

Machine Learning

Learning from Data

Prof. Dr. – Ing. Morris Riedel

Associated Professor School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

Projects

LECTURE 1

Association Rule Mining – Apriori Example

April 24, 2020 Webinar, ON4OFF Project Meeting

UNIVERSITY OF ICELAND

FACULTY OF INDUSTRIAL ENGINEERING, MECHANICAL ENGINEERING AND COMPUTER SCIENCE

DEEP HELMHOLTZAI ARTIFICIAL INTELLIGENCE

Morris Riedel

OMorrisRiedel

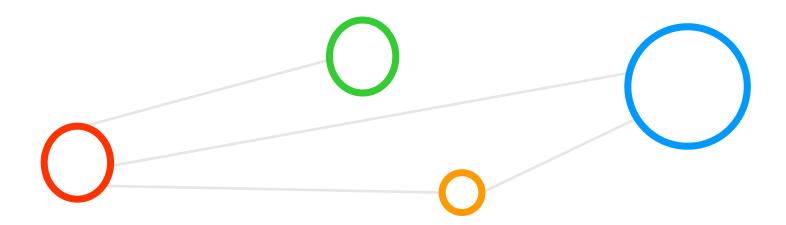
@MorrisRiedel

Outline

- Introduction to Association Rule Mining
 - Machine Learning Prerequisited & Methodology
 - Role of Datasets & Famous Dataset Example
 - Challenges & Limits in Reality
 - Support, Confidence, Lift, Leverage & Conviction Algorithm Options
 - Relevant Rules & Practical Approach
- Practical Apriori Example 'Pieper Store'
 - Apriori Algorithm & Association Rules
 - Using Python Mlxtend Library
 - Jupyter Notebook Demonstration
 - Fake Data(!) created from Supermarket Data
 - Examples in Context

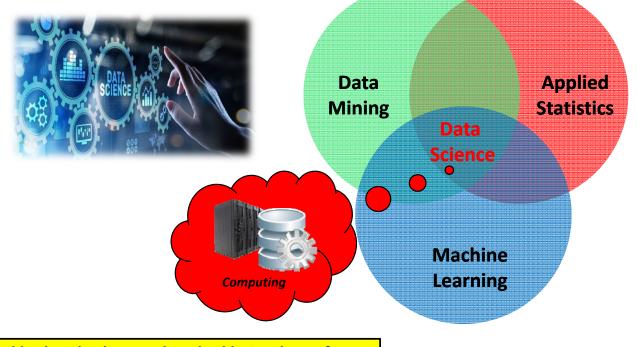
Lecture 1 – Association Rule Mining – Apriori Example

Association Rule Mining



Machine Learning Prerequisites & Challenges

- 1. Some pattern exists
- 2. No exact mathematical formula
- 3. Data exists
- Idea 'Learning from Data'
 - Shared with a wide variety of other disciplines
 - E.g. signal processing, data mining, etc.
 - Association Rule Mining needs data!
- Challenges
 - Data is often complex
 - Learning from data requires processing time → Clouds



Machine learning is a very broad subject and goes from very abstract theory to extreme practice ('rules of thumb') Training machine learning models needs processing time

Association Rule Mining – Methodology

Methodology

- Sometimes referred to as simply 'Association Rules'
- Used to discover unknown relationships hidden in datasets
- Rules refer to a set of identified frequent itemsets that represent the uncovered relationships in datasets
- Identify rules that will predict the occurrence of one or more items based on the occurrences of other items in the dataset

Approach

- Unsupervised machine learning method
- No direct guiding output data is given to find the patterns
- Several algorithms exist to perform association rule mining (e.g., Apriori, FP Growth, MAFIA, etc.)

