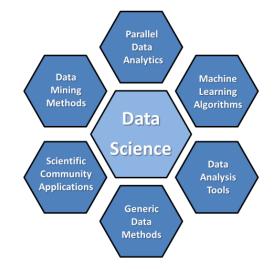
Smart Data Analytics Methods for Remote Sensing Applications

35th Canadian Symposium Remote Sensing

Ouébec, Canada | July 13-18, 2014



Federated Systems and Data Division

Research Group

High Productivity Data Processing

Morris Riedel

Juelich Supercomputing Centre / University of Iceland Gabriele Cavallaro, Jon Atli Benediktsson, Tomas Runarsson, Kristjan Jonasson University of Iceland

> Markus Goetz, Thomas Lippert Juelich Supercomputing Centre

JÜLICH FORSCHUNGSZENTRUM

UNIVERSITY OF ICELAND SCHOOL OF ENGINEERING AND NATURAL SCIENCES

FACULTY OF INDUSTRIAL ENGINEERING, MECHANICAL ENGINEERING AND COMPUTER SCIENCE

2014-07-15

Outline

Smart Data Analytics Methods

Reasoning, Mindset, Skillset, Toolset

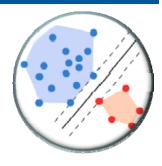
Remote Sensing Data Application

- Study on Land Cover Types Classification
- Survey of Related Work
- Approach and Results

Conclusions

Future Work and Findings

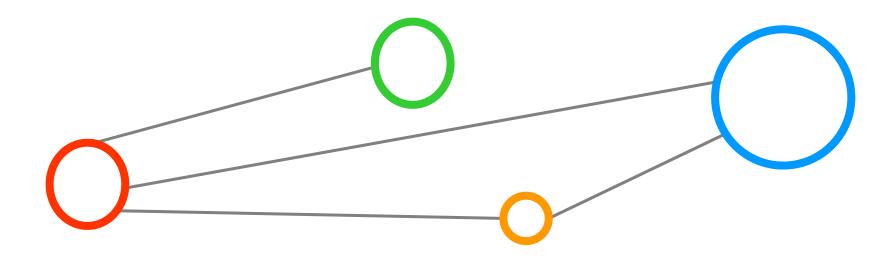
References



The work was performed under the umbrella of the Research Data Alliance – Big Data Analytics Interest Group

[1] RDA BDA IG Webpage

Smart Data Analytics Methods

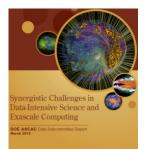


Scientific Big Data Analytics

... problems that require highperformance data storage,
smart analytics, transmission and mining to solve.'

[2] John Wood et al.

'In the data-intensive scientific world, **new skills are needed for** ..., **analysing**, and making available large amounts of data...' [3] KE Partners



