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Review of Lecture 8 — Parallel & Scalable Machine & Deep Learning

(what type of flower is this?)

procassor 1 processar 2
512 | —o- Hybrid DS1
O O 256 | - Hybrid DS2
1w 24 & 2 \2g | - MPIDST
Q Q oSt o) @) Linear
o) s ™
lﬁo 9504 51 3 3 ®
O 2 16
@] 8
i) I'e BgEe} @) .
:mo Qs g Qui 1 O 2 )
0 1
(ST — p e m— ] 2 8 32 128 512

Scenario ‘pre-processed data‘’, 10xCV serial: accuracy (min)

~IC 1

10

100

1000

10000

2 4890 (18.81)
4 57.53(16.82)
8  64.18 (18.30)
16 68.37 (23.21)
32 70.17 (34.45)

(flowers of type ‘IRIS Setosa’)

65.01 (19.57)
70.74 (13.94)
74.45 (15.04)
76.20 (21.88)
75.48 (34.76)

73.21 (20.11)
75.94 (13.53)
77.00 (14.41)
76.51 (20.69)
74.88 (34.05)

75.55 (22.53)
76.04 (14.04)
75.78 (14.65)
75.32 (19.60)
74.08 (34.03)

74.42 (21.21)
74.06 (15.55)
74.58 (14.92)
74.72 (19.66)

number of cores

First Result:
best parameter set from
14.41 min to 1.02 min

Second Result:
all parameter sets from

73.84 (38.78)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

~IC 1 10 100 1000 10000
(Nowers o type RIS Virginica) 2 7526 (1.02) 65.12 (1.03) 73.18 (1.33) 75.76 (2.35) 74.53 (4.40)
4 57.60(1.03) 70.88 (1.02) 75.87 (1.03) 76.01 (1.33) 74.06 (2.35)
8  64.17(1.02) 74.52 (1.03) 77.02 (1.02) 75.79 (1.04) 74.42 (1.34)
16 6857 (1.33) 76.07 (1.33) 76.40 (1.34) 75.26 (1.05) 74.53 (1.34)
32 7021 (1.33) 75.38 (1.34) 74.69 (1.34) 7391 (1.47) 73.73 (1.33)

g

[15] A. Gulli et al. o By
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[12] Image sources: Species Iris Group of North America Database, www.signa.org [13] M. Goetz and M. Riedel et al, Proceedings IEEE Supercomputing Conference, 2015

~9 hours to ~35 min

[14] G. Cavallaro & M. Riedel &
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Understanding Big Data Impacts
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Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning
9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns
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11.
12.
13.
14.
15.
16.

Scientific Visualization & Scalable Infrastructures
Terrestrial Systems & Climate

Systems Biology & Bioinformatics

Molecular Systems & Libraries

Computational Fluid Dynamics & Finite Elements

Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

= Practical Topics

» Theoretical / Conceptual Topics
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Outline

= Debugging & Profiling Techniques

Origin, Terminologies & Bug Prevention Approaches

Review Printf Debugging & Advanced Debugging Techniques & Tools
Terminologies, Performance Terms & Understanding Wall-clock time
Simple MPI Timing Approaches & MPI Profiling Interface

Selected Profiling Techniques & Tools using Profiling

= Performance Optimization Methods & Toolsets

Performance Measurements Metrics for MPl & OpenMP

Tracing Technique & Open Tracing Format

Simple Loops Constructs & Improving MPI Function Calls

Using the right MPI Collectives for better Performance

MPI & OpenMP Problem Patterns & I/O Hardware Dependencies

Promises from previous lecture(s):

Practical Lecture 0.2 & Lecture 1:
Lecture 9 will offer more insights into
performance analysis systems with
debugging, profiling, and HPC
performance toolsets

Lecture 3 & 5: Lecture 9 will give details
on how to measure performance in
parallel programms & and related tools
using various applications

Lecture 4: Lecture 9 on debugging,
profiling & performance toolsets offers
insights into performance analysis
tools to understand MPI code better

Practical Lecture 5.1: Lecture 9 will
offer more examples where MPI non-
blocking communication can influence
the performance of parallel applications

Lecture 6: Lecture 9 will provide a set
of tools that can be used for
monitoring, debugging, and
performance analysis of MPI and
OpenMP




Debugging & Profiling Techniques

O
O 0
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Origin & Terminologies

= Origin of term ‘Debugging’
= Mark Il ‘Supercomputer’ @ Harvard University (~5 flop/s)
= Debugging is a methodical process of

. L
* Incident: ‘moth found trapped finding and fixing flaws in software

inside the computer, we are debugging...’
[1] Debuggers and Parallel Debugging,

" COined the term: HPC Best practices
‘First actural case of bug being found’

= Examples

= Memory problems: buffer overflow, wrong pointers, out of array bounds
Code complexity: one way of the program we haven‘t thought of...
Argument and (data) type mismatches
Unitialized variables

d—**""

01010
2101100101001101011010010191

1001010100100110010)
ANCE|

= Broad topic in parallel programming with many tools ‘ Wl
= E.g. HPC centers run intensive debugging training days... i TRAINING PORTAL

= Large collection of trainings in PRACE training repository [2] PRACE Training
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Terminologies — Deadlock & Race Condition

" Programming parallel algorithms

= Challenges often rely in the complexity
of ‘concurrency & computation’

= A deadlock is a situation wherein two ore more
competing actions are each waiting for the other to
finish, and thus neither ever is able to finish

- A race condition can be a flaw in a process
whereby the output and/or result of the process is
unexpectedly and critically dependent on the
sequence or timing of other events

Lecture 9 — Debugging & Profiling & Performance Toolsets
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|
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Terminologies — Debugging, Profiling & Optimization

" Terminologies are related
= Fine granular differentiation, but techniques (partly) overlap

= Debugging
= Finding an error in the code and fixing it for correct program execution
= E.g. correcting the usage of arrays in case of out of bounds problems

= Profiling (aka ‘aggregate statistics’)
= Understanding the program in terms of required execution time segments
= E.g. which of the different functions in the program takes the most time?

= (Performance) Optimization
» Should start when the ‘major flaws/bugs’ in the software are solved
= Tuning the program to enable a better performance (e.g. better speed-up)
= E.g. finding ‘slow executions of codes patterns’ with dedicated tools
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Bug Prevention Approaches — Software Engineering

= Lessons learned from serial programming
= Use same techniques as for parallel programming (e.g. MPI, OpenMP)
= Apply software engineering principles (e.g. robustness, check error codes)

= Good parallel code readability
= Meaningful variable and function names
= Meaning and units of variables
= Purpose and inputs/outputs descriptions of functions

= \ersion control
= Take advantage of version control systems (e.g. cvs, svn, git, etc.)

