

Understanding Big Data Analytics Applications in Earth Science

<u>Morris Riedel</u>, Rahul Ramachandran/Kuo Kwo-Sen, Peter Baumann Big Data Analytics Interest Group Co – Chairs

> research data sharing without barriers rd-alliance.org

Analytics are Needed in Big Data-driven Scientific Research The challenge is to understand which analytics make sense

'Understanding climate change, finding alternative energy sources, and preserving the health of an ageing population are all cross-disciplinary problems that require high-performance data storage,

smart analytics, transmission and mining to solve.'

'In the data-intensive scientific world, **new skills are needed for** creating, handling,

manipulating, analysing,

and making available large amounts of data for re-use by others.'

[2] 'A Surfboard for Riding the Wave' Report

Riding the wave

pe can gain from the rising tide of scientific data

[1] 'Riding the Wave' Report

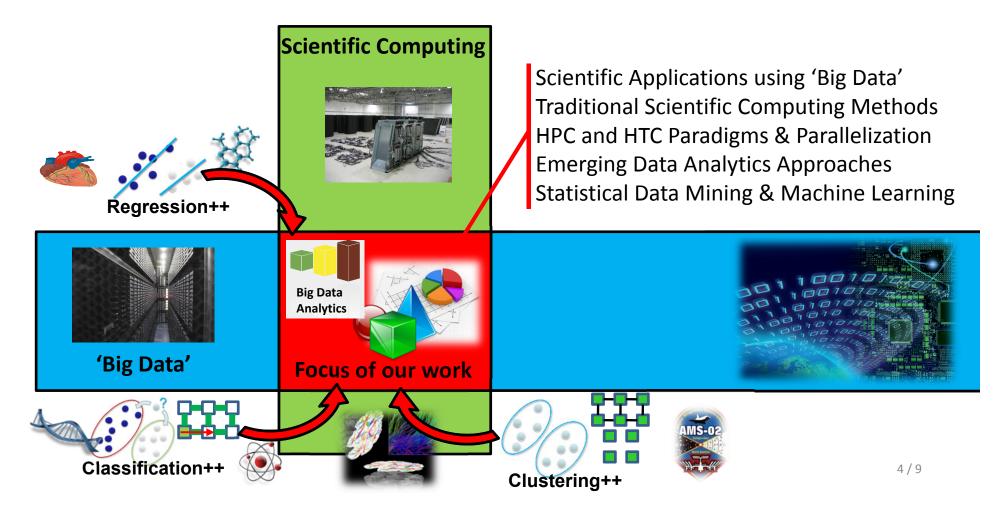
How do we enable ,high productivity processing? How do we find ,a message in the bottle?

KE.

NG THE WAVE

Understanding concepts & terminologies

There are different views on the different terms...


...so lets be concrete and show evidence and running code

- 'Data Analysis' supports the search for 'causality'
 - Describing exactly WHY something is happening \rightarrow science
 - Understanding causality is hard and time-consuming, but is necessary
 - Searching it often leads us down the wrong paths...
- 'Big Data Analytics' is focussed on 'correlation'
 - Not focussed on causality enough THAT it is happening \rightarrow money/events
 - Discover novel patterns and WHAT is happening more quickly
 - Using correlations for invaluable insights often data speaks for itself
 - Analysis is the in-depth interpretation of ,big data'
 - Analytics are powerful techniques to work on ,big data'
 - Parameter/event space exploration may use (1) analytics, then (2) analysis
 - Pre-/Post-Process data with (1) analytics for deeper/faster (2) data analysis processing

Understanding Applications & Technology

'Lighthouse goal': High Productivity Processing of Research Data

RDA Group: Understand Concrete Solutions

- Develops community based recommendations
 - ... on feasible data analytics approaches
 - ... to address scientific community needs/problems
 - ... of utilizing large quantities of data.
- Work with different scientific domain applications
 - ... and their use of concrete big data analytics techniques
 - ... what really works and runs to solve the solution?

IG: Bottom-up, dispersed and only slightly coordinated

- Sharing knowledge of analysis algorithms, analytical tools, ...
- ... data and resource characteristics ...
- ... and running code that works will be part of the recommendations.

