

High Performance Computing

ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. – Ing. Morris Riedel

Adjunct Associated Professor School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

SHORT LECTURE 14

Molecular Systems & Libraries

November 21, 2019 Webinar

Review of Short Lecture 13 – Systems Biology & Bioinformatics

(all atom representation (once linked in the protein chain, colored by atom type) an individual amino acid is called a residue)

(simplified representation illustrating backbone conformation, colored by secondary structure)

modified from [5] Sequence Searching
[4] Folding@Home [3] S. Mohanty et al, JSC Simlab Biology
modified from [1] Wikipedia on Systems Biology [2] Wikipedia on Protein

Short Lecture 14 - Molecular Systems & Libraries

HPC-A[dvanced] Scientific Computing (cf. Prologue) – Second Part

- Consists of techniques for programming & using large-scale HPC Systems
 - Approach: Get a broad understanding what HPC is and what can be done
 - Goal: Train general HPC techniques and systems and selected details of domain-specific applications

Outline of the Course

- 1. High Performance Computing
- 2. Parallel Programming with MPI
- 3. Parallelization Fundamentals
- 4. Advanced MPI Techniques
- 5. Parallel Algorithms & Data Structures
- 6. Parallel Programming with OpenMP
- 7. Graphical Processing Units (GPUs)
- 8. Parallel & Scalable Machine & Deep Learning
- 9. Debugging & Profiling & Performance Toolsets
- 10. Hybrid Programming & Patterns

- 11. Scientific Visualization & Scalable Infrastructures
- 12. Terrestrial Systems & Climate
- 13. Systems Biology & Bioinformatics
- 14. Molecular Systems & Libraries
- 15. Computational Fluid Dynamics & Finite Elements
- 16. Epilogue
- + additional practical lectures & Webinars for our hands-on assignments in context
- Practical Topics
- Theoretical / Conceptual Topics

Outline

- Molecular Systems
 - Terminology & Motivation for Simulating Molecular Systems
 - Molecular Mechanics vs. Quantum Chemistry / Mechanics
 - Ab Initio Calculations & Examples in Application Fields
 - Molecular Docking to Determine Binding of Molecules
 - Molecular Dynamics to Simulate Physical Atom Movements
- Selected Methods & Libraries
 - Nanoscale Molecular Dynamics (NAMD) Simulations
 - Car Parinello Molecular Dynamics (CPMD) Simulations
 - Massively Parallel Multi-Particle Collision Dynamics (MP2C)
 - Assisted Model Building with Energy Refinement (AMBER)
 - Human Brain & Drug Development Application Example

- Promises from previous lecture(s):
- Practical Lecture 5: Lecture 14 will give in-depth details on parallel and scalable molecular systems algorithms, tools, methods, and the use of libraries
- Lecture 2: Lecture 12 15 will offer more insights into a wide variety of physics & engineering applications that take advantage of HPC with MPI
- Lecture 3: Lecture 12 15 will provide details on applied parallelization methods within parallel applications & domain/functional decomposition
- Short Lecture 13: Lecture 14 will provide more pieces of information about molecular systems & libraries as well as selected parallel application methods
- Note that this lecture is only a short lecture that usually needs a full course
- The goal is to understand selected HPC application fields & provide a few pointers to other advanced related university courses/topics/tutorials

Short Lecture 14 – Molecular Systems & Libraries 5 / 30

Molecular Systems

Molecular Systems – Terminology & Motivation

- Domain-specific usage
 - E.g. used to understand small chemical systems or large biological molecules (e.g. proteins, cf. Short Lecture 13)
 - E.g. used to study large material assemblies (with many thousands to millions of atoms)
- Different Approaches
 - Common is to enable atomistic level description of the molecular system
 - A wide variety of methods and libraries evolved over time
 - Parallelization techniques are used to make studying molecular systems possible

(molecular model of a protein)

(atoms consists of 'electron cloud' & nucleus of protons and neutrons)

- Molecular systems refers to techniques to model the behaviour (and dynamics) of molecules
- Molecules are a group of two or more atoms held together by chemical bonds
- Atoms are the smallest unit that defines the chemical elements: chemical substances consisting of a single type of atom
- Molecular Systems are used in many domains (e.g. computational chemistry, biology, materials science, drug design, etc.)

