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Review of Lecture 7 — Graphical Processing Units (GPUs)

= General Purpose Graphical Processing Units (GPGPUs) aka ‘GPUs’

Theoretical Peak Performance, Double Precision
4
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Processing Flow
CPU — GPU — CPU
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Transfer data from CPU memory to GPU memory, transfer
program

Load GPU program, execute on SMs, get (cached) data from
memory; write back

Transfer results back to host memory

[8] CPU/GPU Comparison [9] Summit Architecture Overview
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450+ GPU-ACCELERATED APPLICATIONS

@ AMBER @ ANSYS Fluent

@ GAUSSIAN @ GROMACS

@ LS-DYNA @ NAMD

@ OpenFOAM @ Simulia Abaqus

© vasp @ wrr

[3] Tensorflow Web page
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TensorFl

Keras

[4] Keras Web page [10] JSC GPU Course [12] NVIDIA Training
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Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning
9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns
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11.
12.
13.
14.
15.
16.

Scientific Visualization & Scalable Infrastructures
Terrestrial Systems & Climate

Systems Biology & Bioinformatics

Molecular Systems & Libraries

Computational Fluid Dynamics & Finite Elements

Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

= Practical Topics

» Theoretical / Conceptual Topics
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Outline

= Parallel & Scalable Machine Learning Techniques

Short Introduction to Machine Learning Approaches
HPDBSCAN MPI/OpenMP Implementation & Clustering
piSVM MPI Implementation & Land Cover Classification
Handwritten Character Recognition MNIST Dataset
Artificial Neural Networks with TensorFlow & Keras

= Parallel & Scalable Deep Learning Techniques

Convolutional Neural Networks via TensorFlow & Keras
Distributed Training via multiple GPUs with Horovod
Long Short-Term Memory & Autoencoder Networks
Neural Architecture Search via Reinforcement Learning
Modular Supercomputing & Data Analytics Module

Promises from previous lecture(s):

Practical Lecture 0.2: Lecture 8 will provide an overview of
performing unsupervised learning with clustering using the
parallel HPDBSCAN module

Lecture 1 & 7: Lecture 8 will provide more details about
parallel & scalable machine & deep learning algorithms and
how many-core HPC is used

Lecture 1: Lecture 8 will provide more details about parallel
& scalable machine & deep learning algorithms and remote
sensing applications

Lecture 2 & 3: Lecture 8 will provide more details on MPI
application examples with a particular focus on parallel and
scalable machine learning

Lecture 5 & Practical Lecture 5: Lecture 8 provides more
details about using MPI and OpenMP for data science
algorithms used in clustering and classification of data

Lecture 7: Lecture 8 will provide more details about using
Tensorflow & Keras in Deep Learning via Python for a wide
variety of data science tasks

Lecture 7: Lecture 8 will provide more details about parallel
& scalable machine & deep learning algorithms are used
with remote sensing datasets

Lecture 7: Lecture 8 will provide more details about using
distributed training with Horovod & more examples of
speed-ups with multi GPU usage




Selected Learning Outcomes

» Students understand...

Latest developments in parallel processing & high performance computing (HPC)
How to create and use high-performance clusters
What are scalable networks & data-intensive workloads

=
The importance of domain decomposition - el
Complex aspects of parallel programming R e el
HPC environment tools that support programming S L T I oimap OE TA r

or analyze behaviour
Different abstractions of parallel computing on various levels

Foundations and approaches of scientific domain-
specific applications

= Students are able to ...

Programm and use HPC programming paradigms
Take advantage of innovative scientific computing simulations & technology
Work with technologies and tools to handle parallelism complexity
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Parallel & Scalable Machine Learning Techniques

O
O
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Learning Approaches — What means Learning from data?

The basic meaning of learning is ‘to use a set of observations to uncover an underlying process [14] Image sources: Species Iris Group of
i North America Database, www.signa.org

The three different learning approaches are supervised, unsupervised, and reinforcement learning

(what type of flower is this?)

= Supervised Learning
= Majority of methods follow this
approach in this course

= Example: credit card approval based
on previous customer applications

(flowers of type ‘IRIS Setosa’)

(flowers of type ‘IRIS Virginica‘)

= Unsupervised Learning
= Often applied before other learning = higher level data representation

= Example: Coin recognition in vending

machine based on weight and size _
= Reinforcement Learning “ .
= Typical ‘human way’ of learning '
= Example: Toddler tries to touch a hot cup of tea (again and again)

[30] A.C. Cheng et al., ‘InstaNAS: Instance-aware Neural Architecture Search’, 2018
7/50
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Machine Learning Models — Short Overview

Classification Clustering Regression

= Groups of data exist = No groups of data exist = |dentify a line with
= New data classified = Create groups from a certain slope
to existing groups data close to each other describing the data

" Machine learning methods can be roughly categorized in classification, clustering, or regression augmented with various techniques for data
exploration, selection, or reduction — despite the momentum of deep learning, traditional machine learning algorithms are still widely relevant today

» This course focus on supervised classification techniques and unsupervised clustering methods; more in complementary cloud course
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Parallel Programming with MPI & OpenMP — Data Science Applications for HPC

= Machine Learning Algorithms
= Example: Highly Parallel Density-based spatial clustering of applications with noise (DBSCAN)
= Selected Applications: Clustering different cortical layers in brain tissue & point cloud data analysis

Clusterin
g 512 | —— Hybrid DST
o ."R 256 | —— Hybrid DS2
108 | ME'IDS1
Inear
o 64 ea
3
§ 32
a 16
processor 1 processor 2 ® 8
O'H 25 2‘!0 L3 2
026 o b 4
5o [¢] 2
i Ouoo 30 ERs 1
o B B 2 8 32 128 512
56,4068 | Oui 1 O 2 number of cores
jS47e)
AT (K —— L ] MO e S 18T

[13] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015
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Parallel and Scalable Machine Learning — Parallel Support Vector Machine (SVM)

Class Training Test

Buildings 18126 163129
Blocks 10982 98834
Roads 16353 147176

Light Train 1606 14454

= ‘Different kind‘ of parallel algorithms
= ‘learn from data’ instead of modelling/approximate reality with physics

: ( H P Vegetation 6962 62655
= Parallel algorithms often useful to reduce ‘overall time for data analysis gotion 000 oo
Bare Soil 8127 73144
H H Soil 1506 13551
= E.g. Parallel Support Vector Machines (SVMs) Technique Tower 4792 43124
o fe . . . . ( . . . ( Total 77542 697859
= Data classification algorithm PiSVM using MPI to reduce ‘training time
= Example: classification of land cover masses from satellite image data
#!/bin/bash -x #1/bin/bash -x
#SBATCH- -nodes=4 #SBATCH- -nodes=4
ESBATCH- -ntasks=96 :ggiig:"zizztfzgr node=24
4 # - -ntasks-per-node=: . -per-node=2
: e e i
#SBATCH- -error=mpi-err.%j #SBATCH- -time=04:00:00
- 149 ® ] - #SBATCH- -time=04:00: 00 #SBATCH- -partition=batch
#SBATCH- -partition=batch #SBATCH- -mail-user=m. riedel@fz-juelich.de
#SBATCH- -mail-user=m. riedel@fz-juelich.de #SBATCH- -mail- type=ALL
T T T T . . v T T T #SBATCH- -mail-type=ALL #SBATCH--j ob-namefp red-indianpines-4-96-24
2 5 6 2z 4 1 a 4 5 6 #SBATCH- - job-name=train-indianpines-4-96-24 #SBATCH- -reservation=ml-hpc-2
- 14 0 ® #SBATCH- - reservation=ml-hpc-2 484 location executable
##% location executable PISVMPRED=/homea/hpclab/train001/tools/pisvm-1.2.1/pisvm-predict
-2+ PISVM=/homea/hpclab/train001/tools/pisvm-1.2.1/pisvm-train ### location data
TESTDATA=/homea/hpclab/train@0l/data/indianpines/indian_raw_test.el
### location data
TRAINDATA=/homea/hpclab/train00l/data/indianpines/indian_raw_training. el ### trained model data

MODELDATA=/homea/hpclab/train@01/tools/pisvm-1.2.1/indian_raw_training.el.model

I , ### submit ### submit
[16] C. Cortes & V. Vapnlk, 'Support Vector NetWO"kS, srun $PISVM -D -0 1024 -q 512 -c 100 -g 8 -t 2 -m 1024 -s O $TRAINDATA srun $PISVHPRED $TESTDATA $HODELDATA results.txt

Machine Learning, 1995

[15] G. Cavallaro & M. Riedel & J.A. Benediktsson et al., ‘On Understanding Big Data Impacts in Remotely Sensed Image Classification Using
Support Vector Machine Methods’, Journal of Applied Earth Observations and Remote Sensing, 2015
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Parallel Support Vector Machine (SVM) — piSVM MPI Implementation & Impact

= Original piSVM 1.2 version (2011) o
= Open-source and based on libSVM library, C
= Message Passing Interface (MPI) S

= New version appeared 2014-10v. 1.3
(no major improvements)

= Lack of ‘big data‘ support (e.g. memory)

" Tuned scalable parallel piSVM tool 1.2.1 . -
@SyM

. aSyM
optimized TSyM

memory access prablems
.

