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Review of Lecture 8 – Parallel & Scalable Machine & Deep Learning
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[12] Image sources: Species Iris Group of North America Database, www.signa.org  [13] M. Goetz and M. Riedel et al, Proceedings IEEE Supercomputing Conference, 2015

[14] G. Cavallaro & M. Riedel & 
J.A. Benediktsson et al., ‘On 
Understanding Big Data Impacts 
in Remotely Sensed Image 
Classification Using Support 
Vector Machine Methods’, 
Journal of Applied Earth 
Observations and Remote Sensing

Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

First Result: 
best parameter set from 
14.41 min to 1.02 min

Second Result: 
all parameter sets from 
~9 hours to ~35 min

[15] A. Gulli et al.
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Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns
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11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
3 / 78



Outline

 Debugging & Profiling Techniques
 Origin, Terminologies & Bug Prevention Approaches 
 Review Printf Debugging & Advanced Debugging Techniques & Tools
 Terminologies, Performance Terms & Understanding Wall-clock time
 Simple MPI Timing Approaches & MPI Profiling Interface
 Selected Profiling Techniques & Tools using Profiling

 Performance Optimization Methods & Toolsets
 Performance Measurements Metrics for MPI & OpenMP
 Tracing Technique & Open Tracing Format
 Simple Loops Constructs & Improving MPI Function Calls
 Using the right MPI Collectives for better Performance
 MPI & OpenMP Problem Patterns & I/O Hardware Dependencies
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 Promises from previous lecture(s):
 Practical Lecture 0.2 & Lecture 1:

Lecture 9 will offer more insights into 
performance analysis systems with 
debugging, profiling, and HPC 
performance toolsets

 Lecture 3 & 5: Lecture 9 will give details 
on how to measure performance in 
parallel programms & and related tools 
using various applications

 Lecture 4: Lecture 9 on debugging, 
profiling & performance toolsets offers 
insights into performance analysis 
tools to understand MPI code better

 Practical Lecture 5.1: Lecture 9 will 
offer more examples where MPI non-
blocking communication can influence 
the performance of parallel applications

 Lecture 6: Lecture 9 will provide a set 
of tools that can be used for 
monitoring, debugging, and 
performance analysis of MPI and 
OpenMP 
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Debugging & Profiling Techniques
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Origin & Terminologies

 Origin of term ‘Debugging‘
 Mark II ‘Supercomputer‘ @ Harvard University (~5 flop/s)
 Incident: ‘moth found trapped 

inside the computer, we are debugging…‘
 Coined the term: 

‘First actural case of bug being found‘

 Examples
 Memory problems: buffer overflow, wrong pointers, out of array bounds
 Code complexity: one way of the program we haven‘t thought of…
 Argument and (data) type mismatches
 Unitialized variables 

 Broad topic in parallel programming with many tools
 E.g. HPC centers run intensive debugging training days…
 Large collection of trainings in PRACE training repository
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[1] Debuggers and Parallel Debugging, 
HPC Best practices

[2] PRACE Training

 Debugging is a methodical process of 
finding and fixing flaws in software
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Terminologies – Deadlock & Race Condition

 Programming parallel algorithms
 Challenges often rely in the complexity 

of ‘concurrency & computation‘

P1 P2 P3 P4 P5

Sh
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or
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T1 T2 T3 T4 T5

x=1 or x=2
x =?

x=1
x=2

x =?

 A deadlock is a situation wherein two ore more 
competing actions are each waiting for the other to 
finish, and thus neither ever is able to finish

 A race condition can be a flaw in a process 
whereby the output and/or result of the process is 
unexpectedly and critically dependent on the 
sequence or timing of other events
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Terminologies – Debugging, Profiling & Optimization

 Terminologies are related
 Fine granular differentiation, but techniques (partly) overlap

 Debugging
 Finding an error in the code and fixing it for correct program execution
 E.g. correcting the usage of arrays in case of out of bounds problems

 Profiling (aka ‘aggregate statistics‘) 
 Understanding the program in terms of required execution time segments
 E.g. which of the different functions in the program takes the most time?