[7] Wikipedia on 'Atoms' [6] Wikipedia on 'Molecule' modified from [8] Wikipedia on 'Molecular Modelling'

Molecular Systems – Terminology – Different Approaches

- Molecular Mechanics (aka 'coarse granular')
 - Systems treat atoms as the smallest individual unit
 - Potential energy of systems is calculated using 'force fields'
- Quantum Chemistry / Mechanics (aka 'more fine granular')
 - Experiments of chemical systems with focus of quantum mechanics in physical models
 - Quantum mechanics provides a mathematical description (i.e. equations) of much of the behavior and interactions of energy and matter
 - Explicitly models electrons of each atom

[9] Wikipedia on 'Molecular Mechanics'

- Molecular mechanics refer to coarse granular simulations of molecular systems
- Quantum mechanics use the Schroedinger equation for a more fine granular simulation of molecular systems
- The Schroedinger equation is a linear partial differential equation that describes the state function of a quantum-mechanical system
- One Example of using the Schroedinger equation is to describe the behaviour of a particle in a field of force

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = \hat{H} \Psi(\mathbf{r}, t)$$

(Schroedinger Equation)

8/30

[23] Wikipedia on 'Schroedinger Equation' [10] Wikipedia on 'Quantum Chemistry' [11] Wikipedia on 'Quantum Mechanics'

Short Lecture 14 – Molecular Systems & Libraries

Schroedinger Equation

Quantum Theory in Physics

- Foundation of quantum mechanics
- Their consequences is the well-known Schroedinger equation for stationary states of the molecule

- Schroedinger equation also describes the evolution of a given wave function
- The wave function is a central notion in quantum mechanics

- Time-independent Schroedinger equation: stationary states can be produced as solutions of the equation
- Time-dependent Schroedinger equation: plays a pivotal role as the equation of motion

 To obtain a special solution to such equations, one has to insert particular boundary conditions to be fulfilled

$$\left[rac{-\hbar^2}{2m}
abla^2 + V({f r})
ight]\Psi({f r}) = E\Psi({f r})$$

$$i\hbarrac{\partial}{\partial t}\Psi({f r},t)=\left[rac{-\hbar^2}{2m}
abla^2+V({f r},t)
ight]\Psi({f r},t)$$

[23] Wikipedia on 'Schroedinger Equation'

Molecular Systems – Terminology – Ab Initio Calculations

- Term often used in science & engineering
 - Also known as 'from first principles calculations' or 'from the beginning'
- E.g. Terrestrial Systems
 - Terrestrial systems: ab initio calculation of liquid water includes the properties of the constituent hydrogen and oxygen atoms
 - Calculation use these properties with the established laws of electrostatics and quantum mechanics (e.g., 1 water molecule → groups of them → water)
- E.g. Bioinformatics / Biophysics
 - Bioinformatics: term used to define methods for making predictions about biological features using a computational model
 - Biophysics: term used to define methods for the prediction of protein structures in protein folding (cf. Short Lecture 13) as computational model
 - Ab initio calculations rely on basic & established laws of nature w/o additional assumptions
- Ab initio calculations in computational chemistry refer to methods based on quantum chemistry

modified from [12] Wikipedia on 'Ab initio'

Molecular Systems – Terminology – Molecular Docking

Approach

 E.g. Geometric matching shape complementarity methods describe the protein (cf. Short Lecture 13) and ligand as a set of features that make them dockable

Computational complexity

- Relatively small (simulation of docking becomes more larger)
- E.g. nicely parallizable (i.e. HTC)
- Selected applications fields
 - Used to predict the binding orientation of small molecule drug candidates to their protein targets
 - The binding orientation in turn predict the affinity and activity of the small molecule

(once docked a simulation of time is useful to apply)

- Molecular docking is a method to determine whether one molecule can bind to another molecule
- Predicting strength of the association or binding affinity between two molecules is performed with a score function

modified from [13] Wikipedia on 'Molecular Docking'

Molecular Systems – Terminology – Molecular Dynamics

- Approach (simplified)
 - Trajectories of atoms/molecules are determined by numerically solving Newton's equation of motion for a 'system of interacting particles'
 - Forces between particles and potential energy are defined by molecular mechanics force fields
- Computational complexity
 - Complex molecular systems consist of a vast number of particles
 - Impossible to find solutions analytically
 - Use numerical methods (cf. Short Lecture 12)
- Selected application fields
 - Chemical physics, materials science, biomolecule modelling, drug development, etc.

