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Outline

 Introduction to Association Rule Mining
 Machine Learning Prerequisited & Methodology
 Role of Datasets & Famous Dataset Example 
 Challenges & Limits in Reality
 Support, Confidence, Lift, Leverage & Conviction Algorithm Options
 Relevant Rules & Practical Approach

 Practical Apriori Example ‘Pieper Store‘
 Apriori Algorithm & Association Rules
 Using Python Mlxtend Library 
 Jupyter Notebook Demonstration
 Fake Data(!) created from Supermarket Data
 Examples in Context
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Association Rule Mining
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Machine Learning Prerequisites & Challenges

1. Some pattern exists
2. No exact mathematical formula
3. Data exists
 Idea ‘Learning from Data‘

 Shared with a wide variety
of other disciplines

 E.g. signal processing, 
data mining, etc.

 Association Rule Mining needs data!

 Challenges 
 Data is often complex
 Learning from data requires 

processing time  Clouds

 Machine learning is a very broad subject and goes from 
very abstract theory to extreme practice (‘rules of thumb’)

 Training machine learning models needs processing time
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Association Rule Mining – Methodology 

 Methodology 
 Sometimes referred to as simply ‘Association Rules’
 Used to discover unknown relationships hidden in datasets
 Rules refer to a set of identified frequent itemsets that 

represent the uncovered relationships in datasets 
 Identify rules that will predict the occurence of one or more 

items based on the occurrences of other items in the dataset

 Approach
 Unsupervised machine learning method
 No direct guiding output data is 

given to find the patterns
 Several algorithms exist to perform 

association rule mining
(e.g., Apriori, FP Growth, MAFIA, etc.)
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[1] Big Data Tips,
Association Rules

(this lecture will focus on Apriori with a simple demonstration)
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Association Rule Mining – Role of Datasets

 Commercial Environments 
 Large quantities of data are accumulated in 

databases from day-to-day operations
 Lays the foundation for mining association rules: 

no data – no association rule mining!

 Retail Example
 Customer purchase data are collected on a daily basis at the 

checkout counters of city stores or when shopping at online stores
 Accumulated data items are often market basket transactions

 Motivation to Collect and Analyze Data
 Managers of stores are interested in analyzing the collected 

data in order to learn the purchasing behaviour of customers
 Enables a large variety of business-related applications based on the 

identified rules in the data (to be reviewed from store managers!)
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[1] Big Data Tips,
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(careful: can be different shopping 
patterns offline vs. online)

6 / 25



Association Rule Mining – Famous Dataset Example & Challenges

 Famous Example in Retail
 Illustrating a rule based on a strong relationship 

between the sale of Diapers and the sale of Beer
 Many customers who buy Diapers also buy Beer
 Investigating the transactions to find those 

frequent itemsets seems to be easy 

 Challenges
 In real datasets millions or billions 

of transactions are searched 
 Transaction search across 100000 of different 

items that may identify 1000 of rules

 Algorithms Benefit
 Automation of the process using association rule mining algorithms. 
 Rules help to identify new opportunities and ways for cross-selling products to customers

[1] Big Data Tips,
Association Rules
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Association Rule Mining – Famous Dataset Example & Limits

 Frequent Itemsets Limits
 Very simple method 
 E.g., no personalized shopping behaviour
 Ignores other relevant attributes 
 E.g., quantity of items sold, the price, 

or even a specific brand of items

 Computational Complexity
 Mining process to discover unknown patterns in 

large transaction datasets is computationally expensive 
 Size of the millions or billions of the transaction dataset 

when performing mining within memory can be tricky
 Limits with sub-sampling of dataset items since this 

may increase the risk to overlook frequent itemset patterns
 E.g., use smart out-of-cpu strategies to work on the big datasets as a whole 

to identify frequent itemsets and/or use High Performance Computing (HPC)
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Association Rule Mining – Reality & Configuration Options 

 Facing Reality in Retail Shopping
 Some uncovered patterns are simply not true 
 Reasoning: they have happen by chance! 

 Approaches
 Manual post-processing or even application 

domain knowledge to find true rules 
out of the undiscovered patterns

 Important is to find actionable insights from rules 
that can be used to change a product portfolio, 
store setup, or customer relations

 Configuration Options
 In order to provide a more clear set of rules
 E.g. support, confidence

(actionable insight:
change a product portfolio)

(actionable insight:
change a store setup)

(actionable insight:
change customer relations)

[2] Image:
Luehrmann.de
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Association Rule Mining – Understanding Support Option

 Practical Example
 Text analysis

 Example ‘Dog‘
 Appears in 7 baskets 
 Not in (5)
 Support is 7

 Example ‘Cat‘
 Appears in 6 baskets 
 Not (4) and (8)
 Support is 6

 Example ‘support threshold‘
 Pick s = 3 results in ‘5 frequent singleton itemsets‘

(‘Example of 8 baskets consisting of items as words‘)

(Basket #4 has 2x training: as baskets are 
modelled as sets this can be ignored)

 Careful: MLxtend implementation min_support threshold is set to 
0.5 (50%), a frequent itemset is defined as a set of items that occur 
together in at least 50% of all transactions in the database
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Association Rule Mining – Understanding Support Option 

 Metrics 
 Evaluating association rules and setting selection thresholds
 Given a rule "A -> C“
 A stands for antecedent and C stands for consequent

