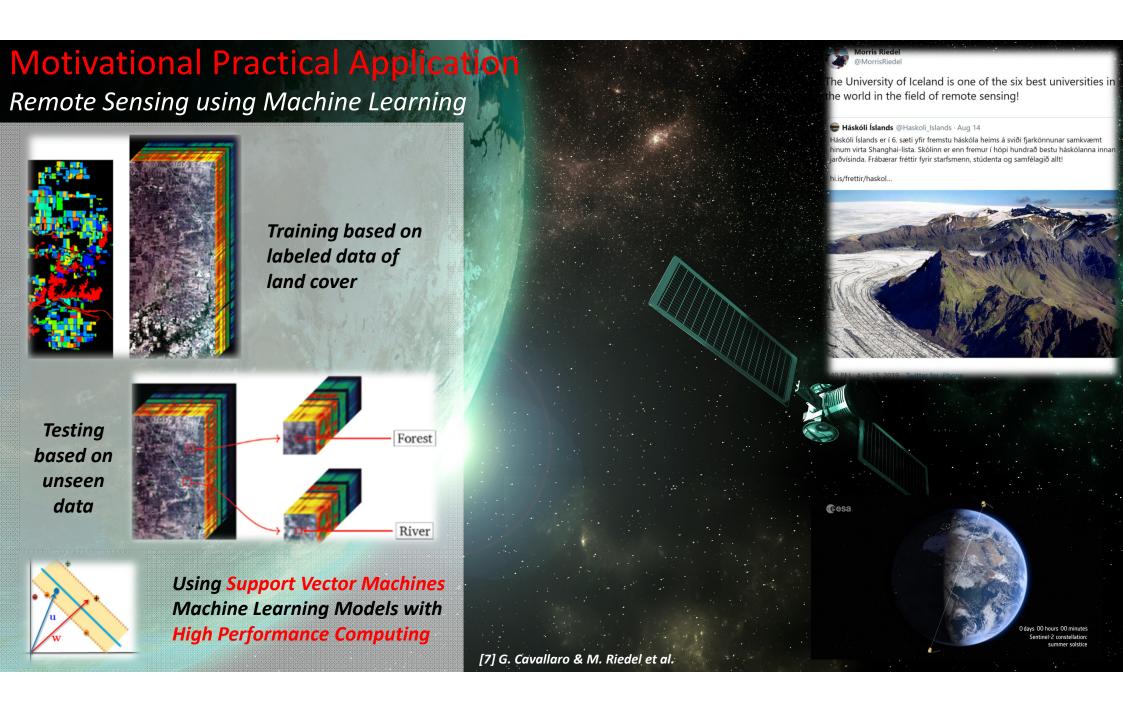


Prof. Dr. - Ing. Morris Riedel

Head of Research Group 'High Productivity Data Processing' Juelich Supercomputing Centre, Germany

Associated Professor School of Engineering and Natural Sciences, University of Iceland JÜLICH

JÜLICH SUPERCOMPUTING HELMHOLTZAI CENTRE



Forschungszentrum UNIVERSITY OF ICELAND

SCHOOL OF ENGINEERING AND NATURAL SCIENCES FACULTY OF INDUSTRIAL ENGINEERING.

Enabling Parallel & Scalable Machine & Deep Learning with High Performance Computing

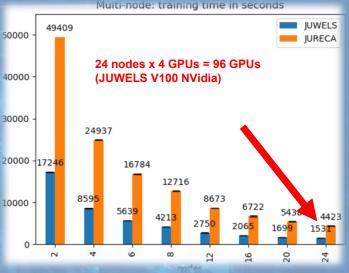
Support Vector Machine Example using multi-core CPUs

Scenario 'pre-processed data', 10xCV **serial**: accuracy (min)

γ/C	1	10	100	1000	10 000
2	48.90 (18.81)	65.01 (19.57)	73.21 (20.11)	75.55 (22.53)	74.42 (21.21)
4	57.53 (16.82)	70.74 (13.94)	75.94 (13.53)	76.04 (14.04)	74.06 (15.55)
8	64.18 (18.30)	74.45 (15.04)	77.00 (14.41)	75.78 (14.65)	74.58 (14.92)
16	68.37 (23.21)	76.20 (21.88)	76.51 (20.69)	75.32 (19.60)	74.72 (19.66)
32	70.17 (34.45)	75.48 (34.76)	74.88 (34.05)	74.08 (34.03)	73.84 (38.78)

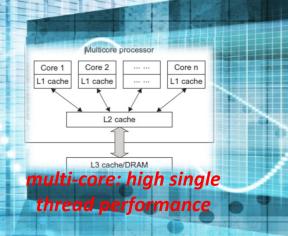
Scenario 'pre-processed data', 10xCV **parallel**: accuracy (min)