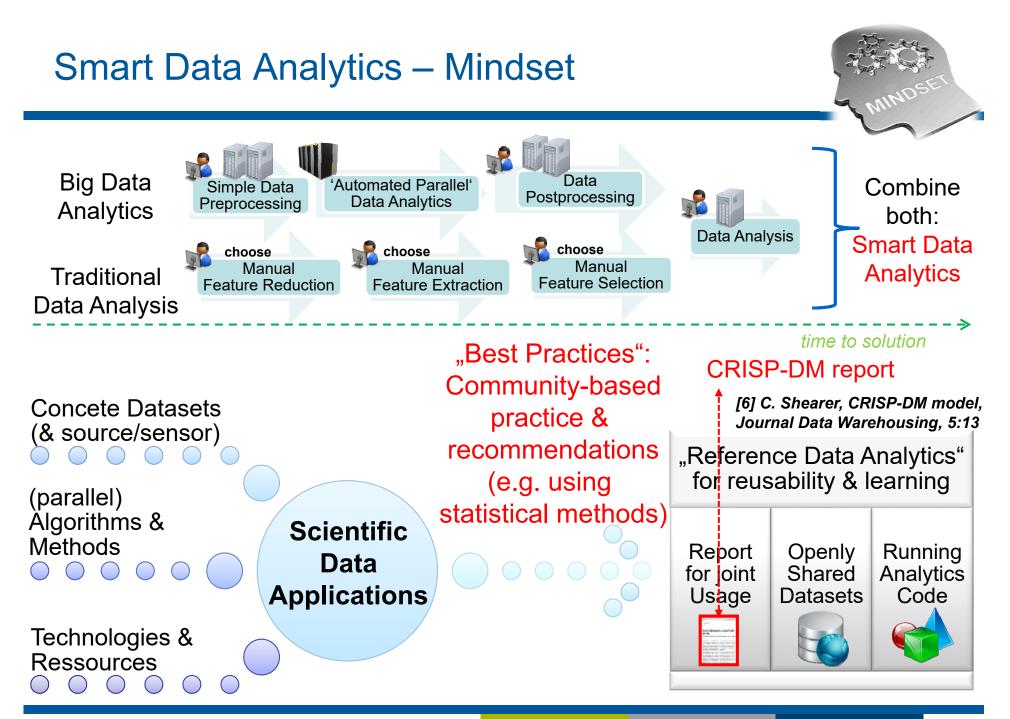
'Integration of **data analytics** with exascale simulations represents a new kind of workflow...'

Reasoning

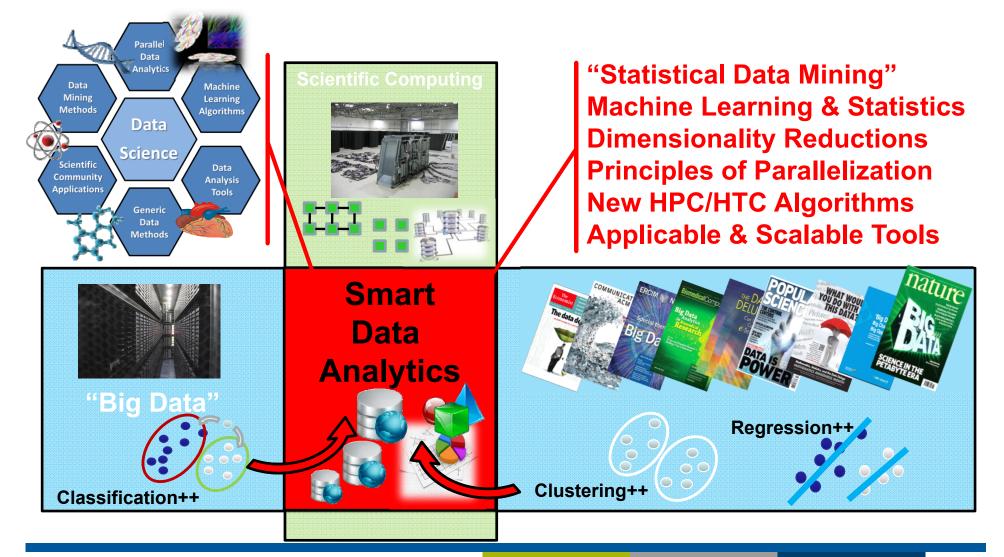
- Only 5-10% of archives are utilized (e.g. sensor datasets) with fast increasing data 'VVV'
- Large underutilization of data at least partly explained by the lack of 'data scientists' in domains
- Support the time-intensive manual domain-specific data analysis process with semi-automated general 'big data analytics'
- Publish reproducable results
- Big Data → 'big insights?'

Question: Is 'bigger data' really always 'better data?'

