
Security Model and
Harmonization Options/Plans

in context of the European Middleware Initiative

http://www.unicore.eu

Morris Riedel (m.riedel@fz-juelich.de)
Jülich Supercomputing Centre (JSC)

2http://www.unicore.eu

UNICORE 101
Security Remarks & Constraints
Foundational Security Elements
Security Setups
One Example
Future Topics
Discussions

Outline

3http://www.unicore.eu

UNICORE 101

4http://www.unicore.eu

2008200720062005200420032002200120001999 2009

More than a decade of German
and European research &
development and infrastructure
projects

Any many others, e.g.

Projects

2010 2011

UNICORE
UNICORE Plus

EUROGRID
GRIP

GRIDSTART
OpenMolGRID

UniGrids
VIOLA
DEISA

NextGRID
CoreGRID

D-Grid IP
EGEE-II
OMII-Europe
A-WARE

Chemomentum
eDEISA

PHOSPHORUS

D-Grid IP 2

SmartLM
PRACE

D-MON

DEISA2

ETICS2
SLA4D-Grid
WisNetGrid

5

UNICORE in Supercomputing

http://www.unicore.eu

Slide courtesy of Alexander Moskovsky (Moscow State University)

Slide courtesy of Peter Coveney (UCL)

6

UNICORE in National Grids

http://www.unicore.eu

Slide courtesy of Michael Sattler, Alfred Geiger (T-Systems SfR)

Slide courtesy of André Höing (TU Berlin)

7

UNICORE Commercial Environments

http://www.unicore.eu

Slide courtesy of Alfred Geiger (T-Systems SfR)

Slide courtesy of Bastian Baranski (52° North & University Münster)

8http://www.unicore.eu

 Two layer architecture
for scalability

 Workflow engine
Based on Shark

open-source XPDL
engine

Pluggable, domain-
specific workflow
languages

 Service orchestrator
Job execution and monitoring
Callback to workflow engine
Brokering based on pluggable strategies

 Clients
GUI client based on Eclipse
Commandline submission of workflows is also possible

Workflows in

9http://www.unicore.eu

Example: Life Science Workflow

10

UNICORE
WS-RF

hosting
environment

XNJS – Site 1

IDB

UNICORE
Atomic
Services

OGSA-*

Service
Registry

Local RMS (e.g. Torque, LL, LSF, etc.)
Target System Interface – Site 1

Local RMS (e.g. Torque, LL, LSF, etc.)

X.509, Proxies,
SOAP, WS-RF,

WS-I, JSDL

OGSA-ByteIO,
OGSA-BES, JSDL,

HPC-P,
OGSA-RUS, UR

X.509, XACML,
SAML, Proxies

DRMAA

UCC
command-
line client

URC
Eclipse-based
Rich client

Portal
e.g. GridSphere

HiLA
Programming
API

Gateway – Site 1

UVOS
VO

Service

External
Storage

USpace

GridFTP, Proxies

USpace

XUUDB

Workflow
Engine

Service
Orchestrator

XACML
entity

UNICORE
WS-RF
hosting
environment

XNJS – Site 2

IDB

UNICORE
Atomic
Services

OGSA-*

Target System Interface – Site 2

XUUDB

XACML
entity

Gateway – Site 2
CIS
Info

Service

OGSA-RUS, UR,
GLUE 2.0

Grid services
hosting

job incarnation

web service stack

data transfer to
external storages

authorization

authentication

scientific clients
and applications

central services
running in WS-RF

hosting environments

Gateway

http://www.unicore.eu

11http://www.unicore.eu

Security Remarks & Constraints

12http://www.unicore.eu

 Important foundation:
Major difference what security the middleware supports

and what security is deployed on infrastructures
Infrastructures should (and have to) decide on their own what

security setup is necessary (not what middleware provides)

UNICORE mostly used in environments driven by High
Performance Computing (HPC), e.g. DEISA, SKIF-Grid,
 Driver of requirements in terms of security

Boundary condition: no pool accounts
Each HPC user typically has to map to one specific UNIX account

Security Remarks & Constraints (1)

13http://www.unicore.eu

Requirements for full X.509 end-entity certificates
Many HPC administrators see ‘plain proxies’ as unsecure

(since proxies become part of OpenSSL this might change)
Proxies are not bad, but the way they are used in Grids is bad…
 Issues: no constraints in what users do with them, no revocation mechanism possible

even if they may have rather short lifetimes, overheads in creating proxies per hop, no
commercial tooling and support available (often either forms of the certificate’s DNs or
path validation causes problems), etc.