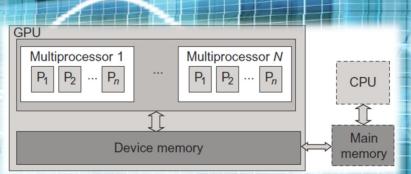
γ/C	1	10	100	1000	10 000	
2	75.26 (1.02)	65.12 (1.03)	73.18 (1.33)	75.76 (2.35)	74.53 (4.40)	
4	57.60 (1.03)	70.88 (1.02)	75.87 (1.03)	76.01 (1.33)	74.06 (2.35)	
8	64.17 (1.02)	74.52 (1.03)	77.02 (1.02)	75.79 (1.04)	74.42 (1.34)	
16	68.57 (1.33)	76.07 (1.33)	76.40 (1.34)	75.26 (1.05)	74.53 (1.34)	
32	70.21 (1.33)	75.38 (1.34)	74.69 (1.34)	73.91 (1.47)	73.73 (1.33)	


First Result: best parameter set from 14.41 min to 1.02 min Second Result: all parameter sets from ~9 hours to ~35 min

[7] G. Cavallaro & M. Riedel et al.

4000 3000 2000 2000 1000 1000 1000 1000 1000 18] R. 1


Muthowski state and state


Deep Learning Example using Distributed Training on many-core GPUs via Horovod Framework & TensorFlow

[8] R. Sedona, G. Cavallaro & M. Riedel et al.

High Performance Computing (HPC) uses 'Bits' Information as '0' or '1' – Classical Computing Model

massive scalability through many-core moderate performance

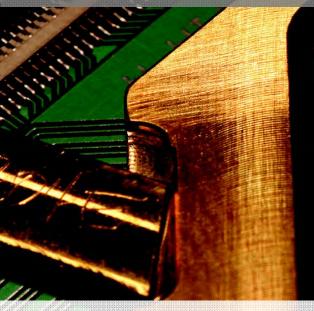
Quantum Computers use 'Qubits'

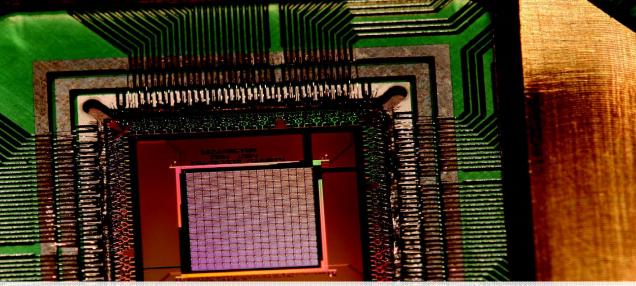
Information as '0' or '1' or both simultaneously [01101>

Known as 'Superposition': Origin in strange & counter-intuitive world of quantum mechanics

Manipulate many combinations of quantum bits at the same time

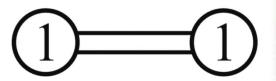
Example: with 1000 qubits, selected quantum computers can evaluate...


... 2¹⁰⁰⁰ possible solutions ...


... at the same time!

[1] D-Wave Report [2] D-Wave YouTube

Linking many Qubits together with Couplers Enables Qubits to influence each other

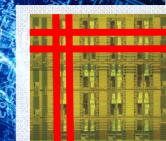

Multi-qubit processor connects qubits to exchange information

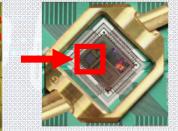
Couplers define how qubits influence each other

Options: Qubits together in same state or neighbouring qubits in opposite state

Fabric of programmable quantum device =

many qubits + couplers + control circuitry to manage magnetic fields


[1] D-Wave Report [2] D-Wave YouTube

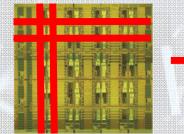

Coupling Qubits enables Entanglement

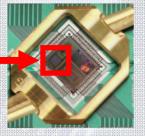
Known as 'Entanglement': Quantum physics phenomena

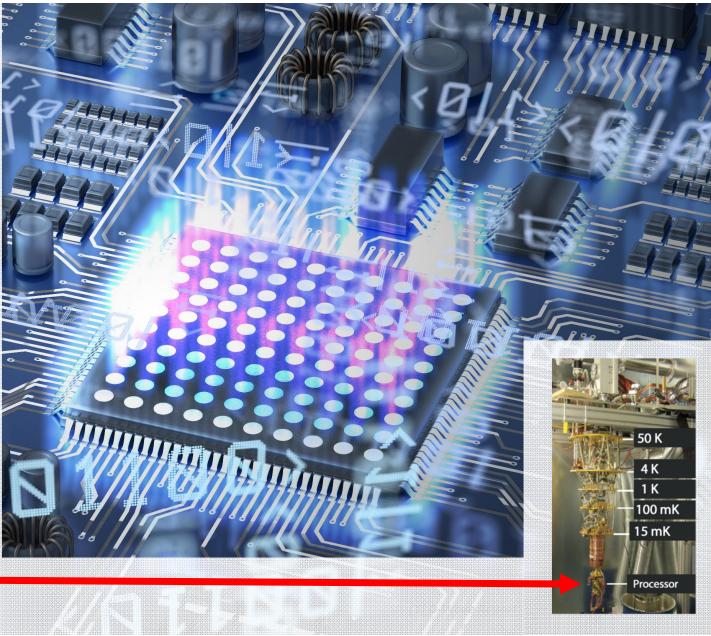
Two qubits 'entangled' means they are considered as a single object (but with 4 states)

