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(‘a picture is worth 1000 words numbers‘)

[1] CINECA – Scientific Visualization Training

Large-scale HPC centres
(e.g. EU HPC centres)

National HPC centres
(e.g. German HPC centres)

Topical and Regional HPC
Centres (e.g. climate centre)

Servers and small clusters
(e.g. universities, institutes)

[2] W. Gentzsch and  M. Riedel et al., ‘DEISA – Distributed European 
Infrastructure for Supercomputing Applications’, Journal of Grid Computing, 2011

[3] M. Memon & M. Riedel et al., ‘Scientific 
workflows applied to the coupling of a 
continuum (Elmer v8.3) and a discrete element 
(HiDEM v.1.0) ice dynamic model’, 2019

[4] PRACE RI 



HPC-A[dvanced] Scientific Computing (cf. Prologue) – Second Part

 Consists of techniques for programming & using large-scale HPC Systems
 Approach: Get a broad understanding what HPC is and what can be done
 Goal: Train general HPC techniques and systems and selected details of domain-specific applications

High Performance Computing
(a field of constant changes)

HPC Course

Dom
ain-specific Science &

 Engineering A

Dom
ain-specific Science &

 Engineering B

Dom
ain-specific Science &

 Engineering C

Dom
ain-specific Science &

 Engineering D
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Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
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Outline

 Terrestrial Systems
 Numerical Simulations using known Physical Laws
 ParFlow Hydrology Model Application Example
 CLM Land-Surface Model Application Example
 COSMO Weather Model Application Example
 Coupling Models via OASIS Coupler & Performance Analysis

 Climate
 Numerical Weather Prediction (NWP) for Weather Forecasts
 Role of Partial Differential Equations (PDEs)
 Weather Research & Forecast (WRF) Model Application
 WRF Parallel I/O using pNetCDF Parallel File Formats
 Different Application Areas in Context

 Promises from previous lecture(s):
 Practical Lecture 0.2: Lecture 12 & Lecture 13 

provides more insights about selected 
applications in Terrestrial Sytems & some 
applications in Neuroscience

 Lecture 2: Lecture 12 – 15 will offer more insights 
into a wide variety of physics & engineering 
applications that take advantage of HPC with MPI

 Lecture 3, 5, 10: Lecture 12 will provide more 
details on using different domain 
decompositions for terrestrial systems and 
climate simulations on HPC

 Lecture 3: Lecture 12 – 15 will provide details on 
applied parallelization methods within parallel 
applications & domain/functional decomposition

 Lecture 5: Lecture 12 will provide more details on 
using blocking vs non-blocking communication 
in terrestrial systems & HPC climate simulations

 Lecture 10: Lecture 12 will provide more details 
on how to couple scientific simulation codes that 
simulate parts of a domain with different physics
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 Note that this lecture is only a short lecture that 
usually needs a full course

 The goal is to understand selected HPC 
application fields & provide a few pointers to 
other advanced related university 
courses/topics/tutorials



Terrestrial Systems
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Terrestrial Systems – Motivation

 Selected Motivations
 Understand global environmental change (e.g. climate) affecting terrestrial systems at all scales
 Increase understanding of many physical processes 

on earth (latin terra) that are still poorly understood 
 Work towards better reproducability of models

Physical system changes are accompanied by major
state changes of land surfaces & ecosystems

State changes of land surfaces & ecosystems and services 
provided by them have multiple socioeconomic impacts

 Terrestrial systems represent a class of applications that perform 
numerical HPC simulations of variable complexity of terrestrial 
systems processes across different scales & regions

modified from [16] SimLab Terrestrial Systems
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Terrestrial Systems – Modelling Dynamical Systems

 Evolution in time (and space) is of interest
 Behavior of a whole ecosystem in time 
 Dynamical systems: 

e.g. economic processes, movement of a fluid, …
 (cf. simple Jacobi example & heat equation)