[5] D. Lazer et al. 'The Parable of Google Flu', Science 03/2014, Vol. 343



Smart Data Analytics – Skillset



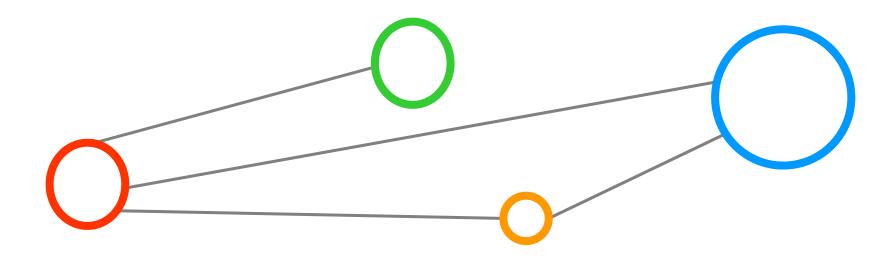
Smart Data Analytics – Toolset (SVM focus)

ΤοοΙ	Platform Approach	Facts
Apache Mahout	Java; Apache Hadoop(map-reduce)	Needs to move to newer Platform Hadoop 2.0, Spark, etc.
Apache Spark/MLlib	Java; Apache Spark	Much faster than Apache Hadoop- related implementations (Website)
Twister/ParallelSVM	Java; Iterative Map-Reduce based on Twister implementation	Paper implementation after asking and based specifically on SVMs
Scikit-Learn	Python;	Machine learning package related to NumPY gaining popularity
piSVM	C code; Message Passing Interface (MPI); HPC	Open source on Sourceforge specifically for SVMs
GPU accelerated LIBSVM	CUDA language	Multi-class parallel SVM, relatively hard to program, no std. (CUDA)
pSVM	C code; Message Passing Interface (MPI); HPC	Open Source on google code, less documentation, unstable beta version

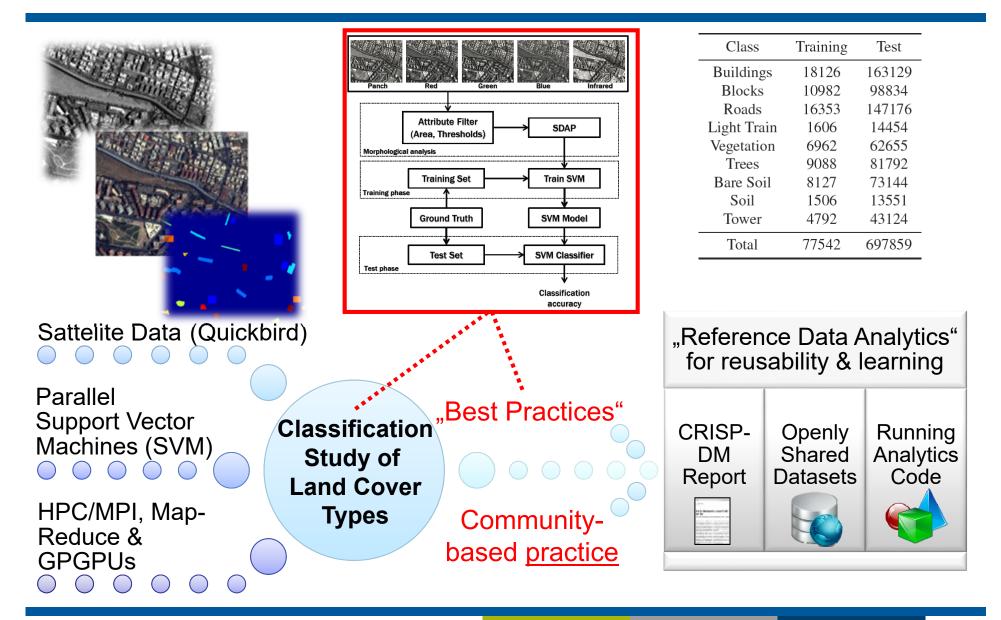
Survey of selected 'parallel & scalable' machine learning tools

- Implementations often driven by commercial use cases/frameworks (e.g. linear or binary classification – credit card approval, yes/no)
- Implementations outdate quickly (e.g. Hadoop 1.0/2.0, Google Dataflow?)