= Well-defined code structures
= Program towards different modules, enable re-usability of code elements

Many parallel codes & libraries used in scientific computing don’t implement the approaches
Bug prevention by applying software engineering concepts and having good code readability
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Bug Prevention Approaches — HPC Complexity

= Complex HPC environments

= Fast ‘code-change-compile-run’ trials (from serial programming) infeasible
Scheduler is executing a script with a program, is it the right program?
Specifying a program as absolute path to executable can help
Using not the absolute path executes the first in SPATH variable
" E.g.use ‘which programname' to check ifitis really the right program

" Implement step-wise approach
= Write ‘serial code’ that runs perfect, then use small number of processes
= Next steps: fix communication/synchronization before going to large-scale

= Complex parallel programming with libraries
= Large-scale parallel codes might depend on many existing libraries
= Library version, handling, and implementation might vary over time

Bug prevention also means to check the HPC environments in which programs are executing
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Review ‘printf‘ Debugging Technique

= Use of simple yet effective ‘printf’ statements while programming
= Easy ‘instrumentation’ of the code, no extra library, etc.
= Take advantage of rank information what process is doing what work
= Provides easy adjustable output, but order/process of outputs can vary

= Disadvantages

= ‘Constant cycle programming’ is time-consuming, error-prone, etc.
Not sure if bug found: add printf, compile, run, analyze output = again...
Extra printf code not helps for application logic = often remove after fix
Added extra code often helps only to ‘going after one bug’, repeat per bug

Outputs maybe vary, e.g. in the timing when outputs are printed/process
(cf. Lecture 3 and Lecture 6 printf statements in example code runs)

Printf debugging is not appropriate for the challenges of complex parallel program analysis

Lecture 9 — Debugging & Profiling & Performance Toolsets
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Advanced Debugging Techniques

= Offer many advantages
= Crash inspection

Function call stack overviews

Understanding logic via step-wise through code
Automated interruption and setting breakpoints
Insights into used variables (e.g. state, values, etc.)

= Added value: use of graphics
= A wide variety of tools exists that visually support the debugging process
= GUIs on local laptops is convenient, but limited for large-scale programs

= HPC environments tend to be remote environments: GUIs might be slow
(e.g. using SSH — X for X11 forwarding might be slow sometimes)

" Good (fast) tools on command-line also exists, e.g. GDB

= Tools: Look all very similiar and often provide same advantages
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Selected Debugging Tools

= Open Source Domain
= GNU Debugger (GDB) — basic debugging together with DDD/Kdbg GUI
= Marmot — MPI checker for parameters, standard conformance, deadlocks
= Eclipse — Parallel Tools Platform integrated development environment

= matvec (=8 E= 5|
File Edit View Group Process Thread ActionPoint Debug Tools Window  Help |
ooy JPHE D (538 ¢ 0 4 9

Go_Halt Kill Restart| Next Step Out fun To|Record GoBack Prev
s 1(154847): matvec (At Breakpoint 1)
read 1(46912514346912) (Stopped) |||
race ¥l

[4] TotalView Tool

= Commercial tools

= RogueWave TotalView —
Graphical debugging tool supporting OpenMP/MPI

= Alinea Distributed Debugging Tool (DDT) -
Enabled highly scalable debugs i

3, 2000000402
(EAL4(10))

[E=5EcE =
dit View Group Process thr!ad Action Point Debug Tools Window  Help

Group (contrany 1| B> iain | 4

ill Restart

€55 1 (§64847): matvec (At Breakpoin
Thread 3 (46312588793024) (Stopped)
T

0 [ [Funct:

I (REAL*4 (10))
1] tota1 2.2000000+02

e
= Profiling tools or features supporting GPGPUs T, o |
= Mostly very vendor-specific, e.g., NVIDIA toolsets i \ ““““ ol mmEmo D%l

7 N\ Aston Points | fireads] L
H )

=  The ‘market of debugging tools’ is dominated by strong commercial and expensive software .
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GDB Debugging Open Source Tool — Serial & Parallel

= GDB is essentially a tool for debugging serial programs
= Serial debuggers can be used to debug parallel programs (‘basic features’)
= Works for low number of cores, no choice if using high number of cores

= Approach: Attach debugger to
individual running MPI proccesses
" Run mpirun, g0 to node,
attach debugger to corresponding pids

= Approach: use mpirun to
launch xterms with serial debuggers

= Separate window for each MPI process,
each running a serial debugger

Lecture 9 — Debugging & Profiling & Performance Toolsets

/* source to obtain hostname and pid of correspondend process */
int i = 0;

Char hostname[256] ;

gethostname (hostname, sizeof (hostname)) ;

printf (“PID %d on %s ready for attach\n"“, getpid(), hostname);
fflush(stdout) ;

while (0==1) sleep(5);

/*commandline: attach gdb to a corresponding pid, here 4711 */
/home/user/gdb executable 4711

[3] OpenMPI Debugging
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DDD Debugging Open Source GUI Tool — OpenMP Example

File Edit Miew Program Commands Status  Source Data ﬂelpl

0:[ tr ;D @ @ @ o’

Lookup Fihd= EBreak Watch  Print  Display  Plot Hide  Hotate: Set Undizp

float f=0.0; 5
int i, th;
#pra?ma %mp parallel for dgf?tﬂt(none) private(i,th) shared(f) Run
or (1 =0; 1<100; i+ | .
gﬂubha - t_thread ] ——
= omp_get_thread_num{}; Step | Stepi
printf("xd\n", thl; .Threads ﬂﬂ
g = sqre(0.25%i+th); 14 Thread 0x41202340 (3 at add plcay| et
D 3 f4=g; 1= Th 1] ar Until | Firish
2 Thread 0x40200940 (3 at add.c:17 -
printf("result = %fin", £ 1 Thread 0x2aaaabBd3dz20 (3 at add.c:17 MM
Up | Down
?} Undao | Reco .
H Edit | Make | =
%rsgl;point 1, main.omp_fn.0 (.oomp_data_i=0x7fffFFffdaf Close | Help | — 4
q C
Cantinuing.

[Switching to Thread Ox40a00940 (LWP 251700]

Breakpoint 1, main.omp_fn.0 (.omp_data_i=0x7fffffffdaf0) at add.c:17
{gdb) graph display i

(gdb) graph display th

{gdb) ¢

Cantinuing.

2

0
1
[Switching to Thread 0x41401340 (LWP 25171]]

%rsgl;pp'int 1, main.omp_fn.0 {.omp_data_i=0x7fffffffdafod at add.c:17?
g

IT\.

A Display 3: th (enabled, scope main. omp_fn.0, address 0x41401074)

[1] Debuggers and Parallel Debugging
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TotalView Commercial Debugging Tool — Capabilities

= Commercial Tool
" Created and maintained by RogueWave Software

= Capabilities
= Supports programming languages:
C, C++, Fortran77, Fortran90

= Offers a GUI for source code
debugging and defect analysis

= Enables deep views into program
states and their variables

= Provides control over processes
and thread execution

= Parallel Debugging Support
= Multi-threaded debugging
= Distributed debugging
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|
[o]lE

Fille Edit Miew Group Process Thread Action Point Debug Tools  Window Help

Group (Contraly jl D ii [E ED

Go Hait Kill Restart) Mext Step Out Run To

Process 1 (5048): fork_loopLinux (Stopped)
hread 1 (3086324448 (Stopped) <Trace Traps

5 § @

€ "1 1 3

GoBack Frey UnStep Caller BackTo Live

5 B

Stack Trace

1

Stack Frame

]

fork_wrapper, FP=bEfEf438 |4 ||Function "fork_wrapper': A
nain, FP=bfff£4T7E Fork count: 0x00000000 (D) |
_ libc_start_main, FP=bffffddd Block "gbl"
my_ptid: 0xb7febaall (3086924448)
new_tid: Dxbifffh04 (3221222660)
attr: (pthread_attr t)
whoops 0x007£2£fd4 (8335316)

Local_fork_count: Oxbffff420 (-1073744864)