 How to model ‘evolution‘ of a system
 A dynamical system consists of its 

state (e.g. input data) and a some ‘rules‘
 Rules determine how the dynamic 

system will evolve over time
 Rules governing the evolution are ‘physical 

laws/equations for different system elements’

[16] SimLab Terrestrial Systems

 In order to investigate a real system‘s behaviour by computing, a mathematical model is needed
 A dynamical system is some realistic system whose evolution in time is of interest 
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[17] Introduction to SC



Terrestrial Systems Example – Need for Numerical Methods in HPC – Revisited 

 Behaviour ‘governed by equations‘ are computed 
 Nature is (too) complex & interconnected: simplification

 Behaviour governed by ‘difference equations‘
 System state only change at discrete instants of time
 System state ‘not change in time continously‘

 Behaviour governed by ‘differential equations‘
 System state evolves ‘continously in time‘

 Selected ‘scientific questions‘ for simulations
 Under what circumstances will a system evolve into 

an ‘equilibrium–state’ (state which does not change)
 Under what circumstances will the system evolve into 

a ’periodic state’ (states the system return to over time )

[16] SimLab Terrestrial Systems

(solutions can be computed simply by applying 
definitions iteratively)

(harder to solve, e.g. initial 
value problem)

[17] Introduction to SC

 Solving some mathematical 
problems & equations is too 
computational intensive 
approximate

 Numerical methods are 
methods that obtain 
numerical approximation 
solutions to problems
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Terrestrial Systems – Role of Partial Differential Equations (PDEs) – Revisited 

 HPC simulation modelling
 PDEs enable rates of change (of continous variables)
 PDEs used to formulate problems 

involving functions of several variables
 PDEs describe a wide variety of phenomena

(e.g. sound, heat, electrostatics, fluid flow, etc.)
 PDEs model multi-dimensional dynamical systems

 Differences to ‘ordinary differential equations‘
 Ordinary differential equations deal with 

functions of a single variable and their derivatives
 Ordinary differential equations model

one-dimensional dynamical system

[17] Introduction to SC

Solving those equations is often too complicated 
computationally expensive or impossible to analytically 
compute driving the need for numerical approximation

 HPC models often use toolkits (e.g. PETSc) for Partial Differential 
Equations (PDEs) that are differential equations that contains 
unknown multivariable functions and their partial derivatives

 A general method in HPC modelling use parallel PDEs tools to 
approximate solutions to problems

modified from [18] Wikipedia on ‘Partial Differential Equation’
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Terrestrial Systems – Numerial HPC Simulations using Multi-Physics

 Numerical models & simulations
 Investigate multiple terrestrial 

system processes as a whole
 Enable sustainable management 

of terrestrial systems
 Simulate complex, non-linear transport 

processes of energy, mass and momentum
 Create interactions and feedback 

mechanisms between different 
compartments of the coupled 
geo-ecosystem (e.g. subsurface, 
land-surface, atmosphere, reservoirs, etc.)

 Varying scales: multiple spatio-temporal scales and high resolutions
 Potentially long runtimes & use ’ensemble simulations’

[16] SimLab Terrestrial Systems

(three example codes 
out of a wide variety 
of existing solutions)

 Lecture 13 provides more details on general & so-called ensemble methods to estimate uncertainties that are often used in HPC
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Towards Realistic Simulations – Reviewing ParFlow, CLM & COSMO Models

[19] R. Maxwell
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 CLM enables the parallel simulation of land-surface 
with physical & chemical & biological processes

[20] CLM Web page

CLM module

ParFlow library

 ParFlow enables the parallel 
simulation of hydrology 
processes with (sub-)surface 
fluid flows 

[21] ParFlow Web page

 COSMO enables the parallel 
simulation of detailed regional 
atmospheric model processes 

MPI

[22] COSMO Web page



Terrestrial Systems – Coupling Different Parallel Libraries using OASIS Coupler

 Requires a coupling technique running on a HPC machine
 Example: OASIS3 coupler for ParFlow, CLM & COSMO
 1+3 parallel applications together referred to as 

‘TerrSysMP parallel coupled application‘
 OASIS3 is a separate executable that

manages data exchange between others
 Coupling data arrays are repartitioned 

to the full domain by OASIS
 OASIS3-MCT library is part of each component model
 Coupling arrays only consist of the 

local fraction of full domain
 Routed by OASIS to the destination processor

[23] F. Gasper et al.