Remote Sensing Data Application



Study on parallel SVMs



Related Work in Remote Sensing

High Performance Computing in Remote Sensing

HALLICRC COMPLITER and INFORMATION SCIENCE SER

Edited by Antonio J. Plaza Chein-I Chang Parallel Implementations of SVM for Earth Observation

Muñoz-Mariñ, Antonio J., Flaza, B. J. Anthony Gualherri, Guttavo Campo-Valis, B. Deparment of Electronic Engineering: University of Talencia. Spain, Gordi, caraoy (Sarock, Ing.) Vanovances (Gordi, Carao), Department of Computer Science, University of Externadura, Caseres, Spain, aplanzi Simose: Attra-University of Externadura, Caseres, Spain, Carao, Carao, Carao, Carao, Carao, Carao, Carao, Carao, "MASA's Goddard Space Flight Center, Greenbelt, Maryland, USA, Anthong Gualtering Spate. Spate. Markov, Calarized Spate.

where L maps questroops, the barrer is hyperpetric more nearing in the second with the an assumed in the physical mathematical second with the second sec

[8] J. Munoz-Man, A. J. Plaza, J.A. Gualtiers, G. Camps-Valls 'Parallel Implementations of SVM for Earth Observation', Parallel Programming, Models and Applications in Grid and P2P Systems, 2009, pages 292-312

→ Good domain-specific science insights,
 e.g. sub-domain of 'spectral unmixing' has big data...

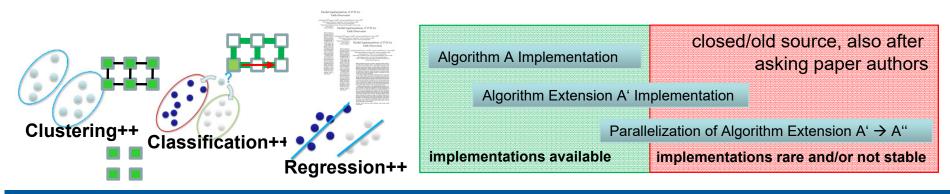
... but 2014 challenges remain: HPC reinvents itself every year

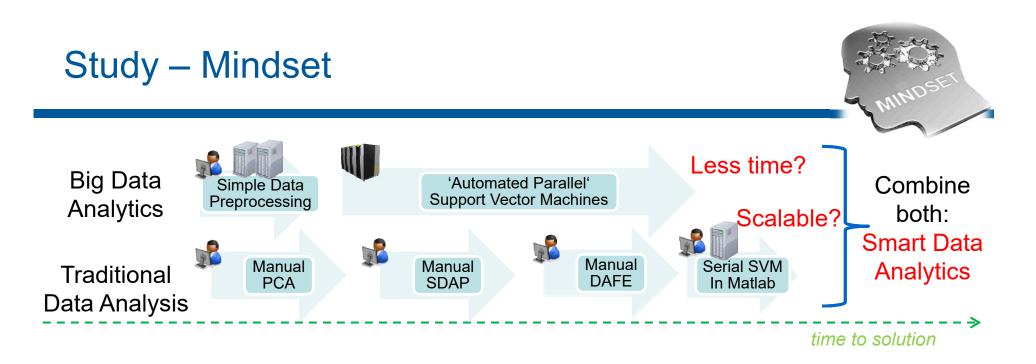
- Massively increased amount of cpus/cores and memory (+getting cheaper)
- New techniques in data-related properties: MPI-IO & parallel-IO libraries
- Better infrastructures: Improved parallel file systems and data sharing
- New architectural approaches & Languages: 'GPGPUs & python trend'
- Scientific codes running on old machines not necessarily good on new ones

[7] A. J. Plaza and C. Chang, 'High Performance Computing in Remote Sensing', CRC Press, 2007