(this lecture will focus on Apriori with a simple demonstration)

[1] Big Data Tips, Association Rules

Association Rule Mining – Role of Datasets

- Commercial Environments
 - Large quantities of data are accumulated in databases from day-to-day operations
 - Lays the foundation for mining association rules: no data – no association rule mining!
- Retail Example
 - Customer purchase data are collected on a daily basis at the checkout counters of city stores or when shopping at online stores
 - Accumulated data items are often market basket transactions
- Motivation to Collect and Analyze Data
 - Managers of stores are interested in analyzing the collected data in order to learn the purchasing behaviour of customers
 - Enables a large variety of business-related applications based on the identified rules in the data (to be reviewed from store managers!)

(careful: can be different shopping patterns offline vs. online)

^[1] Big Data Tips, Association Rules

Association Rule Mining – Famous Dataset Example & Challenges

ID

Famous Example in Retail

- Illustrating a rule based on a strong relationship between the sale of Diapers and the sale of Beer
- Many customers who buy Diapers also buy Beer
- Investigating the transactions to find those frequent itemsets seems to be easy

Challenges

- In real datasets millions or billions of transactions are searched
- Transaction search across 100000 of different items that may identify 1000 of rules
- Algorithms Benefit
 - Automation of the process using association rule mining algorithms.
 - Rules help to identify new opportunities and ways for cross-selling products to customers

[1] Big Data Tips, Association Rules

 ${Diapers} \rightarrow {Beer}$ Example of an association rule

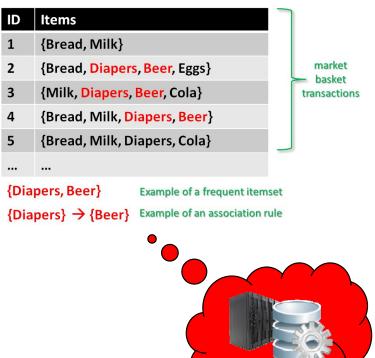
Association Rule Mining – Famous Dataset Example & Limits

Frequent Itemsets Limits

- Very simple method
- E.g., no personalized shopping behaviour
- Ignores other relevant attributes
- E.g., quantity of items sold, the price, or even a specific brand of items

Computational Complexity

- Mining process to discover unknown patterns in large transaction datasets is computationally expensive
- Size of the millions or billions of the transaction dataset when performing mining within memory can be tricky
- Limits with sub-sampling of dataset items since this may increase the risk to overlook frequent itemset patterns
- E.g., use smart out-of-cpu strategies to work on the big datasets as a whole to identify frequent itemsets and/or use High Performance Computing (HPC)



Computina

Association Rule Mining – Reality & Configuration Options

- Facing Reality in Retail Shopping
 - Some uncovered patterns are simply not true
 - Reasoning: they have happen by chance!
- Approaches
 - Manual post-processing or even application domain knowledge to find true rules out of the undiscovered patterns
 - Important is to find actionable insights from rules that can be used to change a product portfolio, store setup, or customer relations
- Configuration Options
 - In order to provide a more clear set of rules
 - E.g. support, confidence

(actionable insight: change a product portfolio)

[2] Image: Luehrmann.de

(actionable insight: change a store setup)

(actionable insight: change customer relations)

Association Rule Mining – Understanding Support Option

- Practical Example
 - Text analysis
- Example 'Dog'
 - Appears in 7 baskets
 - Not in (5)
 - Support is 7
- Example 'Cat'
 - Appears in 6 baskets
 - Not (4) and (8)
 - Support is 6
- Example 'support threshold'
 - Pick s = 3 results in '5 frequent singleton itemsets'

('Example of 8 baskets consisting of items as words')

- 1. {Cat, and, dog, bites}
- 2. {Yahoo, news, claims, a, cat, mated, with, a, dog, and, produced, viable, offspring}
- 3. {Cat, killer, likely, is, a, big, dog}
- 4. {Professional, free, advice, on, dog, training, puppy, training}
- 5. {Cat, and, kitten, training, and, behavior}
- 6. {Dog, &, Cat, provides, dog, training, in, Eugene, Oregon}
- 7. {"Dog, and, cat", is, a, slang, term, used, by, police, officers, for, a, male–female, relationship}
- 8. {Shop, for, your, show, dog, grooming, and, pet, supplies}