Beside 'superposition', the real power of quantum computing is using the quantum effects of entanglement & quantum tunneling to manipulate qubits simultanously

[1] D-Wave Report [2] D-Wave YouTube

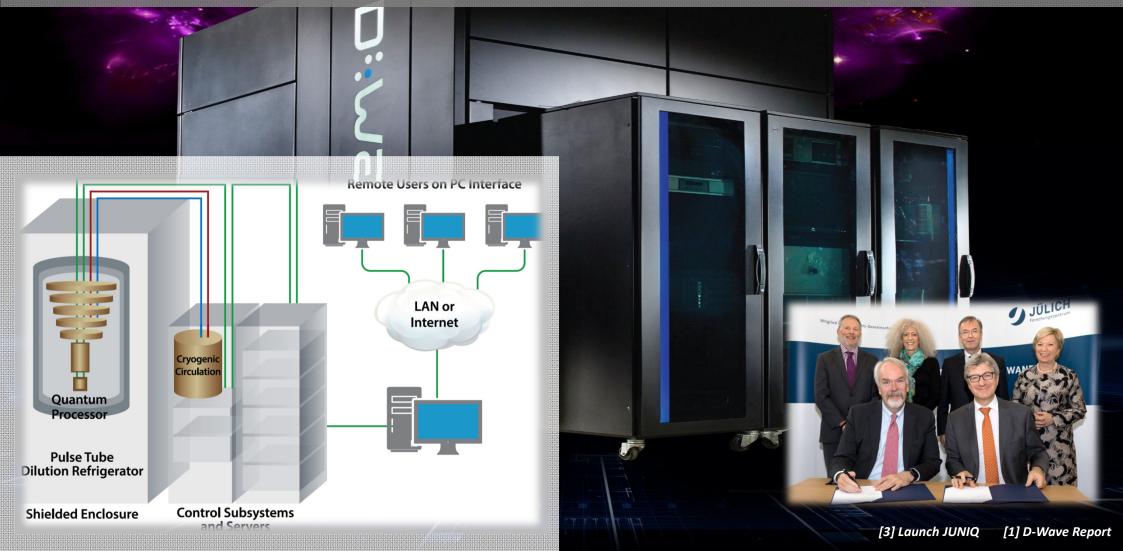

Challenge: Use quantum effects in computation requires processor in extreme isolated environments


Internal computing environment needs a temperature close to absolute zero


Enables an 'environment' that is isolated from external magnetic fields, vibration, and external radio frequency signals

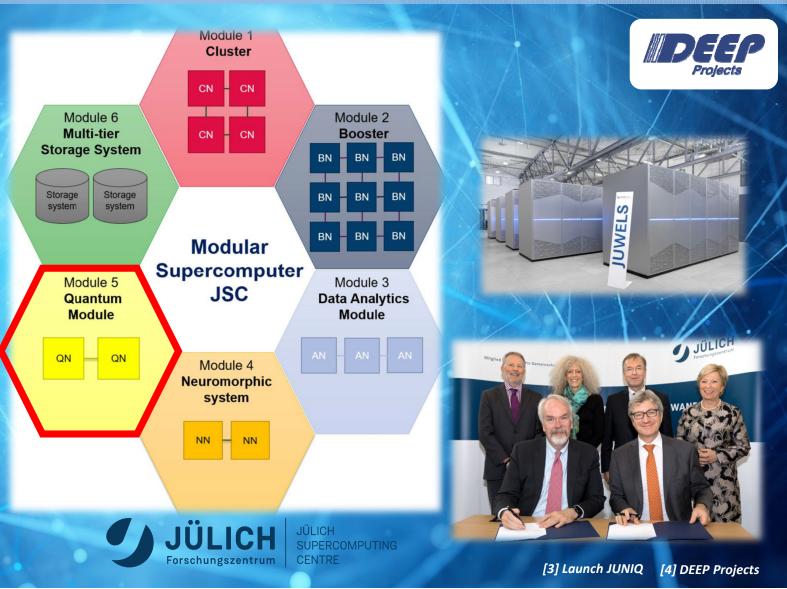
Only within this a quantum processor 'behaves quantum mechanically'

