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Introduction
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• (Automatically) examine large 
quantities of scientific (‘big’) data 
– Uncover hidden patterns
– Reveal unknown correlations
– Extract information in cases 

where there is no exact formula 
• Intersection of traditional methods

from a wide variety of fields

Big Data Analytics

 Use of parallelization techniques (MPI, Map-reduce, GPGPUs) offers scalability to big data sets
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Smart Data Analytics Methods
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Systematic Analytics with CRISP - DM

• Performed survey of ‘reference models‘
that enable data analytics in structured way

• Cross Industry
Standard Process 
for Data Mining
– Used in Research

Data Alliance 
– BigData Analytics 

Interest Group

[7] P. Chapman et al.,
CRISP-DM Guide

Big Data
Analytics

[10] RDA Big Data Analytics IG
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Support Vector Machines Analytics

Classification

?
Clustering Regression

Support Vector Machines Support Vector Machines

(quadratic coefficients  N x N dense matrix)

(big data
challenge)

(e.g. all N
datasets vs.
sampling)

Quadratic Programming
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Example Analytics Application
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Classification of Buildings in Images – (Big) Data

• Classification of buildings 
from multi-spectral data
– 1st  Principle Component Analysis (PCA)
– Classify building classes using image data & 

‘attribute filters‘ to increase the accuracy
– Multi-spectral images can become very large
– Labelled data with groundtruth data exists

Problem: Multi-Class 
Classification of buildings

from hyper- / multi-spectral images

panchromatic image 
(972 × 1188 pixels); 
high resolution; 0.6m 

multispectral image 
with the four bands;
low-resolution; 2.4m

N profiles further improve
classification feature vector
(area, std deviation, 
moment of inertia,…)

 Use parallel Support Vector Machines (SVMs) since it is known as good classification method today
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Classification of Buildings in Images – Toolset (1) 

• Performed large survey of parallel 
SVM implementations (map-reduce)
• Spark/MLlib (Map-Reduce) 
 only binary classification, linear SVM

• Mahout (Map-Reduce)
 no strategy for implementation

• ParallelSVM on Twister (Iterative Map-Reduce)
 received beta code per email

[1] Spark Website

[2] Mahout Website

[3] Sun Z. & Fox. G et al.

 Parallel implementations based on Map-Reduce are emerging but stabilility needs to be improved

Classification++
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Classification of Buildings in Images – Toolset (2) 

• Performed large survey of parallel 
SVM implementations (MPI & GPGPUs)
• piSVM
 Open source code, scalability limits

• pSVM
 Open source code, beta quality

• GPULibSVM, 
 Open source code, beta quality

[4] piSVM Website

[5] pSVM Website

 Parallel implementations based on MPI + GPGPUs are openly available, but show scalability limits

[8] GPU LibSVM

Classification++
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Building Classification in Images – Some Results

• Serial Matlab scripts used before
– Not scalable to big data sets  parallelization

• E.g. piSVM
– Speed-up, but

also shows limits

 Take away message from applications: Mostly multi-class SVMs used in science & engineering

[6] G. Cavallaro & 
M. Riedel et al., 2014

Data is publicly available

Code is publicly available
[4] piSVM Website

Reproducable Findings:

[9] Rome Dataset
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Conclusions
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Conclusions

• Big Data Analytics
– Requires smart parallel data analytics methods
– Enables high productivity (big) data processing
– Apply (existing) or research parallel methods

• Methods Reviewed & Applied
– CRISP-DM guides well the systematic analytics
– Availability of parallel implementations of

analytic algorithms rare, simple, or non existent
– SVM: Map-Reduce less stable, MPI / GPGPUs ok
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Talk available at:
www.morrisriedel.de/talks

Contact:
m.riedel@fz-juelich.de 

Thanks

Acknowledgements
Parts of the presentation have been created in close collaboration with scientific domain ‘remote sensing‘ scientists

Gabriele Cavallaro, Jon Atli Benediktsson – University of Iceland