= Highly scalable version maintained by Juelich
= Based on original piSVM 1.2 tool
= Optimizations: load balancing; MPI collectives

PEE ] ERNZZE |
| e[ T 1 T |-||:|:|:| T mED:
| | E  EEm E  EEEE i mmm)
[ L] m[ [ [ [ [ V70 O
(R L | R RRN Nz v I
i e e ~EEEEEED v CRNRNE!

Support Vector Machine Methods’, Journal of Applied Earth Observations and Remote Sensing
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//Jeder Prozess hat 1 Werte an die Stelle Rang * 1 in p_cache_status geschrieben
for(int k = 0; k < p; ++k)

{

//Jeder Prozess broadcastet sein Ergebnis zu allen anderen Prozessen
MPI_Bcast (&p_cache_status[k * 1], 1, MPI_CHAR, k, comm);

Using MPI_Allgather() instead

}

for(int i = 0; i < p; ++i) {

if (rank == i) { //Der sendende Prozess kopiert in den Sendebereich

for(int j = 0; j < 1lmn; ++j)
G_buf[jl = G_n[jl;

}

//Alle anderen Prozesse erhalten die Daten
MPI_Bcast(G_buf, lmn, MPI_DOUBLE, i, comm);

//Und addieren sie

auf

for(int j = 0; j < lmn; ++j)
G[not_work_set[jl] += G_buf[jl;

}

Using MPI_Allreduce() instead

Scenario ‘pre-processed data’, 10xCV serial: accuracy (min)

~v/C

1

10

100

1000

10 000

2

48.90 (18.81)
57.53 (16.82)
64.18 (18.30)
68.37 (23.21)
70.17 (34.45)

65.01 (19.57)
70.74 (13.94)
74.45 (15.04)
76.20 (21.88)
75.48 (34.76)

73.21 (20.11)
75.94 (13.53)
77.00 (14.41)
76.51 (20.69)
74.88 (34.05)

75.55 (22.53)
76.04 (14.04)
75.78 (14.65)
75.32 (19.60)
74.08 (34.03)

74.42 (21.21)
74.06 (15.55)
74.58 (14.92)
74.72 (19.66)
73.84 (38.78)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

~IC 1 10 100 1000 10000
2 7526 (1.02) 65.12 (1.03) 73.18 (1.33) 75.76 (2.35) 74.53 (4.40)
4 57.60 (1.03) 70.88 (1.02) 75.87 (1.03) 76.01 (1.33) 74.06 (2.35)
8 64.17(1.02) 7452 (1.03) 77.02 (1.02) 75.79 (1.04) 74.42 (1.34)
16 68.57 (1.33) 76.07 (1.33) 76.40 (1.34) 7526 (1.05) 74.53 (1.34)
32 7021 (1.33) 75.38 (1.34)  74.69 (1.34) 73.91 (1.47) 73.73 (1.33)

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

[15] G. Cavallaro & M. Riedel & J.A. Benediktsson et al., ‘On Understanding Big Data Impacts in Remotely Sensed Image Classification Using

[17] piSVM on SourceForge, 2008
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Deep Learning Frameworks using GPUs also good for Artificial Neural Networks

= TensorFlow (cf. Lecture 7)

= One of the most popular deep learning frameworks available today

= Execution on multi-core CPUs or many-core GPUs

" Tensorflow is an open source library for deep learning models using a flow graph approach

" Tensorflow nodes model mathematical operations and graph edges between the nodes are
so-called tensors (also known as multi-dimensional arrays)

=  The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
" Tensorflow work with the high-level deep learning tool Keras in order to create models fast
= New versions of Tensorflow have Keras shipped with it as well & many further tools

client

run

master

worker A

= Keras (cf. Lecture 7)

= Often used in combination with low-level frameworks like Tensorflow

worker B

Q r\
Tensor

[3] Tensorflow
Web page

Keras

[4] Keras
Web page

Tensorflow, CNTK, or Theano

= The key idea behind the Keras tool is to enable faster experimentation with deep networks

" Created deep learning models with Keras run seamlessly on CPU and GPU via low-level deep learning frameworks

L] Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-level deep learning frameworks like




Perceptron Model — Mathematical Notation for one Neuron

non-linear linear combination
activation function of input data

1 1

m
J=gq 1*w0+2xi*wi » Y=g w0+XTW

T T 1=1

Output Bias T Constants
Sum
I w1

" Simplify the perceptron learning model
formula with techniques from linear T Wm
algebra for mathematical convenience m

Input Trainable
Data Weights
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Handwritten Character Recognition MNIST Dataset

= Metadata
= Not very challenging dataset, but good for benchmarks & tutorials

= When working with the dataset

= Dataset is not in any standard image format like jpg,
bmp, or gif (i.e. file format not known to a graphics viewer)

= Data samples are stored in a simple file format that is designed
for storing vectors and multidimensional matrices (i.e. numpy arrays)

= The pixels of the handwritten digit images are organized row-wise

Handwritten Character Recognition
MNIST dataset is a subset of a larger
dataset from US National Institute of
Standards (NIST)

MNIST handwritten digits includes
corresponding labels with values 0-9 and
is therefore a labeled dataset

MNIST digits have been size-normalized
to 28 * 28 pixels & are centered in a fixed-
size image for direct processing

Two separate files for training & test:
60000 training samples (~47 MB) &

10000 test samples (~7.8 MB)

with pixel values ranging from 0 (white background) t0cass O HERANEZTNHE

to 255 (black foreground) classification o 3 [@ [1] 7] [ [#] (6] 7] M|

= |mages contain grey levels as a result of an anti-aliasing technique problem) % g % % % % % % % %
used by the normalization algorithm that generated this dataset g 719 7 9 ® 5633

T lRvIREZREIRF AN« REARC 1RVARZE)

ZT:;rEe:::?ﬁa:SZis import mnist (downloa(.js data into “home/.keras/dat_asets as % % % % % % %

K # download and shuffled as training and testing set StOI’:Zifélfafz;r;zgfg S;:qugzﬁrp‘aSOF:’;c;\;fsiison) E‘ EI @ E |§| E' @
(X_train, y_train), (X_test, y_test) = mnist.load_data() EI E' @ |E| E E‘ E E‘ |Z|
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MNIST Dataset — Data Access in Python & HPC Download Challenges

= WWarning for very secure HPC environments
= Note that HPC batch nodes often do not allow for download of remote files

Compute
Node

= A useful workaround for download remotely
stored datasets and files is to start the Keras
script on the login node and after data
download stop the script for a proper execution
on batch nodes for training & inference

SESRSNNEN
E=rFE

(=]

NoN WS ENS
SIS SNISGNEY
EINESNSES)
SSISESSIEENEY
SIPINOE e HH
SNRNARYSWNS
SIONICE A N =
NRNSNWSNSE
M=

Compute
Node

# download and shuffled as training and testing set
(X_train, y_train), (X_test, y_test) = mnist.load_data()

Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz
11493376/11490434 [===== = = = ==] - 6s lus/step

[riedell@juronl-adm datasets]$ pwd
p/home/jusers/riedell/juron/.keras/datasets
[riedell@juronl-adm datasets]$ 1s -al
otal 11234

drwxr-xr-x 2 riedell jusers
drwxr-xr-x 3 riedell jusers
-rw-r--r-- 1 riedell jusers 11490434 Jan 20 22:05 mnist.npz

import numpy as np
from keras.datasets {import mnist (downloads data into “home/.keras/datasets as
K NPZ file format of numpy that provides

# download and shuffled as training and testing set storage of array data using gzip compression)

(X_train, y_train), (X_test, y_test) = mnist.load_data()

Lecture 8 — Parallel & Scalable Machine & Deep Learning

Compute
Node

Compute
Node

4096 Jan 20 22:05
4096 Jan 20 22:03
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MNIST Dataset — Training/Testing Datasets & One Character Encoding

" Different phases in machine learning
. Training phases is a hypothesis search TR e

= Testing phase checks if we are on the right track
once the hypothesis is clear

H H H - e e 0 © © 0 © 0 © e o 6 © 0 46 130 L

= Validation phane for model selection (set fixed R N T T+

t d t d It © © © ©0 © O 18 171219253253 25325319580 9 ©

parameters and set model types e f Dl e R e S

n O © 0 o o © © o 6 78 25225212559 0 18 208
ne 1or training on I.e. tralining se

] O frt t o 6 o o o 1305 3126 o 0 o o o
INg on l.e. test se

ne 1or testing .e.