Registers for the frame:

fork_loop. coowtl1025  forke izl
fork_loop. cool026  forke palete
fork_loop. cool041  fork_

my_important fune(pending  Properies

S, MalTEalooN F 1000N40040%
Function fork_wrapper in fork_loop.cxx = =]
1030 A
1031 wvoid fork_wrapper (int fork_count)
103
1033 pthread t my ptid = pthread self();
1034 pthread_t new_tid;
1035 pthread_attr_t attr;
1036 int whoops;
1037 int local fork count;
1038 thread_ptids[0] = my_ptid;
1039
1040 if (Ifork late)
= forker {fork_count); o sturns. */
1042 mive
%gjg local_fork_count = fork_co Add to Expression List 1; #* mlways for
1045 printf ("Pid %d: Spinning ¢ Across Processes forkyn", (int) (getpid(}}); ~
1046
1047 printf ("root_ptid = %ld, y Across Threads bid), (int) (getpid()));
1046 new_tid = 0; |
1049 #if Idefined ({_ Lyros) Set Breakpoint
}E.EEI “HEE{Aread_attr_lnlt (Zatbr); Set Barrier 7l
Create Watchpoint — b
Action Pnims] Prgzesses] Th[eads] Eihille il P Ll T+|
fork_loop. com#B55  walb_a ¥

[4] TotalView Tool
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TotalView Commercial Debugging Tool — Graphs

= E.g. identfiying cycles that may 5 Message gueue Graph — 1.1 [cycloLimu] BE
prevent the program to finish Losten] Epreter] N E

A

» [15]

[4] TotalView Tool
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TotalView Commercial Debugging Tool — MemoryScape

" E.g. understanding
memory problems,
segmentation faults, etc.

[4] TotalView Tool
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=| Gll[Ei]
File Tools Window Help
- s | =
il G B
! kanage Processes  Memary Debugging Options  Tips al

June 12, 2009

Save Data
Export Memory Data...

Heap Status Reporis
Source Report
Backirace Report

Other Reports Categories
Leak Detection Reports
temory Usage Reports
Corrupted kemoary Repart
Compare Memary Usage

Other Tasks
Manage Filters

Process Selection

Process Event

Heap Status Graphica
Options
v Detect Leaks [~ Enable Filtering

| Memory block:
Type

Filtered

Size

Start Address
End Address

Leaked

Mo

4
0x08318970
0=08316396

Heap Information | Backtrace/Source | Memory Cont Backtrace ID &
Overall Tatals Selected Block Allocator (&
= Owner @
Category Eropenv | Point of allocati
H_eap Start Address | Fje myClassE. o
+-MAllocated End Address | pethod myClassB:my Classe
+- A Carrupted Guard Bl Size Line ]
MCeallocated Type Guard Blocks:
+-EGuard Blocks +- Pre-guard Fra-guan
+-MHoarded +- Post-guard size i bytes
T MLeaked f - Filtered pattem WKT777I7T7
K > L Rarktrare 1N | Post-guand
size i hytes
pattern 0399995993

uard Bl

5
-
3
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Terminologies — Debugging, Profiling & Optimization

" Terminologies are related
= Fine granular differentiation, but techniques (partly) overlap

= Debugging
= Finding an error in the code and fixing it for correct program execution
= E.g. correcting the usage of arrays in case of out of bounds problems

= Profiling (aka ‘aggregate statistics’)
= Understanding the program in terms of required execution time segments
= E.g. which of the different functions in the program takes the most time?

= (Performance) Optimization
» Should start when the ‘major flaws/bugs’ in the software are solved
= Tuning the program to enable a better performance (e.g. better speed-up)
= E.g. finding ‘slow executions of codes patterns’ with dedicated tools
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Understanding your Program

= Performance Analysis & Tuning Tools

* Enable optimized applications (after iterations)
= Require concrete measure metrics &l

= Measurement metrics

g
= Generic metrics . £
modified from [7] Scalasca Flyer v
= MPI / OpenMP specific metrics 2
o e . m
= Scalability metrics z = *
= Strong / weak scaling TR @
= HPC centers perform scalability workshops Qo ¢

. \O
lim ized Ap p\\ca&\
= Getting code scalable together with experts

= Ascalable parallel code is a code that keeps a good performance ratio / core by increasing cores
" Getting a parallel code scalable is a ‘process cycle‘ that include performance analysis & tuning
" Large-scale parallel code needs not only good optimization techniques (also fault tolerance, etc. )
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Time-To-Solution — Parallelization with Serial Elements

= S = Algorithmic limitations
= E.g. elements need to be simply executed one after another

= S = Bottlenecks with

Amount of work/overall problem size:

s+p=1

s = serial (nonparallelizable part)
p = parallelizable part

shared resources
= E.g.shared paths to memory in multicore chips or |/O devices

= S = Startup overhead
= E.g.starting a parallel program takes time (often initialization phases)

= Note: if parallel application is short-running, startup has strong impact

= S = Communication
= E.g. not always fully concurrent communication between

different parts of a parallel system

Lecture 9 — Debugging & Profiling & Performance Toolsets
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Performance Definitions & Time Measurements — Revisited (cf. Lecture 3)

= Performance here means ‘work (s+p) over time (T.5)’

» P> =serial performance for fixed problem with | T =s +p

= PP = parallel performance for fixed problem with | T =s + p/N

p_ Sstp _ 1
T TPN) ¢y 1S
f() S+N

P;




Terminologies — Wall-Clock Time (aka Walltime)

= ‘Benchmarking’ a parallel program requires a dedicated term
= Most sensible time measure is called wall-clock time (i.e. elapsed time)
= Using ‘only CPU time" is prone to misinterpretation for many reasons...
= E.g. program runtimes with ‘contributions’ from 1/0, other processes, etc.

= Relationship to ‘cost models’ — why wall-clock time is important
= Goal: discourage the use of too many workers (with less performance)
HPC centers ‘charge’ for compute time in units of CPU wall-clock hours
Real money is rarely used - scientists get a ‘grant for N wall-clock hours’
An N-CPU job running for a time T, will be charged proportionaltoN T,
Approach: minimizing walltime (i.e. ‘time-to-solution’) saves ‘costs’

" Wall-clock time is the actual time taken to complete a program and the sum of three different terms: CPU
time, 1/0 time and the communication channel delay (e.g. message passing)

modified from [8] Wikipedia on ‘wall-clock time’ [6] Introduction to High Performance Computing for Scientists and Engineers
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Simple Example: Use of Wall-clock time to show Speed-up

job 1797203 (RM job '1797203.judgem’)

= E.g. measure walltimes for a whole e sev e s 5

State: Completed
Completion Code: 0 Time: Fri May 30 08:29:25

parallel data analytics MPI application e

(Time Oueued Total: 00:00:02

" Increasing number of cores leads to

Total ZName:
l . . l L
|Ower t” I Ie_to—SO| utlon Req[0] gifn;;etfgfpciﬁi? 0 Time: Fri May 30 03:46:28

Memor &8s common

00:00:001

OPsYSlya11Time:
Dedic

00:10:41 of 1:00:00

job 1797240 (RM job '1797240.judgenm')

