

High Performance Computing

ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. – Ing. Morris Riedel

Adjunct Associated Professor School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

SHORT LECTURE 11

Scientific Visualization & Scalable Infrastructures

November 18, 2019 Webinar

Review of Lecture 10 – Hybrid Programming & Patterns

(traditional hybrid programming using OpenMP & MPI)

(emerging hybrid programming using CPU & GPU at the same time)

	Vector mode	Task mode
Improved/easier load balancing	₹	√
Additional levels of parallelism	√	√
Reliable overlapping of communication and computation	×	√
Improved rate of convergence	V	V
Re-use of data in shared caches	V	V
Reduced MPI overhead	₹	√

[1] Introduction to High Performance Computing for Scientists and Engineers [2] G. Hager [3] 'Boosting CUDA Applications with CPU-GPU Hybrid Computing' [4] CLM Web page

HPC-A[dvanced] Scientific Computing (cf. Prologue) – Second Part

- Consists of techniques for programming & using large-scale HPC Systems
 - Approach: Get a broad understanding what HPC is and what can be done
 - Goal: Train general HPC techniques and systems and selected details of domain-specific applications

Outline of the Course

- High Performance Computing
- 2. Parallel Programming with MPI
- Parallelization Fundamentals
- 4. Advanced MPI Techniques
- 5. Parallel Algorithms & Data Structures
- 6. Parallel Programming with OpenMP
- 7. Graphical Processing Units (GPUs)
- 8. Parallel & Scalable Machine & Deep Learning
- 9. Debugging & Profiling & Performance Toolsets
- 10. Hybrid Programming & Patterns

- 11. Scientific Visualization & Scalable Infrastructures
- 12. Terrestrial Systems & Climate
- 13. Systems Biology & Bioinformatics
- 14. Molecular Systems & Libraries
- 15. Computational Fluid Dynamics & Finite Elements
- 16. Epilogue
- + additional practical lectures & Webinars for our hands-on assignments in context
- Practical Topics
- Theoretical / Conceptual Topics

Outline

- Scientific Visualization & Computational Steering
 - Motivation & Objectives for Visualizations in Scientific Computing
 - Understanding different HPC Simulation Data & Data Types
 - Selected Visualization Tools & Technologies arranged in a Stack
 - Multi-scale Visualization & Interactive HPC with JupyterHub
 - Computational Steering & Scientific Wave Application Example

- Promises from previous lecture(s):
- Lecture 1 & 5: Lecture 11 will give indepth details on scalable approaches in large-scale HPC infrastructures and how to use them with middleware
- Note that this lecture is only a short lecture that usually needs a full course
- The goal is to understand selected HPC application fields & provide a few pointers to other advanced related university courses/topics/tutorials

Scalable Infrastructures

- Large Scale HPC Infrastructures & PRACE Research Infrastructure
- e-Science & Grid Computing Infrastructures for Resource Sharing
- Single System View with Grid Middleware Systems & UNICORE Example
- Scientific Workflows & Ice Dynamic Model Application Example
- Collaborative Data & Cloud Infrastructures

Scientific Visualization & Computational Steering

Scientific Visualization – Motivation

- Graphically illustrate scientific data based on HPC simulations
 - Enable scientists to understand and glean insights from simulation data & machine learning datasets
 - Provides feedback for simulation models derived from known physical laws or data measurements
 - Mostly applied in a post-processing step in simulations or visualization during run-time of simulations

modified from [5] 'Scientific
Visualization', Wikipedia

- Scientific Visualization is an interdisciplinary branch of science and a research field of its own
- It is primarily concerned with the visualization of multi-dimensional phenomena where the emphasis is on realistic renderings of volumes, surfaces, etc. with a dynamic time component

Scientific Visualization – Objectives in HPC

Selected objectives

- Analyze data and explore information: Easier to get patterns, regularity, and associations
- Reduces time to understand complex data
- Improve comprehension of complex phenomena and processes
- Find new meanings and interpretations
- Make visible the invisible
- Check quality of HPC simulations & measures
- Make effective presentation of information and results (brief & efficiently)

Key objectives of scientific visualization in HPC are to (a) analyse/explore & (b) present and communicate scientific data