 (Performance) Optimization
 Should start when the ‘major flaws/bugs‘ in the software are solved
 Tuning the program to enable a better performance (e.g. better speed-up)
 E.g. finding ‘slow executions of codes patterns‘ with dedicated tools
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Bug Prevention Approaches – Software Engineering

 Lessons learned from serial programming
 Use same techniques as for parallel programming (e.g. MPI, OpenMP) 
 Apply software engineering principles (e.g. robustness, check error codes)

 Good parallel code readability
 Meaningful variable and function names
 Meaning and units of variables
 Purpose and inputs/outputs descriptions of functions

 Version control
 Take advantage of version control systems (e.g. cvs, svn, git, etc.)

 Well-defined code structures
 Program towards different modules, enable re-usability of code elements

 Many parallel codes & libraries used in scientific computing don’t implement the approaches
 Bug prevention by applying software engineering concepts and having good code readability
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Bug Prevention Approaches – HPC Complexity

 Complex HPC environments
 Fast ‘code-change-compile-run‘ trials (from serial programming) infeasible
 Scheduler is executing a script with a program, is it the right program?
 Specifying a program as absolute path to executable can help
 Using not the absolute path executes the first in $PATH variable
 E.g. use ‘which programname‘ to check if it is really the right program

 Implement step-wise approach
 Write ‘serial code‘ that runs perfect, then use small number of processes
 Next steps: fix communication/synchronization before going to large-scale

 Complex parallel programming with libraries
 Large-scale parallel codes might depend on many existing libraries
 Library version, handling, and implementation might vary over time

 Bug prevention also means to check the HPC environments in which programs are executing
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Review ‘printf‘ Debugging Technique

 Use of simple yet effective ‘printf‘ statements while programming
 Easy ‘instrumentation‘ of the code, no extra library, etc.
 Take advantage of rank information what process is doing what work
 Provides easy adjustable output, but order/process of outputs can vary

 Disadvantages
 ‘Constant cycle programming‘ is time-consuming, error-prone, etc.
 Not sure if bug found: add printf, compile, run, analyze output  again…
 Extra printf code not helps for application logic  often remove after fix
 Added extra code often helps only to ‘going after one bug‘, repeat per bug
 Outputs maybe vary, e.g. in the timing when outputs are printed/process

(cf. Lecture 3 and Lecture 6 printf statements in example code runs)

 Printf debugging is not appropriate for the challenges of complex parallel program analysis
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Advanced Debugging Techniques

 Offer many advantages
 Crash inspection
 Function call stack overviews
 Understanding logic via step-wise through code
 Automated interruption and setting breakpoints
 Insights into used variables (e.g. state, values, etc.)

 Added value: use of graphics
 A wide variety of tools exists that visually support the debugging process
 GUIs on local laptops is convenient, but limited for large-scale programs
 HPC environments tend to be remote environments: GUIs might be slow

(e.g. using SSH – X for X11 forwarding might be slow sometimes)
 Good (fast) tools on command-line also exists, e.g. GDB

 Tools: Look all very similiar and often provide same advantages
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Selected Debugging Tools

 Open Source Domain
 GNU Debugger (GDB) – basic debugging together with DDD/Kdbg GUI
 Marmot – MPI checker for parameters, standard conformance, deadlocks
 Eclipse – Parallel Tools Platform integrated development environment
 …

 Commercial tools
 RogueWave TotalView –

Graphical debugging tool supporting OpenMP/MPI
 Alinea Distributed Debugging Tool (DDT) –

Enabled highly scalable debugs

 Profiling tools or features supporting GPGPUs
 Mostly very vendor-specific, e.g., NVIDIA toolsets

 The ‘market of debugging tools’ is dominated by strong commercial and expensive software
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[4] TotalView Tool
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GDB Debugging Open Source Tool – Serial & Parallel 

 GDB is essentially a tool for debugging serial programs
 Serial debuggers can be used to debug parallel programs (‘basic features‘)
 Works for low number of cores, no choice if using high number of cores

 Approach: Attach debugger to 
individual running MPI proccesses
 Run mpirun, go to node, 

attach debugger to corresponding pids

 Approach: use mpirun to 
launch xterms with serial debuggers
 Separate window for each MPI process, 

each running a serial debugger
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[3] OpenMPI Debugging

/* source to obtain hostname and pid of correspondend process */

int i = 0;

Char hostname[256];

gethostname(hostname, sizeof(hostname));

printf(“PID %d on %s ready for attach\n“, getpid(), hostname);

fflush(stdout);

while (0==1) sleep(5);

...