Exact seperation is rule of thumb per use case
(e.g. 10 % training, 90% test)

Practice: If you get a dataset take immediately test data away
‘throw it into the corner and forget about it during modelling’)

Once we learned from training data it has an ‘optimistic bias’
Usually start by exploring the dataset and its format & labels
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8w @ m s e 5 i B s M@ EE G NE B
e eE Ak Bk SEIERTEET SR ERT K
i s e nle sl e SRR LR R
R LR SRIEN I R R LERE
EREEREEREE R R R R R R A
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Smmr e v prriiiidiLnny
o i s 0 e o HIH I I
mmae e s s o I IR e
my s s LR LRy
S EEREREEER SEEHE R BT
EEERERERER SRy
R R SEEREI R o
REREREEEEEE SR Rk
SRR SRR SIS RRE
Bhemtntates Sogsisai mme s 0 e ol
By ity Pisniammmme s e a e
mEml it Ell SHIHIE O
Lmmma o bo SRR R ER
mmmae o s e st SRR R Y
S ot Peang siEmm s s st
SEEEEEEEEEE SR
T

R EEEEEEE SRR s g
TEEER LR

EEEEEEEEEE SEL IR ARG ERR R
SRR RN

EEEEEEEEEE SRR R ERE TSN

-
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s & & e 8 58 9 8 8 e e © e © 06 © © 0 © © © © 0 0 0 o
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mmmme st sutomua g8 ) s
Simimals e sl e e St Bl s e ee S8
Pommer i rel  gacimman e s b
Commas g ps s pimmen et e e
fLEmRl it iaid b amsmnkeamesye o
Sammams Ml fe gt Sl mummal s ne sl e
sapmames Mt e s p Sl s immamni s one e s
SEEms ety meg mEoen § o et
Smmae s as S mmel s S dG sy
mEma s Mt e Il mmEems amim e
SSsman il f G emmaimmee e g
e R R R R
i R R L R
Powtemmmme s 0SS EESsERs s ses B
SRR NE BRI LR LR R R
SR L LR T
PrEssEssa sy smcam s f g
I I LI R
BEEELER TR FEN S SR BRI RE L SR RN
SRR LR N R AR L R AR
BRI R ERE RN R B SRT B R T RN

Label:
o

‘training set’

153

‘test set’

Trainin% Examples

X]_?y}_ ,'='7 XN7yN

]
(historical records, groundtruth data, examples)
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MNIST Dataset — Data Exploration Script Training Data & JupyterLab Example

'import numpy as np - Lo_ad_lng MNIST ! ““;mr: @ﬂxmtyQ’Jupy'cyJ::fzjuclich.dc/u:cr, %) e @ T Lo @ H@
from keras.datasets import mnist tralnlrlg datasets S Fle G Vew R Keme b Tbs Seungs Hep
(X) with labels (Y) o [ oonmisr o |
\ stored in a binary jprxRErRC e i ©
# download and shuffled as training and testing set \\ numpy format ; o T
(X_train, y_train), (X_test, y_test) = mnist.load_data() 1. Format is 28 x 28 .
pixel values with
# function to explore one hand-written character grey level from 0 .
def character_show(character): (white background) | - (01 <13 rormat (o
for y 1in character: to 255 (black é
row = "" foreground) . -
for x 1in y: ||| i
row += '{0: <4}'.format(x) “ o 6 5 6 5 65 o0 606 60 606 6 60 60 60 6o 00 oo
print(row) i[*  Smallhelper R
! function that prints DIl Lt L L nnnEmmn
|| row-wise one PLiEIERRRRRSEREREFISEAIIL
# view first 10 hand-written characters 1 ‘hand-written® 9 9 @ 0 ¢ o ¢t o i Mmoo o 0 0 9 0 6 0 0 O o o 0
for i in range (0,9): \ character with the SEEEEEEEEEEE S T RN R
character_show(X_train[i]) grey levels stored S 8 6 6 o 0 0 0 0 0 0 o 0 o n e smaie o o o o o o o
print("\n") in training dataset
print("Label:") Should reveal the ol
print(y_train[i]) nature of the ;fj" i [2] Jupyter
print("\n" number (aka label) jupyter Web
T , Page
——— e’
" Example: loop of the training dataset (e.g. first 10 characters as shown here) PR—
= At each loop interval the ‘hand-written‘ character (X) is printed in ‘matrix notation‘ & label (Y)
Lecture 8 — Parallel & Scalable Machine & Deep Learning 17 /50




MNIST Dataset with Perceptron Learning Model — Need for Reshape

= Two dimensional dataset (28 X 28) = Note that the reshape from two dimensional MNIST data to one
. . . long vector means that we loose the surrounding context
= Does not fit well with in pUt to Perceptron Model " Loosing the surrounding context is one factor why later in this

= Need to prepare the data even more lecture deep learning networks achieving essentially better

performance by, e.g., keeping the surrounding context
= Reshape data = we need one long vector

0 [¢] 0 [°] [0} [¢] [0} (0] [0} [¢] [0} [¢] 0] [c] (0] [¢] [0} [c] (0] [c] [0] [c] (0] [c] (0] 0] [0] [c]

0 [} 0 [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} w

(¢} [} 0 [} 0 [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} o [} o O

0 (0] 0 [¢] 0 [¢] 0] [¢] 0] [¢] 0] [¢] [0} [c] (0] [¢] 0] [c] (0] [¢] (0] [c] (0] [¢] [0] [c] (0] [c]

0 (¢} 0 [} o [} o [} o [} o [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [}

(¢} [} 0 [} [} [} [} [} [} [} [} [} 3 18 18 18 126 136 175 26 166 255 247 127 © [} [0} o

(¢} [} 0 [} 0 [} [} [} 30 36 94 154 170 253 253 253 253 253 225 172 253 242 195 64 0O 0 [¢] o

0 [} 0 [¢] 0 [} [0} 49 238 253 253 253 253 253 253 253 253 251 93 82 82 56 39 0 (0] [c] (0] [¢]

0 [} 0 [} 0 [} [} 18 219 253 253 253 253 253 198 182 247 241 0 [} [} [} [} [} [} [} [} [} w

(¢} [} 0 [} 0 [} [} [} 80 156 107 253 253 205 11 © 43 154 0 [} [¢] [} [} o [} o [} o 1

(¢} [¢] 0 [¢] 0 [¢] [} [¢] [} 14 1 154 253 90 © [} [} [} [} [} [¢] (] [¢] (] [¢] (] [¢] (]

[} [} 0 [} 0 [} 0 [} [} [} [} 139 253 190 2 [} [} [} [} [} [} [} [} [} [} [} [} [}

] [} 0 [} 0 [} [} [} [} [} [} 11 190 253 70 © [} [} [} [} [} [} [} [} [} [} [} [}

(¢} [¢] 0 [¢] [} [¢] [} [¢] [} [¢] [} [¢] 35 241 225 160 108 1 [} [} [¢] [} [¢] (] [¢] (] [¢] 0 w - - - -
0 [°] 0 (0] [0} [°] [0} [¢] [0} [¢] 0] [¢] 0] 81 240 253 253 119 25 0o (0] [c] (0] [c] (0] ] (0] [c] 2

¢} [} 0 [} 0 [} [} [} [} [} [} [} [} [} 45 186 253 253 150 27 © [} [} [} [} [} [} [}

(¢} [0} 0 [} 0 [0} [} [} [} [} [} [} [} [} [} 16 93 252 253 187 0 [} [} [} [} [} [} 0

0 (0] 0 [¢] 0] [°] [0} [¢] 0] [¢] (0] [¢] 0] [¢] (0] [¢] 0] 249 253 249 64 0 (0] ] (0] ] (0] [¢]

0 [¢] 0 [¢] [0} [¢] 0] [¢] [0} [¢] [0} [¢] [0} [¢] 46 130 183 253 253 207 2 [c] [0] [¢] (0] [¢] (0] [¢]

(¢} [} 0 [} 0 [} [} [} [} [} [} [} 39 148 229 253 253 253 250 182 0 [} [} [} [} [} [} [} w

0 [0} 0 [} 0 [0} [} [} [} [} 24 114 221 253 253 253 253 201 78 © [¢] [} [¢] o [¢] o [} o m

0 (0] 0 [¢] 0 [¢] [0} [¢] 23 66 213 253 253 253 253 198 81 2 (0] [c] [0} o] (0] o] [0] ] [0] o] xl
0 [} 0 [} 0 [} 18 171 219 253 253 253 253 195 80 9 [} [} [} [} [} [} [} [} [} [} [} [}

(¢} [} 0 [0} 55 172 226 253 253 253 253 244 133 11 © [} [¢] [} [¢] [} [} [} [} [} [} o [} o

(¢} [0} 0 [0} 136 253 253 253 212 135 132 16 © [} [} [} [} [} [¢] o [¢] [} [¢] [} [¢] 0 [} 0 X R *
0 [¢] 0 [¢] 0 [¢] [0} [¢] [0} [¢] [0} [¢] [0} [¢] [0} [¢] [0} [¢] [0] [¢] (0] [c] [0} [c] (0] o] (0] [c] - °
0 [} 0 [} 0 [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} [} .
(¢} [0} 0 [} 0 [} [} [0} [} [} [} [} [} [} [} [} [} [} [¢] [} [¢] [} [} o [¢] o [¢] (¢}

Label:
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MNIST Dataset — Reshape & Normalization — Example