 Support – Revisited
 Defined for itemsets, not assocication rules

 Example MLxtend lib
 Table produced by the association rule mining algorithm 

contains three different support metrics
 'antecedent support' computes the proportion of transactions that contain the antecedent A
 'consequent support' computes the support for the itemset of the consequent C
 'support' metric then computes the support of the combined itemset A U C

[6] MLxtend Lib,
Association Rules

Typically, support is used to measure the abundance or frequency (often interpreted as significance or importance) of an 
itemset in a database. We refer to an itemset as a "frequent itemset" if you support is larger than a specified minimum-support 
threshold. Note that in general, due to the downward closure property, all subsets of a frequent itemset are also frequent.
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Association Rule Mining – Understanding Confidence Option

 Approach
 Finding Association Rules with high confidence important
 Identifying useful association rules is not much 

harder than finding frequent itemsets

 Practical insights
 Looking for association rules I  →  j that apply to a reasonable fraction 

of the baskets: the support of I must be reasonably high
 Marketing in brick-and-mortar stores w.r.t support: 

‘reasonably high’ is often around 1% of the baskets
 Confidence of the rule should be reasonably high, e.g. 50%

(otherwise the rule has little practical effect)
 As a result, the set I ∪ {j} will also have fairly high support.

(Finding within all the association rules those that 
have both high support and high confidence is possible)
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Association Rule Mining – Understanding Confidence & Lift Option 

 Example MLxtend lib – Confidence 
 Confidence of a rule A->C is the probability of seeing the consequent 

in a transaction given that it also contains the antecedent
 Metric is not symmetric or directed
 E.g, the confidence for A->C is different than 

the confidence for C->A
 Confidence is 1 (maximal) for a rule A->C if the consequent 

and antecedent always occur together

 Example MLxtend lib – Lift
 Lift metric is commonly used to measure how much more 

often the antecedent and consequent of a rule A->C 
occur together than we would expect if they were 
statistically independent

 E.g., if A and C are independent, the Lift score will be exactly 1
[6] MLxtend Lib,
Association Rules
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Association Rule Mining – Understanding Leverage & Conviction Option 

 Example MLxtend lib – Leverage 
 Leverage computes the difference between the observed 

frequency of A and C appearing together and the frequency 
that would be expected if A and C were independent

 An leverage value of 0 indicates independence

 Example MLxtend lib – Conviction 
 High conviction value means that the consequent 

is highly depending on the antecedent
 E.g., in the case of a perfect confidence score, 

the denominator becomes 0 (due to 1 - 1) 
for which the conviction score is defined as 'inf‘

 Similar to lift, if items are independent, the conviction is 1 [6] MLxtend Lib,
Association Rules
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Relevant Rules & Practical Approach

 Relevant Rules
 Assumed that there are not too many frequent itemsets 
 Not many candidates for high-support, high-confidence association rules.

 ‘less is more‘
 Each one found from above must be acted upon
 If store manager receives a million association rules that meet thresholds 

(e.g. for support and confidence) they cannot read them or act on them

 Practical Approach
 Normal to adjust the support threshold s 
 Provides not ‘too many frequent itemsets’
 Implement and review with store manager step-wise to measure results better

 The massive amount of data and derived rules requires an automated algorithm-based approach
 The most commonly used algorithm (and its variants) for association rules mining is called Apriori 
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(Generating ‘big data‘: Major 
chains might sell 100.000 
different items and collect 

data about millions of
market baskets)

15 / 25



Practical Apriori Example ‘Pieper Store’
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Jupyter Notebook Demonstration
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Python Script using MLxtend Library
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changed from 
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Pieper Store Example – Fake Data

 Retail Data 
 Original

[3] Pieper.de Duefte
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(for simplicity we focus
here on the brand names
and not on the detailed 

description, sizes in ml, or 
different prices)
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Association Rule Mining – Understanding Support Option – Revisited  

 Example MLxtend lib
 Table produced by the association rule mining algorithm 

contains three different support metrics
 'antecedent support' computes the proportion of transactions that contain the antecedent A
 'consequent support' computes the support for the itemset of the consequent C
 'support' metric then computes the support of the combined itemset A U C

[6] MLxtend Lib,
Association Rules
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Association Rule Mining – Understanding Confidence & Lift Option – Revisited  

 Example MLxtend lib – Confidence 
 Confidence of a rule A->C is the probability of 

seeing the consequent in a transaction given 
that it also contains the antecedent

 Metric is not symmetric or directed
 E.g, the confidence for A->C is different than 

the confidence for C->A
 Confidence is 1 (maximal) for a rule A->C if the consequent 

and antecedent always occur together

 Example MLxtend lib – Lift
 Lift metric is commonly used to measure how much more 

often the antecedent and consequent of a rule A->C 
occur together than we would expect if they were 
statistically independent

 E.g., if A and C are independent, the Lift score will be exactly 1 [6] MLxtend Lib,
Association Rules
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Association Rule Mining – Understanding Leverage & Conviction Option 

 Example MLxtend lib – Leverage 
 Leverage computes the difference between

the observed frequency of A and C 
appearing together and the frequency 
that would be expected if A and C were 
independent

 An leverage value of 0 indicates independence

 Example MLxtend lib – Conviction 
 High conviction value means that the consequent 

is highly depending on the antecedent
 E.g., in the case of a perfect confidence score, 

the denominator becomes 0 (due to 1 - 1) 
for which the conviction score is defined as 'inf‘

 Similar to lift, if items are independent, the conviction is 1 [6] Mlxtend Lib,
Association Rules
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