[6] CINECA - Scientific Visualization Training

Scientific Visualization – Understanding HPC Data

Scientific Visualization – Selected HPC Simulation Data Types

Visualization Tools & Technology – Different Stacks

- A wide range of tools and technologies exist (small selection)
 - Examples stand for several different tools on the same level
 - Many free open source tools are available
 - Range of commercial tools offer massive amounts of visualization support
 - Supercomputing centres offer training courses and employ typically also some visualization experts

A wide variety of tools & techniques exists for scientific visualization starting from low-level programming languages support and cutomizable GUIs to high level GUIs and HD visualization

Multi-Scale Visualization

modified from [13] M.Axer

modified from [8] T.Kuehlen

Computational Steering of (Iterative) Parallel Algorithms via MPI (cf. Lecture 5)

- Particle Simulations using PEPC library (see above)
 - E.g. research star cluster dynamics in astrophysics or particle acceleration simulations via laser pulses
 - E.g. Iterations over time using nbody6++ parallel algorithm
 - Steering: changing parameters during the run-time of simulation

[11] M. Riedel et al., computational steering, 2007

```
call flvisit_nbody2_steering_recv(
& VISITDPARM1, VISITDPARM2, VISITDPARM3,
& VISITDPARM4, VISITIPARM1, VISITIPARM2,...)
...
if(LVISIT_ACTIVE.eq.1) Then
VDISTANCE=VISITDPARM4
write(*,*) 'VISCON: VDISTANCE=', VDISTANCE
endif
...
IF(VISITDPARM2.gt.0) THEN
DTADJ = VISITDPARM2
END IF
IF(VISITDPARM3.gt.0) THEN
DELTAT = VISITDPARM3
END IF
```


visualize status

- Computational steering is the technique of manually intervening with an HPC simulation in order to change its outcome by the manipulation of certain parameters computed
- It requires the visualization during runtime (online) in order to properly steer parameters
- Computational steering is an old term, recently more used is 'interactive simulations'

CALL MPI_BCAST (DTADJ, 1, MPI_DOUBLE_PRECISION,

Scheduling vs. Emerging Interactive HPC Applications (cf. Lecture 1)

[9] A. Lintermann & M. Riedel et al., 'Enabling Interactive Supercomputing at JSC – Lessons Learned'

[10] A. Streit & M. Riedel et al., 'UNICORE 6 – Recent and Future Advancements'

[12] Project Jupyter Web page

[Video] Scientific Visualization with Wave Application Example

[7] YouTube Video, WaveAnimations

Scalable Infrastructures

The Power of 'Scalable Infrastructures'

- Parallel computing can be done within one or across n computers
 - Perform calculations, visualizations, and data processing...
 - ... at an incredible, ever-increasing speed... as part of infrastructures
- Solutions of (scientific) problems often also require 'resources' that are not locally available
 - Academic: Global collaborations that jointly perform research
 - Industry: Companies with different branches share (customer) information
 - A resource is a specific hardware or software system such as a parallel computer, a disk or tape storage, 3D display capabilities, or a (scientific) measurement instrument like a telescope
 - Parallel computing infrastructures enable the parallel use of such resources with many others

Different Computing Paradigms Drive Infrastructure Design

A High Performance Computing (HPC) – driven infrastructure is based on computing resources that enable the efficient use of parallel computing techniques through specific support with dedicated hardware such as high performance cpu/core interconnections

HPC

network

interconnection

important

A High Throughput Computing (HTC) – driven infrastructure is based on commonly available computing resources such as commodity PCs and small clusters that enable the execution of 'farming jobs' without providing a high performance interconnection between the cpu/cores

The complementary Cloud Computing & Big Data – Parallel Machine & Deep Learning Course focusses on High Throughput Computing

Large Scale HPC Infrastructure – Major Concepts & PRACE Tier-0 Example

Tier-X design

- Based on different levels of computational power
- Needs to be synchronized with EU, national, or regional funding streams and partner as HPC machines are costly resources

Scientific Peer-review

- Roundtable of known experts judge proposals to receive computing time
- Achieves 'greatest minds get most valuable and costly resources'