/*commandline: attach gdb to a corresponding pid, here 4711 */

/home/user/gdb executable 4711
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DDD Debugging Open Source GUI Tool – OpenMP Example

[1] Debuggers and Parallel Debugging
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TotalView Commercial Debugging Tool – Capabilities

 Commercial Tool
 Created and maintained by RogueWave Software

 Capabilities
 Supports programming languages: 

C, C++, Fortran77, Fortran90
 Offers a GUI for source code 

debugging and defect analysis
 Enables deep views into program 

states and their variables
 Provides control over processes 

and thread execution

 Parallel Debugging Support
 Multi-threaded debugging
 Distributed debugging
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[4] TotalView Tool
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TotalView Commercial Debugging Tool – Graphs

 E.g. identfiying cycles that may 
prevent the program to finish

[4] TotalView Tool
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TotalView Commercial Debugging Tool – MemoryScape

 E.g. understanding 
memory problems, 
segmentation faults, etc.

[4] TotalView Tool
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Terminologies – Debugging, Profiling & Optimization

 Terminologies are related
 Fine granular differentiation, but techniques (partly) overlap

 Debugging
 Finding an error in the code and fixing it for correct program execution
 E.g. correcting the usage of arrays in case of out of bounds problems

 Profiling (aka ‘aggregate statistics‘) 
 Understanding the program in terms of required execution time segments
 E.g. which of the different functions in the program takes the most time?

 (Performance) Optimization
 Should start when the ‘major flaws/bugs‘ in the software are solved
 Tuning the program to enable a better performance (e.g. better speed-up)
 E.g. finding ‘slow executions of codes patterns‘ with dedicated tools
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Understanding your Program

 Performance Analysis & Tuning Tools
 Enable optimized applications (after iterations)
 Require concrete measure metrics

 Measurement metrics
 Generic metrics
 MPI / OpenMP specific metrics

 Scalability metrics
 Strong / weak scaling

 HPC centers perform scalability workshops
 Getting code scalable together with experts

modified from [7] Scalasca Flyer

 A scalable parallel code is a code that keeps a good performance ratio / core by increasing cores
 Getting a parallel code scalable is a ‘process cycle‘ that include performance analysis & tuning
 Large-scale parallel code needs not only good optimization techniques (also fault tolerance, etc. )
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Time-To-Solution – Parallelization with Serial Elements

 S  = Algorithmic limitations
 E.g. elements need to be simply executed one after another

 S = Bottlenecks with 
shared resources
 E.g. shared paths to memory in multicore chips or I/O devices

 S = Startup overhead
 E.g. starting a parallel program takes time (often initialization phases)
 Note: if parallel application is short-running, startup has strong impact

 S = Communication
 E.g. not always fully concurrent communication between 

different parts of a parallel system 

 Amount of work/overall problem size:

s + p = 1

 s = serial (nonparallelizable part)
 p = parallelizable part
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Performance Definitions & Time Measurements – Revisited (cf. Lecture 3)

 Performance here means ‘work (s+p) over time (Tf
S)’

 Pf
S  = serial performance for fixed problem with

 Pf
P  = parallel performance for fixed problem with 

Tf
S = s + p

Pf
S = 𝒔 𝒑𝑻𝒇𝑺 = 1 

Pf
P = 𝒔 𝒑𝑻𝒇𝑷(𝑵) = 𝟏𝑺  𝟏 𝒔𝑵  

Tf
P = s + p/N
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Terminologies – Wall-Clock Time (aka Walltime)

 ‘Benchmarking‘ a parallel program requires a dedicated term
 Most sensible time measure is called wall-clock time (i.e. elapsed time)
 Using ‘only CPU time‘ is prone to misinterpretation for many reasons…
 E.g. program runtimes with ‘contributions‘ from I/O, other processes, etc.

 Relationship to ‘cost models‘ – why wall-clock time is important
 Goal: discourage the use of too many workers (with less performance)
 HPC centers ‘charge‘ for compute time in units of CPU wall-clock hours
 Real money is rarely used - scientists get a ‘grant for N wall-clock hours‘
 An N-CPU job running for a time Tw will be charged proportional to N Tw
 Approach: minimizing walltime (i.e. ‘time-to-solution‘) saves ‘costs‘

 Wall-clock time is the actual time taken to complete a program and the sum of three different terms: CPU 
time, I/O time and the communication channel delay (e.g. message passing)