The lower the temperate, the better the performance of the processor



Quantum Computer Internal Environment

This Type of Quantum Computer Implements a Quantum Annealing Algorithm


JUNIQ – Juelich Unified Infrastructure for Quantum Computing

Building a European quantum computer user facility

Cloud access to simulators via a QC-PaaS Jülich QC Simulator JUQCS (< 49 qubits) ATOS-QLM30 (< 31 qubits)

Cloud access to QC hardware via a QC-PaaS (Non -) commercial gate-based QCs European experimental qubit devices of any type, IBM, Google, RigettiComputing,.. Annealers D-Wave quantum annealer Fujitsu digital annealer

European experimental annealers

Quantum Annealing Approach

Uses intrinsic effects of Quantum Physics (QP) to help in optimization problems for real applications (but no evolution control)

Example: Quantum annealing algorithm solves problems by searching for the global minimum of a function ('hard in computing')

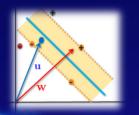
Setup a problem, then natural evolution of quantum states, and finally configuration at the end of evolution is one/some answer

Fundamentally different from classical computing built on logical operations

Many different Approaches exist for Quantum Computing

Topological Adiabatic Measurement Based Gate Model UNIVERSAL QUANTUM COMPUTERS

Gate-Model Approach


Much more ambitious to control and manipulate the evolution of quantum states over time

More difficult as quantum systems hard to work with

But enables to solve bigger problems, ~ 10 qubits only

Hard to let qubits working together coherently today

Relevance for Machine & Deep Learning – Solving Optimization Problems Fast

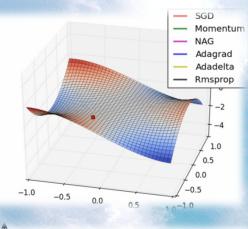
Training Machine & Deep Learning Models often requires to solve a complex optimization problen

'Minimum of a function'

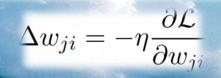
Try to find the lowest point on a landscape of peaks and valleys Every possible solution is mapped to coordinates on the landscape Altitude of the landscape is 'energy' or 'cost' of solution per point

Goal: Find the lowest (global) point on the map & read the coordinates (i.e., optimal solution to many problems in science & engineering)

Relevance for Machine & Deep Learning – Key Difference to Classical Computing

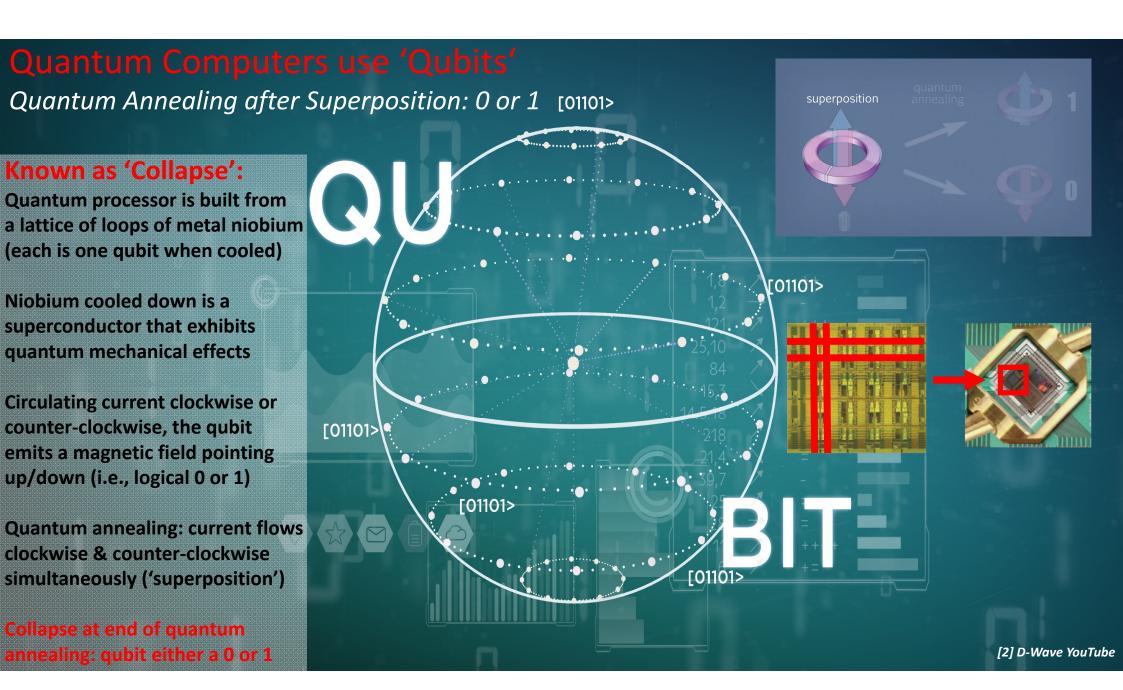

Properties of Quantum Physics known as 'Quantum Tunneling'