784 dinput pixel values per train samples

(One |Ong input VeCtor 784 dinput pixel values per test samples

. [o. 0. 0. 0. 0. 0.
with length 784) , - o , - o
0. 0. 0. 0. 0. 0. . . L. .
0. 0. 0. 0. 0. 0. (two dimensional original input)
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. © o 6 ©6 6 © 6 © 6 6 06 6 ©6 06 ©6 06 6 06 6 ©6 6 ©6 06 0 0 0 0 0
0. 0. 0. 0. 0. 0. © ©o 6 © 6 © ©6 © 06 6 0 6 ©6 6 06 0 6 0 6 06 6 06 0 0 0 0 0 0
0. 0. 0. 0. 0. 0. © o 6 o 6 © © © 0 ©6 0 6 ©6 0 6 0 6 0 6 06 6 ©6 0 6 0 0 0 0
0. 0. 0. 0. 0. 0. © 06 © © © © 06 © 6 o 06 6 ©6 6 e 06 o 06 6 06 6 © 06 o 0 0 0 0
0. 0. 0. 0. 0. 0. © 06 © © © © 6 © 6 © o e © 6 e 6 o 06 6 © 6 © 6 o 0 0 0 0
o 0 o o 0 o © 6 6 © © © 6 © 06 0 0 6 3 18 18 18 126 136 175 26 166 255 247 1270 0 0 0
ZCl : : . : : : © 6 © © © © 0 © 30 36 94 154 170 253 253 253 253 253 225 172 253 242 195 64 0 0O 0 0
0. 0. 0. 0. 0. 0. © 6 6 © 0 © 0 49 238 253 253 253 253 253 253 253 253 251 93 82 82 56 39 0 0 O 0 0
0. 0. 0. 0. 0. 0. © 6 6 0 06 © 0 18 219 253 253 253 253 253 198 182 2472416 © 6 © 0 © 0 0 0 0
. 0. 0. 0. 0. 0. 0. © o © ©0 © © 0 © 80 156 107 253 253 20511 O 43 1546 © 6 ©6 © © 0 0 0 0
p— . 0. 0. 0. 0. 0. 0. © o 6 0 © ©6 0 6 0 14 1 1542539 6 © 6 ©O© 6 ©6 6 6 0 6 0 0 0 0
© 6 © © © © 0 © 06 0 0 1392531%2 6 © 06 6 © 6 © 0 o 0 0 0 0
. 0. 0. 0. 0. 0. 0.
© 6 © © © © 06 © 06 0 ©0 11 19025370 6 © ©6 © © 6 © 0 © 0 0 0 0
0. 0. 0. 0. 0. 0. ® © © © © © © © O O O 6 35 2412251601081 6 © 6 O O O O O 0 0
:B 0. 0. 0. 0. 0. 0. © o © 06 © 06 o 6 0 0 0 0 0 8l 24025325311925 6 O ©6 0 O 06 O 0 0
m 0. 0. 0. 0. 0. 0. © 6 6 ©6 6 © 06 © 06 6 0 06 0 0 45 1862532531527 6 © O O O O 0O 0
0. 0. 9. 0. 0. 9. © o6 6 06 6 © 06 © 06 6 0 6 0 06 ©0 16 93 25225318706 © 06 © O O 0 0
o 0 o o o o © o 6 o0 ©6 © 0 ©6 0 6 0 6 06 0 6 0 0 24925324964 6 0 © 0 0 0 0
) : : ) : : e e © e e e e e e 6 e e 6 0 46 130 1832532532072 O O O O 0 0 0
0. 0. 0. 0. 0. . © o © 0 © © O © 0 © 0 ©O 39 148 229 253253 2532501820 © © © O O © 0
0. 0. 0. 0. 0. 0. e o © 0 6 ©6 0 6 0 0 24 114221 253253 25325320178 @6 O O O O 0O O O 0O
0. 0. 0. 0. 0. 0. © 6 0 © © © 0 © 23 66 213253253253 2531988L 2 © © © © 0 © 0 0 0 0
0. 0. 0.01176471 0.07058824 0.07058824 0.07058824 6 o 0 6 0 0 18 171219 253 253 253 253 1958 9 6 6 © @ © 06 06 06 06 6 0 0
®© 0 0 © 55 172 226 253 253 253253 24413311 6 06 6 O 6 © 06 ©6 06 © 0 0 0 0
0.49411765 0.53333336 0.6862745 0.10196079 0.6509804 1. 6 0 © 0 136253 253253212 13513216 6 © © © © o o o6 o © o © o o o o
0.96862745 0.49803922 0. 0. 0. 0. e © © © © © o © © © © © 6 o o o e e o o e 6 o o o e e o
0. 0. 0. 0. 0. 0. e o © © © © o e o o o e e o e o o e o e o e 0 0 e 0 e 0
0. 0. 0.11764706 0.14117648 0.36862746 0.6039216 [¢] [¢] <] [¢] [¢] 0 [¢] [} [} [¢] [o] o] [¢] 0] [c] [¢] [0] [¢] [¢] [o] [¢] [¢] o] [} [} [0] o] [¢]
0.6666667 0.99215686 0.99215686 0.99215686 0.99215686 0.99215686
(numbers are 0.88235205 0.6745098 0.99215686 0.9490196 0.7647059 0.2509804 Labels
0. 0. 0. 0. 0. 0. s
between 0 and 1) 0. 0. 0. 0. 0. 0.19215687
©.93333334 0.99215686 0.99215686 0.99215686 0.99215686 0.99215686
0.99215686 0.99215686 0.99215686 0.9843137 0.3647059 0.32156864
0.32156864 0.21960784 0.15294118 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0.07058824 0.85882354 0.99215686
0.99215686 0.99215686 0.99215686 0.99215686 0.7764706 0.7137255
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MNIST Dataset & Multi Output Perceptron Model

= 10 Class Classification Problem
= Use 10 Perceptrons for 10 outputs with softmax activation function (enables probabilities for 10 classes)

(Dense (Softmax (output
Layer) probabilities) from keras.models import Sequential
from keras.layers.core import Dense, Activation
\ s’
\ ,/, # model Keras sequential
\\ P4 model = Sequential ()
\
- - # add fully connected layer - input with output
,’ model .add (Dense (NB_CLASSES, input_shape: (RESHAPED, )))
~
~
// \\ # add activation function layer to get class probabilities
N, model.add (Activation ('softmax'))
# printout a summary of the model to understand model complexity
model . summary ()
(input m = 784) (10 neurons sum (softmax (NB_CLASSES = 10)
with 10 bias) activation) (parameters = 784 * 10 + 10 bias
. Note that the output units are independent among each other in contrast to neural networks with one hidden layer = 7850)
=  The output of softmax gives class probabilities T o F r—
" The non-linear Activation function ‘softmax‘ represents a generalization of the sigmoid function - it squashes an dense_1 (bense) one, 10) 7850
n-dimensional vector of arbitrary real values into a n-dimenensional vector of real values in the range of 0 and 1 — activation_I (Activation)  (None, 10) o
here it aggregates 10 answers provided by the Dense layer with 10 neurons
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MNIST Dataset & Compile Multi Output Perceptron Model

. Comp||e the model m from keras.optimizers import SGD

.. . OPTIMIZER = SGD() # optimization technique
= Optimizer as algorithm used to update : (’

weights while training the model

£(x) f(x)

(minimization: substract gradient term
because we move towards local minima)

(finding this point x is the

goal of gradient descent) position a (current position)

= Specify loss function (i.e. objective

(the derivative of f
function) that is used by the optimizer \ e gy b=a+tyV f(a) l(oxfﬁ"t‘:“w“:’s
to navigate the space of weights ’ A Lo
i before the step) is steepest ascent)

= (note: process of optimization is also

(new position  (weighting factor known as step-size,

after the step) can change at every iteration,

Xl zero gradient x2 Xa X also called learning rate) X X X

called loss minimization, cf. Invited

lecture Gabriele Cavalla FO) =  Compile the model to be executed by the Keras backend (e.g. TensorFlow)

=  Optimizer Gradient Descent (GD) uses all the training samples available for a

* Indicate metric for model evaluation step within a iteration

(e-g-; accCura CV) =  Optimizer Stochastic Gradient Descent (SGD) converges faster: only one
. . training samples used per iteration
u SpEley loss function = Loss function is a multi-class logarithmic loss: target is ti,j and prediction is pi,j
. .. . " Categorical crossentropy is suitable for multiclass label predictions (default
= Compare prediction vs. given class label with softmax)

= E.g. categorical crossentropy

Li = =Y.t: . log(p; . [5] Big Data Tips,
# specify loss, optimizer and metric ; 3 0 O(pl,'}) Gradient Descent

model.compile(loss='categorical_crossentropy', optimizer=0OPTIMIZER, metrics=['accuracy'])
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Full Script: MNIST Dataset — Model Parameters & Data Normalization

import numpy as np

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers.core import Dense, Activation
from keras.optimizers import SGD

from keras.utils import np utils

NB_CLASSES: 10 Class Problem

NB_EPOCH: number of times the model is exposed to the overall training set — at
each iteration the optimizer adjusts the weights so that the objective function is
minimized

BATCH_SIZE: number of training instances taken into account before the optimizer
performs a weight update to the model

OPTIMIZER: Stochastic Gradient Descent (‘SGD‘) — only one training sample/iteration

# parameter setur ’/
NB_EPOCH = 20 PR
BATCH SIZE = 128 '/’

NB CLASSES = 10 # I uts = number of digits

OPTIMIZER = SGD ()

WVERBOSER=

# download and shuffled as training and testing set

(X train, y train), (X test, y test) = mnist.load data()

# X train is 60000 rows of 28x28 values --> reshaped in 60000 x 784

RESHAPED — 784

X train = X train.reshape (60000, RESHAPED)
X test = X test.reshape (10000, RESHAPED)