Parallel Data Analytics

Data

Science

Generic Data Methods Machine

Algorithms

Data

Analysis

Tools

Data

Mining Methods

Scientific

Community

Applications

PRACE/XSEDE Earth Science Analytics

Proposal for the 'XSEDE-PRACE call for requests of joint support' Smart Data Analytics for Earth Sciences across XSEDE and PRACE

Executive Summary

The ever-increasing amount of scientific data arising from measurements or computational simulations requires new *simort data analytics techniques'* capable of extracting meaningful findings from *fuure* big data'. XSDE (including FutureGrid for Map-Reduce), as well as PRACE, provides excellent resources that enable efficient and effective data analytics when several technical frameworks and data analysis packages would be available. Making

- Problem: Quality control via outlier detection with PANGAEA data
- Key PI: Dr. Robert Huber, MARUM, Bremen, Germany

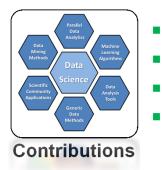
PANGAEA

- Problem: longitude/latitude/altitude correlations with IAGOS data
- Key PI: Dr. Owen Cooper, NOAA ESRL, US

- Problem: Event tracking analytics with spatial computing datasets Key PI: Dr. Rahul Ramachandran, NASA MSFC, US

- Problem: Continuous seismic waveforms analysis for earthquakes monitoring
- Key PI: Alberto Michelini, INGV, Italy

SEISMIC


Problem: Projecting & transforming geospatial big data into a common coordinate reference framework Key PI: Shaowen Wang, NCSA, US

SCALE GIS

Take advantage of e-Infrastructure for automation and sharing of methods/data

Increase Understanding with Applications

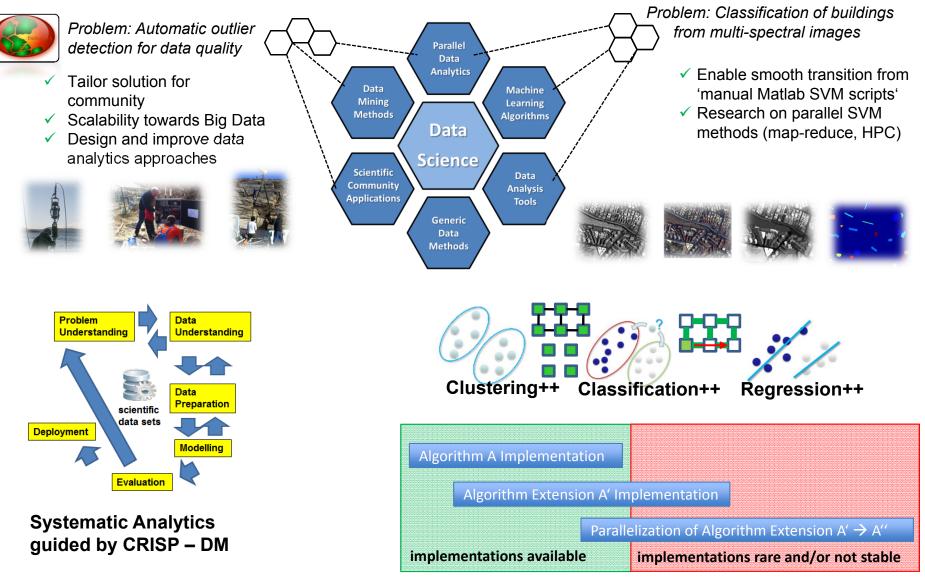
- Tackles bottom-up use cases that require 'big data analytics'
- Provides a systematic classification of technology combinations
- Develops recommendations on feasible analytics approaches
- Offers best practice guides for researchers & concrete problems

SVE SVE OFE SVE VE VE

Event Analytics

Problem: event tracking analytics (e.g. understanding somali jets)

- Data sets from satellites ('events with changing geolocations')
- Technologies: HPC/HTC (map-reduce), data-bases, several algorithms
- Status: review existing event tracking literature & algorithms


- Problem: automatic outlier detection in ,big data' (PANGAEA)
- Data sets from time-series measurements (e.g. 'Koljoefjords, Sweden')
- Technologies: HPC/HTC (map-reduce), R (outliers, RMPI)
- Status: CRISP-DM, investigating running code for outlier algorithms

Concrete Application Implementations

Selected use cases with concrete problems

Findings: Parallelization & Big Data is Hard

Morris Riedel et al., Understanding Big Data Analytics Applications in Earth Sciences, EGU 2014, Vienna, Austria

- [1] J. Wood et al., 'Riding the Wave How Europe can gain from the rising tide of scientific data', report to the European Commission, 2010
- [2] Knowledge Exchange Partner, 'A Surfboard for Riding the Wave Towards a Four Action Country Programme on Research Data', 2011
- [3] Research Data Alliance (RDA) Web Page, Online: <u>https://rd-alliance.org/node</u>
- [4] G. Fox, 'MPI and Map-Reduce', Talk at CCGSC 2010 Flat Rock,NC, 2010

Morris Riedel et al., Understanding Big Data Analytics Applications in Earth Sciences, EGU 2014, Vienna, Austria