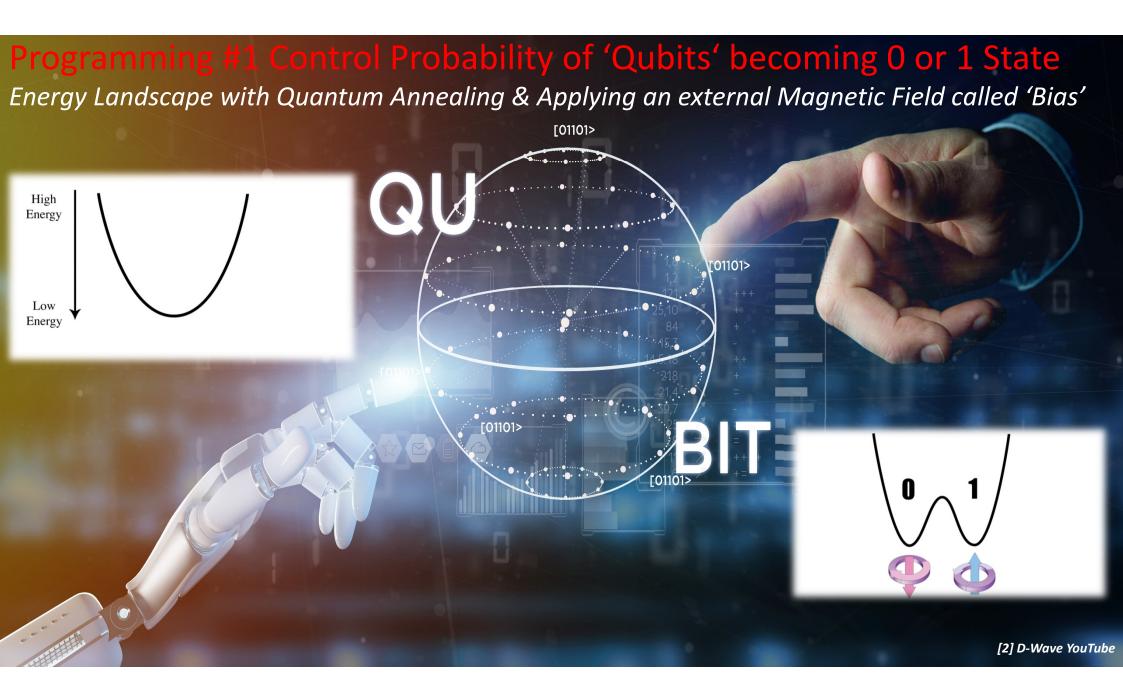
Explore landscape in ways that have never before been possible Like a layer of water that covers the entire landscape


Water as analogy for the probability that a given solution is returned

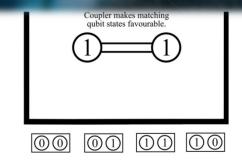
→ As well as running over the surface, water can tunnel trough the mountains as it looks for the lowest valley

Quantum Computations: 'water' or probability is pooled around lowest valleys – the more water there \rightarrow the higher the probability of solution being returned as solution





Classical Computer: A single travelor exploring the surface of a landscapeone point of a time (e.g., stochastic gradient descent)


[9] Optimizers [1] D-Wave Report

Programming #2 Getting more control via Couplers & Entanglements Users choose values for Biases of Qubits & Couplers (alinection & strength) & Using 'Tunneling'

F01101>\

Disruptive Programming Approach

- Each qubit can have a Bias applied to it
- ✓ Qubits can interact via the couplers
- ✓ Define a whole set of Biases & a whole set of couplings → defines an energy landscape

Program a quantum computer based on quantum annealing to solve & find the minimum energy of energy landscape

[2] D-Wave YouTube

Quantum Computing Programming for Remote Sensing Application Using a Software Development Kit (SDK) 'Ocean' – Installation & Configuration

