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Review of Short Lecture 11 — Scientific Visualization & Scalable Infrastructures

(e.g. universities, institutes)

(‘a'picture’is'worth 1000 weds numbers’)
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[3] M. Memon & M. Riedel et al., ‘Scientific
workflows applied to the coupling of a

[1] CINECA - Scientific Visualization Training (HIDEM v.1.0) ice dynamic model’, 2019

[2] W. Gentzsch and M. Riedel et al., ‘DEISA — Distributed European
Infrastructure for Supercomputing Applications’, Journal of Grid Computing, 2011
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HPC-A[dvanced] Scientific Computing (cf. Prologue) — Second Part

= Consists of techniques for programming & using large-scale HPC Systems
= Approach: Get a broad understanding what HPC is and what can be done
= Goal: Train general HPC techniques and systems and selected details of domain-specific applications

High Performance Computing
(a field of constant changes)

36 Jy1dads-ulewoq
96 Jy1dads-urewoq

Vv Suniaaui8u3 g acuaids d1ydads-utewoq

a 3uidauidu] 1@ 93uaIdS d14d¥ds-utewoq

Short Lecture 12 — Terrestrial Systems and Climate 3/30



8.

9.

Outline of the Course

High Performance Computing

Parallel Programming with MPI
Parallelization Fundamentals

Advanced MPI Techniques

Parallel Algorithms & Data Structures
Parallel Programming with OpenMP
Graphical Processing Units (GPUs)

Parallel & Scalable Machine & Deep Learning

Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns
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11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics
14. Molecular Systems & Libraries
15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

= Practical Topics

= Theoretical / Conceptual Topics
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Outline

= Terrestrial Systems

Numerical Simulations using known Physical Laws

ParFlow Hydrology Model Application Example

CLM Land-Surface Model Application Example

COSMO Weather Model Application Example

Coupling Models via OASIS Coupler & Performance Analysis

= Climate

= Numerical Weather Prediction (NWP) for Weather Forecasts

Role of Partial Differential Equations (PDEs)

Weather Research & Forecast (WRF) Model Application
WRF Parallel 1/0O using pNetCDF Parallel File Formats
Different Application Areas in Context

Promises from previous lecture(s):

Practical Lecture 0.2: Lecture 12 & Lecture 13
provides more insights about selected
applications in Terrestrial Sytems & some
applications in Neuroscience

Lecture 2: Lecture 12 — 15 will offer more insights
into a wide variety of physics & engineering
applications that take advantage of HPC with MPI
Lecture 3, 5, 10: Lecture 12 will provide more
details on using different domain
decompositions for terrestrial systems and
climate simulations on HPC

Lecture 3: Lecture 12 — 15 will provide details on
applied parallelization methods within parallel
applications & domain/functional decomposition

Lecture 5: Lecture 12 will provide more details on
using blocking vs non-blocking communication
in terrestrial systems & HPC climate simulations
Lecture 10: Lecture 12 will provide more details

on how to couple scientific simulation codes that
simulate parts of a domain with different physics

Note that this lecture is only a short lecture that
usually needs a full course

The goal is to understand selected HPC
application fields & provide a few pointers to
other advanced related university
courses/topics/tutorials




Terrestrial Systems
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Terrestrial Systems — Motivation

= Selected Motivations
= Understand global environmental change (e.g. climate) affecting terrestrial systems at all scales

" |ncrease und.erstandlng of many physical processes Physical system changes are accompanied by major
on earth (latin terra) that are still poorly understood state changes of land surfaces & ecosystems

= Work towards better reproducability of models ik \ LT3
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= Terrestrial systems represent a class of applications that perform Evapotrayispiration’
numerical HPC simulations of variable complexity of terrestrial

systems processes across different scales & regions

State changes of land surfaces & ecosystems and services
provided by them have multiple socioeconomic impacts

modified from [16] SimLab Terrestrial Systems
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Terrestrial Systems — Modelling Dynamical Systems

= Evolution in time (and space) is of interest
= Behavior of a whole ecosystem in time

= Dynamical systems:
e.g. economic processes, movement of a fluid, ...