Common Tools & Training Approach

- Idea of a common basic set of MPI/Open/application libraries
- Emerging same set of modules for data sciences (e.g. TensorFlow)
- Idea 'common production environment' (e.g. change systems)

Large Scale HPC Infrastructure – PRACE Example

Applications', Journal of Grid

Computing, 2011

- Partnership for Advanced Computing in Europe (PRACE)
 - European multi-disciplinary
 HPC-driven infrastructure
 - Many European countries are members of this research infrastructure
 - Provides computational resources to a wide range of scientific disciplines
- Different 'time grant' models
 - Preparatory access (prepare projects)
 - Project access (after peer-review)
 - Multi-year access (for large communities)
- Follow-on to earlier infrastructure efforts
 - E.g. Distributed European Infrastructure for Supercomputing Applications (DEISA)

Engineering

Next Generation 'e-Science' Infrastructures & Virtual Organizations

'e-Science is about collaboration in key areas of Science and the next generation infrastructure that will enable it.'

[17] Taylor , 'Enhanced-Science (e-Science) Definition', 2000

[18] I. Foster et al., 'The Anatomy of the Grid: Enabling Scalable Virtual Organizations', 2001

A virtual organization (VO) enables a secure sharing of a wide variety of geographically distributed resources across different organizational boundaries (e.g. time limited, dynamic add/remove)

Grid Middleware to Access used in e-Science, Grid & HPC Infrastructures

- Specialization of a general 'middleware in distributed systems'
 - Establishes a 'single system view' for users including security
 - Example: UNICORE Grid Middleware System (open source)

[19] A.Tanenbaum et al., 'Distributed Systems'

[20] M. Memon & M. Riedel et al., 'Scientific workflows applied to the coupling of a continuum (Elmer v8.3) and a discrete element (HiDEM v.1.0) ice dynamic model', 2019

Scientific Workflows using UNICORE Middleware on HPC Infrastructures

Collaborative Data & Cloud Infrastructures

[21] High Level Expert Group on Scientific Data, Riding The Wave – How Europe can gain from the rising tide of scientific data, 2010

 A collaborative data infrastructure combines the massive amount of unique resources of large multi-disciplinary data and computing centers with strong domain-specific centers (e.g. climate) Grid computing can be seen as the major precursor of industrydriven Cloud computing: Inspired many technology approaches used in clouds & virtualization (e.g. in their backend infrastructures)

[22] Wikipedia 'Cloud computing'

Complementary Cloud Computing & Big Data – Parallel Machine & Deep Learning Course offers more on Clouds & Data Infrastructures

Large-scale Computing Infrastructures (cf. Lecture 1)

- Large computing systems are often embedded in infrastructures
 - Grid computing for distributed data storage and processing via middleware
 - The success of Grid computing was renowned when being mentioned by Prof. Rolf-Dieter Heuer, CERN Director General, in the context of the Higgs Boson Discovery:
- Other large-scale distributed infrastructures exist
 - Partnership for Advanced Computing in Europe (PRACE) → EU HPC
 - Extreme Engineering and Discovery Environment (XSEDE) → US HPC
 - 'Results today only possible due to extraordinary performance of Accelerators – Experiments – Grid computing'

[16] Grid Computing Video

Complementary Cloud Computing & Big Data – Parallel Machine & Deep Learning Course uses Large-Scale Computing Infrastructures

[Video] Grid Infrastructure Example Contributed to the Higgs Boson Discovery

[16] YouTube Video, Grid Computing

Lecture Bibliography

Lecture Bibliography (1)

