  32768 2014-06-10 20:48 indianpinesreduced
                              zam
Download
                     mriedel
                                     512 2014-07-28 17:53 mnist-576-rbf
                              zam
                     skoehnen inm1
                                     512 2014-07-29 16:35
from http
                              zam 32768 2014-06-25 11:09 rome-ok
                     mriedel
using wget
                                     512 2014-07-08 13:29 rome-ok-copy
                     mriedel
                              zam
                                  32768 2014-06-03 14:24 salinas
                     mriedel
                              zam
                                                                                ...before adopting
Well defined
                     mriedel
                                  32768 2014-06-16 16:50 salinasindianrev
                              zam
                                                                               B2SHARE regularly
directory
                    mriedel
                                  32768 2014-06-10 15:47 salinas-new
                              zam
structures
```

Reproducability Example in Data-driven Science (4)

Make a short note in your directory linking back to B2SHARE

- Enables the trust to delete data if necessary (working against big data)
- Link back to B2SHARE for quick checks and file that links back fosters trust

Reproducability Example in Data-driven Science (5)

```
mriedel@judge:~> ls -al
total 111840
drwxr-xr-x 19 mriedel zam
                                32768 2014-09-18 11:49 .
                                32768 2014-09-12 09:02 ...
drwxr-xr-x 214 root
                        SVS
             1 mriedel zam 113233920 2014-08-08 10:35 115-RunsMatthiasStable.tar ... a bachelor project
-rw-r--r--
drwxr-xr-x
             3 mriedel zam
                                32768 2014-06-03 16:24 ann-0.1
drwxr-xr-x
             3 mriedel zam
                                32768 2014-06-03 17:02 ann-0.2
                                                                           ... different versions of a
             3 mriedel zam
drwxr-xr-x
                                32768 2014-06-04 14:42 ann-0.3
                                                                          parallel neural network code
                                32768 2014-06-16 19:12 ann-0.4
            2 mriedel zam
drwxr-xr-x
                                                                            (another classification
drwxr-xr-x
            2 mriedel zam
                                32768 2014-06-16 19:24 ann-0.4-orig
drwxr-xr-x
            2 mriedel zam
                                32768 2014-06-19 08:38 ann-0.5
                                                                                 technique)
             6 mriedel zam
                                32768 2014-06-25 00:52 ann-0.6
drwxr-xr-x
drwxr-xr-x
                                32768 2014-06-19 16:31 ann-0.6-scal
             4 mriedel zam
drwxr-xr-x
             2 mriedel zam
                                32768 2014-06-24 17:02 ann-0.7
             1 mriedel zam
                                 1797 2014-05-12 13:51 .bashrc
- rw - - - - - -
drwx rwx rwx
            21 mriedel zam
                                32768 2014-09-17 22:20
                                  512 2014-06-19 09:34 .config
drwxr-xr-x
            3 mriedel zam
drwxr-xr-x
            3 mriedel zam
                                32768 2014-06-03 14:38 .emacs.d
- rw - - - - - -
             1 mriedel zam
                                 1864 2014-05-12 13:51 .kshrc
                                                                                ... different versions of a
             3 mriedel zam
                                32768 2014-05-12 14:56 pisym-1.2
drwxr-xr-x
                                                                                       parallel
drwxr-xr-x
             5 mriedel zam
                                32768 2014-09-18 11:49 pisvm-1.2.1
                                                                                support vector machine
                                  512 2014-07-09 14:51 pisvm-1.2-refactored
drwxr-xr-x
            3 mriedel zam
                                 2686 2014-05-12 13:51 .profile
                                                                                        code
             1 mriedel zam
                                22490 2014-09-18 11:51 .sh history
             1 mriedel zam
                                32768 2014-05-12 14:38 .ssh
             2 mriedel zam
drwx - - - - -
             2 mriedel zam
                                32768 2014-05-12 14:39 transfers
drwxr-xr-x
                                19526 2014-09-18
             1 mriedel zam
- rw - - - - - -
                                                       True reproducability needs: (1) datasets;
                                  204 2014-09-17
             1 mriedel zam
- rw - - - - - -
                                                       (2) technique parameters (here for SVM);
mriedel@judge:~>
                                                       and (3) correct versions of algorithm code
```

Deep Learning (1)

Classical Machine Learning

Dealing with Big Data in traditional Machine Learning

- Define Features to learn from ?!
- Transform data into supported format ?!
- How to reduce dimensions ?!
- How to parallelize ?!