Lecture 9 – Debugging & Profiling & Performance Toolsets

modified from [8] Wikipedia on ‘wall-clock time’ [6] Introduction to High Performance Computing for Scientists and Engineers
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Simple Example: Use of Wall-clock time to show Speed-up

 E.g. measure walltimes for a whole 
parallel data analytics MPI application
 Increasing number of cores leads to 

lower ‘time-to-solution‘

[9] B2SHARE, piSVM Analytics runtimes
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Simple MPI Timing Approaches

 Manual ‘instrumentation‘ of a MPI program code segment
 E.g. elapsed wall-clock time between two selected points in a program
 Elapsed time can be computed with MPI_Wtime()
 Useful in conjunction with ‘printf‘ statements and calling it more than once
 Simple, but manual work is time-consuming and later often removed

...

double time1, time2;

time1 = MPI_Wtime();

...

/* MPI program segment important to understand in terms of elapsed time */

...

time2 = MPI_Wtime();

Printf(“elapsed time of program segment is %d\n“, time2 – time1);

...

 The function MPI_Wtime() provides the elapsed wall-clock time of a parallel MPI program
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MPI Profiling Interface

 Usage
 Perform manual replacement of MPI routines at link time with PMPI
 Augment wrapper routine with statements, e.g. ‘function call counters‘
 e.g. performance analysis tools take advantage of PMPI interface

...

MPI_Send()

...

/* program logic */

...

MPI_Bcast()

...

MPI program source code MPI profiling library

MPI_Send() MPI_Send()

PMPI_Send()

MPI_Bcast()

MPI standard library

 The MPI profiling interface  PMPI enables flexible writing of MPI functions wrapper routines
 Wrappers named as standard MPI_xyz routines internally call MPI standard routines via PMPI
 MPI offers an alias PMPI_xyz for each standard MPI routine, e.g. PMPI_Send() & MPI_Send()
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MPI Profiling Interface – Simple Usage Example

 Usage
 E.g. understanding how often 

a specific MPI function was called
 Link the profiling library, 

e.g. cc – o prog.exe 
prog.c –lpmpi -lmpi

...

static int numberofsend = 0;

...

/* implement own wrapper function for MPI call and edit as needed */

int MPI_Send( void *start, int count, MPI_Datatype datatype, 
int dest, int tag, MPI_Comm comm) {

/* another call – increase counter! */

numberofsend++;

return PMPI_send( start, count, datatype, dest, tag, comm);

}

...

/* MPI program segment with real program logic */

int program {  

...

MPI_Send( ... );

...

}

‘simplified 
demo code’
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Selected Profiling Tools

 Open Source Domain
 Valgrind – instrumentation framework with tools to profile memory usage
 Vampir – Trace-based profiling offering a good ‘timeline view‘ of programs
 Scalasca – Trace-based profiling and performance analysis (with patterns)
 …

 Commercial tools
 Intel® VTune™ Amplifier XE – Graphical profiler tool for parallel programs
 …

 Profiling tools or features supporting GPGPUs
 Mostly very vendor-specific, e.g., NVIDIA toolsets

 There is an overlap between tools used in parallel debguggin, profiling & performance analysis
 Parallel performance analysis tools partly take advantage of profiling techniques & interfaces
 Tracing collects information about the program for post analysis – profiling aggregates statistics
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Scalasca Toolset Example – Analysis Report Examiner CUBE 

[7] SCALASCA 
Performance 
Tool

 A powerful analysis report examiner enables to determine (a) which performance problem is faced, 
(b) where in the program, and (c) which processes of the HPC machine are affected
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Valgrind Open Source Profiling Tool – Capabilities 

 Valgrind is a whole open source ‘instrumentation framework’
 Enables building of dynamic analysis tools
 Flexible system for profiling Linux executables (including MPI)

 Selected toolset
 Memcheck/Addrcheck: Detection of memory-management problems
 Cachegrind: Cache profiler - detailed simulation of the I1, D1 and L2 caches is provided to pinpoint the 

sources of cache misses
 Callgrind: adds call graph tracing to cachegrind - used to get call counts and inclusive cost for each call 

happening in a program
 Massif: Memory consumption profiling
 Helgrind: Identify race conditions in multithreaded programs

[10] Valgrind Webpage
export LD_PRELOAD = $VALGRIND_MPILIB

...

mpiexec –n <numbertasks> valgrind <valgrind switches> program.exe
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VAMPIR Open Source Profiling Tool - Example