(Basket #4 has 2x training: as baskets are modelled as sets this can be ignored)

 Careful: MLxtend implementation min_support threshold is set to 0.5 (50%), a frequent itemset is defined as a set of items that occur together in at least 50% of all transactions in the database

[4] mlxtend lib, Apriori

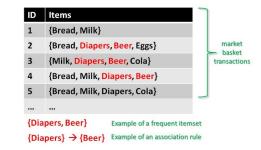
[5] Mining Large Datasets

Association Rule Mining – Understanding Support Option

Metrics

- Evaluating association rules and setting selection thresholds
- Given a rule "A -> C"
- A stands for antecedent and C stands for consequent
- Support Revisited
 - Defined for itemsets, not assocication rules
- Example MLxtend lib
 - Table produced by the association rule mining algorithm contains three different support metrics
 - antecedent support' computes the proportion of transactions that contain the antecedent A
 - 'consequent support' computes the support for the itemset of the consequent C
 - 'support' metric then computes the support of the combined itemset A U C

Typically, support is used to measure the abundance or frequency (often interpreted as significance or importance) of an itemset in a database. We refer to an itemset as a "frequent itemset" if you support is larger than a specified minimum-support threshold. Note that in general, due to the *downward closure* property, all subsets of a frequent itemset are also frequent.



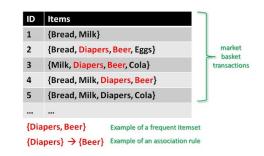
$$\mathrm{support}(A o C) = \mathrm{support}(A \cup C), \ \ \mathrm{range:} \ [0,1]$$

[6] MLxtend Lib, Association Rules

Association Rule Mining – Understanding Confidence Option

Approach

- Finding Association Rules with high confidence important
- Identifying useful association rules is not much harder than finding frequent itemsets
- Practical insights
 - Looking for association rules *I* → *j* that apply to a reasonable fraction of the baskets: the support of I must be reasonably high
 - Marketing in brick-and-mortar stores w.r.t support: (reasonably high' is often around 1% of the baskets
)
 - Confidence of the rule should be reasonably high, e.g. 50% (otherwise the rule has little practical effect)
 - As a result, the set I U {j} will also have fairly high support.



(Finding within all the association rules those that have both high support and high confidence is possible)

[5] Mining Large Datasets

Association Rule Mining – Understanding Confidence & Lift Option

- Example MLxtend lib Confidence
 - Confidence of a rule A->C is the probability of seeing the consequent in a transaction given that it also contains the antecedent
 - Metric is not symmetric or directed
 - E.g, the confidence for A->C is different than the confidence for C->A
 - Confidence is 1 (maximal) for a rule A->C if the consequent and antecedent always occur together
- Example MLxtend lib Lift
 - Lift metric is commonly used to measure how much more often the antecedent and consequent of a rule A->C occur together than we would expect if they were statistically independent
 - E.g., if A and C are independent, the Lift score will be exactly 1

ID	Items		٦
1	{Bread, Milk}		
2	{Bread, Diapers	s, <mark>Beer</mark> , Eggs}	market
3	{Milk, Diapers,	Beer, Cola}	transactions
4	{Bread, Milk, D		
5	{Bread, Milk, D	iapers, Cola}	
{Diapers, Beer}		Example of a frequent itemse	t
${Diapers} \rightarrow {Beer}$		Example of an association rule	e

$$ext{confidence}(A o C) = rac{ ext{support}(A o C)}{ ext{support}(A)}, \quad ext{range:} [0,1]$$

$$\operatorname{lift}(A o C) = rac{\operatorname{confidence}(A o C)}{\operatorname{support}(C)}, \hspace{1em} \operatorname{range:} [0,\infty]$$