(electron – sub-atomic particle)

(atoms/molecules – microscopic particle)

- Molecular dynamics (MD) refers to the simulation of physical movement of atoms and molecules
- Atoms (and whole molecules) interact for a period of time to simulate the motion of the atoms
- MD is an iterative HPC simulation method calculating & solving the equations of motion based on the acceleration obtained from the new forces

modified from [14] Wikipedia on 'Molecular Dynamics'

[Video] Molecular Dynamics Summary

[15] YouTube Video, Introduction to MD

Short Lecture 14 – Molecular Systems & Libraries

Selected Methods & Libraries

Selected Methods & Libraries – NAMD

Selected Facts

- Uses the molecular graphics program VMD for simulation setup
- Free software package and open source

Parallelization

- Based on Charm++ (abstraction of MPI, cf. Lecture 2)
- Scalable to hundreds of cores (beyond 200,000)

Example

- 92224 atoms simulation on a 1ns simulation timescale
- Nanoscale Molecular Dynamics (NAMD) is a parallel code designed for HPC simulations of large biomolecular systems to analyse trajectories and study molecular systems

modified from [17] NAMD Webpage

Selected Methods & Libraries – CPMD

Selected Facts

- Plane wave / pseudopotential implementation of density functional theory (DFT) designed for 'ab initio molecular dynamics'
- Free software package (for non-profit organization)
- Parallelization
 - Shared memory with OpenMP (cf. Lecture 6)
 - Distributed memory with MPI (cf. Lecture 2)
- Example
 - Detailed parallel simulation of 32 water molecules

modified from [18] CPMD Webpage

Molecular Systems Parallel Algorithms – Revisited (cf. Lecture 5)

Scientific case:

- Understanding physical movements of atoms and molecules in the context of n-body simulations
- Molecular dynamics algorithms for interacting 'particles'
 - Determine trajectories of atoms and molecules
 - Numerically solving the Newton's equations of motion
 - Forces between particles and potential energy is parallel computed according to molecular mechanics force field methods
- Using a library
 - E.g. MP2C code: particle-based hydrodynamics (fluid simulations)

Flow field in a gas diffusion membrane

Selected Methods & Libraries – MP2C

- Selected Facts
 - Implements a hybrid representation of solvated particles in a fluid
- Parallelization
 - Based on MPI (cf. Lecture 3)
 - Scalable parallel/IO (via SionLib library)
- Example
 - Flow field in gas diffusion membrane
 - Particle-based hydrodynamics application (highly scalable fluid simulation)

- MP2C stands for Massively Parallel Multi-Particle Collision Dynamics
- MP2C is a molecular dynamics code that focuses on mesoscopic particles

[19] MP2C Web page

Lecture 15 will give further details on computational fluid dynamics (CFD) techniques & codes including Finite Elements Method (FEM)

Computational Fluid Dynamics – Methods Overview

[22] S. Orszag et al.

Lecture 15 will give further details on computational fluid dynamics (CFD) techniques & codes including Finite Elements Method (FEM)

Selected Methods & Libraries – AMBER

- Selected Facts
 - AMBER is a MD suite of several programs
- Parallelization
 - Full 3D domain decomposition (cf. Lecture 3)
 - Parallel NetCDF (cf. Lecture 4)
 - Offers CUDA GPU use (cf. Lecture 7)
- Example
 - Simulation of HIV-1 integrase enzyime
 - Understanding challenging diseases like retroviruses (e.g. HIV)
 - AMBER stands for Assisted Model Building with Energy Refinement
- AMBER is a set of molecular mechanical force fields for simulating biomolecules & MD software

(Integrase is one of the three essential enzymes required for replication of the HIC-1 virus)

Many-core GPGPUs – Revisited (cf. Lecture 1)

- Use of very many simple cores
 - High throughput computing-oriented architecture
 - Use massive parallelism by executing a lot of concurrent threads slowly
 - Handle an ever increasing amount of multiple instruction threads
 - CPUs instead typically execute a single long thread as fast as possible
- Many-core GPUs are used in large clusters and within massively parallel supercomputers today
- Graphics Processing Unit (GPU) is great for data parallelism and task parallelism

GPU

Multiprocessor 1

 Compared to multi-core CPUs, GPUs consist of a many-core architecture with hundreds to even thousands of very simple cores executing threads rather slowly

Device memory

Multiprocessor N

- Named General-Purpose Computing on GPUs (GPGPU)
- Different programming models emerge

Short Lecture 14 – Molecular Systems & Libraries

Selected Comparisons – Application

[24] Hu Ge et al.