Train-rome-all-4-1

Completed
llﬂo .., Completion Code: 0 Time: Fri May 30 08:57:20
Req[o = lass3:common
00:07:11 of 1:00:00
1000 - I | ii:;:: (Tim 505 1797253 (BM job "1797253.judgem')
o T22ke® 10tal AName: Train-rome-all-s-1
;- 200 Total State: Completed
Completion Code: 0 Time: Fri May 30 08:05:25
.E Reg[0] S g 235: common
=l Memory@¥allTime: 00:05:12 of 1:00:00
oo 131 —— = —
.§ 600 gﬂfﬁ_jﬂ job 1797258 (RM job '1797258.judgem')
" Averag R .
1] TasksP Total AName: Tra;?—rome—a,,—lﬁ—l
2 a00 ! ] | Total State: Completed
E 21lcca Completion Code: 0 Time: Fri May 30 09:11:59
o e Reql0 : common
[Judge .. MWallTime: 00:03:40 of 1:00:00
200 - T + I _¢ Cpsys? S = N roo .
Dediga (Time Queued Total: 00:00:01 le: 00:00:00)
Averag
Tasksp Total Reguested Tasks: 16
D Total Reguested Nodes: 16
Alloca
{judge Re9[0] TaskCount: 16 Partition: judgem
j- 4 ? 10 13 16 [judge Memory >= 4096M Disk >= 0 Swap >= 3584M
- Opsys: ——— Arch: —-- Features: judgec
Number Df processes Dedicated Resources Per Task: PROCS: 1 MEM: 256M SWAP: 3584M
Kverage Utilized Procs: B8.48
TasksPerNode: 1 NodeCount: 16

Zllocated Nodes:

judge076:1
Judge069:1
[judge061:1]

Judge075
Judge067:1
Judge060:1]

judge071:1]
judge063:1]

[9] B2SHARE, piSVM Analytics runtimes

[judge062:1]
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Simple MPI Timing Approaches

= Manual ‘instrumentation’ of a MPI program code segment
= E.g.elapsed wall-clock time between two selected points in a program
= Elapsed time can be computed with ¥p1 wtime ()
= Useful in conjunction with ‘printf statements and calling it more than once
= Simple, but manual work is time-consuming and later often removed

double timel, time2;
timel = MPI Wtime () ;

/* MPI program segment important to understand in terms of elapsed time */

time2 = MPI Wtime () ;

Printf (“elapsed time of program segment is %d\n"“, time2 - timel);

" The function MPI_Wtime() provides the elapsed wall-clock time of a parallel MPI program
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= Usage

MPI Profiling Interface

= Perform manual replacement of MPI routines at link time with PMPI

= Augment wrapper routine with statements, e.g. ‘function call counters’
= e.g. performance analysis tools take advantage of PMPI interface

MPI Send ()

MPI Bcast ()

/* program logic */

» MPI Send () — MPI Send()
— PMPI Send()

----------------------------------- - MPI Bcast()

MPI program source code MPI profiling library MPI standard library

The MPI profiling interface PMPI enables flexible writing of MPI functions wrapper routines
Wrappers named as standard MPI_xyz routines internally call MPI standard routines via PMPI
MPI offers an alias PMPI_xyz for each standard MPI routine, e.g. PMPI_Send() & MPI_Send()

Lecture 9 — Debugging & Profiling & Performance Toolsets
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MPI Profiling Interface — Simple Usage Example

= Usage

= E.g. understanding how often
a specific MPI function was called

= Link the profiling library,

static int numberofsend = 0;

/* implement own wrapper function for MPI call and edit as needed */
int MPI Send( void *start, int count, MPI Datatype datatype,

€.8.cc - o prog.exe int dest, int tag, MPI Comm comm) {
prog.c -lpmpi -lmpi

/* another call - increase counter! */
numberofsend++;
return PMPI send( start, count, datatype, dest, tag, comm);

/* MPI program segment with real program logic */

int program {

MPI Send( ... );

‘simplified
) o demo code’
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Selected Profiling Tools

= Open Source Domain

= Valgrind — instrumentation framework with tools to profile memory usage
= VVampir — Trace-based profiling offering a good ‘timeline view’ of programs
= Scalasca — Trace-based profiling and performance analysis (with patterns)

= Commercial tools

= |ntel® VTune™ Amplifier XE — Graphical profiler tool for parallel programs

= Profiling tools or features supporting GPGPUs
= Mostly very vendor-specific, e.g., NVIDIA toolsets

There is an overlap between tools used in parallel debguggin, profiling & performance analysis
Parallel performance analysis tools partly take advantage of profiling techniques & interfaces
Tracing collects information about the program for post analysis — profiling aggregates statistics

Lecture 9 — Debugging & Profiling & Performance Toolsets

28/78



Scalasca Toolset Example — Analysis Report Examiner CUBE

[7] SCALASCA
Performance
Tool

" Cube 3.2 QT: cubes/zeusmp2_512.cube.gz -

File Display Topalogy Help
[Absnlute ‘v] [Absn\ute |v| [Peer percent ‘v]
Metric tree 1 Call tree I Flat view System tree ‘ Topalogy 0 J Topolagy 1
&[] 0.00 Time [« | & O 000 zeusmp [+] [=]
&+ @ 1.50e5 Execution & [] 0.00 configure 2
=+ [ 0.33 MPI I- (] 0.00 options
0.02 Synchronization G 0.01 mstart
=} [ 0.00 Communication + ] 0.00 dataio
9849.70 Point-to-paint [ 0.00 clocks
1.98e4 Late Sender G+ [ 10.62 srcstep
[ 0.00 Late Receiver G+ [ 0.00 transprt
5329.00 Collective B o000t
[ 0.00 Early Reduce 509.03 lorentz_d
[ 0.00 Early Scan [ 0.00 bvalv1
17 .50 Late Broadcast [ 0.00 bvalv2
362339 Waitat N x N [ 0.00 bvalv3
0.22 N x N Campletion 2557 64 MPI_Waitall
&+ [] 0.00 File 'Q [ 0.00 hsmac
L [ 51 87 Init/Exit [ 0.00 <<iloaps>>
— [ 82546 Overhead [ 5594 .00 bvalemf!
— W 2.99e7 Visits [ 0.00 MPI_Waitall
& [ 1536 Synchronizations [ 0.00 <<jloops>=
G [ 1.79e7 Communications [ 5079.90 bvalemf2
G+ [ 6.77e11 Bytes transferred [ 0.00 <<kloops=>>
& [ 5161.12 Computational imbalance 4568 44 bvalemf3
G [ 500.11 advx1
G+ [l 300 66 advx2
G+ [ 448 27 advx3
EF [ 0.00 intchk
&+ [ 181.88 nudt
I [1 0.00 MPI_Reduce
= &+ [ 0.00 MPI_Finalize = =
al I C I C J«I¥]
0.00 1.98e4 (10.50%) 1.89e5| (0.00 2557.64 (12.89%) 1.98e4 D qg e 'ISD pﬂ - 'Iqﬂ Uq
0.1 2557 64 (1.62e4% 16.01
HE _l

= A powerful analysis report examiner enables to determine (a) which performance problem is faced,
(b) where in the program, and (c) which processes of the HPC machine are affected
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Valgrind Open Source Profiling Tool — Capabilities

= Valgrind is a whole open source ‘instrumentation framework’

Enables building of dynamic analysis tools
Flexible system for profiling Linux executables (including MPI)

= Selected toolset

Memcheck/Addrcheck: Detection of memory-management problems

Cachegrind: Cache profiler - detailed simulation of the |1, D1 and L2 caches is provided to pinpoint the
sources of cache misses