Related Work in Parallel & Distributed Computing

ΤοοΙ	Platform Approach	Parallel Support Vector Machine
Apache Mahout	Java; Apache Hadoop 1.0 (map- reduce); HTC	No strategy for implementation (Website), serial SVM in code
Apache Spark/MLlib	Apache Spark; HTC	Only linear SVM; no multi-class implementation
Twister/ParallelSVM	Java; Apache Hadoop 1.0 (map- reduce); Twister (iterations), HTC	Much dependencies on other software: Hadoop, Messaging, etc.
Scikit-Learn	Python; HPC/HTC	Multi-class Implementations of SVM, but not fully parallelized
piSVM	C code; Message Passing Interface (MPI); HPC	Simple multi-class parallel SVM implementation outdated (~2011)
GPU accelerated LIBSVM	CUDA language	Multi-class parallel SVM, relatively hard to program, no std. (CUDA)
pSVM	C code; Message Passing Interface (MPI); HPC	Unstable beta, SVM implementation outdated (~2011)





Big Data Analytics \rightarrow [processing power++, time scientists-]

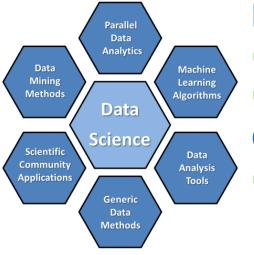
- Working on 'big data' by an automated process on computing machinery
- Scalable to 'big data volumes' (e.g. high dimensions), image time-series

Traditional Data Analysis → [time scientists+++, processing power-]

- Data reduction by manual intervention \rightarrow 'small data' (e.g. low dimensions)
- Not necessarily needs ,large-scale computing environments' scalable?

Smart Data Analytics: Clever mix of both approaches

- Apply parallel and distributed computing techniques where feasible
- Take advantage of semi-automated statistical techniques from data science



Examples to reduce 'big dataset dimensions'

- Principle Component Analysis (PCA)
- Discriminant Analysis Feature Extraction (DAFE)

Classification optimization technique

Self-Dual Attribute Profile (SDAP)

Area

Std Dev

Moment of Inertia

[9] G. Cavallaro, M. Mura, J.A. Benediktsson, L. Bruzzone 'A Comparison of Self-Dual Attribute Profiles based on different filter rules for classification', IEEE IGARSS2014, Quebec, Canada

Open Questions remains for the study...

- Can we perhaps 'speed-up' some of the statistical techniques?
- Parallel cross-validation for 'model selection' before running SVMs?

ΤοοΙ	Platform Approach	Findings when using Tool
Twister/ParallelSVM	Java; Apache Hadoop 1.0 (map- reduce); Twister (iterations), HTC	Much dependencies on other software: Hadoop, Messaging: stability needs to improve; slightly outdated move to HARP (Hadoop 2.0 SVM plug-in)
piSVM	C code; Message Passing Interface (MPI); HPC	Works stable; speed-up only when computing is really required (make no sense for small dataset dimensions), optimizations in code (load imbalance with increasing cores, collectives, etc.)
GPU accelerated LIBSVM	CUDA language	Easy to install, but relatively hard to program, no standard language (CUDA); but promising for future tests

'HTC Approach'

- Used FutureGrid cluster with Twister/ParallelSVM
- Uses map-reduce & messaging

[10] Sun Z., and Fox G., 'Study on Parallel SVM Based on MapReduce', In Proceedings of the international conference on parallel and distributed processing techniques and applications, 2012.

'HPC Approach'

- Used JUDGE cluster at Juelich Supercomputing Centre
- MPI was installed; piSVM ported

[11] piSVM Website, 2011 code

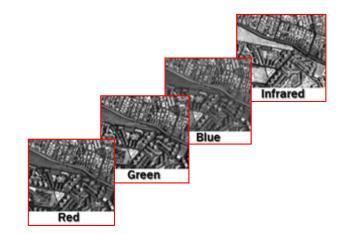
Study – Datasource & Sensors

Geographical location: Image of Rome, Italy

Remote sensor data obtained by Quickbird satellite

High-resolution (0.6m) panchromatic image

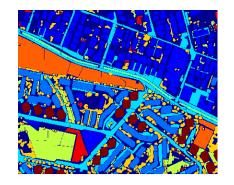
Pansharpened (UDWT) low-resolution (2.4m) multispectral images