	-					55	
	16	Naples99	Landsat	200	200	7	2
0. Setting Up the Access to the D-Wave 2000Q quantum computer	17	Nayak - Middle Fork	Quickbird	1659	1331	4	10
	18	Taku	Quickbird	1547	1675	4	3
 Make a free account to run on the D-Wave through Leap 	19	Mulchatna	Quickbird	857	971	4	4
Install Ocean Software with pip install dwave-ocean-sdk	20	Kweth	Quickbird	367	362	4	4
	21	Kol	Quickbird	1617	1660	4	5
Configuring the D-Wave System as a Solver with <u>dwave config create</u>	22	Kitlope	Quickbird	1066	883	4	3
	23	UCIsatimage	Landsat MSS	6435	36	1	6
	24	Indian Pines (full)	AVIRIS	2166	614	220	58
1. Data Preparation	25	Naples99 (full)	Landsat	400	400	7	2
i baa ropataion	26	Mexico	Landsat	360	512	2	2
	27	Barrax	MERIS	1247	1153	13	2
1.1 Load of the Python Modules	28	France	MERIS	2399	2241	13	2
	29	Abracos	MERIS	321	490	15	2
In []: from utils import * # It contains functions for threat the data (I/O, encoding/decoding) and metrics for evaluation		Ascension Island	MERIS	321	490	15	2
	31	Azores	MERIS	321	493	15	2
1.2 Select the Dataset	32	Barcelona	MERIS	321	493	15	2
	33	Capo Verde	MERIS	321	492	15	2
In this notebook we consider the datasets of <u>HyperLabelMe</u> (i.e., a benchmark system for remote sensing image classification).	34	Longyearbyen	MERIS	321	493	15	2
. It contains 42 income detected to the multi- and hyperspectral	35	Mongu	MERIS	321	489	15	2
 It contains 43 image datasets, both multi- and hyperspectral For each one, training pairs (spectra and their labels) and test spectra are provided 	36	Ouagadougou	MERIS	209	492	15	2
 The test labels are not given. The predicted labels needs to be uploaded in HyperLabelMe which will return the accuracy 	37	Zone13N	QuickBird	512	512	4	10
	38	Zurich	Quickbird	828	889	4	7
	39	Rome95	Landsat	200	200	7	2
In []: # Load the data	40	Rome99	Landsat	200	200	7	2
<pre># Ima40.txt can be downloaded after registering at [1] id dataset='Im40'</pre>			strange filt				
[X_train, Y_train, X_test]=dataread('input_datasets/hyperlabelme/'+id_dataset+'.txt')	S S	electina	'simr)le'	a the second	•	•
						IIIDV	tor
	two	electing class cl	accific	ati	n	Jupy	lei
		CIU33 CI	assijie	Jun			

[6] G. Cavallaro, D. Willsch, M. Willsch, K. Michielsen and M. Riedel

Quantum Computing Programming for Remote Sensing Application Using a Software Development Kit (SDK) 'Ocean' – Calibrating Quantum SVM

In []: from sklearn.model_selection import train_test_split from sklearn import preprocessing

10-fold Monte Carlo (or split-and-shuffle) cross-validation fold=10

for i in range(0,fold):

X_train_cal, X_val_cal, Y_train_cal, Y_val_cal = train_test_split(X_train,Y_train, test_size=0.94, random_state=i)

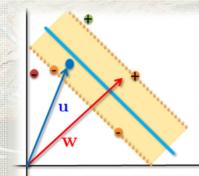
Pre-processing
X_train_cal = preprocessing.scale(X_train_cal)
X val cal = preprocessing.scale(X val cal)

Write the data

write_samples(X_train_cal, Y_train_cal,'input_datasets/calibration/'+id_dataset+'/'+id_dataset+'calibtrain'+str(i))
write_samples(X_val_cal, Y_val_cal,'input_datasets/calibration/'+id_dataset+'/'+id_dataset+'calibval'+str(i))

print('Each training set includes '+str(X_train_cal.shape[0])+ ' samples')
print('Each validation set includes '+str(X val cal.shape[0])+ ' samples')

In []: from quantum SVM import *


Hyperparameters
B=[2,3,5,10]
K=[2,3]
xi=[0,1,5]
gamma=[-1,0.125,0.25,0.5,1,2,4,8]
n experiments=len(B)*len(K)*len(xi)*len(gamma)

hyperparameters=np.zeros([n_experiments,4], dtype=float)

path_data_key='input_datasets/calibration/'+id_dataset+'/'
data_key = id_dataset+'calibtrain'
path_out='outputs/calibration/'+id_dataset+'/'

trainacc=np.zeros([fold], dtype=float)
trainauroc=np.zeros([fold], dtype=float)
trainauprc=np.zeros([fold], dtype=float)

[6] G. Cavallaro, D. Willsch, M. Willsch, K. Michielsen and M. Riedel

[5] D. Willsch, M. Willsch, and K. Michielsen

Previous work on Quantum SVM

High Complexity in Programming & Solving Problems in Optimization

00

[2] D-Wave YouTube

Quantum Computing Programming for Remote Sensing Application Using a Software Development Kit (SDK) 'Ocean' – Train & Test Quantum SVM

In []: from quantum SVM import *

import numpy as np
from utils import *
from sklearn.model_selection import KFold
from sklearn import preprocessing

Write the data experiments=1 slice=40 # Number of samples to use for the training fold=int(len(X train)/40)

print(fold)

for i in range(0,experiments):
 cv = KFold(n_splits=fold, random_state=i, shuffle=True)
 count=0
 for test index, train index in cv.split(X train):

#print("Train Index: ", len(train_index), "\n")

X_train_slice, y_train_slice = X_train[train_index], Y_train[train_index] X_train_slice = preprocessing.scale(X_train_slice)