Callgrind: adds call graph tracing to cachegrind - used to get call counts and inclusive cost for each call
happening in a program

Vassif: Memory consumption profiling
Helgrind: Identify race conditions in multithreaded programs

export LD PRELOAD = $VALGRIND MPILIB

mpiexec -n <numbertasks> valgrind <valgrind switches> program.exe

[10] Valgrind Webpage
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VAMPIR Open Source Profiling Tool - Example

B & @ vampir - Trace View - /Vampir/Large/wrf.otf

%W lile Cdit Chart Filter Window Help

=EnrkBoIiERLS &+ ¢ [EIINERRRDRNEG

Timeline
0s 255 50s 75 s 100 s 125 s 150s 175 s 200 s

Process 0 Il . Find: [ MPI_Bcast | x

Process 1
Process 2
Process 3
Process 4
Process 5
Process &
Process 7
Process 8
Process 9
Process 10
Process 11
Process 12
Process 13
Process 14
Process 15

[11] VAMPIR Performance Tool
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[Video] Debugging a MPI Program

[5] YouTube Video, MPI Debugging
with the TotalView debugger



Performance Optimization Methods & Toolsets

O
O
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Terminologies — Debugging, Profiling & Optimization

" Terminologies are related
= Fine granular differentiation, but techniques (partly) overlap

= Debugging
= Finding an error in the code and fixing it for correct program execution
= E.g. correcting the usage of arrays in case of out of bounds problems

= Profiling (aka ‘aggregate statistics’)
= Understanding the program in terms of required execution time segments
= E.g. which of the different functions in the program takes the most time?

= (Performance) Optimization
» Should start when the ‘major flaws/bugs’ in the software are solved
= Tuning the program to enable a better performance (e.g. better speed-up)
= E.g. finding ‘slow executions of codes patterns’ with dedicated tools
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HPC System Software Environment — Revisited (cf. Practical Lecture 0.2)

= Operating System
= Former times often ‘proprietary OS’, nowadays often (reduced) ‘Linux’

= Scheduling Systems
* Manage concurrent access of users on Supercomputers
= Different scheduling algorithms can be used with different ‘batch queues
= Example: SLURM @ JOTUNN Cluster, LoadLeveler @ JUQUEEN, etc.

’

= Monitoring Systems
= Monitor and test status of the system (‘system health checks/heartbeat’)

= Enables view of usage of system per node/rack (‘system load’)
= Examples: LLView, INCA, Ganglia @ JOTUNN Cluster, etc.

HPC systems and supercomputers
typically provide a software
environment that support the
processing of parallel and scalable
applications

Monitoring systems offer a
comprehensive view of the current
status of a HPC system or
supercomputer

Scheduling systems enable a
method by which user processes
are given access to processors

= Performance Analysis Systems focus in this lecture

» Measure performance of an application and recommend improvements (.e.g Scalasca, Vampir, etc.)
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Performance Analysis is a Key Field in HPC — Revisited (cf. Lecture 3)

= Analysis is typically performed using (automated) software tools

= Measure and analyze the runtime behaviour of parallel programs

= |dentifies potential performance bottlenecks
= Offer performance optimization hints and views of the location in time
= Guides exploring causes of bottlenecks in communication/synchronization

Lecture 9 — Debugging & Profiling & Performance Toolsets

Which performance
problem?

Where in the program? Where in the system?

[7] SCALASCA Performance Tool
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Generic Measurement Metrics

= Time — Total CPU allocation time [ Time
= Execution time w/o overhead Execution |
= Overhead time spent in tasks Overhead |
related to the measurement itself
= Visits e
] Number Of times a —{Hardware counters‘
function / region was executed [16] Metrics tour

= Hardware counters

= Aggregated counter values
for each function / region

" Metrics are required in order to have a clear understanding of what is measured in analysis steps
. Generic metrics are CPU allocation time (execution and overhead), visits, and hardware counters
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Metrics for Parallel Programs using MPI

" Time — Execution - MP| — |

Time
Time spent in (instrumented) MPI functions — EQ | ‘
MPI

= Communication - Time spent Communication |
in MPI communication calls E Collective |
(collective and point-to-point)

= Synchronization - Time spent

Point-to-point |
—-{ Synchronization |

Collective |
in calls to MPI Barrier () [ MPlIO |
= MPIl/O - Time spentin - — =T
MPI |/O functions [16] Metrics tour

= |nit/Exit - Time spent in
MPI Init() and MPI Finalize ()

. Metrics for parallel programs using MPI are based on time as part of the program execution time
MPI metrics are Communication (collective/point-to-point), Synchronization, MPI I/O, and Init/Exit
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Metrics for Parallel Programs using OpenMP

= Time — Execution - OpenMP —

Time spent for OpenMP-related tasks

= Synchronization - Time spent
for synchronizing OpenMP threads
= Fork - Time spent by master thread
to create thread teams

= Flush - Time spent in OpenMP
flush directives

= |dle Threads

= Time spent idle on CPUs
reserved for worker threads

Metrics for parallel programs using MPI are based on time as part of the program execution time
MPI metrics are Communication (collective/point-to-point), Synchronization, MPI /O, and Init/Exit

Lecture 9 — Debugging & Profiling & Performance Toolsets

Time ‘
—{ Execution ‘
MPI
OpenMP ‘
Synchronization ‘
Fork ‘
Flush |
L Idle Threads |
S Overhead
[16] Metrics tour
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Tracing Technique — Need for Automation

= Manual/visual trace analysis for whole parallel codes is inefficient

= Measuring metrics with e.g. MPTI wWtime () is error-prone & time consuming

= Automatic trace analysis process

= Enables automatic search for patterns of inefficient behaviour

= Quicker than manual/visual trace analysis and feasible (e.g. large-scale)

®» Guaranteed to cover the entire event trace

= Classification of behaviour & quantification of significance

Low-level

High-level
result

[7] SCALASCA Performance Tool

event trace
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Property

Call
| path

Location

Tracing collects information about
the program for post analysis —
profiling aggregates statistics
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Tracing Technique — Functionality (1)

program

= Step O - Based on general MPI sources
Program Build & Run process

= Application code compiled &

linked into executable executable

. , |
(e-g- using mpicc ) <app|ication + MPI Iibrary))
= Launched with script
(using €.8. mpiexec )
= Application processes
interact via MPI library

[7] SCALASCA Performance Tool
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Tracing Technique — Functionality (2)

= Step 1 - Application Instrumentation sources
= Run automatic code instrumenter
(also manual elements possible) <°°mp”er>*‘“s““me"@
= Program sources are automatically instfumenfd executable
processed to add instrumentation @)"caﬁon N measurement@))

to the executable

= Measurement library is added
into application executable

= Exploits MPI standard profiling
interface (PVIPI) to acquire
MPI events

[7] SCALASCA Performance Tool
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Tracing Technique — Functionality (3)

program
= Step 2 a) — Mleasurement sources
runtime summarization & analysis
= Measurement library <°°mp”er>*i"s"ume"@
manages threads & events instrumented executable” | expt config |