= (cf. simple Jacobi example & heat equation)

= How to model ‘evolution’ of a system

= A dynamical system consists of its
state (e.g. input data) and a some ‘rules’

= Rules determine how the dynamic
system will evolve over time

= Rules governing the evolution are ‘physical _—
[17] Introduction to SC /@

laws/equations for different system elements’

In order to investigate a real system‘s behaviour by computing, a mathematical model is needed validation
A dynamical system is some realistic system whose evolution in time is of interest
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Terrestrial Systems Example — Need for Numerical Methods in HPC — Revisited

= Behaviour ‘governed by equations’ are computed —
= Nature is (too) complex & interconnected: simplification : TR e

= Behaviour governed by ‘difference equations’ [17] Introduction to SC
= System state only change at discrete instants of time
= System state ‘not change in time continously’

[16] SimLab Terrestrial Systems

(solutions can be computed simply by applying

= Behaviour governed by ‘differential equations’ definitions iteratively)
= System state evolves ‘continously in time’ = Solving some mathematical (harder to solve, e.g. initial
problems_& eqt_:ation§ is too value problem)
= Selected ‘scientific questions’ for simulations computational intensive ->
approximate
= Under what circumstances will a system evolve into = Numerical methods are
p e ) . methods that obtain
an ‘equilibrium—state’ (state which does not change) numerical approximation
= Under what circumstances will the system evolve into solutions to problems

a 'periodic state’ (states the system return to over time )
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Terrestrial Systems — Role of Partial Differential Equations (PDEs) — Revisited

=" HPC simulation modelling
= PDEs enable rates of change (of continous variables)

= PDEs used to formulate problems
involving functions of several variables

= PDEs describe a wide variety of phenomena
(e.g. sound, heat, electrostatics, fluid flow, etc.)

= PDEs model multi-dimensional dynamical systems

= Differences to ‘ordinary differential equations’

= Ordinary differential equations deal with
functions of a single variable and their derivatives

Solving those equations is often too complicated
computationally expensive or impossible to analytically
compute driving the need for numerical approximation

[17] Introduction to SC ' ,

simplified math. model |-

numerical approximation

—

validation

= Ordinary differential equations model
one-dimensional dynamical system

modified from [18] Wikipedia on ‘Partial Differential Equation’

HPC models often use toolkits (e.g. PETSc) for Partial Differential
Equations (PDEs) that are differential equations that contains
unknown multivariable functions and their partial derivatives

A general method in HPC modelling use parallel PDEs tools to
approximate solutions to problems

Short Lecture 12 - Terrestrial Systems and Climate
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Terrestrial Systems — Numerial HPC Simulations using Multi-Physics

= Numerical models & simulations

= |nvestigate multiple terrestrial
system processes as a whole

® Enable sustainable management
of terrestrial systems oL

= Simulate complex, non-linear transport
processes of energy, mass and momentum

= Create interactions and feedback
mechanisms between different
compartments of the coupled
geo-ecosystem (e.g. subsurface,
land-surface, atmosphere, reservoirs, etc.)

= Varying scales: multiple spatio-temporal scales and high resolutions
= Potentially long runtimes & use ‘ensemble simulations’
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W —>

ALBEDO —>
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GWT H SUBSURFACE
RUNOFF

[16] SimLab Terrestrial Systems

>

. [cosmo
\ (three example codes

co, out of a wide variety

of existing solutions)
SURFACE RUNOFF

> Lecture 13 provides more details on general & so-called ensemble methods to estimate uncertainties that are often used in HPC
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Towards Realistic Simulations — Reviewing ParFlow, CLM & COSMO Models

= CLM enables the parallel simulation of land-surface
with physical & chemical & biological processes

[20] CLM Web page

[19] R. Maxwell _ CLM module

ParFlow library

Short Lecture 12 — Terrestrial Systems and Climate

COSMO enables the parallel
simulation of detailed regional
atmospheric model processes

tmosphere: COSMO

[21] ParFlow Web page

ParFlow enables the parallel
simulation of hydrology
processes with (sub-)surface
fluid flows

Subsurface: ParFlow

[22] COSMO Web page
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Terrestrial Systems — Coupling Different Parallel Libraries using OASIS Coupler

= Requires a coupling technigue running on a HPC machine

= Example: OASIS3 coupler for ParFlow, CLM & COSMO

= 1+3 parallel applications together referred to as
‘TerrSysMP parallel coupled application’

= OASIS3 is a separate executable that
manages data exchange between others

= Coupling data arrays are repartitioned
to the full domain by OASIS

= OASIS3-MCT library is part of each component model

= Coupling arrays only consist of the
local fraction of full domain

= Routed by OASIS to the destination processor

»

z
2 1 SH&LHFLUX —>
S I MOM. FLUX =—>

171

J

co,

/ SURFACE RUNOFE
N
OIL MOISTURE

W —>
ALBEDO —>

[23] F. Gasper et al.

RATIO!