X train = X train.astype('float32")

X test = X test.astype('float32'")

# normalize
X train /= 255
X_test /= 255

Data load shuffled between training and testing set in files

Data preparation, e.g. X_train is 60000 samples / rows of 28 x 28 pixel values that are
reshaped in 60000 x 784 including type specification (i.e. float32)

Data normalization: divide by 255 — the max intensity value

# output number of samples
print (X train.shape[0], 'train samples')
print (X test.shape[0], 'test samples')

to obtain values in range [0,1]
‘test set’

‘training set’

Trainin% Examples
(X] ’ yl)ﬂ '='7 (XN7 yN)

1
(historical records, groundtruth data, examples)

» Assignment #2 will explore the change of parameters in context of changes in running time when training models on GPUs vs. CPUs
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Full Script: MNIST Dataset — Fitting a Multi Output Perceptron Model

(full script continued from previous slide)

# convert class label vectors using one hot encoding ‘,"
Y_train = np_utils.to_categorical(y_train, NB_CLASSES) ‘,"
Y_test = np_utils.to_categorical(y_test, NB_CLASSES) 7

The Sequential() Keras model is a linear pipeline (aka ‘a stack‘) of
various neural network layers including Activation functions of
different types (e.g. softmax)

Dense() represents a fully connected layer used in ANNs that means
that each neuron in a layer is connected to all neurons located in the
previous layer

# model Keras sequential ‘,"
model = Sequential() ‘,"

# add fully connected layer - input with output
model.add(Dense (NB_CLASSES, input_shape=(RESHAPED,)))

# add activation function layer to get class probabilities -

The non-linear activation function ‘softmax‘ is a generalization of the
sigmoid function — it squashes an n-dimensional vector of arbitrary
real values into a n-dimenensional vector of real values in the range
of 0 and 1 — here it aggregates 10 answers provided by the Dense
layer with 10 neurons

model.add (Activation('softmax'))

# printout a summary of the model to understand model complexity
model.summary ()

# specify loss, optimizer and metric -

Loss function is a multi-class logarithmic loss: target is ti,j and the
prediction is pi,j

model.compile(loss="'categorical_crossentropy', optimizer=OPTIMIZER, metrics=['accuracy'])

# model training
history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE) ™,

Li = =%;t; ;1og(pi ;)

# model evaluation

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)

Train the model (‘fit‘) using selected batch & epoch sizes on training
& test data

print("Test score:", score[0])
print('Test accuracy:', score[l])

» Assignment #2 will explore the change of parameters in context of changes in running time when training models on GPUs vs. CPUs
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MNIST Dataset — A Multi Output Perceptron Model — Output & Evaluation

Epoch 7/20
60000/60000 [ I
Epoch 8/20
60000/60000 [ I
Epoch 9/20
60000/60000 [ I
Epoch 10/20
60000/60000 [ ]
Epoch 11/20
60000/60000 [ I
Epoch 12/20
60000/60000 [ I
Epoch 13/20
60000/60000 [ I
Epoch 14/20
60000/60000 [ I
Epoch 15/20
60000/60000 [ I
Epoch 16/20
60000/60000 [ I
Epoch 17/20
60000/60000 [ I
Epoch 18/20
60000/60000 [ I
Epoch 19/20
60000/60000 [ I
Epoch 20/20
60000/60000 [ I

# model evaluation

26us/step
26us/step
25us/step
26us/step
26us/step
25us/step
26us/step
25us/step
25us/step
24us/step
25us/step
25us/step
25us/step

24us/step

score = model.evaluate (X test, Y test, verbose=VERBOSE)

print ("Test score:", score[0]
print ('Test accuracy:', score[l]

10000/10000 [ ]
Test score: 0.33423959468007086
Test accuracy: 0.9101

- Os

4lus/step
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loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

L4419

L4271

L4151

.4052

.3968

.3896

.3832

L3777

L3727

.3682

.3641

.3604

.3570

.3538

acc:

acc:

acc:

acc:

.8838

.8866

.8888

.8910

.8924

.8944

.8956

.8969

.8982

.8989

.9001

.9007

.9016

.9023

(Dense (Softmax (output

Layer) Layer) probabilities@
\ ,’
\ ’
\\ ,/
\
,/
U4 \\
4 ~
’ \*A‘
(input m = 784) (10 neurons sum (softmax (NB_CLASSES = 10)
with 10 bias) activation)

How to improve the model design by extending the neural network topology?
Which layers are required?

Think about input layer need to match the data — what data we had?

Maybe hidden layers?

How many hidden layers?

What activation function for which layer (e.g. maybe RelLU)?

Think Dense layer — Keras?

Think about final Activation as Softmay (cf. Day One) 2> output probability
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MNIST Dataset — Add Two Hidden Layers for Artificial Neural Network (ANN)

= All parameter value remain the same as before

= We add N_HIDDEN as parameter in order to set 128 neurons in one
hidden layer — this number is a hyperparameter that is not directly [7] big-data.tips,
defined and needs to be find with parameter search

[ 6 ] big- data. tips, Input Hidden Layers Output
‘Relu Neural Network’

‘tanh’

# parameter setup
NB_EPOCH = 20

BATCH_SIZE = 128

NB_CLASSES = 10 # number of outputs = number of digits
OPTIMIZER = SGD() # optimization technique

VERBOSE = 1

N_HIDDEN = 128 # number of neurons in one hidden layer

# model Keras sequential
model = Sequential()

# modeling step

# 2 hidden layers each N_HIDDEN neurons
model.add(Dense(N_HIDDEN, input_shape=(RESHAPED,)))
model.add(Activation('relu'))

model.add(Dense (N_HIDDEN))
model.add(Activation('relu'))

model.add (Dense(NB_CLASSES))

(activation functions ReLU & Tanh)

model.add (Dense(N_HIDDEN)) model.add(Dense (N_HIDDEN))
model.add (Activation('relu')) model.add(Activation('tanh'))

# add activation function layer to get class probabilities
model.add(Activation('softmax'))

= The non-linear Activation function ‘relu‘ represents a so-called Rectified Linear Unit (ReLU)
that only recently became very popular because it generates good experimental results in
ANNs and more recent deep learning models - it just returns 0 for negative values and
grows linearly for only positive values

= Ahidden layer in an ANN can be represented by a fully connected Dense layer in Keras by
just specifying the number of hidden neurons in the hidden layer

» Assignment #2 will explore the change of parameters in context of changes in running time when training models on GPUs vs. CPUs
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MNIST Dataset — ANN Model Parameters & Output Evaluation

Epoch 7/20

60000/60000 [==============================] -
Epoch 8/20

60000/60000 [==============================] -
Epoch 9/20

60000/60000 [==============================] -
Epoch 10/20

60000/60000 [==============================] -
Epoch 11/20

60000/60000 [==============================] -
Epoch 12/20

60000/60000 [==============================] -
Epoch 13/20

60000/60000 [==============================] -
Epoch 14/20

60000/60000 [==============================] -
Epoch 15/20

60000/60000 [==============================] -
Epoch 16/20

60000/60000 [==============================] -
Epoch 17/20

600@0/600@@ [::================::::::::::::] -
Epoch 18/20

60000/60000 [==============================] -
Epoch 19/20

60000/60000 [==============================] -
Epoch 20/20

60000/60000 [==============================] -

# model evaluation

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step

18us/step

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)

print("Test score:", score[0])
print('Test accuracy:', score[l])

10000/10000 [==============================] - @s 33us/step

Test score: 0.16286438911408185
Test accuracy: 0.9514

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.2264 - acc: 0.9356

.2175 - acc: 0.9386

.2092 - acc: 0.9412

.2013 - acc: 0.9432

.1942 - acc: 0.9454

.2743 - acc: 0.9223

.2601 - acc: 0.9266

L2477 - acc: 0.9301

.2365 - acc: 0.9329

Input

.1876 - acc: 0.9472

.1813 - acc: 0.9487

.1754 - acc: 0.9502

L1700 - acc: 0.9522

.1647 - acc: 0.9536

# printout a summary of the model to understand model complexity
model .summary ()

Layer (type) Output Shape Param #
dense_1 (Dense) (None, 128) 100480
Hidden Layers Output activation_1 (Activation) (None, 128) 0
. dense_2 (Dense) (None, 128) 16512
0
/ activation_2 (Activation) (None, 128) 0
7@ @
dense_3 (Dense) (None, 10) 1290
Y : :
AV .‘*-x activation_3 (Activation) (None, 10) 0
\
\ "I'AAH Ye
\ d Total params: 118,282

Trainable params: 118,282
Non-trainable params: 0

1
1
1
1

Multi Output Perceptron:

~91,01% (20 Epochs)
ANN 2 Hidden Layers:
~95,14 % (20 Epochs)

Dense Layer connects every neuron in this dense layer to the next
dense layer with each of its neuron also called a fully connected
network element with weights as trainiable parameters

Choosing a model with different layers is a model selection that
directly also influences the number of parameters (e.g. add Dense
layer from Keras means new weights)

Adding a layer with these new weights means much more
computational complexity since each of the weights must be
trained in each epoch (depending on #neurons in layer)
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[YouTube Lectures] More Details about Machine Learning Basics

- Parallel & Scalable Data Analysis]