[11] VAMPIR Performance Tool
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[Video] Debugging a MPI Program

[5] YouTube Video, MPI Debugging 
with the TotalView debugger 
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Performance Optimization Methods & Toolsets
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Terminologies – Debugging, Profiling & Optimization

 Terminologies are related
 Fine granular differentiation, but techniques (partly) overlap

 Debugging
 Finding an error in the code and fixing it for correct program execution
 E.g. correcting the usage of arrays in case of out of bounds problems

 Profiling (aka ‘aggregate statistics‘) 
 Understanding the program in terms of required execution time segments
 E.g. which of the different functions in the program takes the most time?

 (Performance) Optimization
 Should start when the ‘major flaws/bugs‘ in the software are solved
 Tuning the program to enable a better performance (e.g. better speed-up)
 E.g. finding ‘slow executions of codes patterns‘ with dedicated tools
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HPC System Software Environment – Revisited (cf. Practical Lecture 0.2)

 Operating System
 Former times often ‘proprietary OS’, nowadays often (reduced) ‘Linux’

 Scheduling Systems
 Manage concurrent access of users on Supercomputers
 Different scheduling algorithms can be used with different ‘batch queues’
 Example: SLURM @ JÖTUNN Cluster, LoadLeveler @ JUQUEEN, etc.

 Monitoring Systems
 Monitor and test status of the system (‘system health checks/heartbeat’)
 Enables view of usage of system per node/rack (‘system load’)
 Examples: LLView, INCA, Ganglia @ JOTUNN Cluster, etc.

 Performance Analysis Systems
 Measure performance of an application and recommend improvements (.e.g Scalasca, Vampir, etc.)

 HPC systems and supercomputers 
typically provide a software 
environment that support the 
processing of parallel and scalable 
applications

focus in this lecture

 Monitoring systems offer a 
comprehensive view of the current 
status of a HPC system  or 
supercomputer

 Scheduling systems enable a 
method by which user processes 
are given access to processors
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Performance Analysis is a Key Field in HPC – Revisited (cf. Lecture 3)

 Analysis is typically performed using (automated) software tools
 Measure and analyze the runtime behaviour of parallel programs
 Identifies potential performance bottlenecks
 Offer performance optimization hints and views of the location in time
 Guides exploring causes of bottlenecks in communication/synchronization

[7] SCALASCA Performance Tool
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Generic Measurement Metrics

 Time – Total CPU allocation time
 Execution time w/o overhead
 Overhead time spent in tasks 

related to the measurement itself

 Visits
 Number of times a 

function / region was executed

 Hardware counters
 Aggregated counter values 

for each function / region

[16] Metrics tour
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 Metrics are required in order to have a clear understanding of what is measured in analysis steps
 Generic metrics are CPU allocation time (execution and overhead), visits, and hardware counters
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Metrics for Parallel Programs using MPI

 Time – Execution - MPI –
Time spent in (instrumented) MPI functions
 Communication - Time spent 

in MPI communication calls
(collective and point-to-point)

 Synchronization - Time spent 
in calls to MPI_Barrier()

 MPI I/O - Time spent in 
MPI I/O functions

 Init/Exit - Time spent in 
MPI_Init() and MPI_Finalize()

[16] Metrics tour

 Metrics for parallel programs using MPI are based on time as part of the program execution time
 MPI metrics are Communication (collective/point-to-point), Synchronization, MPI I/O, and Init/Exit
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Metrics for Parallel Programs using OpenMP

 Time – Execution - OpenMP –
Time spent for OpenMP-related tasks
 Synchronization - Time spent 

for synchronizing OpenMP threads
 Fork - Time spent by master thread 

to create thread teams
 Flush - Time spent in OpenMP 

flush directives

 Idle Threads
 Time spent idle on CPUs 

reserved for worker threads

 Metrics for parallel programs using MPI are based on time as part of the program execution time
 MPI metrics are Communication (collective/point-to-point), Synchronization, MPI I/O, and Init/Exit

[16] Metrics tour
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Tracing Technique – Need for Automation

 Manual/visual trace analysis for whole parallel codes is inefficient
 Measuring metrics with e.g. MPI_Wtime() is error-prone & time consuming