: . ¥
(e.g. enter/exit a function) @p,icaﬁon + measurement @)

produced by instrumentation

"= Measurements summarized
by thread & call-path during execution

= Summary analysis report unified & ‘

collated at finalization summary
analysis
= |nvestigation of summary analysis ¥
using a analysis report examiner tool @a'VS'S report exam'"@ [7] SCALASCA Performance Tool
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Tracing Technique — Functionality (4)

program
u Step 2 b) — Measurement sources
event tracing & analysis
= During measurement Gomp"eoinswmen@
¥
time—stamped events are mstrumented executable” | expt config |
buffered for each thread application + measuremem@?
= Flushed to files along with ¥ ¥y
unified definitions & maps defsaps trace 1'2' o
at program finalization @ el taceanT @)))
= Follow-up analysis replays ¥
events and produces a:;;;g
extended analysis report i
= Investigation of trace analysis (analysis report examiner

using a analysis report examiner tool [7] SCALASCA Performance Tool

Lecture 9 — Debugging & Profiling & Performance Toolsets 44 [ 78



Tracing Technique — Summary

Automatic/manual code instrumenter is used to
enable runtime measurement and event tracing (use
of MPI profiling interface)

Tracing requires a specific measurement library for
runtime summary & event tracing

(basic MPI techniques are limited)

Trace architecture enables serial and parallel event
trace analysis

Use of analysis report examiner tools for interactive
exploration of measured execution performance
properties & metrics

program
sources

(compiler)instrument@
v

instrumented executable

[ expt config |

B ¢
@pplication + measurement @)
h (AL

uni

fied

defs+maps s
i \AAA]
@rallel trace anal@
Y v
summary trace
analysis analysis

v {
@alysis report examin@

[7] SCALASCA Performance Tool



Tracing Technique — Impacts on Scalability

= Weak Scaling Example

= Parallel application Sweep3D benchmark code (fixed problem size/process)
= Scalasca trace analysis completed with up to 294,912 processes
= Parallel trace replay analysis exploits memory & processors for scalability

1000 T T T T T T

v

100 =

Wall time [s]
\

? 3
\

I
-~

4—& Uninstrumented execution -~
Trace analysis (including 1/0)
Parallel trace replay -
-
-~
-~

" Using the tracing technique has an impact on the
runtime and scalability of codes (e.g. /O & # files)

" Replay and analysis of original parallel codes
requires parallel tools & techniques to be
scalable too

1,024 2,048 4,096 8,192 16,384 32,768
Processes
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131,072 262,144
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Open Trace Format (OFT)

= Performance Analysis & Optimization is active research field
= Result is a wide variety of partly different tools with many different formats

" Inconvenience when using different performance analysis tools
= Epilog (Kojak/Scalasca)

Paje format (Paje)

STF (Intel Trace Analyzer)

Tau trace format (Tau) [17] Open Trace Format

Slog2 (Jumpshot)

= Paraver format (Paraver)

= Different OTF versions

global

= OTF2 is successor format to OTF and Epilog formats fefimitions |\ |L.enapshots
= Major re-design and new implementation

= The open trace format is a standardized data structure and API specification for tracing data
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Selected Performance Analysis Tools

= Open Source Domain

Valgrind —instrumentation framework with tools to profile memory usage
Vampir — Trace-based profiling offering a good ‘timeline view’ of programs
Scalasca — Trace-based profiling and performance analysis (with patterns)
Periscope — Scalable automatic performance analysis tool (in development)
PAP| — Interfacing to hardware performance counters

TAU — Integrated parallel performance system

Score-P - Scalable performance measurement infrastructure

= Commercial tools

Intel® VTune™ Amplifier XE — Graphical profiler tool for parallel programs
Intel Tracing Tools (Trace Collector, Trace Analyzer, Message Checker, ...)
SGI ProPack (suite of performance optimization libraries & tools)

There is an overlap between tools used in parallel debgugging, profiling & performance analysis
Parallel performance analysis tools partly take advantage of profiling techniques & interfaces
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Scalasca Toolset Example

= Based on tracing technique

= Three key tools for different
elements in tracing & analysis steps

= Compiler instrumenter
= Scalasca SKIN

= Measurement collector & analyzer
= Scalasca SCANTBD

= Analysis report examiner
= Scalasca CUBE

Lecture 9 — Debugging & Profiling & Performance Toolsets

program
sources

(compiler)instrument@
v

instrumented executable

[ expt config |

]
@plication + measurement @))

Y

VV;P

unified
defs+maps

trace 1

2

N

summary

analysis

¥

Y

@alysis report examin@

vy V ]
@rallel trace an al@
L

trace
analysis

scalasca (3

[7] SCALASCA Performance Tool
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Examples: Scalasca Analysis Report Examiner CUBE & Score-P

" Cube 3.2 QT: cubesizeusmp2_512.cube.gz

Eile Display Topology Help

TAU

lAbsmute H lAbsmute H [F’eer percent H - Sca Ia sSca Perlsco pe
Metric tree } Calltree | Flat view System tree | Topology 0 ‘ Topalagy 1 Va m p Ir - U"IVEFEHI . 3 i 5
5000 e o (& 000 oeems o e * Large-scale analyses * Online identification
e 5ot o contuee B SIS b ] *Automatic detection S e of performance
- —— ) s event traces . * Performance .
[ 0.00 Communication + [J 0.00 dataio Bf walt Stﬂtes d bﬂ Prﬂperu'EE
9849 70 Point-to-paint I 0 0.00 clocks atabase
| Mﬂﬂﬁn&mggmﬁx G+ [ 10,62 srestep
[ 0.00 Late Receiver [+ [J 0.00 transprt
5329.00 Collective EF[J000ct
[ 0.00 Early Reduce 589.03 larentz_d
[] 0.00 Early Scan B+ [ 0.00 bvalvl
17 50 Late Broadcast B [ 0.00 bvalv2
362339 Waitat Nx N B [ 0.00 bvalv3
0.22 N xN Completian - [ 2557 64 MPI_Waitall
[J000File o =+ [ 0.00 hsmoc
5187 Init/Exit [ 0.00 <<iloops>>
L [ 82546 Overhead O 5594 00 bvalemf1 R
- [ 2 997 Visits [ 0.00 MPI_Waitall untin-'IE
& [@ 1536 Synchronizations [ 0.00 <<jloops>> { l
G @ 1.79e7 Communications 5079 90 bvalemf2 Event traces DTF 2 intErface
&+ [ 6.77e11 Bytes transferred [J 0.00 <<kloops>>
[ [ 5161.12 Computational imbalance 4568 44 bvalemf3

G+ @ 50011 adwx!
[+ @ 300.66 advx2
[+ @ 448.27 advx3
&+ (] 0.00 intchk

G+ @ 181.89 nudt

+ [J 0.00 MPI_Reduce
&+ [ 0.00 MPI_Finalize

al [<]+] < <[] < <[]
000 19824 (10.50%) 18925 [0.00 255754 (12.69%) 1 88ed] [0.00 : o 10000 Apphcauon (M Pl, OpenMP oder h\.rbnd)
T T B

Hardware counter access (PAPI)

Score-P measurement system

[KID]
[KID]

[18] Future of OTF
[7] SCALASCA Performance Tool

= A powerful analysis report examiner such as Scalasca CUBE enables to determine (a) which performance problem is faced,
(b) where in the program, and (c) which processes of the HPC machine are affected

= Score-P Performance Measurement Infrastructure works with a variety of performance analysis tools such as Vampir, Scalasca, Tau, and Periscope
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Optimizing Simple Loop Constructs in MPI & OpenMP