Deep Learning (2)

Deep Learning

Dealing with Big Data in Deep Learning

- Define Features to learn from
 - → Automatically learn how to define features
- Transform data into supported format
 - → Adopt the model to your data
- How to reduce dimensions
 - → Automatically reduce dimensions in every hidden layer
- How to parallelize
 - → Naturally the brain is parallel, so Artificial Neural Networks are!

A. Ng, Google Brain

Deep Learning (3)

Deep Learning in Computational Biomedicine

Genome Analysis

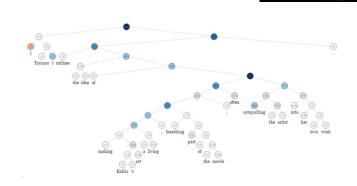
 Find high level features on low level –omics data

Saldmes X X

Medical Image Analysis

 Use 2D (or 3D) structure of the data for classification

 Use DL for text analysis to classify patient data, drug recommendations by users, ...



Etc...

Deep Learning (4)

Deep Learning Packages

There exists several frameworks for deep neural networks

- Pylearn2
 - Python tool on the top of the Theano python library
 - Easy configuration of data, model, learning via YAML files
 - CUDA support for accelerated calculations
 - Jobman for parallel cross validation
- Caffe
 - C++ implementation with python & matlab wrappers
 - CUDA acceleration
- DL4J
 - Java implementation of Deep Learning
 - CUDA + Hadoop support

Chances and Pitfalls for 'Scientific Big Data Analytics'

~2009 – H1N1 Virus Made Headlines

- Nature paper from Google employees
- Explains how Google is able to predict fast winter flus
- Not only on national scale, but down to regions
- Possible via logged big data 'search queries'

~2014 – The Parable of Google Flu

- Large errors in flu prediction & lessons learned
- (1) Dataset: Transparency & replicability impossible
- (2) Study the algorithm since they keep changing
- (3) It's not just about size of the data

[18] Jeremy Ginsburg et al., 'Detecting influenza epidemics using search engine query data', Nature 457, 2009

The Parable of Google Flu: Traps in Big Data Analysis Science

Trends (GFT) made beadines be done for lear season that Google beat and for a research of the contracting system would have beport Manuer reprofest date (GFT was predecting more than deable the posdecting more than deable the postron than the contraction of the contraction of the near the fillers (GFT) was the Contraction of the contract

Although not widely reported until 2013, the new GPT has been until 2013, the new GPT has been persistently overestimating fill the GPT has been used to GPT also missed by a very large margin in the 2011-2012 fth sees a son and has missed high for 100 out of 108 weeks starting with August 2011 (see the graph). These errors are not randomly distributed. For 2011 (see the graph). These errors are not randomly distributed. For 2011 (see the graph). These errors are not randomly distributed. For 2011 (see the graph). These errors are not randomly distributed. For graph and the correlation, and the direction and magnitude of error vuries with the time of year (seasonality). These considerable information that considerable

[19] David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani, 'The Parable of Google Flu: Traps in Big Data Analysis', Science Vol (343), 2014

Big data is not always better data – Think about difference of causality vs. correlation

Location-based Social Network-based Health Analytics

Scientific Domain Area

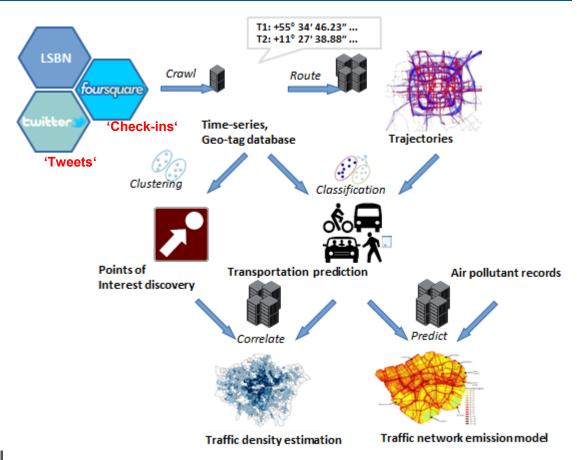
Smart Cities approaches compined with Health Analytics Research

Scientific Outcome

- Traffic density estimation
- Network emission model

Location-based Social Networks (LBSN) Data

- Open data sources:Twitter & Foursquare
- Plan: Validation with real measurements in cities



Research activities with Markus Goetz (PhD thesis) – Juelich Supercomputing Centre, Uolceland