Study – Training vs. Test Data Generation

Labelled data available

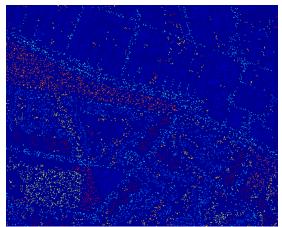
 Groundtruth data of 9 different land-cover classes available



Data preparation

- We generated a set of training samples by randomly selecting 10% of the reference samples (with labelled data)
- Generated set of test samples from the remaining labels (labelled data, 90% of reference samples)

Class	Training	Test
Buildings	18126	163129
Blocks	10982	98834
Roads	16353	147176
Light Train	1606	14454
Vegetation	6962	62655
Trees	9088	81792
Bare Soil	8127	73144
Soil	1506	13551
Tower	4792	43124
Total	77542	697859

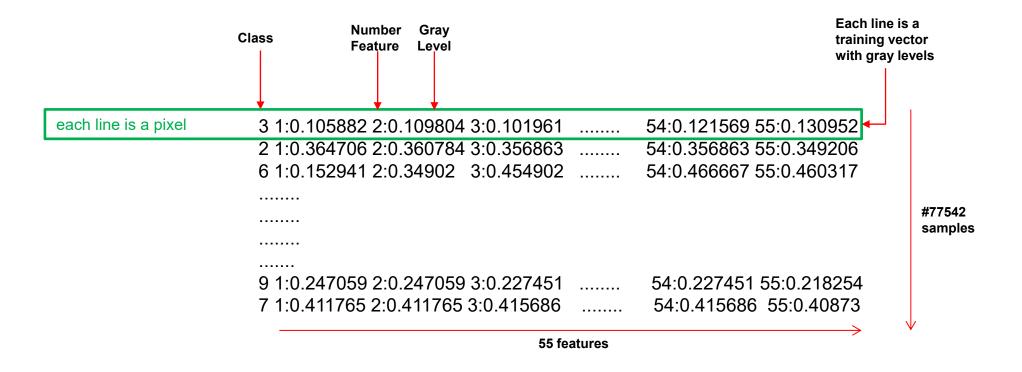


Training Image (10% pixels/class)

Study – Data structure

Based on 'LibSVM data format'

• E.g. 'SDAP on area' on all images training file



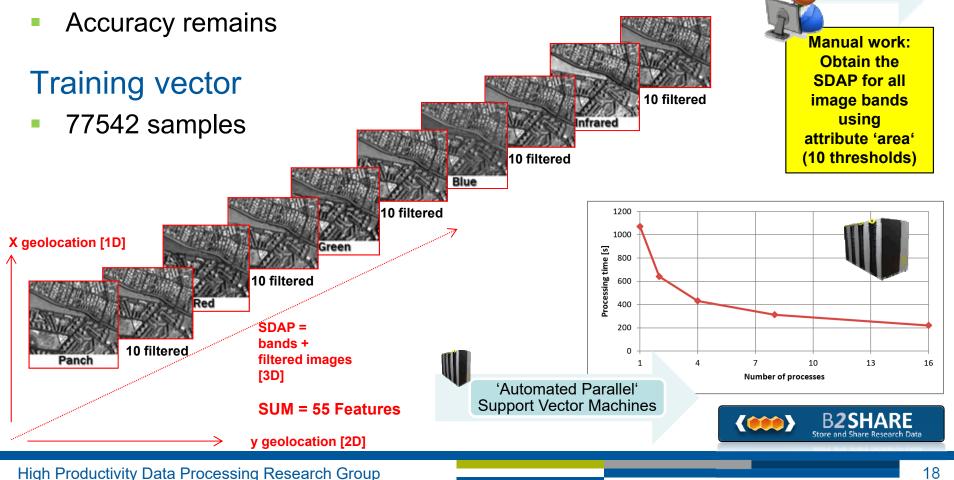
Study – Selected Results

Training speed-up is possible when number of features is 'high'

