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Big Data Analytics

* (Automatically) examine large
quantities of scientific (‘big’) data
— Uncover hidden patterns
— Reveal unknown correlations

— Extract information in cases
. Data m
where there is no exact formula Mining Statistics
Machine
Learning

* Intersection of traditional methods
from a wide variety of fields

I =  Use of parallelization techniques (MPI, Map-reduce, GPGPUs) offers scalability to big data sets I
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Smart Data Analytics Methods
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* Performed survey of ‘reference models’
that enable data analytics in structured way

* Cross Industry [7]P. Chapman et al,
Standard Process
for Data Mining

— Used in Research - (T} )
Data Alliance RESEARCH DATA ALLIANCE
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Support Vector Machines Analytics

Classification

Support Vector Machines
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Support Vector Machines
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Example Analytics Application
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panchromatic image
(972 x 1188 pixels);
3 high resolution; 0.6m

e with the four bands;
low-resolution; 2.4m

Problem Multi-Class
Classification of buildings
. from hyper- / multi-spectral images
* Classification of buildings
from multi-spectral data
— 1st = Principle Component AnaIyS|s (PCA)

— Classify building classes using image data &
‘attribute filters’ to increase the accuracy

— Multi-spectral images can become very large
— Labelled data with groundtruth data exists

N profiles further improve
classification feature vector
i (area, std deviation,

88  moment of inertia,...)

= Use parallel Support Vector Machines (SVMs) since it is known as good classification method today I
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» Performed large survey of parallel Classification++
SVM implementations (map-reduce)

« Spark/MLIlib (Map-Reduce) (2] Spark Website
-> only binary classification, linear SVM

[2] Mahout Website

« Mahout (Map-Reduce)
-> no strategy for implementation

» ParallelSVM on Twister (lterative Map-Reduce)
- received beta code per email  piswz&foxgeta

Parallel implementations based on Map-Reduce are emerging but stabilility needs to be improved I
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Classification of Buildings in Images — Toolset (2)

» Performed large survey of parallel Classification++
SVM implementations (MPI & GPGPUs)

o p|SV|\/| [4] piSVM Website
-> Open source code, scalability limits
* pSVM
> Open source code, beta quality """
 GPULIbSVM,
- Open source code, beta quality (8] GPU LibsvM

Parallel implementations based on MPI + GPGPUs are openly available, but show scalability limits I
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— — _ | '
I ll |[ Training Phase 1 Test Phase 1
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:c, : :cjff‘- _‘ ' :.. '. 5 S Train SVM 5VM Model SVM Classifier |— Classification accuracy

« Serial Matlab scripts used before

[6] G. Cavallaro &
M. Riedel et al., 2014

— Not scalable to big data sets = parallelization

* E.g. piSVM -

200

100

Processing time [s]
-

— Speed-up, but
also shows limits

Number of processes

Reproducable Findings:
(0) BZS:HARE
Store and Share Research Data

Data is publicly available
[9] Rome Dataset

Code is publicly available
[4] piSVM Website

= Take away message from applications: Mostly multi-class SVMs used in science & engineering I
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Conclusions
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Conclusions

* Big Data Analytics &
— Requires smart parallel data analytics methods
— Enables high productivity (big) data processing
— Apply (existing) or research parallel methods

 Methods Reviewed & Applied
— CRISP-DM guides well the systematic analytics

— Availability of parallel implementations of
analytic algorithms rare, simple, or non existent
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Talk available at:

www.morrisriedel.de/talks
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