Selected Comparisons – Packages using CPUs & GPUs

[24] Hu Ge et al.

Bioinformatics – Drug Development using Scalable Computing Infrastructures

- Use of Interoperability of two different computing paradigms
 - E.g. use of HTC in EGI & HPC in PRACE infrastructures (cf. Short Lecture 11)

(Web-based portal make complex infrastructure access easy for biological domain scientists)

[21] M. Riedel et al., 'Research Advances by using interoperable e-Science Infrastructures', 2009

Short Lecture 14 - Molecular Systems & Libraries

[Video] Towards Simulating Jökulsárlón

[16] YouTube Video, A molecule's eye view of ice melting

Lecture Bibliography

Lecture Bibliography (1)

- [1] Wikipedia on 'Systems Biology', Online: http://en.wikipedia.org/wiki/Systems biology
- [2] Wikipedia on 'Protein', Online: http://en.wikipedia.org/wiki/Protein
- [3] JSC Simulation Lab Biology, Online: http://www.fz-juelich.de/ias/jsc/EN/AboutUs/Organisation/ComputationalScience/Simlabs/slbio/ node.html
- [4] Folding@Home, Online: http://folding.stanford.edu/
- [5] J. Archuleta et al., 'A Maintainable Software Architecture for Fast and Modular Bioinformatics Sequence Search, Sequence Searching, 2007
- [6] Wikipedia on 'Molecule', Online: http://en.wikipedia.org/wiki/Molecule
- [7] Wikipedia on 'Atom', Online: http://en.wikipedia.org/wiki/Atom
- [8] Wikipedia on 'Molecular Modelling', Online: http://en.wikipedia.org/wiki/Molecular modelling
- [9] Wikipedia on 'Molecular Mechanics', Online: http://en.wikipedia.org/wiki/Molecular mechanics
- [10] Wikipedia on 'Quantum Chemistry', Online: http://en.wikipedia.org/wiki/Quantum chemistry
- [11] Wikipedia on 'Quantum Mechanics', Online: http://en.wikipedia.org/wiki/Quantum mechanics
- [12] Wikipedia on 'Ab initio', Online: http://en.wikipedia.org/wiki/Ab initio

Lecture Bibliography (2)

- [13] Wikipedia on 'Molecular Docking', Online:
 - http://en.wikipedia.org/wiki/Docking (molecular)
- [14] Wikipedia on 'Molecular Dynamics', Online: http://en.wikipedia.org/wiki/Molecular dynamics
- [15] YouTube Video, 'An Introduction to Molecular Dynamics', Online: http://www.youtube.com/watch?v=ILFEgKl3sm4
- [16] YouTube Video, 'A molecule's eye view of ice melting', Online: http://www.youtube.com/watch?v=CDTZoFGmZoc
- [17] NAMD Web page, Online: http://www.ks.uiuc.edu/Research/namd/
- [18] CPMD Web page, Online: http://www.cpmd.org/
- [19] MP2C Webpage, Online: http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/MP2C/ node.html
- [20] D.A. Case, et al., (2014), AMBER 14, University of California, San Francisco
- [21] M. Riedel et al., 'Research Advances by using Interoperable e-Science Infrastructures', Journal of Cluster Computing, 12(4):357–372, 2009, Online: https://www.researchgate.net/publication/220405901 Research advances by using interoperable e-science infrastructures
- [22] Steven Orszag et al., 'Lattice Boltzmann Methods for Fluid Dynamics', Online: http://physics.wustl.edu/nd/event/qmcd09/Presentations/qmcd09Talks/orszag.pdf

Lecture Bibliography (3)

- [23] Wikipedia on 'Schroedinger Equation', Online: https://en.wikipedia.org/wiki/Schr%C3%B6dinger equation
- [24] Hu Ge et al., 'Molecular Dynamics-Based Virtual Screening: Accelerating the Drug Discovery Process by High-Performance Computing' Journal of Chemical Information and Modeling 53(10), Online: https://www.researchgate.net/publication/256424059 Molecular Dynamics-Based Virtual Screening Accelerating the Drug Discovery Process by High-Performance Computing

Short Lecture 14 – Molecular Systems & Libraries

Short Lecture 14 – Molecular Systems & Libraries 30 / 30