 Coupled codes execute n different parallel application codes together to simulate one ecosystem
 Coupled codes require another separate executable that is a coupler exchanging global data
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Terrestrial Systems – Coupling & Performance Analysis for Fine-Tuning

 Performance optimization required (cf. Lecture 9)
 Using tool SCALASCA & resources are distributed according to load (better load balance)
 LateSender wait state is significantly reduced

analysing
& 

tuning

Before: 
Processor distribution

192 COSMO
160 ParFlow

160 CLM

After: 
Processor distribution

384 COSMO
80 ParFlow

48 CLM
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[23] F. Gasper et al.



[Video] Terrestrial Systems with ParFlow coupled with CLM

[5] YouTube Video, ParFlow coupled with CLM
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Climate
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Complex Climate Example – Numerical Weather Prediction (NWP) & Forecast

 Application areas
 Global & regional short-term 

weather forecast models in operations
 Perform long-term climate prediction 

research (e.g. climate change, polar research, etc.)

 NWP model characteristics
 Use ordinary/partial differential equations (PDEs) 

(i.e. use laws of physics, fluids, motion, chemistry)
 Domain decomposition example: 3D grid cells
 Computing/cell: winds, heat transfer, solar 

radiation, relative humidity & surface hydrology
 Interactions with neighboring cells: used

to calculate atmosopheric properties over time

 Numerical Weather Prediction (NWP) uses mathematical models 
of the atmosphere and oceans to predict the weather based on 
current weather observations (e.g. weather satellites) as inputs

 Performing complex calculations necessary for NWP requires 
supercomputers (limit ~6 days) using HPC techniques

 NWP belongs to the field of numerical methods that obtain 
approximate solutions to problems  certain uncertainty remains

modified from [7] Wikipedia on 
‘Numerical Weather Prediction’
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Role of Partial Differential Equations (PDEs) in Atmospheric Research (1)

 HPC Atmospheric Models
 Simulations produce meterological information for given locations
 Different ‘temporal resolutions/scales‘: future times, days to decades
 Different ‘spatial solutions/scales‘: meters to kilometers
 Use primitive equations to enable model evolution over space and time

 Set of Primitive Equations
1. Conservation of momentum: Describe hydrodynamical 

flow on the surface of a sphere 
(e.g. vertical motion smaller than horizontal motion)

2. Thermal energy equation: Overall temperature 
of the modelled system in relation to heat sources and sinks

3. Continuity equation: Describe the conversation of mass
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 Primitive equations are a set of nonlinear 
differential equations that are used to 
approximate global atmospheric flow in 
atmospheric models and predict/simulate 
future states of atmospheres

modified from [8] Wikipedia on ‘Primitive Equations’



Role of Partial Differential Equations (PDEs) in Atmospheric Research (2)

 HPC Model evolution over space and time
 Based on primitive equations (alongside e.g. gas laws)
 Simulations shange of density, pressure, 

potential temperature scalar fields, air velocity (aka wind) 
vector fields of the atmosphere over time

 Computational challenges
 Nonlinear PDEs are impossible to solve exactly through analytical methods
 Idea is to obtain approximate solutions with numerical methods

 Simulation over time
 Initialization of equations based on analysis data or research question
 Rates of changes determined via a time increment known as ‘time step‘
 Approach is repeated until solution reaches the desired forecast time
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modified from [7] Wikipedia on 
‘Numerical Weather Prediction’

 Simulations over time need to maintain ‘numerical 
stability‘: the length of the time step chosen within 
the model is related to the distance between the 
points on the computational grid



Weather Research & Forecast (WRF) Model Parallel Application – Examples
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[9] Wikipedia on ‘WRF’

WRF model output showing 
simulated radar reflectivity (rBZ) for 
Typhon Mawar (3.3km grid)