St 101

GwT ‘SUBSURFACE
RUNOFF

Coupled codes execute n different parallel application codes together to simulate one ecosystem
Coupled codes require another separate executable that is a coupler exchanging global data
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Terrestrial Systems — Coupling & Performance Analysis for Fine-Tuning

= Performance optimization required (cf. Lecture 9)
= Using tool SCALASCA & resources are distributed according to load (better load balance)
= LateSender wait state is significantly reduced
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[Video] Terrestrial Systems with ParFlow coupled with CLM

[5] YouTube Video, ParFlow coupled with CLM
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Climate
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Complex Climate Example — Numerical Weather Prediction (NWP) & Forecast

[ ] Apphcat'O N areas . Numerical Weather Prediction (NWP) uses mathematical models
of the atmosphere and oceans to predict the weather based on
= Global & regiona| short-term current weather observations (e.g. weather satellites) as inputs

. . " Performing complex calculations necessary for NWP requires
weather forecast models in operatlons supercomputers (limit ~6 days) using HPC techniques

» Perform long-term climate prediction =  NWP belongs to the field of numerical methods that obtain

. approximate solutions to problems > certain uncertainty remains
research (e.g. climate change, polar research, etc.) i P Y

= NWP model characteristics

= Use ordinary/partial differential equations (PDEs)
(i.e. use laws of physics, fluids, motion, chemistry)

Horizontal Grid
(Latitude-Longitude) |

= Domain decomposition example: 3D grid cells

= Computing/cell: winds, heat transfer, solar
radiation, relative humidity & surface hydrology

= |nteractions with neighboring cells: used
to calculate atmosopheric properties over time

moadified from [7] Wikipedia on
‘Numerical Weather Prediction’

Short Lecture 12 - Terrestrial Systems and Climate 17 /30



Role of Partial Differential Equations (PDEs) in Atmospheric Research (1)

= HPC Atmospheric Models
= Simulations produce meterological information for given locations
= Different ‘temporal resolutions/scales’: future times, days to decades
= Different ‘spatial solutions/scales’: meters to kilometers
= Use primitive equations to enable model evolution over space and time

. o ey .
Set Of Prl m Itlve Eq UatlonS . Primitive equations are a set of nonlinear
1. Conservation of momentum: Describe hydrodynamical differential equations that are used to_
approximate global atmospheric flow in
flow on the surface of a sphere atmospheric models and predict/simulate
(e.g. vertical motion smaller than horizontal motion) future states of atmospheres

2. Thermal energy equation: Overall temperature modified from [8] Wikipedia on ‘Primitive Equations’
of the modelled system in relation to heat sources and sinks

3. Continuity equation: Describe the conversation of mass

Short Lecture 12 — Terrestrial Systems and Climate 18/30



Role of Partial Differential Equations (PDEs) in Atmospheric Research (2)

[ ] H PC Model eVOIUtion over Spa ce a nd tl me . Simt_ul_ati:ms over time need_to maintain ‘numel:icz-_ll
stability‘: the length of the time step chosen within
[ imiti i i the model is related to the distance between the
Based on primitive equations (alongside e.g. gas laws) g A L e e

= Simulations shange of density, pressure,
potential temperature scalar fields, air velocity (aka wind)
vector fields of the atmosphere over time

= Computational challenges
= Nonlinear PDEs are impossible to solve exactly through analytical methods
= |dea is to obtain approximate solutions with numerical methods

= Simulation over time
= |nitialization of equations based on analysis data or research question

= Rates of changes determined via a time increment known as ‘time step’ modified from [7] Wikipedia on
= Approach is repeated until solution reaches the desired forecast time ‘Numerical Weather Prediction”
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Weather Research & Forecast (WRF) Model Parallel Application — Examples

[10] Polar WRF

[9] Wikipedia on ‘WRF’

[11] Evaluation of WRF Mesoscale model
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[12] Iceland wind energy
potential study, 2013

Software package Weather Research and Forecasting (WRF) includes parallelization techniques

and enables a wide range of meteorological applications across scales (meters — 1000 of KMs)

20/30
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WRF Model Parallel Application — Software

= \Weather Research and Forecasting (WRF) model

" The WRF model is a
NWP system that

= Takes advantage of PDEs (and parallel solvers) m enables the simulation

. . . and prediction of the
= Maintained and support as a community model code used for daily B
. ) . . weather forecasts by = Itis a scalable parallel

Plug-compatible modules for extensions MetOffices worldwide HPC simulation for
= Research advances have direct path to operations as service to tax payers distributed-memory &
) ] ) . shared-memory systems

= Numerous physics options (link with the broader

tax payers pay some scientists

HPC modeling community)  (eg. air quality modeling) to better the WRF model [13] WRF model Webpage

- ROl / impact over years

= Selected software package features
= Available as open-source tool implementing parallelization techniques
* Implements a modular & hierarchical design

= Supports a model coupling infrastructure & NetCDF data format support
= Enables integration into bigger earth system model frameworks
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WRF Model Parallel Application — Parallelization Approach (1)

» Parallel simulation sciences

= E.g.reflecting real data obtained
from observations, analyses, etc.