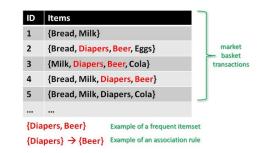
[6] MLxtend Lib, Association Rules

Lecture 1 – Association Rule Mining – Apriori Example

Association Rule Mining – Understanding Leverage & Conviction Option

Example MLxtend lib – Leverage

- Leverage computes the difference between the observed frequency of A and C appearing together and the frequency that would be expected if A and C were independent
- An leverage value of 0 indicates independence



 $ext{levarage}(A o C) = ext{support}(A o C) - ext{support}(A) imes ext{support}(C), \quad ext{range: } [-1,1]$

Example MLxtend lib – Conviction

- High conviction value means that the consequent is highly depending on the antecedent
- E.g., in the case of a perfect confidence score, the denominator becomes 0 (due to 1 - 1) for which the conviction score is defined as 'inf'
- Similar to lift, if items are independent, the conviction is 1

$$\operatorname{conviction}(A o C) = rac{1 - \operatorname{support}(C)}{1 - \operatorname{confidence}(A o C)}, \quad \operatorname{range:} \left[0,\infty
ight]$$

[6] MLxtend Lib, Association Rules

Lecture 1 – Association Rule Mining – Apriori Example

14 / 25

Relevant Rules & Practical Approach

Relevant Rules

- Assumed that there are not too many frequent itemsets
- Not many candidates for high-support, high-confidence association rules.

'less is more'

- Each one found from above must be acted upon
- If store manager receives a million association rules that meet thresholds (e.g. for support and confidence) they cannot read them or act on them

Practical Approach

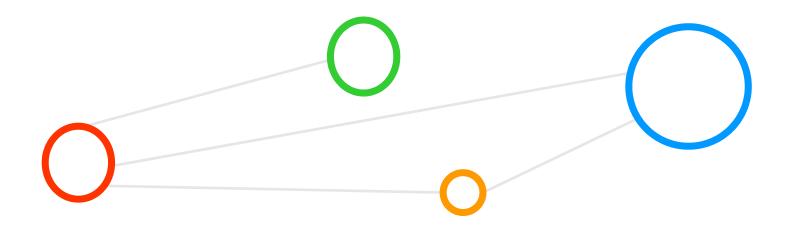
- Normal to adjust the support threshold s
- Provides not 'too many frequent itemsets'
- Implement and review with store manager step-wise to measure results better

The massive amount of data and derived rules requires an automated algorithm-based approach

The most commonly used algorithm (and its variants) for association rules mining is called Apriori

(Generating 'big data': Major chains might sell 100.000 different items and collect data about millions of market baskets)

Practical Apriori Example 'Pieper Store'



Jupyter Notebook Demonstration

C Association-Rule-Mining/ X 🧧 association-rule-mining-aprior X 🕂		-	ø ×
← → C ^a	150% … 🗟 🏹 👖	🗉 📕 🮯 🙁	⊜ ≡
💭 Jupyter	Quit	Logout	
Files Running Clusters			
Select items to perform actions on them.	Upload	New - 2	
□ 0 - Association-Rule-Mining	Name Last Modified	File size	
۵	vor ein paar Sekunden		
🗆 🗅 data	vor 18 Minuten		
association-rule-mining-apriori-example.ipyr	Running vor 18 Minuten	13.8 kB	