Introduction to Machine Learning Algorithms

Dr. - Ing. Morris Riedel
Adjunct Associated Professor

| School of Engineering and Natural Sciences, University of Iceland
Research Group Leader, Juelich Supercomputing Centre, Germany

LECTURE 1

Machine Learning Fundamentals

November 231", 2017
Ghent, Belgium

4 p »l o) 0:08/1:52:44
[1] Morris Riedel, ‘Introduction to Machine Learning Algorithms’, Invited YouTube Lecture, six
lectures, University of Ghent, 2017
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Parallel & Scalable Deep Learning Techniques

O
O
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DEEP Learning takes advantage of Many-Core Technologies (cf. Lecture 1 & 7)

O Hl /] g & [V 31 # 3]
A3 e 1] 7] [ [F) 6] (5] M
R o
deg el DEORRENGN
R EEE LD B nan A
# 6l 8 4 & f] Qlgl [l
ZI 1] el 3] 82 [/ 2]zl 8
g 8l el 75 R g0 e
2l Yl (& (g 0 [7] & 3] [/] 5]

Innovation via specific layers and architecture types

[5] A. Rosebrock

feature extraction classification

> Lecture 8 will provide more details about parallel & scalable machine & deep learning algorithms and how many-core HPC is used




Understanding Feature Maps & Convolutions — Online Web Tool

2D Visualization of a Convolutiona X i

&« c ® @ scs.ryerson.ca/~aharley/vis/conv/flathtml ooe L xd N @ ® =

[Draw your number here

Downsampled drawing:
First guess:

Second guess:

Downsampling layer 1

onvolution layer 2

[18] Harley, A.W., An Interactive Node-Link Visualization of Convolutional Neural Networks
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from
from
from
from
from
from
from
from
from
from

keras

keras.
keras.

keras
keras

keras.
keras.
keras.

keras

MNIST Dataset — Convolutional Neural Network (CNN) Model

import backend as K
models import Sequential
layers.convolutional {import Conv2D

.layers.convolutional import MaxPooling2D
.layers.core import Activation
keras.

layers.core import Flatten
layers.core import Dense
datasets +dimport mnist
utils dimport np_utils

.optimizers import SGD, RMSprop, Adam

import numpy as np
import matplotlib.pyplot as plt

#define the CNN model

clas

s CNN:

@staticmethod
def build(input_shape, classes):

model

Sequential()

# CONV => RELU => POOL

model.add (Conv2D (20, kernel_size=5, padding="same",
input_shape=input_shape))

model.add (Activation("relu"))

model.add (MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

# CONV => RELU => POOL

model.add (Conv2D(50, kernel_size=5, border_mode="same"))

model.add (Activation("relu"))

model.add (MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

# Flatten => RELU layers
model.add (Flatten())

model.add (Dense (500))

model.add (Activation("relu"))

# a softmax classifier
model.add (Dense(classes))
model.add (Activation("softmax"))

return

model
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/ 20 ’;g:tsure 'Frﬂ

" Increasing the number of filters learned to 50 in the next layer from 20 in the first
layer
= Increasing the number of filters in deeper layers is a common technique in deep
) learning architecture modeling
,’ . Flattening the output as input for a Dense layer (fully connected layer)
,’ " Fully connected / Dense layer responsible with softmay activation for classification
Il based on learned filters and features
’I
1 [19] A. Gu”" et al. # printout a summary of the model to understand model complexity
1 model.summary ()
/
II Layer (type) Output Shape Param #

/) conv2d_1 (Conv2D) (None, 20, 28, 28) 520
/4 50 Feature Derse N
Maps Layer Dense Output - - - -
I Layer activation_1 (Activation) (None, 20, 28, 28) [¢]