X_test_slice, y_test_slice = X_train[test_index], Y_train[test_index] X_test_slice = preprocessing.scale(X_test_slice)

In []: from quantum_SVM import *

from sklearn import preprocessing

Pre-processing the test spectra
X_test = preprocessing.scale(X_test)

path_data_key='input_datasets/train/'+id_dataset+'/'
data_key = id_dataset+'calibtrain'
path_train_out='outputs/train/'+id_dataset+'/'
path_test_out='outputs/test/'+id_dataset+'/'

path files=np.load(path train out+'trained SVMs.npy')

experiments=1
slices=10
scores=[]

for j in range(0, experiments): for i in range(0, slices):

scores.append(predict(path_data_key,path_files[i],X_test))

avg_scores=np.zeros((scores[0].shape[0]))

Y_predicted=np.zeros((scores[0].shape[0]),int)

[6] G. Cavallaro, D. Willsch, M. Willsch, K. Michielsen and M. Riedel

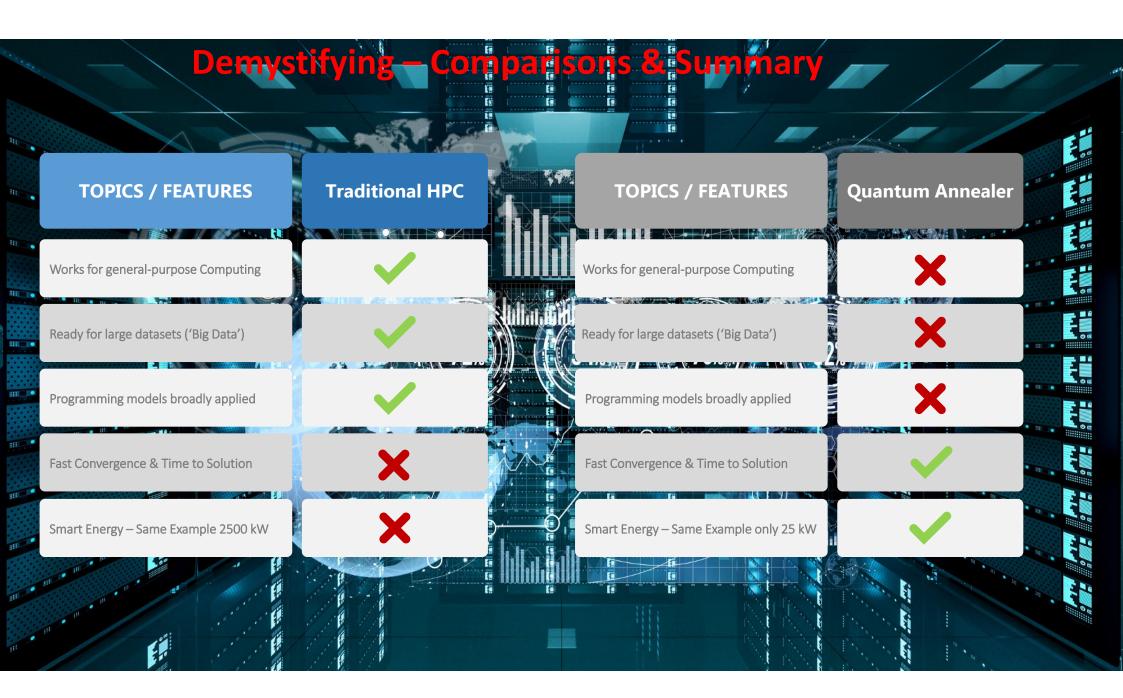
S SVM_Quantum Annealer A Project ID: 2626 Leave project		Ω ∽ ☆ Star 0 ¥ Fork 0 C					
24 Commits P 1 Branch ⊘ 0 Tags S 2 MB Files proching Remote Sensing Image Classification with Enser	nbles of Support Vector Mac	hines on the	D-Wave Quan	itum Anneale	r III		
naster v svm_quantum-annealer / + v		History	Q, Find file	Web IDE	ٹ ٹ		
add jupyter notebook Gabriele Cavallaro authored 2 weeks ago				d2a62b11	6		
README T No license. All rights reserved							
Name	Last commit			Last	update		
Experiments_IGARSS2020_paper	add outputs folder	add outputs folder					
README.md	Update README.md			3 weeks ago			
alibrate.py	add source code			4 wee	ks ago		
in predict.py	add source code			4 wee	ks ago		
a quantum_SVM.py	add source code			4 wee	ks ago		
🗈 run_qeSVM.ipynb	add jupyter notebook			2 wee	ks ago		
🗈 train.py	add source code			4 wee	ks ago		
	add source code			4 wee			

README.md

Remote Sensing Image Classification with Ensembles of Support Vector Machines on the D-Wave Quantum Annealer

This repository contains the Python functions and the processing pipeline documented in a Jupyter notebook for performing classification of RS images

