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In commercial environments
Big Data is all about

Volume — Variety — Velocity

‘Big Data is data that becomes large enough that it
cannot be processed using conventional methods.’

[1] O’Reilly Radar Team, ‘Big Data Now:
Current Perspectives from O'Reilly Radar’

iext.generation radio telescope for science...
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Typical Application Challenge:
DNA Sequencing Pipeline
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Modern Commercial Gene Sequencers

Linear Algebra or Expectation Maximization based data mining poor
on MapReduce — equivalent to using MP| writing messages to disk and
restarting processes each step/iteration of algorithm




Map-Reduce
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K-Means Clustering (NP-hard)

’ Compute the  Partition n observations into
i distance to each data ;

 point frnmaaml:.luster' i
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 Compute the new www.wikipedia.org
: cluster centers

Smith Waterman is a non iterative

| User Program | | Compute the error and decide case and of course runs fine
: whether to continue iteration i

Performance of K-Means
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= Save cdmpute time by focusing on special areas
= E.g. Parameter space exploration of an application
= Switch ‘options’ in a parallel HPC application during runtime

= E.g. Heating-Ventilating-AirConditioning (HVAC) simulations in
engineering, Computational Fluid Dynamics (CFD), ...
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data visualization

parameter change: steering =1
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Extreme
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Easy to deploy, implement

Relatively cheap to operate

Easy to geographically distribute
Designed with ,no schemas’

Scalability inherent in the DBs

Quickly process extremely large datasets
Low data consistency requirements
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General communlty trend to tackle ‘big data’ towards SMAQ stack’
= Storage MapReduce and Query (SMAQ)—>High Throughput Computing (HTC

Query (new forms of insights derived from powerful queries)

MapReduce (distributes computation over many servers)

Storage (distributed, non-relational or unstructured)

but is ‘'SMAQ’ indeed the full answer for ‘data-intensive science’ ?
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Algorithms for Large-scale

Extreme

Fast Data

Map-Reduce Visual Analytics Data Analysis Data Base
Sources Access
Classic Iterative Online/real-time Computational Parallel Crowd NoSQL
Map-Reduce Map-Reduce Visualization Steering algorithms, libraries, tools Sourcing Databases
Loosely- Iterative Commun- Commun- Massively parallel Massive In-
Coupled loosely ication from ication from communication with amount of memory
Communicati coupled, data visualizer to synchronization, parallel access &
on Pub-Sub generator to steered communicators, shared commun- commun-
Commun- visualizer process memory programming ication cation
ication streams
BLAST, Linear- Data streaming Iterative MPIl-programs, openmp, Data Keeping
Matlab algebra, applications for problems and FFT algorithms, PDE gatherings, data and
Parameter Step-wise thousands of step-wise solvers, particle Cor- un-
Sweeps, algorithms data elements, approaches, dynamics, MD codes relations, structured
Ensemble and iterative interlinked nbody ranking, information
Runs, scientific data mesh simulations, Reliability studies community for quick
Distributed problems, CFD codes Using new hardware reviews, processing
Search& Page rank features such as localized and storage
Sorting virtualized networks data
Mostly HTC, HTC towards HTC and HPC, HTC, rather HPC, JUROPA3, DDN, Un-
Apps HPC, Apps viz cluster, Apps HPC, Apps, GPGPUs, small clusters, Apps, HTC, | i ctured
binati BGAS etc. DDN Web DBs, ‘In-
combination ) Scaler memory’
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Engage in RDA with your experience!
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