max_pooling2d_1 (MaxPooling2 (None, 20, 14, 14) 0
conv2d_2 (Conv2D) (None, 50, 14, 14) 25050
activation_2 (Activation) (None, 50, 14, 14) 0
Input
=]
H—i_ it | max_pooling2d_2 (MaxPooling2 (None, 50, 7, 7) 0
flatten_1 (Flatten) (None, 2450) (0]
dense_1 (Dense) (None, 500) 1225500
~o - ———
S activation_3 (Activation) (None, 500) 0
~~~
N~ dense_2 (Dense) (None, 10) 5010
P o Sso
# initialize the optimizer and model ~ activation_4 (Activation) (None, 10) 0

~
model = CNN.build(input_shape=INPUT_SHAPE, classes:NB_CLASSFS)..
model.compile(loss="categorical_crossentropy", optimizer=OPTIMIZ€§7~..
metrics=["accuracy"])

Total params: 1,256,080
S Trainable params: 1,256,080
Non-trainable params: 0
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MNIST Dataset — Model Parameters & 2D Input Data

# parameter setup

NB_EPOCH = 20

BATCH_SIZE = 128

VERBOSE = 1

OPTIMIZER = Adam()
VALIDATION_SPLIT=0.2

IMG_ROWS, IMG_COLS = 28, 28 # input i
NB_CLASSES = 10 # number of outputs =
INPUT_SHAPE = (1, IMG_ROWS, IMG_COLS)

mage dimensions
number of digits

OPTIMIZER: Adam - advanced optimization technique that includes the concept of
a momentum (a certain velocity component) in addition to the acceleration
component of Stochastic Gradient Descent (SGD)

Adam computes individual adaptive learning rates for different parameters from
estimates of first and second moments of the gradients

Adam enables faster convergence at the cost of more computation and is
currently recommended as the default algorithm to use (or SGD + Nesterov
Momentum)

# data: shuffled and split between tr
(X_train, y_train), (X_test, y_test)
K.set_image_dim_ordering("th")

# consider them as float and normaliz
X_train = X_train.astype('float32"')
X_test = X_test.astype('float32')
X_train /= 255

X _test /= 255

ain and test sets
= mnist.load_data()

e

[11] D. Kingma et al., Adam: A Method for Stochastic Optimization’

% we need a 60K x [1 x 28 x 28] ;%ape
X_train = X_train[:, np.newaxis, :,
X_test = X_test[:, np.newaxis, :, :]
print(X_train.shape[@], 'train sample
print(X_test.shape[0], 'test samples

y_train = np_utils.to_categorical(y_t
y_test = np_utils.to_categorical(y_te

:]

)

# convert class vectors to binary class matrices

as input to the CONVNET

s")

rain, NB_CLASSES)
st, NB_CLASSES)

Compared to the Multi-Output Perceptron and Artificial Neural Networks (ANN)
model, the input dataset remains as 2d matricew with 1 x 28 x 28 per image,
including also the class vectors that are converted to binary class matrices

» Assignment #2 will explore the change of parameters in context of changes in running time when training models on GPUs vs. CPUs
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MNIST Dataset — CNN Model Output & Evaluation

Epoch 14/20

48000/48@@0 [::::::::::::::::::::::::::

Epoch 15/20

48@@@/48@@@ [::::::::::::::::::::::::::

Epoch 16/20

48000/480@0 [::::::::::::::::::::::::::

Epoch 17/20

48000/48000 [==========================

Epoch 18/20

48@@@/48@@@ [::::::::::::::::::::::::::

Epoch 19/20

4800@/480@0 [::::::::::::::::::::::::::

Epoch 20/20

48000/48000 [==========================

# model evaluation

score = model.evaluate(X_test, y_test,
print("Test score:", score[0])
print('Test accuracy:', score[l])

====] - 4s 88us/step -

====] - 4s 89us/step -

====] - 4s 88us/step -
====] - 4s 88us/step -
====] - 4s 88us/step -
====] - 4s 88us/step -

====] - 4s 88us/step -

verbose=VERBOSE)

10000/10000 [==========================

Test score: 0.0303058747581508
Test accuracy: 0.9936

====] - 1s 70us/step

v/ Multi Output Perceptron:
~91,01% (20 Epochs)

v ANN 2 Hidden Layers:
~95,14 % (20 Epochs)

v" CNN Deep Learning Model:
~99,36 % (20 Epochs)

Input

Convolution |

[19] A. Gulli et al.

Lecture 8 — Parallel & Scalable Machine & Deep Learning

loss: 0.0065 -

loss: 0.0030 -

loss: 0.0057 -

loss: 0.0043 -

loss: 0.0046 -

loss: 0.0047 -

20 Feature
Maps

acc: 0.9980 - val_loss: 0.0346 - val_
acc: 0.9990 - val_loss: 0.0418 - val_
acc: 0.9980 - val_loss: 0.0470 - val_
acc: 0.9985 - val_loss: 0.0440 - val_
acc: 0.9985 - val_loss: 0.0474 - val_

acc: 0.9986 - val_loss: 0.0353 - val_

s

4

‘ LLLLL
Pooling ﬁ l Convolution"] lr
Pooling j I

acc: 0.,9921

acc: 0.9903

acc: 0.9910

acc: 0.9906

acc: 0.9891

acc: 0.9928

loss: 3.4055e-04 - acc: 1.0000 - val_loss: 0.0374 - val_acc: 0.9927

Dense Qutput "
Layer

NSNS se S Q4
e NI [ I

SSIE]TEENENISHEN
PN [ R 8]
SISl ][ NN ]
N[0y 0o o= 1l
PalfiN=fa] v o/t Sa
OISO AR NI

SRR SISNTESERYEN
M [ ol e[ L] 09 o] X e

N

Why not
100%

A3 U g r

some samples even for
a human unrecognizable
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More Computation: Deep Learning via RESNET-50 Architecture (cf. Lecture 7)

= Classification of land cover in scenes (cf. Invited Talk G. Cavallaro)
= Very suitable for parallelization via distributed training on multi GPUs

A VAVAVIAYAVAVAVIAYAVAVAVAVAVYEYAVYe
!\/\/!‘-.!\/\/X.-’z!\/\/\/\/\.-’/\/\

— — — g— — ey § g pr—  g— — T T iir —_— — e p— —
~ = @ @ @ @ @ ) ) = ] ) ) ) ] ] ) ) ) ) o ~ ~ ~ ~iiiN o~
. S > el A A A A A N
3l o2 §|§ §|3 3Eg zis zlz slz akg an NHN Nin nIN ~|n nfg si: al|3| 3] -
) AN IERE ERE] RS UL IRt Rt ] Rt Ry pt] § Ry R RN ) S IRt b § e iy b | | ) g el | ey e | ) I el | el I e | . ) R e ! =l 2 18
F——P 2 =PSB S S S S & NS G G N G Nt G N T G N G N G N T G NG G NG S Ep Eh Epl e AP O
g c"g"s*g"e’e"s‘)s"E"o'bo"‘o"'o"o'bo'b°')'>'>g+°'>‘°+°"‘°+g-’g"o"o+s*s+‘>:"‘°"°'>°+°'>°'>m‘>a
£ o 3 S o o o o o o o 8 o o o o ] o o o o o o S o o o o o S o
: Q Q L] L] o o S = -~ -~ -~ o - - S - - = - o - - 3] o) -~ - S - -~ - - - ® e
% al (a1 181 191 18] 18] (20 121131 121 181 131131 131 121 121 131 131 131 131 181 131131301813 120 13 18] 18] 18] |18
] A -

[21] RESNET

RESNET-50 is a known neural network architecture that has established a strong baseline in terms of accuracy

The computational complexity of training the RESNET-50 architecture relies in the fact that is has ~ 25.6 millions of trainable parameters
RESNET-50 still represents a good trade-off between accuracy, depth and number of parameters

The setups of RESNET-50 makes it very suitable for parallelization via distributed training on multi GPUs
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Distributed Training via Multi GPUs with Horovod — Remote Sensing Example

Time per epoch [sec]

/’\ ﬂﬂ/’\ /’V’\V/“\/\/“\ naa
[21] RESNET
A partition of the JUWELS system —
has 56 compute nodes, Training Process
each with 4 NVIDIA V100 GPUs v d
Averaged noae
(equipped with 16 GB of memory) Mo o Gradients
24 nodes x 4 GPUs = 96 GPUs Data Store Zisioiog Prooses
L] node
/ % Model Gradients prads
.
" Horovod is a distributed training framework used in combination with low-level L ] node
deep learning frameworks like Tensorflow P - Model Gradients sm," =,
" Horovod uses MPI for inter-process communication, e.g., MPI_Allreduce() : .
= Distributed training using data parallelism approach means: (1) Gradients for 3. Ruad Bata 2. Compute Model 3. Ayerage Gradients 4. Update Model
different batches of data are calculated separately on each node; (2) But averaged Updatss {Orionts)
across nodes to apply consistent updated to the deep learning model in each node [25] Horovod

MPI_Allreduce()
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Distributed Training via Multi GPUs with Horovod — ImageNet Example

Treemap Visualization Downloads

. Data Set . | r r ' a e N et b | ' HI%“ level #sy;nsft AVQ#\'magas per Total # images
. ImageNet 2011 Fall Release (32326) ! B =1 a category (subcategories) synse

plant, flora, plant life (4486) amphibian 94 591 56K
geolagical formation, formation (1
. natural object (1112) animal 3822 732 2799K
TOta I n u m be r Of ‘ Sﬁ:;n:ta;‘rli:trw:[(?aﬁs)uu appliance 51 184 59K
I m a ges : 1 4 . 1 9 7 . 1 2 2 insturi::ent;l;lgoig\swumenlahm | ‘J . | bird 856 948 812K
i musical instrument, ins! B covering 946 819 4K
H H ;- acoustic device (27) se5 fge device 2385 875 810K
" Images Wlth boundlng . . . . . fabric 262 690 181K
. . (huge collection of images with high level categories) - - o e
box annotations: 1.034.508 :
flower 462 735 339K
. B R . food 1495 670 1001K
=  Open source tool Horovod enables distributed deep learning with TensorFlow / Keras (ImageNet as a trt 09 o7 10eK
" Machine & Deep Learning: speed-up is just secondary goal after 1st goal accuracy benchmark in funeus e = e
. furniture 187 1043 195K
" Speed-up & parallelization good for faster hyperparameter tuning, training, inference deep learning pR—— o proy
=  Third goal is to avoid much feature engineering through ‘feature learning community) vertebrate G 572 e
mammal 138 821 934K
musical instrument 157 3 140K
(setup 1.2 Mio Images 224x224 pixels: TensorFlow “ p—— plen tess o0 s9oK
Ideal reptile 268 707 190K
1.4, Python 2.7, CUDA 8, cuDNN 6, Horovod 0.11.2, [ e— o - pro P
MVAPICH-2.2-GDR on JURECA K80 GPUs) * structure 1239 73 -
80 tool 316 551 174K
#GPUs  images/s  speedup  Performance per GPU [images/s] % tree 993 568 564K
1 55 1.0 55 ;’-’- = utensi 85 912 78K
4 178 32 4.5 48 vegetable 178 764 135K
8 357 6.5 44.63 wehicle 481 778 374K
16 689 12.5 43.06 32
person 2035 468 952K
32 1230 224 38.44
64 2276 41.4 35.56 ©
128 5562 1011 43.45 3 - - - _ [22]J. Dean et al., ‘Large-Scale Deep Learning’ [23] ImageNet Web page
[25] Horovod #GPUs
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Parallel Computing & HPC using GPUs for Deep Learning — Selected Impacts

s CPU GPU FPGA H S ialized .

100+ iy P BN arhedus Sockets =  Facts: GPUs are mostly used today for deep learning
- par compared to CPUs, FPGA, and specialized hardware
= 18 ; P
s W 2 16 . Facts: ~55% of all users that use deep learning use it
3 € with multiple nodes instead of just a single node
£ g 14 |
= 60 £ q o .
] § 121 " Facts: The communication layer MPI is mostly used as
g 4 i 101 communication layer for distributed training
°
e @ 81 compared to Spark, Remote Procedure Calls,
g 20 g ° MapReduce, or traditional Sockets
4 X 41 . . o]

o] . Most users use deep learning today with minibatches
o Pre. 2010 2011 2012 2013 2014 2015 2016 2017- 0.1 o that are selected numbers of samples for performing
Year resent 2013 Presant the optimization (e.g. SGD on minibatches)
Y - .
ear *  Minibatches should be not too small to increate
B Single Node Multiple Nodes A performance, but also not too large to increase
100 T validation error
Performance

[~
o
N
[=)

(=2
o
w
a

IS

1)

|
w
S

[33] T. Ben-Nun &