 Automatic trace analysis process
 Enables automatic search for patterns of inefficient behaviour
 Quicker than manual/visual trace analysis and feasible (e.g. large-scale)
 Guaranteed to cover the entire event trace
 Classification of behaviour & quantification of significance
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[7] SCALASCA Performance Tool

 Tracing collects information about 
the program for post analysis –
profiling aggregates statistics
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Tracing Technique – Functionality (1)

 Step 0 - Based on general MPI 
Program Build & Run process
 Application code compiled & 

linked into executable 
(e.g. using mpicc )

 Launched with script
(using e.g. mpiexec )

 Application processes 
interact via MPI library

program
sources

[7] SCALASCA Performance Tool
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Tracing Technique – Functionality (2)

 Step 1 – Application Instrumentation 
 Run automatic code instrumenter

(also manual elements possible)
 Program sources are automatically

processed to add instrumentation
to the executable

 Measurement library is added 
into application executable

 Exploits MPI standard profiling 
interface (PMPI) to acquire 
MPI events

program
sources

[7] SCALASCA Performance Tool
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Tracing Technique – Functionality (3)

 Step 2 a) – Measurement 
runtime summarization & analysis
 Measurement library 

manages threads & events
(e.g. enter/exit a function) 
produced by instrumentation

 Measurements summarized 
by thread & call-path during execution

 Summary analysis report unified & 
collated at finalization

 Investigation of summary analysis
using a analysis report examiner tool

program
sources

[7] SCALASCA Performance Tool
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Tracing Technique – Functionality (4)

 Step 2 b) – Measurement 
event tracing & analysis
 During measurement 

time-stamped events are 
buffered for each thread

 Flushed to files along with 
unified definitions & maps 
at program finalization

 Follow-up analysis replays 
events and produces 
extended analysis report

 Investigation of trace analysis
using a analysis report examiner tool

program
sources

[7] SCALASCA Performance Tool
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Tracing Technique – Summary

program
sources

 Automatic/manual code instrumenter is used to 
enable runtime measurement and event tracing (use 
of MPI profiling interface)

 Tracing requires a specific measurement library for 
runtime summary & event tracing
(basic MPI techniques are limited)

 Trace architecture enables serial and parallel event 
trace analysis

 Use of analysis report examiner tools for interactive  
exploration of measured execution performance 
properties & metrics

[7] SCALASCA Performance Tool
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Tracing Technique – Impacts on Scalability

 Weak Scaling Example
 Parallel application Sweep3D benchmark code (fixed problem size/process)
 Scalasca trace analysis completed with up to 294,912 processes
 Parallel trace replay analysis exploits memory & processors for scalability

 Using the tracing technique has an impact on the 
runtime and scalability of codes (e.g. I/O & # files)

 Replay and analysis of original parallel codes 
requires parallel tools & techniques to be 
scalable too

[7] Scalasca Flyer

Lecture 9 – Debugging & Profiling & Performance Toolsets 46 / 78



Open Trace Format (OFT)

 Performance Analysis & Optimization is active research field
 Result is a wide variety of partly different tools with many different formats

 Inconvenience when using different performance analysis tools
 Epilog (Kojak/Scalasca) 
 Paje format (Paje) 
 STF (Intel Trace Analyzer) 
 Tau trace format (Tau) 
 Slog2 (Jumpshot) 
 Paraver format (Paraver) 

 Different OTF versions
 OTF2 is successor format to OTF and Epilog formats
 Major re-design and new implementation 

[17] Open Trace Format
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 The open trace format is a standardized data structure and API specification for tracing data
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Selected Performance Analysis Tools

 Open Source Domain
 Valgrind – instrumentation framework with tools to profile memory usage
 Vampir – Trace-based profiling offering a good ‘timeline view‘ of programs
 Scalasca – Trace-based profiling and performance analysis (with patterns)
 Periscope – Scalable automatic performance analysis tool (in development)
 PAPI – Interfacing to hardware performance counters 
 TAU – Integrated parallel performance system
 Score-P - Scalable performance measurement infrastructure

 Commercial tools
 Intel® VTune™ Amplifier XE – Graphical profiler tool for parallel programs
 Intel Tracing Tools (Trace Collector, Trace Analyzer, Message Checker, …)
 SGI ProPack (suite of performance optimization libraries & tools)

 There is an overlap between tools used in parallel debgugging, profiling & performance analysis
 Parallel performance analysis tools partly take advantage of profiling techniques & interfaces
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Scalasca Toolset Example