(patch: section of model domain allocated

Parallel PEggessed

" E-g- enable idealized to a distributed memory node)
atmOSphe”C conditions (mediation layer solver or physics driver)
= Approach R i

® Implements ‘hybrid programming’
using OpenMP and MPI together
(cf. Lecture 10)

= Use of ‘domain decomposition’
(cf. Lecture 3) dividing work

= Model domains are decomposed
for parallelism on two-levels
using ‘patches’ and ‘tiles’

(one patch is divided into multiple tiles) (tile: section of a patch allocated to a
modified from [14] WRF — Code and Parallel Computing shared-memory processor within a node)
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WRF Model Parallel Application — Parallelization Approach (2)

(module_diffusion.F )

SUBROUTINE horizontal_diffusion_s (tendency, rr, var, . . .

= Usage for ‘halo’ regions
= Code example based on Fortran pRE =

DO i = its,ite
mrdx=msft (i,Jj) *rdx
- H . | d d d . mrdy=ms£t (i,j)*rdy
tendency (i,k,j)=tendency (i, k,j) -
orlzonta ata epen enCIeS (mrdx*0.5% ((rr(i+1,k,3)+rr (i,k,3))*HL (i+1,k,3)-
(rr(i-1,k,j)+rr(i k,3j))*H1I(1 ,k,3))+
mrdy*0.5% ((rr(i,k,j+1)+rr(i, k,3))*H2 (i, k,j+1)~

= E.g.i+1, i+1, etc.: indexed operands

msft(i,j)*(Hlavg (i, k+1,3)-Hlavg (i, k,3)+

LN N Y

H2avg (i, k+1,]j)-H2avg(i, k,J)

may lie in the patch of a neighboring processor Y

)
ENDDO
ENDDO

= Problem: neighbor’s updates to such an element
of the array is not accessible on this processor

b u
Average Daily Total rainfall (mm) - March 1997

(halo updates: get values from memory of left
processor to memory of right neighbour processor)

ST 1

‘ . . . (Periodic boundary updates
<- . .) use interprocess communication)
Nu[=]=)
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WRF Model Parallel Application — Patches & Terminologies

= Usage for transposes
= Different parallel
transposes are supported

= Take advantages of MPI it ol 20n all x on
patch patc patch
. Distributed Shared
= Overview of Pl Palle
p a ra I Ie I I Zat I O n APPLICATION Domain contains Patches contain  Tiles
. (WRF)
= HPC terminology
VS . a p p I ica t i 0 n SYSTEM Job contains Processes contain  Threads
domain-specific (U MEL Cpendh
terminology
HARDWARE Cluster contains ~ Nodes contain Processors
= Evolved differently in time (Brocessors, Memories, Wires)

" One of the most common misunderstandings between the technical HPC community and the
application domain-specific communities (e.g. climate) are wrongly interpreted terminologies

modified from [14] WRF — Code and Parallel Computing
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WRF Model Parallel Application — Parallel I/O & Data Types

= Need for Parallel I/O seee—umm| | | BEEE || EEEEe.
e et B K ~q
= WREF is output-bound (‘writes costs much’) BESa-— S ""'.“Q;::: W:M-m-:c:m\?

= Use Serial & parallel NetCDF

(different options that do not scale)

» Provides an I/O layer implemented with parallel NetCDF (pNetCDF)

= |/O performance gain is considerable against using not pNetCDF

[15] Opportunities for WRF Model Acceleration

Serial NetCDF collected and written by gangs of MPI tasks (quilting) 200
. . . 711
Parallel NetCDF written to single files by all MPI tasks in a gang 700
600
"o e} ,, 500
| processes g 400 -
nm . | 300
mmEE g
compute processes —. . - 0 N
H H (3 N (3
& N o %+ @ o+
 sesensssommm sk \ b?”o" \9&’% N u§ & g§
compute processes 8 & & & &7 &
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Parallel NetCDF can be used to significantly improve 1/O output performance of WRF codes
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[Video] Climate Modeling with Supercomputers

[6] YouTube Video, Climate modelling with Supercomputers
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