= Values that depend on each other in loops
= Example: choose R according to N so overall execution time stays constant

do di_i;l:f,N [6_] Introduction to _
A(i) = B(i) + C(i) * D(i) ! 3 loads, 1 store High Performance Computing
enddo for Scientists and Engineers
if (A(2).1t.0) call dummy(A,B,C,D) ! prevent loop interchange
enddo

" Index of nested loops matter
= Example: simple switch of indices makes a difference (e.g. memory access)

for (int j=0; j<dim2; j++) { for (int j=0; j<dim2; j++) {
for (int i=0; i<dim2; i++) { for (int i=0; i<dim2; i++) {
arrayl[i] [j] = testvaluel():; ‘ arrayl[jl [i] = testvaluel():;
} }
} }
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Understanding Communication with Scalasca for SVM Data Science Example

File Display Topology Help

[Absolute

|v] [Absolute

|v] [Absolute |v]

Metric tree

Calltree Flatview

Process/Thread |4

Bt [ 1488 49 Execution
Er [ 0.00 MPI
& [10.00 Synchronization
& [ 0.12 Collective
[H 98.23 Wait at Barrier
[ 0.12 Barrier Completio
B 0.00 Communication
[J 0.00 Point-to-paoint
= @ 602 .97 Collective
[0 0.00 Early Reduce
[0 0.00 Early Scan
[1860.97 Late Broadcast
O o000 Waitat Nx N
000 MxN Completion
L [ 324 InitExit
L [ 1.03 Overhead
- 1.40eE Visits
i @ 2.26e4 Synchronizations
i @ 1.19e6 Communications
i [ 311211 Bytes transferred
tt [l 21201 Computational imbalance

[ B B |

& [10.00 Time (]

B 01 0.00 main

B+ (1 0.00 MPI_Init

1 0.00 read_problem

[ 0.00 svm_check_parameter
= C10.00 svm_train

10,00 svm_group_classes
1 0.00 MPI_Comm_size

B 0000 SVC_QuSVC_Q
J000SVC_Q:get_QD
14.00 MPI1_Bcast
0.11 MPI_Barrier

000 Optimization loop
5856 Work set

[ 537.32 Solve Inner

B (0000 SVC_Q:=~SVC_Q
FO0.00 svin_save_model
1 0.00 svm_destroy_model

@ - [10.00 svm_destroy_param

B[] 0.00 MPI_Finalize

B+ (0 0.00 Solver_Parallel_SMO:Solver_P
EF 1000 Solver_Parallel_SMO:Solve

[J0.00 Solver_Parallel_SMO:setup |

[10.00 Solver_Parallel_SMO:set
110950 Setup Subproblem

[ 23970 Update Gradient

[<]

[<]

//Jeder Prozess hat 1 Werte an die Stelle Rang * 1 in p_cache_status geschrieben
for(int k = 0; k < p; ++k)
{
//Jeder Prozess broadcastet sein Ergebnis zu allen anderen Prozessen
MPI_Bcast (&p_cache_status[k * 1], 1, MPI_CHAR, k, comm);

’ ~ Using MPI_Allgather() instead

for(int i = 0; i < p; ++i) {

if (rank == i) { //Der sendende Prozess kopiert in den Sendebereich

for(int j = 0; j < 1lmn; ++j)
G_buf[j] = G_n[jl;

¥

//Alle anderen Prozesse erhalten die Daten

MPI_Bcast (G_buf, lmn, MPI_DOUBLE, i, comm);

//Und addieren sie auf

for(int j = 0; j < 1lmn; ++j)
G[not_work_set[j]] += G_buf[jl;

Using MPI_Allreduce() instead

a2 ; T asuM 1 11:00 4 : —r
22 optimized *ﬁn\ﬂ‘g. i 10:00 optimized :-:StM x
4 | 09:00 :
08.00 E
= 07:00 |
18 - 06:00 f
12 05:00 |
| 04:00 memory access problems
B s " T 03:00 1 % .
P memory access problems 1 * E
4 ot . o 02:00 S .
148 16 32 64 128 00:00

148 16 32 64 128

[14] G. Cavallaro & M. Riedel & J.A. Benediktsson et al., ‘On
Understanding Big Data Impacts in Remotely Sensed Image

<] | 1) [T |
0.00 95920 (31.40%) 3055.17| [0.00 10930 (11.42%) 021..1485(1..1485 ..

Classification Using Support Vector Machine Methods’,
Journal of Applied Earth Observations and Remote Sensing

[7] SCALASCA Performance Tool
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Optimizing by Improving MPI Function Calls (1)

= E.g. instead multiple MPI Bcast () one MPI Allgather ()

for (int k = 0; k < p; ++k) {
MPI Bcast (&p_ cache status [k * 1], 1, MPI CHAR , k, comm );

}

MPI Allgather ( MPI IN PLACE , 1, MPI CHAR , p cache status , 1, MPI CHAR , 3 comm );

=  Good usage of MPI collective operations can significantly reduce the overall runtime (i.e. walltime)
= Overhead of each operation - it is better to call one MPI collective than multiple times another
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Optimizing by Improving MPI Function Calls (2)

= E.g.instead multiple mpT Bcast () one MPI Allreduce ()

/* every process has lmn values written in data structure G n *//

for ( int i = 0; i < p; ++1i) {
if( rank == i) {
for ( int j = 0; j < 1lmn; ++3j)

G buf [j] = G n [j];
}
/* all other processors receive the data */
MPI Bcast (G buf , lmn , MPI DOUBLE , i, comm );
/* values are added up */
for ( int j = 0; j < 1lmn; ++3j)
G[ not work set [jl] += G buf [j];

/* Adding up data from G n in G buf */
MPI Allreduce (G n , G buf , lmn , MPI DOUBLE , MPI SUM , comm );
/* values are added up */
for ( int j = 0; j < 1lmn; ++3)
G[ not work set [jl] += G buf [j];

" Bad usage of MPI collective operations are one cause for many ‘wrong usage patterns & problems*
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= Metrics: Communication - Time spent in MPI communication calls

Optimizing MPI Collective Communication

MPI

»  Communication

Collective

Early Reduce

Early Scan

Late Broadcast

Wait at N x N

» N x N Completion

Point-to-point

[16] Metrics tour

Synchronization
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Early Reduce Problem

= Understanding the problem
= Waiting time if the destination process (root) of a collective N-to-1 operation enters the operation earlier

than its sending counterparts
" Applies to: MPI Reduce (), MPI Gather (), MPI Gatherv()

MPI Reduce

location

MPI_Reduce

MPI Reduce (root)

4 >

MPI Reduce

time
[16] Metrics tour
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Early Scan Problem

. MPI_Scan() computes the scan

" U nderStandlng the prObIem (partial_ reductions) of data ona
= Waiting time if process n enters a prefix o0 ection g{,‘;;‘;i‘;i?f e

data from process i (here: 4 ranks)

reduction operation earlier than its
sending counterparts (i.e., ranks 0..n-1)

= Applies to: MPI Scan ()

S MPI_Scan 0
3
S
MPI Scan 1
 —
MPI Scan 2
MPI_ Scan 3
time ] [16] Metrics tour
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Late Broadcast Problem

= Understanding the problem

= Waiting times if the destination processes of a collective 1-to-N
operation enter the operation earlier than the source process (root)