 Based on tracing technique
 Three key tools for different

elements in tracing & analysis steps

 Compiler instrumenter
 Scalasca SKIN

 Measurement collector & analyzer
 Scalasca SCANTBD

 Analysis report examiner
 Scalasca CUBE

program
sources

[7] SCALASCA Performance Tool
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Examples: Scalasca Analysis Report Examiner CUBE & Score-P

[7] SCALASCA Performance Tool

Lecture 9 – Debugging & Profiling & Performance Toolsets

 A powerful analysis report examiner such as Scalasca CUBE enables to determine (a) which performance problem is faced, 
(b) where in the program, and (c) which processes of the HPC machine are affected

 Score-P Performance Measurement Infrastructure works with a variety of performance analysis tools such as Vampir, Scalasca, Tau, and Periscope

[18] Future of OTF
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Optimizing Simple Loop Constructs in MPI & OpenMP

 Values that depend on each other in loops
 Example: choose R according to N so overall execution time stays constant

 Index of nested loops matter
 Example: simple switch of indices makes a difference (e.g. memory access)

[6] Introduction to 
High Performance Computing 
for Scientists and Engineers

...

for (int j=0; j<dim2; j++) {

for (int i=0; i<dim2; i++) {

array[i][j] = testvalue();

}

...

}

...

...

for (int j=0; j<dim2; j++) {

for (int i=0; i<dim2; i++) {

array[j][i] = testvalue();

}

...

}

...
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Understanding Communication with Scalasca for SVM Data Science Example

Lecture 9 – Debugging & Profiling & Performance Toolsets

[7] SCALASCA Performance Tool

[14] G. Cavallaro & M. Riedel & J.A. Benediktsson et al., ‘On 
Understanding Big Data Impacts in Remotely Sensed Image 
Classification Using Support Vector Machine Methods’, 
Journal of Applied Earth Observations and Remote Sensing

Using MPI_Allgather() instead

Using MPI_Allreduce() instead
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Optimizing by Improving MPI Function Calls (1)

 E.g. instead multiple MPI_Bcast() one MPI_Allgather()

...

MPI_Allgather ( MPI_IN_PLACE , l, MPI_CHAR , p_cache_status , l, MPI_CHAR , 3 comm );

...

...

for (int k = 0; k < p; ++k) {

MPI_Bcast (&p_cache_status [k * l], l, MPI_CHAR , k, comm );

}

...

 Good usage of MPI collective operations can significantly reduce the overall runtime (i.e. walltime)
 Overhead of each operation - it is better to call one MPI collective than multiple times another
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Optimizing by Improving MPI Function Calls (2)

 E.g. instead multiple MPI_Bcast() one MPI_Allreduce()
/* every process has lmn values written in data structure G_n *//

for ( int i = 0; i < p; ++i) {

if( rank == i) {

for ( int j = 0; j < lmn; ++j)

G_buf [j] = G_n [j];

}

/* all other processors receive the data */

MPI_Bcast (G_buf , lmn , MPI_DOUBLE , i, comm );

/* values are added up */

for ( int j = 0; j < lmn; ++j)

G[ not_work_set [j]] += G_buf [j];

}

/* Adding up data from G_n in G_buf */

MPI_Allreduce (G_n , G_buf , lmn , MPI_DOUBLE , MPI_SUM , comm );

/* values are added up */

for ( int j = 0; j < lmn; ++j)

G[ not_work_set [j]] += G_buf [j];

 Bad usage of MPI collective operations are one cause for many ‘wrong usage patterns & problems‘
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Optimizing MPI Collective Communication

 Metrics: Communication - Time spent in MPI communication calls

[16] Metrics tour

Lecture 9 – Debugging & Profiling & Performance Toolsets 55 / 78



Early Reduce Problem

 Understanding the problem
 Waiting time if the destination process (root) of a collective N-to-1 operation enters the operation earlier 

than its sending counterparts
 Applies to: MPI_Reduce(), MPI_Gather(), MPI_Gatherv()

[16] Metrics tour
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Early Scan Problem

 Understanding the problem
 Waiting time if process n enters a prefix 

reduction operation earlier than its 
sending counterparts (i.e., ranks 0..n-1)

 Applies to: MPI_Scan()

[16] Metrics tour
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 MPI_Scan() computes the scan 
(partial reductions) of data on a 
collection of processes - prefix 
reduction on process i includes the 
data from process i (here: 4 ranks)
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Late Broadcast Problem