Github access to Jupyter Notebook public when/if paper accepted


Summary General Approach with Quantum Annealing Works for Applications *Challenge remains: Only small datasets today & Simple Classification Problems*

(b) Dataset: Im40

ID	Sensor	Data points		Train Samples	Classes		ID dataset	OA	Kappa	z-score	
Im16	Landsat	200×20	00×7	500	2		16	94.26	0.89	134.71	
Im40	Landsat	200×20	00×7	500	2		40	78.90	0.57	47.21	
1.0 • 8.0 • 6.0 • 9.010 kette • 9.0 • 0.0 • 0.0		UROC=0.886 0.6 0.8 1.0	1.0 0.8 0.6 0.4 0.2 0.0	— AUPRC=0.930		1.0 0.8 0.0 0.0 0.0 0.0	AUROC=0.	1.0 0.8 50 0.6 50 0.4 0.4 0.2 8882 0.0		- AUPRC=0.870	1.0

(a) Dataset: Im16

More Information & Details

UNIVERSITY OF ICELAND SCHOOL OF ENGINEERING AND NATURAL SCIENCES

FACULTY OF INDUSTRIAL ENGINEERING, MECHANICAL ENGINEERING AND COMPUTER SCIENCE

Visit us here @ UTMessan Saturday @ Silfurberg A

Relevant Yearly Courses at Háskóli Íslands

High Performance Computing (HPC) Multi-Core; Many-Core & GPUs, Parallel Programming, Quantum Computing Cloud Computing & Big Data

Deep & Machine Learning, High Throughput Computing, Apache Spark/Hadoop

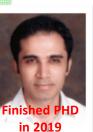
Thanks & Talk available on www.morrisriedel.de/talks

Selected References

- [1] The D-Wave 2X Quantum Computer Technology Overview, Online: https://www.dwavesys.com/sites/default/files/D-Wave%202X%20Tech%20Collateral_0915F.pdf
- [2] D-Wave Systems YouTube Channel, Online: https://www.youtube.com/user/dwavesystems
- [3] Launch of JUNIQ Press Release FZJ, Online: <u>https://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/EN/2019/2019-10-25-juniq.html</u>
 [4] DEEP Projects, Online:
- [4] DEEP Projects, Online: https://www.deep-projects.eu/
- [5] D. Willsch, M. Willsch, H. De Raedt and K. Michielsen, "Support Vector Machines on the D-Wave Quantum Annealer" 2019, Online: http://dx.doi.org/10.1016/j.cpc.2019.107006
- [6] G. Cavallaro, D. Willsch, M. Willsch, K. Michielsen and M. Riedel, "Approching Remote Sensing Image Classification with Ensembles of Support Vector Machines on the D-Wave Quantum Annealer" in the IEEE International Geoscience and Remote Sensing Symposium, 2020 (submitted)
- [7] G. Cavallaro, M. Riedel, J.A. Benediktsson et al., 'On Understanding Big Data Impacts in Remotely Sensed Image Classification using Support Vector Machine Methods', IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2015, Online: https://www.researchgate.net/publication/282524415 On Understanding Big Data Impacts in Remotely Sensed Image Classification Using Support Vector Machine Methods
- [8] R. Sedona, G. Cavallaro, J. Jitsev, A. Strube, M. Riedel, J.A. Benediktsson, 'Remote Sensing Big Data Classification with High Performance Distributed Deep Learning', MDPI Journal of Remote Sensing, to appear, online:
- https://www.researchgate.net/publication/338077024 Remote Sensing Big Data Classification with High Performance Distributed Deep Learning
- [9] Optimization Problems and Optimizers Visualization, Online: http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Acknowledgements

Former & Current Members of Joint Research Group



G. Cavallaro

Senior PhD Student A.S. Memon

Senior PhD Student M.S. Memon

PhD Student E. Erlingsson

PhD Student S. Bakarat

PhD Student

R. Sedona

orris Riedel @Mo sRiedel · Feb 10 Enjoying our yearly research group dinner 'Iceland Section' to celebrate our oductive collaboration of @uni_ice nds & @fzi_j fz juelich & E.Erlingsson passed mid-term in modular supercomputing driven by

17 0 4

Dr. M. Goetz (now KIT)

MSc M. **Richerzhagen** (now other division)

MSc P. Glock (now INM-1)

MSc C. Bodenstein (now Soccerwatch.tv)

MSc Student G.S. Guðmundsson (Landsverkjun)

This research group has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 763558 (DEEP-EST EU Project)

SCHOOL OF ENGINEERING AND NATURAL SCIENCES FACULTY OF INDUSTRIAL ENGINEERING. MECHANICAL ENGINEERING AND COMPUTER SCIENCE

UNIVERSITY OF ICELAND

JÜLICH SUPERCOMPUTING CENTRE

HELMHOLTZAI