Manual

SDAP

- Serial Matlab: ~1277 sec (~21 minutes)
- Parallel (16) Analytics: 220 sec (3:40 minutes)



Study – Selected Further Initial Results

Consideration trade-off man vs. machine

- Goal of Smart Data Analytics: automate the process, maintain accuracy
- Goal of traditional data analysis: reduce manual time, high accuracy
- Comparing serial Matlab vs. Parallel Analytics only in parts 'fair'

Training speed-up is not achieved when features are 'low'

- Automated parallel shared (!) environment needs time to setup
- Avoiding the creation of big data:
 e.g. 'SDAP only on panchromatic image (reduced to 15 features)
- Time in Matlab is one minute, no need for analytics during manual work

Speed-up of SVM – Predict (Test time) significantly

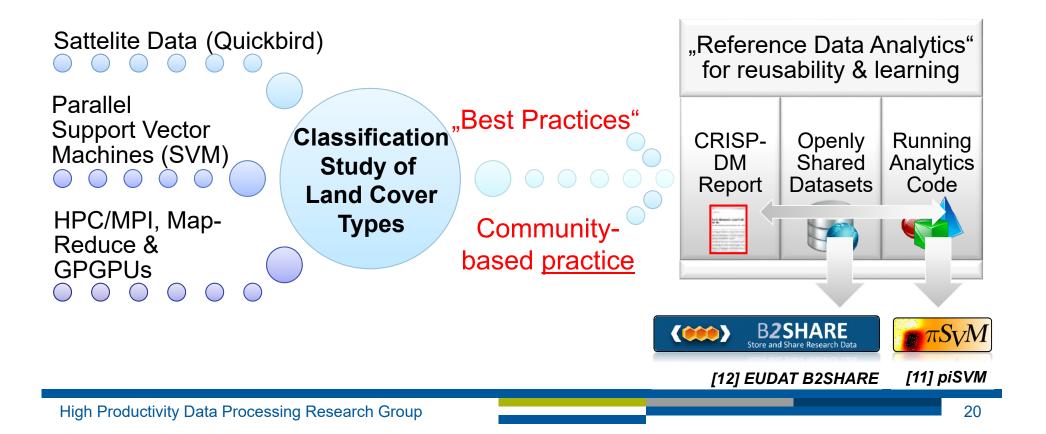
- Better parallelization with predictions possible
- Serial Matlab: ~2080 sec.
- Parallel (16) Analytics: ~120 sec.

19

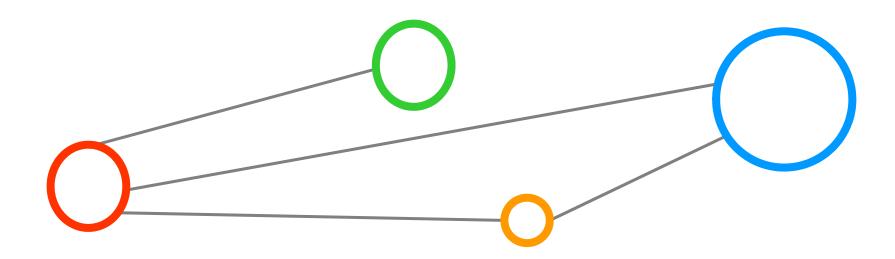
Study – Reproducability Aspects

Inline with emerging publishing requirements

- Running analytics code and used datasets openly available
- Datasets have a 'persistent identifier (PIDs)' based on the handle system



Conclusions



Future Work

Transfer results to other scientific domains

Contribute to Human Brain Project (HBP)

[13] G. Shepherd et al., 'The Human Brain Project: neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data', *Trends in neurosciences* 21.11 (1998): 460-468.