WRF polar model output 
showing 1000 – 500 hPa

thickness & sea level pressure

[10] Polar WRF

[12] Iceland wind energy 
potential study, 2013

WRF model 
output showing

wind power density 
across iceland

at 50 mAGL

[11] Evaluation of WRF Mesoscale model

Align data
measurement

stations
in Iceland with

WRF model
(closest land

gridpoints 
as red dots)

 Software package Weather Research and Forecasting (WRF) includes parallelization techniques 
and enables a wide range of meteorological applications across scales (meters – 1000 of KMs)



WRF Model Parallel Application – Software

 Weather Research and Forecasting (WRF) model
 Takes advantage of PDEs (and parallel solvers) 
 Maintained and support as a community model
 Plug-compatible modules for extensions
 Research advances have direct path to operations
 Numerous physics options (link with the broader

HPC modeling community)

 Selected software package features
 Available as open-source tool implementing parallelization techniques
 Implements a modular & hierarchical design
 Supports a model coupling infrastructure & NetCDF data format support
 Enables integration into bigger earth system model frameworks
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code used for daily
weather forecasts by

MetOffices worldwide
as service to tax payers

tax payers pay some scientists 
to better the WRF model 
 ROI / impact over years

(e.g. air quality modeling) [13] WRF model Webpage

 The WRF model is a 
NWP system that 
enables the simulation 
and prediction of the 
atmosphere

 It is a scalable parallel 
HPC simulation for 
distributed-memory & 
shared-memory systems



WRF Model Parallel Application – Parallelization Approach (1)

 Parallel simulation sciences
 E.g. reflecting real data obtained 

from observations, analyses, etc.
 E.g. enable idealized 

atmospheric conditions

 Approach
 Implements ‘hybrid programming‘ 

using OpenMP and MPI together
(cf. Lecture 10)

 Use of ‘domain decomposition‘
(cf. Lecture 3) dividing work

 Model domains are decomposed 
for parallelism on two-levels
using ‘patches’ and ‘tiles’

(patch: section of model domain allocated 
to a distributed memory node)
(mediation layer solver or physics driver)

Parallel Processed Parallel Processed

Parallel Processed Parallel Processed

(one patch is divided into multiple tiles)

Logical 
domain

(tile: section of a patch allocated to a 
shared-memory processor within a node)

MPI
OpenMP
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modified from [14] WRF – Code and Parallel Computing



WRF Model Parallel Application – Parallelization Approach (2)

 Usage for ‘halo‘ regions
 Code example based on Fortran
 Horizontal data dependencies
 E.g. i+1, i+1, etc.: indexed operands 

may lie in the patch of a neighboring processor
 Problem: neighbor‘s updates to such an element 

of the array is not accessible on this processor

(halo updates: get values from memory of left 
processor to memory of right neighbour processor)

(Periodic boundary updates
use interprocess communication)
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modified from [14] WRF – Code and Parallel Computing



WRF Model Parallel Application – Patches & Terminologies

 Usage for transposes
 Different parallel

transposes are supported
 Take advantages of MPI

 Overview of 
parallelization
 HPC terminology

vs. application 
domain-specific
terminology

 Evolved differently in time

modified from [14] WRF – Code and Parallel Computing
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 One of the most common misunderstandings between the technical HPC community and the 
application domain-specific communities (e.g. climate) are wrongly interpreted terminologies



WRF Model Parallel Application – Parallel I/O & Data Types

 Need for Parallel I/O
 WRF is output-bound (‘writes costs much’)

 Use Serial & parallel NetCDF
 Provides an I/O layer implemented with parallel NetCDF (pNetCDF)
 I/O performance gain is considerable against  using not pNetCDF 
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(different options that do not scale)

[15] Opportunities for WRF Model Acceleration

 Parallel NetCDF can be used to significantly improve I/O output performance of WRF codes



[Video] Climate Modeling with Supercomputers

[6] YouTube Video, Climate modelling with Supercomputers
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