UNICORE can be also used in non HPC-driven environments
Different optional setups can be used to satisfy administrators

and decision makers in various Grid infrastructures
Interoperability becomes more and more a driver of new

features…, e.g. using proxy-certificates, bridging to Grids,…

Security Remarks & Constraints (2)

14http://www.unicore.eu

Foundational Security Elements

15http://www.unicore.eu

Foundational Security Elements (1)

Authentication via the UNICORE Gateway Component
Accepts Transport Level Security (TLS) connections established

with full X.509 end-entity-certificates
Checks whether

certificates are still valid
(lifetime), not revoked,
and signed by a
Certificate Authority
(CA) that is being
trusted (i.e. TrustStore)

Uses Certificate
Revocation Lists (CRL)
for revocation

16http://www.unicore.eu

SAML Assertions
User assertion: created and signed by the end user
Consignor assertion: created at the gateway, contains

information about the certificate used for SSL
Trust delegation assertion
 Initial TD is created and signed by the user. Delegates trust to a

particular identity (i.e. a single DN!)
The trusted server can extend the TD to another identity
Builds a single, verifiable chain of trust

(vs. proxy chains that only track DNs that are may not
distinguishable, e.g. …/CN=Morris  machine-name/hop)

Maximum chain length and TD lifetime configurable
 Server just needs to trust the Gateway and the authorization servers

(e.g. XUUDB, UNICORE VO - Service, ….)

Foundational Security Elements (2)

17http://www.unicore.eu

Numerous Authorization Capabilities through handler design
Gateway forwards requests to UNICORE server
UNICORE server processes a handler chain before each service

invocation happen
Different authorization

handlers exist
 SAMLInHandler,

SAMLVOMSInHandler, …

Each Handler puts
security content
(i.e. attributes, roles)
in ‘Security context’

XUUDB callout to map
X509 to local account
and role (e.g. “user”)

Foundational Security Elements (3)

18http://www.unicore.eu

High flexibility in policy definition and enforcement
Each UNICORE server provides an XACML-based policy

(XACML = eXtensible Access Control Markup Language)
Before each invocation,

the security context
(filled with information
from handlers) is
checked against the
XACML policy

Simple yes/no
decision if end-users
get access to
systems

Foundational Security Elements (4)

19http://www.unicore.eu

Support for attributes of Virtual Organizations (VOs)
SAML-based UNICORE VO Service (UVOS) developed

(in parallel to OMII-Europe SAML-based VOMS service)
SAML Requests to

service according
to SAML standard

Membership can be
conveniently
configured from VO
administrators via
a UNICORE Rich
Client plug-in

Xlogin local accounts
retrieval according to
user identity

Foundational Security Elements (5)

20http://www.unicore.eu

UVOS & “Pull Model”
 A service contacts the VO server to obtain the attributes of a

user who tries to use it.
 The attributes received from the VO server can be used for an

authorization later inside UNICORE
Evaluation from usage
 Pull mode is transparent for the grid users
More difficult for grid

administrators to set it up
since grid site must be
correctly configured to use
the corresponding UVOS

Foundational Security Elements (6)

21http://www.unicore.eu

UVOS & “Push Model”
 A user has to contact a VO server (via client) and get the list of

possessed attributes in a signed assertion
 This assertion can be attached to the requests which are sent to

the grid services (i.e. Grid node)
Evaluation from usage
More scalable in terms of server administration and

easier to set up
 It requires user interaction

and a problem with expired
assertions arises
(cp. With proxy renewal
problem)

Foundational Security Elements (7)

22http://www.unicore.eu

UVOS Interaction Protocols & standards
 The management clients use a custom WS interface
 The consumers use the open standard SAML 2.0 as a protocol

Administrative
GUI within
the Eclipse-
based
UNICORE
Rich Client

Foundational Security Elements (8)

23http://www.unicore.eu

Security Setups

24http://www.unicore.eu

Authentication
Gateway: authentication of end-users based on certificates

obtained from TLS connection
Authorization
Services typically use the XUUDB
XUUDB maps the user certificate to UNIX accounts
Limited set of attributes: e.g. role = user
In “DN mode” only the DN of certificates is relevant

Delegation
SAML-based Trust Delegation using SAML Assertions

and full end-entity certificates only

Security Setups: Default Deployments

25http://www.unicore.eu

Authentication
Gateway: authentication of end-users based on certificates

obtained from TLS connection
Optional proxy-validation chain algorithm (often used by portals)

(allows for OpenSSL-based TLS with proxies
but no GSI connections)