Python Script using MLxtend Library

In []:	<pre>import pandas as pd import numpy as np from mlxtend.frequent_patterns import apriori, association_rules import matplotlib.pyplot as plt</pre>	
In []:	<pre>df = pd.read_csv('./data/retail_dataset-pieper-fake.csv', sep=',') df.head()</pre>	
In []:	<pre>items = (df['0'].unique()) items</pre>	
In []:	<pre># transform dataset to one-hot encoded dataset encoded_items = [] def onehotencoding(): for index, row in df.iterrows(): present = {} uncommons = list(set(items) - set(row)) commons = list(set(items).intersection(row)) for uc in uncommons: present[uc] = 0 for com in commons: present[uc] = 1 encoded_items.append(present) onehotencoding() ohe_df = pd.DataFrame(encoded_items) print(ohe_df)</pre>	
In []:	<pre># running apriori algorithm freq_items = apriori(ohe_df, min_support=0.2, use_colnames=True, verbose=1) freq_items.head(7)</pre>	
In []:	<pre># using frequent itemsets from apriori for association rules rules = association_rules(freq_items, metric="confidence", min_threshold=0.6) rules.head(7)</pre>	changed from

[7] MLxtend tutorial

Pieper Store Example – Fake Data

[3] Pieper.de Duefte

24 Rituals, Clinique, Biotherm, Armani, Dior,,

19 / 25

Association Rule Mining – Understanding Support Option – Revisited

Example MLxtend lib

- Table produced by the association rule mining algorithm $support(A \rightarrow C) = support(A \cup C)$, range: [0,1] contains three different support metrics
- antecedent support' computes the proportion of transactions that contain the antecedent A
- 'consequent support' computes the support for the itemset of the consequent C
- 'support' metric then computes the support of the combined itemset A U C

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(Dior)	(Clinique)	0.406349	0.701587	0.260317	0.640625	0.913108	-0.024772	0.830366
1	(Biotherm)	(Clinique)	0.501587	0.701587	0.409524	0.816456	1.163726	0.057617	1.625835
2	(HugoBoss)	(Clinique)	0.504762	0.701587	0.387302	0.767296	1.093657	0.033167	1.282368
3	(Chanel)	(Clinique)	0.438095	0.701587	0.301587	0.688406	0.981212	-0.005775	0.957697
4	(Rituals)	(Clinique)	0.438095	0.701587	0.333333	0.760870	1.084497	0.025971	1.247908
5	(Armani)	(Clinique)	0.476190	0.701587	0.358730	0.753333	1.073756	0.024641	1.209781
6	(Lancome)	(Clinique)	0.361905	0.701587	0.260317	0.719298	1.025244	0.006410	1.063095

[6] MLxtend Lib, Association Rules

Lecture 1 – Association Rule Mining – Apriori Example

Association Rule Mining – Understanding Confidence & Lift Option – Revisited

- Example MLxtend lib Confidence
 - Confidence of a rule A->C is the probability of seeing the consequent in a transaction given that it also contains the antecedent
 - Metric is not symmetric or directed
 - E.g, the confidence for A->C is different than the confidence for C->A
 - Confidence is 1 (maximal) for a rule A->C if the consequent and antecedent always occur together
- Example MLxtend lib Lift
 - Lift metric is commonly used to measure how much more often the antecedent and consequent of a rule A->C occur together than we would expect if they were statistically independent
 - E.g., if A and C are independent, the Lift score will be exactly 1

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(Dior)	(Clinique)	0.406349	0.701587	0.260317	0.640625	0.913108	-0.024772	0.830366
1	(Biotherm)	(Clinique)	0.501587	0.701587	0.409524	0.816456	1.163726	0.057617	1.625835
2	(HugoBoss)	(Clinique)	0.504762	0.701587	0.387302	0.767296	1.093657	0.033167	1.282368
3	(Chanel)	(Clinique)	0.438095	0.701587	0.301587	0.688406	0.981212	-0.005775	0.957697
4	(Rituals)	(Clinique)	0.438095	0.701587	0.333333	0.760870	1.084497	0.025971	1.247908
5	(Armani)	(Clinique)	0.476190	0.701587	0.358730	0.753333	1.073756	0.024641	1.209781
6	(Lancome)	(Clinique)	0.361905	0.701587	0.260317	0.719298	1.025244	0.006410	1.063095

$$ext{confidence}(A o C) = rac{ ext{support}(A o C)}{ ext{support}(A)}, \quad ext{range:} [0,1]$$

$$\mathrm{lift}(A o C) = rac{\mathrm{confidence}(A o C)}{\mathrm{support}(C)}, \hspace{1em} \mathrm{range:} [0,\infty]$$