Use of different resources & tools

- Evaluate other parallel machine learning libraries
- Enable other computational resource types

Brain Data

Analytics

Scientific Smart Data Analytics

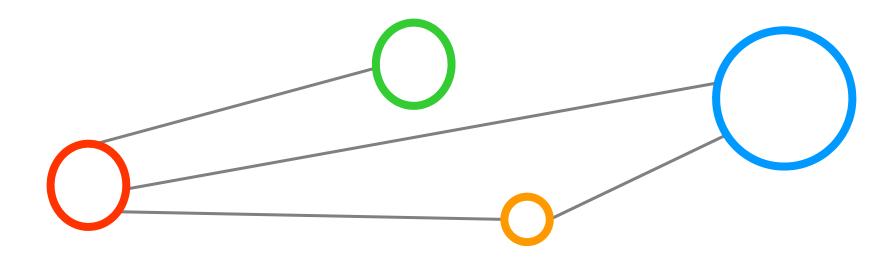
- Often different & more complex as industrial 'big data analytics' cases
- Data science often driven by industrial-driven tools
 → Need scientific steering from communities (peer-review process)

Mindset

- Trade-off in time \rightarrow manual statistical techniques vs. automated analytics
- Big Data trend → 'Bigger data' does not necessarily mean 'better data'
 Skillset
- Knowledge of statistical methods essential → 'Reduce big data'
- Time to ensure 'good reproducability' enormous → Need of 'data curators'
- Lack of skilled people in domain + computing → Need of 'data scientists'

Toolset

- Rare open availability of parallel machine learning codes
- Stability and implemented functionality of codes needs to increase



References

- [1] RDA BDA IG Webpage, online: https://rd-alliance.org/group/big-data-analytics-ig.html
- [2] John Wood et al., 'Riding the Wave How Europe can gain from the rising tide of scientific data', EC Report, 2010
- [3] KE Partners, 'A Surfboard for Riding the Wave Towards a four country action programme on research data', November 2012
- [4] DOE ASCAC Data Subcommittee Report, 'Synergistic Challenges in Data-Intensive Science and Exascale Computing', 2013
- [5] D. Lazer et al. 'The Parable of Google Flu Traps in Big Data Analysis', Science 03/2014, Vol. 343
- [6] Shearer C., 'The CRISP-DM model: the new blueprint for data mining', J Data Warehousing (2000); 5:13-22.
- [7] A. J. Plaza and C. Chang, 'High Performance Computing in Remote Sensing', CRC Press, 2007
- [8] J. Munoz-Man, A. J. Plaza, J.A. Gualtiers, G. Camps-Valls 'Parallel Implementations of SVM for Earth Observation', Parallel Programming, Models and Applications in Grid and P2P Systems, 2009, pages 292-312
- [9] G. Cavallaro, M. Mura, J.A. Benediktsson, L. Bruzzone 'A Comparison of Self-Dual Attribute Profiles based on different filter rules for classification', IEEE IGARSS2014, Quebec, Canada
- [10] Sun Z., and Fox G., 'Study on Parallel SVM Based on MapReduce', In Proceedings of the international conference on parallel and distributed processing techniques and applications, 2012.
- [11] piSVM Website, 2011 code, online: http://pisvm.sourceforge.net/
- [12] EUDAT European Data Infrastructure, B2SHARE Tool, Online: https://b2share.eudat.eu/
- [13] Shepherd, Gordon M., et al. "The Human Brain Project: neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data." *Trends in neurosciences* 21.11 (1998): 460-468.

Thanks for your attention

RESEARCH DATA ALLIANCE FOURTH PLENARY MEETING

22 – 24 September 2014 Amsterdam, the Netherlands | Meervaart conference centre

www.rd-alliance.org/rda-fourth-plenary-meeting.html

Talk available at:

www.morrisriedel.de/talks

Contact:

m.riedel@fz-juelich.de

High Productivity Data Processing Research Group