Attribute-based Authorization
DN-XUUDB maps DN of certificates to UNIX accounts
Attributes obtained from SAML assertions provided

by SAML-based UVOS (or SAML-based VOMS)
Delegation
Also SAML-based TD so far
(Maybe adopting proxy-based delegation as optional setup)

Security Setup: Grid Interoperability

26http://www.unicore.eu

Demonstrated at last DEISA review: UNICORE and Shibboleth
Shibboleth View:

GridShib-CA is used as a ServiceProvider from the Shibboleth
perspective whereas Online CA from user's point of view.
This allows client to fetch his/her credentials in X.509 from

Shibboleth
Move towards new Shibboleth (avoiding GridShib) in progress

User authenticates with his institutions IDP
(Shibboleth based Identity Provider)
Get access to the GridShib-CA (the SP and Online CA)
Enable users to download "manually" the SLC (Short Lived

Credentials) with embedded SAML assertions via Web browser

Security Setup: Shibboleth Federations (1)

27http://www.unicore.eu

UNICORE View - Client Side:
User imports the downloaded SLC into his/her keystore.
By executing "slc" command using ucc to extend the existing

keystore otherwise creating the new one
User connects to the target system while authenticating himself

at the SSL/TLS level
Along with that the SAML assertions are being extracted and

appended into the (service) requesting SOAP header
UNICORE View - Server side:
The incoming SAML assertion is being parsed at the server side
SAML assertion containing user attributes are being matched

against XUUDB and XACML policy store to make final decision is
being made, contemplates whether the client is allowed to
execute that request on particular service or not

Security Setup: Shibboleth Federations (2)

28http://www.unicore.eu

Security Setup: Shibboleth Federations (3)

29http://www.unicore.eu

One Example

30http://www.unicore.eu

SAML is an open
standard from OASIS

Used in conjunction with
AuthZ Attribute Exchange
Profile (OGF AuthZ group)
to obtain a SAML assertion
from a Policy Information
Point (PIP)

SAML assertions are
transported in the SOAP
header during WS calls
E.g. WS-Security Extensions

Developed by

Example: Using SAML-based VOMS
UNICORE

VO
Service

31http://www.unicore.eu

XACML is an open
standard from OASIS

Allows to define policies that
grant/deny access to UNICORE

Before the XNJS really
executes something an
XACML callout is performed

Basically does yes/no decisions
Heavily used in UNICORE

in conjunction with SAML
assertions defining roles

Developed by

Example: Policy enforcements and decisions
UNICORE

VO
Service

32http://www.unicore.eu

Harmonization Options
In context of European Middleware Initiative (EMI)

33http://www.unicore.eu

Two VO services exist with
similar scope and functionality
 SAML-based VOMS as

extension of classic VOMS
 UNICORE VO Service

Common VO Service
 Joint development!

Common VO Attributes
 E.g. Map VO attributes

with DEISA Extreme Computing
Initiative (DECI) projects &
DEISA Virtual communities

Common VO Service
Common

VO
Service

34http://www.unicore.eu

Allows to define policies that
grant/deny access to UNICORE

Before the XNJS really
executes something an
ARGUS callout is performed
Maybe additionally to the local

XACML policy user verification
Centralized AuthZ service avoids

copy&paste of local
XACML policy files
 XACML language

is strong enough
to express the policies

Unified EMI Authorization Service

ARGUS
CLIENT

Grid central ARGUS
AUTHZ Service

Central (XACML)
Grid-wide policy

UNICORE
VO

Service

35http://www.unicore.eu

Check full interoperability with
OpenSSL-based proxies
 Explore usage of proxies for

workflow hops that go beyond
UNICORE (i.e. gLite, ARC)

Joint work on solutions to support
Short Lived Credentials (SLCs)

Move away from the Grid
Security Infrastructure (GSI)
dependency in some components

E.g. GridFTP support
Work towards multi-Grid policies

for a production deployment

Other Harmonization Options
UNICORE

VO
Service

36http://www.unicore.eu

Future Topics

37http://www.unicore.eu

Kerberos Support
Members of UNICORE Community (mostly CEA, France)

develop support for Kerberos environments Work in Progress
Adopting open standards for interoperability
Efforts of Grid Interoperation Now (GIN) and Production Grid

Infrastructure (PGI) OGF groups (and others…)
Using attributes for different xlogins
Different xlogins for different Grids (using attributes, e.g. roles)

Access to Storage systems
iRODS and Storage Resource Manager (SRM) adoptions

(maybe requires GSI connections on short-term scale)
UNICORE Rich Client and GLUE capability checks of systems

using the UNICORE Common Information Service (CIS)

Future Topics