" Applies to: MPI Bcast (), MPI Scatter (), MPI Scatterv()

MPI Bcast

>

location
A

MPI Bcast (root)

MPI Bcast

>

MPI Bcast

’time [16] Metrics tour
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Wait at NxN Problem

= Understanding the problem

= Time spent waiting in front of a synchronizing collective operation call

until the last process reaches the operation
" Applies to: MPI Allreduce(), MPI Alltoall(), MPI Alltoallv(),

MPI Allgather (), MPI Allgatherv (), MPI Reduce scatter()

MPI Allreduce

location

<

>

MPI Allreduce

)

MPI Allreduce

P

MPI_Allreduce

Lecture 9 — Debugging & Profiling & Performance Toolsets

time

[16] Metrics tour

59/78



NxN Completion Problem

= Understanding the problem

= Time spent in synchronizing collective operations after the first
process has left the operation

" Applies to: MPI Allreduce(), MPI Alltoall(), MPI Alltoallv(),

MPI Allgather (), MPI Allgatherv (), MPI Reduce scatter()

MPI_Allreduce

location

&

MPI Allreduce

MPI Allreduce

=

MPI Allreduce

&
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= Metrics: Communication - Time spent in MPI communication calls

Optimizing MPI Point-to-Point Communication

MPI

]

—»

v

[16] Metrics tour

Communication

Collective

Point-to-point

y

Late Sender

L. Msg. in Wrong Order

Same Source

Different Source

Synchronization
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Late Sender Problem (1)

= Understanding the problem = Blocking vs. non-
= Waiting time caused by a blocking receive operation e
posted earlier than the corresponding send operation until_da;a is
received;
= Applies to blocking as well as non-blocking communication MPI_Isend)
continues
S MPI_Send @—

- MPI_Recv ————{MPI_IrecvH  MPI_Wait  |—
>

D o

time

8 |———MPI_Isend/ MPI_Wait MPI_Isend — MPI_Wait |

g ~\

| | \
—  MPI_Recv IMPI_IrecvH MPI_Wait —
<= =
time
[16] Metrics tour
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Late Sender Problem (2)

= Understanding the problem

= While waiting for several messages,
the maximum waiting time is accounted

" Applies to MPI Waitall (), MPI Waitsome ()

»

S MPI_Send
\
MPI_Send \
MPI_Irecv - MPI_Waitall
< P
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MPI_Waitall() does wait for all
given MPI requests (e.g.
waiting for message) to
complete before continuing
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location

Understanding the problem

Late Sender Problem (3)

= Refers to Late Sender situations which
are caused by messages received in wrong order

= Two flavours: (a) Messages sent from same source location;
(b) Messages sent from different source locations

MPI_Wait() does wait for a given MPI
request to complete before continuing

MPI_Send MPI_Send
— <4 > T~
MPI_Recv MPI_Irecv MPI Wait ——
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Late Sender Problem — Scalasca CUBE Analysis

', Cube 3.0QT: epik_sor vnl38 trace/trace.cube

Ele Display Topology Help

Own root parcent | 7| | own root parcent T | Mbschse =
Matric tree Eall tree I Fial wiew | System tree | Topolagy 0
1 [ 0.00 Time = | & []0.00 main = [
| = [l 96.50 Execution 71 [] 0.00 MPI_Init
=[] 0.00 MPI 7 [] 0.00 setup_grid
++ [l 0.13 Synchronization 1 [] 0.00 init_field
-} [] 0.00 Communication - [] 0.00 sor_iter
£t Il 0.72 Point-to-point - []0.00 init_red_black
| M 0.05 Late Sender | 1 0.00 init_boundary
[} ] 0.00 Messages in Wrong C £} [] 0.00 get_halo

‘ [] 0.00 Late Receiver [] 0.00 MPI_Irecv

= 1l 0.23 Collective [[] 0.00 MPI_Barrier

[] 0.00 File IjO [] 0.00 MPI_Irsend

W 0.16 Init/Exit 100.00 MPI_Waitall

Ll 2.21 Overhead ~[] 0.00 update_black
~ Il 100.00 Visits ~[]0.00 update_red
= Il 100.00 Synchronizations -] 0.00 MPI_Allreduce
% B 100.00 Communications [ [ 0.00 MPI_Finalize
B 100.00 Bytes transferred

=} [l 100.00 Computational imbalance

IR N

4] alr 4] J4]* 1 [4]¢

0.6 0,05 Lob.adl |o.60 100,00 Lag.o0| .00 638 (G632 G8%] .66

[ I _I [19] Scalasca User Guide
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Late Receiver Problem

= Understanding the problem
= Waiting time caused by a blocking send operation posted earlier than the corresponding receive operation

= Calculated by receiver but waiting time attributed to sender
= Applies not to non-blocking sends

s MPI_Send MPI_Send —
©
g == —_, < >~
MPI_Recv MPI_Irecv MPI Wait +——
time
[16] Metrics tour
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= Metrics: Synchronization - Time spent in calls to MpI_Barrier()

Optimizing MPI Synchronization

MPI

Communication

[16] Metrics tour

» Synchronization

L.

Collective

Wait at Barrier

»Barrier Completion

MPI 1/O

Init/Exit
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Wait at Barrier Problem

= Understanding the problem
= Time spent waiting in front of a barrier call until
the last process reaches the barrier operation
= Applies to: MPI Barrier ()
é MPI Barrier
8 > S
MPI Barrier
=
MPI Barrier
g g
MPI Barrier
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called it for
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Barrier Completion Problem

Understanding the problem

= Time spent in barrier after the first process has left the operation

= Applies to: MPI Barrier ()

MPI Barrier

location

MPI_Barrier

MPI Barrier

g

MPI Barrier

&
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Optimizing OpenMP Synchronization

= Metrics: Synchronization
= Time spent for synchronizing OpenMP threads

OpenMP
L. Synchronization
Barrier
Explicit
L Wait at Barrier
Implicit
L Wait at Barrier

Lock Competition

API

Critical

[16] Metrics tour
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Wait at Barrier Problem

Understanding the problem

= Time spent waiting in front of a barrier call until the
last process reaches the barrier operation

= Applies to: Implicit/explicit barriers

OpenMP barrier
< >
OpenMP barrier

i

OpenMP barrier

< >

location

OpenMP barrier

time
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Lock Competition (APl & Critical Regions) Problem

= Understanding the problem

= Time spent waiting for a lock that has been
previously acquired by another thread

= Applies to: critical sections,
OpenMP lock Application Programming Interface (API)

Acquire Lock

Release Lock

location

Acquire Lock Release Lock—

<

>
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Optimization on Hardware & 1/O — Revisited

= Optimizations in terms of software & hardware are important
= Optimization can be interpreted as using ‘dedicated’ hardware features
= E.g. network interconnections enable different used ‘network topologies’
= E.g. parallel codes are tuned applying parallel |/O with parallel filesystems

‘ Time ‘
—»{ Execution ‘
shlft the view’ . MPI |
—'{ Communication ‘
rj Collective ‘
Point-to-point ‘
—»{ Synchronization ‘
| Collecti
swW sW |l osw SW =g pctive
; —|  MPIlO |
) —, Init/Exit |
[6] Introduction to High Performance | . Overhead |
y Computing for Scientists and Engineers [16] Metrics tour
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[Video] Vampir Toolset Example

Vampir:
Trace View

[20] Vampir Trace Demo Video
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