Validation Error
T. Hoefler

N

o
n
o

T

Reported Experiments [%]

C
Pre- 2010 2011 2012 2013 2014 2015 2016 2017- 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

2010 v Present Minibatch Size mini-batch size
ear

ImageNet top-1 validation error

n
o

» Complementary Cloud Computing & Big Data Course offers more parallel programming models such as map-reduce & Apache Spark
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More Complex Deep Learning Model Example: Long Short-Term Memory (LSTM)

= A Recurrent Neural Network (RNN) consists of cyclic
(‘delay’) connections that enable the neural network to better model
sequence data compared to a traditional feed forward artificial

1 ?’g ’g neural network (ANN)

. RNNs consists of ‘loops‘ (i.e. cyclic connections) that allow for
information to persist while training

. The repeating RNN model structure is very simple whereby each
has only a single layer (e.g. tanh)

(unroll the ‘loop’
over t timesteps)

It AR A
UL AAIAA AR AR A
A i\ A A P A I S sbobit

special kind of Recurrent Neural Networks (RNNs)

‘I “H‘;L "1\‘;.'5 o _
RNNs VM) s
(probabilities) 03 ( : @ (Key challenge: 5 mu ,T Pw u F {
’ o I B find the right L L
l parameters) §
> > | ¢ O A T T
(one;]hot etnco)ded l1 L ands‘rl rl{] un
h ,O, (LSTMs) @ @ G:P National Power Company of Iceland
€ . N RS h
X [l ] ]
Sl moming IAGeR e arawalk. ? ; ? i e =  Long Short Term Memory (LSTM) networks are a
] (] ]
[} ) [}
[} ) [}
] ) [}

1 . LSTMs learn long-term dependencies in data by
[32] MIT Course % remembering information for long periods of time
- . The LSTM chain structure consists of four neural

network layers interacting in a specific way
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More Complex Deep Learning Model Example: Autoencoder Networks

M.
CEERIELD Collects the gradients and

Hyperspectral image data 5
X ER M2 Moands X & [ "pixels™ Moands

. s hiearadien
I i . sends the new gradient
reshaping into I load into Driver ~ Scheduler &
mdmx |

Divides data
into panmum

Worker node:1 il Worker node n Worker node N
[Xiuns] d, = d,
erforms the forward and Performs the forwardand Performs the forward and
backward of the neural backward of the neural backward of the neural
L = 3 = ¥ 3
Orig]n’al | | Lumpru;wd - Reconstructed L
Input representation Output
X Elp‘,\lnlumh c. E:;'“m.-\\ X e u@;“n..m.
’ ® ' Py ' [28] J. Haut, G. Cavallaro and M. Riedel et al.,
o— _— _,.. b4 : @ IEEE Transactions on Geoscience and Remote Sensing, 2019
SOSTSA ] 7 a4
BN S Q<Y
. : o, | s. APACHE &
@ @ s Q r [29] Apache Spark Web page
Input Mapping Bottleneck Demapping Output
Layer Layer Layer Layer Layer
Encoder Decoder

Find right set of hyper-parameters and the
right neural network architecture for
autoencoder is a manual time-consuming and
error-prone process

Needs urgently HPC, but a systematic and
automated way is required as trying out all
options of hyper-parameters and architectures
is computationally infeasible

As resolutions of sensors becomes better and
more data is available it is likely that the
learning model will be increasingly complex in
the future that in turn raises demands for
automated architecture search and meta-
learning approaches

Client Node

Dri

VM

‘

‘Worker Node 1 ‘Worker Node N

Data partitions [ENIERIEREN ‘ Data partitions | ERIERIESIN
Node Memory Pool Node Memory Pool
Executor JVM #1 Executor JVM #1

Task #1 Task #1 ‘ Task #1 ‘ Task #1

» Complementary Cloud Computing & Big Data Course offers more details on using Apache Hadoop/Spark for Machine/Deep Learning
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Deep Learning Application Examples — Key Challenge: Find the Right Parameters

= Using Convolutional Neural Networks (CNNs) [26] J. Lange and M. Riedel et al.,
with hyperspectral remote sensing image data IGARSS Conference, 2018
Wim;rr])’\):;:ensor 3D Convolutian (sple[Zt’:;TZ{::::iin) Flatten F””Vf:y“e’::“ed SOL:;Z?X Pr(?::gi:‘itr:ies
i T .
"
& @ i1 :
a " [ ] ] Y
1I & &) . = = o —>
! — - — —> i 58
Z . - - n o ——> l
+ River n L u o ——>
= o & @ n [ [ o ——>
" [ ] n
- - | |
n
3x
= Find right set of hyper-parameters and the - . -
right ngural netwo!:'k architecture is a manual *  Find Hyperparameters & joint ‘new-old® modeling &
: i transfer learning given rare labeled/annotated data in
tlme-consumlng and error-prone pro_cess Feature Representation / Value . 3690(9)0 14.197.122 i I Net
* Needs urgently HPC, but a systematic and Conv. Layer Filters 48, 32, 32 science (e.g. 36,000 vs. 14,197,122 images ImageNet)
. . . Conv. Layer Filter size | (3,3,5), (3,3,5), (3,3,5)
aut9mated way is required as trying oyt all Dense Layer Neurons 126 128
options of hyper-parameters and architectures Optimizer SGD
iS computationa"y infeasible Loss Function mean squared error
Activation Functions Rel.U
Training Epochs 600
. i L. i Batch Size 50
=  What is the right optimization method? Learning Rate 1
Learning Rate Decay 5x107°
=  How many convolutional layers we need?

=  How many neurons in dense layers?

n What is the rlght filter size? 13 o% @ @al | [27] G. Cavallaro, M. Riedel et al., IGARSS 2019
= How do we train best? 15%0
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Massive Requirement for HPC Resources: Neural Architecture Search (NAS)

. Often a P . Employed neural networks architectures are often developed manually
Recurrent Sear;hl Space 5 Saars Stteny i by human experts that is time-consuming and error-prone
Neural , Slrstedy " Deep learning success has been accompanied by a rising demand for
Network (RNN) performence eefinete ofA architecture engineering, where increasingly more complex neural
technique that s o s ey - architectures are designed manually
performs the - { = Neural Architecture Search (NAS) methods can be categorized in (a)
agent steps : search space, (b) search strategy, and (c) performance estimation
strategy
. . =  Automated Neural Architecture (NAS) search methods aim to solve
Chﬂ-,d A@It&FtUFES this problem as a process of automating Architecture engineering

; —[j%a—/‘ 7 [31] M. Riedel, ‘NAS with Reinforcement Learning’

= Derived specific architectures that perform

P . =l ; . == o g
P _{jg}: Tusk-Dependent Objectives l: good for specific dataset samples
\

“ = E.g. what is the accuracy or error rate we
A @A \ obtain as metric to guide the search for
- specific architectures for specific dataset

7, Architecture-Dependent Objectives s:mples P
~<o
_ Reward ~‘~~~ * E.g. what is the latency of the network for a

given dataset sample to guide the search for
specific architectures that offer better latency

[30] A.C. Cheng et al., ‘InstaNAS: Instance-aware Neural Architecture Search’, 2018 by keeping accuracy(!)
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Modular Supercomputing — Mapping of Machine/Deep Learning Processes

GPU Module Cluster /Many-core Booster \ /Data Analytics\ Network Attached | Innovative

Module Module Memory Module Ideas, e.g. trained
models in memory,

put/get store for data,
non-volatile memory,

/ etc.

I
Quantum Innovative computing

paradigms for

™

Annealer -
wfﬂ’ Module specific tasks, e.g.
solving optimization
“ / (planned) tasks in machine
learning algorithms
[24] DEEP Projects T P |
Web Page
I Machine Neuromorphic Innovative
Dee : chips, e.g. use of
Lea::Iing Learning Machine Learning Deep D Sysl’iem o deepp Iea?ning
Training Testing & Inference Learning ee%h.earnlng optimized chip
1PS
K \ J \ / P designs
\ <4f”” > - ::?"

Storage [ Data Dy D ‘Big data’ /
Module Models “l“ u‘u parallel /0
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Modular Supercomputing Architecture — Data Analytics Module (DAM)

" Data Analytics Module (DAM) prefec josim o e
= Specific requirements for data - )
science & analytics frameworks e

Start date 01.03.2019
End date 31032020

= 16 nodes with 2x Intel Xeon
Cascade Lake; 24 cores

p name
. s P roject you ar to follow lations, in particular to fidentiality. That means not to
X nogae com ake data accessible to other perso tion by the data provi er the end o the project)
Active Budgets

= 1x Intel STRATIX10 FPGA PCle3 / node ..o
= 384 GB DDR4 memory / node

SCALABLE WA .
siorace | | Anauymes Every group need to register

SERVICE MODULE

= 2 TB non-volatile memore / node in JUSER Project JOAIML

NETY

0D
FEDERATION

[DEEP

= DAM Prototype for teaching
= 3 x4 GPUs Tesla Volta V100
= Slurm scheduling system

[24] DEEP Projects Web Page

» The DAM prototype machine as part of the modular supercomputing architecture will be used in Assignment #2 for deep learning
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SSH Keys — Use Private/Public Key Pair to Access DEEP HPC System

= Remember to use your

on settinas

. - 5 A
Prlvate SSH Key to ConnECt S T;et |§1 X(E%(l:p E’ V\lil!C Ig;’ SFTP S;:al Szll Brcﬁer MA:sh Aws S3 VEL
to the DEEP system
= Corresponding Public SSH key 4 Basio SSH setinoe
is already uploaded on the Remote host " deep.fzjuslicnde | || [ Specify usemame 2| Ptz [

HPC System (remote host)
per username(!)

= (cf. Practical Lecture 0.1)

B Offnen X

Suchen

»x

Schnellzugriff

in: " SSHKEY MORRIS

Name

" private-save d.ppk
* public.txt

Anderungsdatum Typ
17.12.2018 17:34 PPK-Datei
04.02.2019 15:22 Textdokume

- ‘"publ!c—saved 17.12.2018 17:34 Datei
m

Bibliotheken

Dieser PC

Allfiles (*.%)

Dateityp:
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X11-Forwarding Compression
Execute command: [

SSH-browser type: \SFTP protocol

B Advanced SSH settings [l Terminal settings “¢: Network settings

v

Use private key ‘C:\Users\mried\Desktop\SSH KEY |

Bookmark settings

Remote environment: |Interactive shell

[] Do not exit after command ends
[JFollow SSH path (experimental)

[[1 Adapt locales on remote server

Execute macro at session start: <none>

@OoK

€ Cancel
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[YouTube Lectures] More Details about Deep Learning Basics

Deep Learning

Using a Convolutional Neural Network

Dr. - Ing. Morris Riedel

Adjunct Associated Professor
- School of Engineering and Natural Sciences, University of Iceland
Research Group Leader, Juelich Supercomputing Centre, Germany

LECTURE 1

Deep Learning Fundamentals & GPGPUs

November 30", 2017
Ghent, Belgium

<« p » @ 000/ 21947
[20] Morris Riedel, ‘Deep Learning - Using a Convolutional Neural Network’, Invited YouTube
Lecture, six lectures, University of Ghent, 2017
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