- [1] Introduction to High Performance Computing for Scientists and Engineers, Georg Hager & Gerhard Wellein, ISBN 143981192X
- [2] G.Hager, MPI+OpenMP hybrid computing (on modern multicore systems), Online: http://www.speedup.ch/workshops/w39 2010/slides/hager.pdf
- [3] Changmin Lee, Won Woo Ro, Jean-Luc Gaudiot, 'Boosting CUDA Applications with CPU—GPU Hybrid Computing', Int J Parallel Prog (2014) 42:384–404, DOI 10.1007/s10766-013-0252-y
- [4] Community Land Model (CLM), Online: http://www.cgd.ucar.edu/tss/clm/
- [5] 'Scientific Visualization' on Wikipedia, Online: http://en.wikipedia.org/wiki/Scientific visualization
- [6] 'CINECA 13th Summerschool on Scientific Visualization', Online: http://www.hpc.cineca.it/content/training-material
- [7] YouTube Video, 'Interactive simulation of water flow and salinity transport using hands', Online: http://www.youtube.com/watch?v=kzFBZ8KaWF4
- [8] T. Kuhlen, 'Automatisierte Datenanalyse und Experten-Beurteilung', 2013
- [9] A. Lintermann & M. Riedel et al., 'Enabling Interactive Supercomputing at JSC Lessons Learned', ISC 2019, Frankfurt, Germany, Online: https://www.researchgate.net/publication/330621591 Enabling Interactive Supercomputing at JSC Lessons Learned ISC High Performance 2018 International Workshops FrankfurtMain Germany June 28 2018 Revised Selected Papers
- [10] A. Streit & M. Riedel et al., 'UNICORE 6 Recent and Future Advancements', Online: https://www.researchgate.net/publication/225005053 UNICORE 6 - recent and future advancements
- [11] M. Riedel, Th. Eickermann, S. Habbinga, W. Frings, P. Gibbon, D. Mallmann, F. Wolf, A. Streit, Th. Lippert, Felix Wolf, Wolfram Schiffmann, Andreas Ernst, Rainer Spurzem, Wolfgang E. Nagel, 'Computational Steering and Online Visualization of Scientific Applications on Large-Scale HPC Systems within e-Science Infrastructures', pp.483-490, Third IEEE International Conference on e-Science and Grid Computing, 2007, Online:

https://www.researchgate.net/publication/4309569 Computational Steering and Online Visualization of Scientific Applications on Large-Scale HPC Systems within e-Science Infrastructures

Lecture Bibliography (2)

- [12] Project Jupyter Web page, Online: https://jupyter.org/hub
- [13] M. Axer, BigBrain Presentation, INM-1, 2014
- [14] PRACE Research HPC Infrastructure, Online: http://www.prace-ri.eu/
- [15] W. Gentzsch, D. Girou, A. Kennedy, H. Lederer, J. Reetz, M. Riedel, A. Schott, A. Vanni, M. Vazquez, J. Wolfrat, 'DEISA Distributed European Infrastructure for Supercomputing Applications' Journal of Grid Computing, 9 (2011) 2, 2011, pp. 259 277, Online:

 https://www.researchgate.net/publication/220621391 DEISA-Distributed European Infrastructure for Supercomputing Applications
- [16] How EMI Contributed to the Higgs Boson Discovery, YouTube Video, Online: http://www.youtube.com/watch?v=FgcoLUys3RY&list=UUz8n-tukF1S7fql19KOAAhw
- [17] J. Taylor, Enhanced-Science (e-Science) Definition, Online: http://www.e-science.clrc.ac.uk
- [18] Ian Foster et al., 'The Anatomy of the Grid: Enabling Scalable Virtual Organizations', International Journal of High Performance Computing Applications, 2001, vol. 15, no. 3, pages 200-222, Online:
 - http://hpc.sagepub.com/content/15/3/200.full.pdf+html
- [19] A. S. Tanenbaum and M. van Steen. Distributed Systems Principles and Paradigms. Prentice Hall International, ISBN 0132392275, 2006.
- [20] M. Memon & M. Riedel et al., ,Scientific workflows applied to the coupling of a continuum (Elmer v8.3) and a discrete element (HiDEM v1.0) ice dynamic model', Geoscientific Model Development (GMD), Vol 12 (7), 2019, Online:
 - https://www.researchgate.net/publication/326521081 ScientificWorkflows Applied to the Coupling of a Continuum Elmer v83 and a Discrete Element HiDEM v10 Ice Dynamic Model
- [21] High Level Expert Group on Scientific Data, ,Riding The Wave How Europe can gain from the rising tide of scientific data', 2010, Online: http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/hlg-sdi-report.pdf
- [22] Wikipedia, ,Cloud Computing', Online: http://de.wikipedia.org/wiki/Cloud-Computing