[6] MLxtend Lib, Association Rules

Association Rule Mining – Understanding Leverage & Conviction Option

- Example MLxtend lib Leverage
 - Leverage computes the difference between the observed frequency of A and C appearing together and the frequency that would be expected if A and C were independent
 - An leverage value of 0 indicates independence

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(Dior)	(Clinique)	0.406349	0.701587	0.260317	0.640625	0.913108	-0.024772	0.830366
1	(Biotherm)	(Clinique)	0.501587	0.701587	0.409524	0.816456	1.163726	0.057617	1.625835
2	(HugoBoss)	(Clinique)	0.504762	0.701587	0.387302	0.767296	1.093657	0.033167	1.282368
3	(Chanel)	(Clinique)	0.438095	0.701587	0.301587	0.688406	0.981212	-0.005775	0.957697
4	(Rituals)	(Clinique)	0.438095	0.701587	0.333333	0.760870	1.084497	0.025971	1.247908
5	(Armani)	(Clinique)	0.476190	0.701587	0.358730	0.753333	1.073756	0.024641	1.209781
6	(Lancome)	(Clinique)	0.361905	0.701587	0.260317	0.719298	1.025244	0.006410	1.063095

 $levarage(A \to C) = support(A \to C) - support(A) \times support(C), range: [-1, 1]$

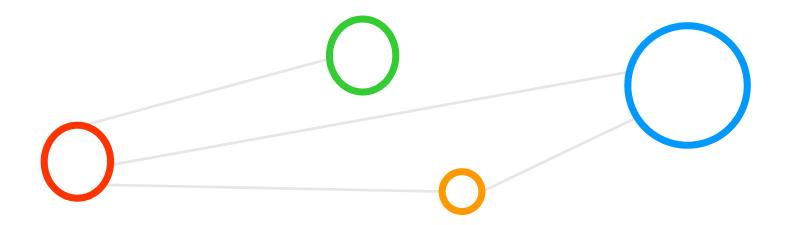
- Example MLxtend lib Conviction
 - High conviction value means that the consequent is highly depending on the antecedent
 - E.g., in the case of a perfect confidence score, the denominator becomes 0 (due to 1 - 1) for which the conviction score is defined as 'inf'
 - Similar to lift, if items are independent, the conviction is 1

$$\operatorname{conviction}(A o C) = rac{1 - \operatorname{support}(C)}{1 - \operatorname{confidence}(A o C)}, \quad \operatorname{range:} \left[0, \infty
ight]$$

[6] Mlxtend Lib, Association Rules

Lecture 1 – Association Rule Mining – Apriori Example

Lecture Bibliography



Lecture Bibliography

- [1] Big Data Tips, Association Rules, Online: <u>http://www.big-data.tips/association-rules</u>
- [2] Luehrmann.de, 'Parfuemerie Pieper bezieht markante Eckimmobilie', Online: https://www.luehrmann.de/de/city-life/erfolgsraume/beitrag/parfumerie-pieper-bezieht-markante-eckimmobilie/
- [3] Pieper.de Duefte, Online: <u>https://www.pieper.de/duefte/</u>
- [4] MLxtend Library, Apriori: http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/apriori/
- [5] Mining of Massive Datasets, Anand Rajaraman, Jure Leskovec, Jeffrey D. Ullman, Cambridge University Press, ISBN 1107015359, ~326 pages, English, 2011
- [6] MLxtend Library, Association Rules: http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/association_rules/
- [7] Tutorial, Association Analysis in Python, Online: <u>https://medium.com/analytics-vidhya/association-analysis-in-python-2b955d0180c</u>