 Understanding the problem
 Waiting times if the destination processes of a collective 1-to-N 

operation enter the operation earlier than the source process (root)
 Applies to: MPI_Bcast(), MPI_Scatter(), MPI_Scatterv()

[16] Metrics tour
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Wait at NxN Problem

 Understanding the problem
 Time spent waiting in front of a synchronizing collective operation call 

until the last process reaches the operation
 Applies to: MPI_Allreduce(), MPI_Alltoall(), MPI_Alltoallv(), 
MPI_Allgather(), MPI_Allgatherv(), MPI_Reduce_scatter()

[16] Metrics tour
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NxN Completion Problem

 Understanding the problem
 Time spent in synchronizing collective operations after the first 

process has left the operation
 Applies to: MPI_Allreduce(), MPI_Alltoall(), MPI_Alltoallv(), 
MPI_Allgather(), MPI_Allgatherv(), MPI_Reduce_scatter()

[16] Metrics tour
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Optimizing MPI Point-to-Point Communication

 Metrics: Communication - Time spent in MPI communication calls

[16] Metrics tour
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Late Sender Problem (1)

 Understanding the problem
 Waiting time caused by a blocking receive operation 

posted earlier than the corresponding send operation
 Applies to blocking as well as non-blocking communication

[16] Metrics tour
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 Blocking vs. non-
blocking:  
MPI_Send() blocks 
until data is 
received; 
MPI_Isend() 
continues
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Late Sender Problem (2)

 Understanding the problem
 While waiting for several messages, 

the maximum waiting time is accounted
 Applies to MPI_Waitall(), MPI_Waitsome()

[16] Metrics tour

 MPI_Waitall() does wait for all 
given MPI requests (e.g. 
waiting for message) to 
complete before continuing

Lecture 9 – Debugging & Profiling & Performance Toolsets 63 / 78



Late Sender Problem (3)

 Understanding the problem
 Refers to Late Sender situations which 

are caused by messages received in wrong order
 Two flavours: (a) Messages sent from same source location;

(b) Messages sent from different source locations

[16] Metrics tour

 MPI_Wait() does wait for a given MPI 
request to complete before continuing

Lecture 9 – Debugging & Profiling & Performance Toolsets 64 / 78



Late Sender Problem – Scalasca CUBE Analysis

[19] Scalasca User Guide
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Late Receiver Problem

 Understanding the problem
 Waiting time caused by a blocking send operation posted earlier than the corresponding receive operation
 Calculated by receiver but waiting time attributed to sender
 Applies not to non-blocking sends

[16] Metrics tour
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Optimizing MPI Synchronization

 Metrics: Synchronization - Time spent in calls to MPI_Barrier()

[16] Metrics tour
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Wait at Barrier Problem

 Understanding the problem
 Time spent waiting in front of a barrier call until 

the last process reaches the barrier operation
 Applies to: MPI_Barrier()

[16] Metrics tour
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 MPI_Barrier() blocks the 
caller until all processes in 
the communicator have 
called it for 
synchronisation
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Barrier Completion Problem

 Understanding the problem
 Time spent in barrier after the first process has left the operation
 Applies to: MPI_Barrier()

[16] Metrics tour
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Optimizing OpenMP Synchronization

 Metrics: Synchronization
 Time spent for synchronizing OpenMP threads

[16] Metrics tour
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Wait at Barrier Problem

 Understanding the problem
 Time spent waiting in front of a barrier call until the 

last process reaches the barrier operation
 Applies to: Implicit/explicit barriers

[16] Metrics tour
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Lock Competition (API & Critical Regions) Problem

 Understanding the problem
 Time spent waiting for a lock that has been 

previously acquired by another thread
 Applies to: critical sections, 

OpenMP lock Application Programming Interface (API)

[16] Metrics tour
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Optimization on Hardware & I/O – Revisited 

 Optimizations in terms of software & hardware are important
 Optimization can be interpreted as using ‘dedicated‘ hardware features
 E.g. network interconnections enable different used ‘network topologies‘
 E.g. parallel codes are tuned applying parallel I/O with parallel filesystems

[16] Metrics tour
[6] Introduction to High Performance 
Computing for Scientists and Engineers

‘shift the view’
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[Video] Vampir Toolset Example

[20] Vampir Trace Demo Video
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