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 General Purpose Graphical Processing Units (GPGPUs) aka ‘GPUs‘

Review of Lecture 7 – Graphical Processing Units (GPUs)

Lecture 8 – Parallel & Scalable Machine & Deep Learning 2 / 50

[8] CPU/GPU Comparison

NVLink (v2) GPU Interconnect ~50 GB/s

[9] Summit Architecture Overview [3] Tensorflow Web page [4] Keras Web page [10] JSC GPU Course [12] NVIDIA Training



Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns
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11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
3 / 50



Outline

 Parallel & Scalable Machine Learning Techniques
 Short Introduction to Machine Learning Approaches
 HPDBSCAN MPI/OpenMP Implementation & Clustering
 piSVM MPI Implementation & Land Cover Classification
 Handwritten Character Recognition MNIST Dataset
 Artificial Neural Networks with TensorFlow & Keras

 Parallel & Scalable Deep Learning Techniques
 Convolutional Neural Networks via TensorFlow & Keras
 Distributed Training via multiple GPUs with Horovod
 Long Short-Term Memory & Autoencoder Networks
 Neural Architecture Search via Reinforcement Learning
 Modular Supercomputing & Data Analytics Module
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 Promises from previous lecture(s):
 Practical Lecture 0.2: Lecture 8 will provide an overview of 

performing unsupervised learning with clustering using the 
parallel HPDBSCAN module

 Lecture 1 & 7: Lecture 8 will provide more details about 
parallel & scalable machine & deep learning algorithms and 
how many-core HPC is used

 Lecture 1: Lecture 8 will provide more details about parallel 
& scalable machine & deep learning algorithms and remote 
sensing applications

 Lecture 2 & 3: Lecture 8 will provide more details on MPI 
application examples with a particular focus on parallel and 
scalable machine learning

 Lecture 5 & Practical Lecture 5: Lecture 8 provides more 
details about using MPI and OpenMP for data science 
algorithms used in clustering and classification of data

 Lecture 7: Lecture 8 will provide more details about using 
Tensorflow & Keras in Deep Learning via Python for a wide 
variety of data science tasks

 Lecture 7: Lecture 8 will provide more details about parallel 
& scalable machine & deep learning algorithms are used 
with remote sensing datasets

 Lecture 7: Lecture 8 will provide more details about using 
distributed training with Horovod & more examples of 
speed-ups with multi GPU usage



Selected Learning Outcomes

 Students understand…
 Latest developments in parallel processing & high performance computing (HPC)
 How to create and use high-performance clusters
 What are scalable networks & data-intensive workloads
 The importance of domain decomposition
 Complex aspects of parallel programming
 HPC environment tools that support programming 

or analyze behaviour
 Different abstractions of parallel computing on various levels
 Foundations and approaches of scientific domain-

specific applications 

 Students are able to …
 Programm and use HPC programming paradigms
 Take advantage of innovative scientific computing simulations & technology
 Work with technologies and tools to handle parallelism complexity
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Parallel & Scalable Machine Learning Techniques
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Learning Approaches – What means Learning from data?

 Supervised Learning
 Majority of methods follow this 

approach in this course
 Example: credit card approval based 

on previous customer applications

 Unsupervised Learning
 Often applied before other learning  higher level data representation
 Example: Coin recognition in vending 

machine based on weight and size

 Reinforcement Learning
 Typical ‘human way‘ of learning
 Example: Toddler tries to touch a hot cup of tea (again and again)
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 The basic meaning of learning is ‘to use a set of observations to uncover an underlying process‘
 The three different learning approaches are supervised, unsupervised, and reinforcement learning

[14] Image sources: Species Iris Group of 
North America Database, www.signa.org  

[30] A.C. Cheng et al., ‘InstaNAS: Instance-aware Neural Architecture Search’, 2018



Machine Learning Models – Short Overview
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 Machine learning methods can be roughly categorized in classification, clustering, or regression augmented with various techniques for data 
exploration, selection, or reduction – despite the momentum of deep learning, traditional machine learning algorithms are still widely relevant today

 This course focus on supervised classification techniques and unsupervised clustering methods; more in complementary cloud course

Classification Clustering Regression

 Groups of data exist
 New data classified 

to existing groups

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data



Parallel Programming with MPI & OpenMP – Data Science Applications for HPC

 Machine Learning Algorithms
 Example: Highly Parallel Density-based spatial clustering of applications with noise (DBSCAN) 
 Selected Applications: Clustering different cortical layers in brain tissue & point cloud data analysis

Clustering

[13] M. Goetz and M. Riedel et al, 
Proceedings IEEE Supercomputing Conference, 2015
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Parallel and Scalable Machine Learning – Parallel Support Vector Machine (SVM)

 ‘Different kind‘ of parallel algorithms
 ‘learn from data‘ instead of modelling/approximate reality with physics
 Parallel algorithms often useful to reduce ‘overall time for data analysis‘

 E.g. Parallel Support Vector Machines (SVMs) Technique
 Data classification algorithm PiSVM using MPI to reduce ‘training time‘
 Example: classification of land cover masses from satellite image data

Lecture 8 – Parallel & Scalable Machine & Deep Learning 10 / 50

[15] G. Cavallaro & M. Riedel & J.A. Benediktsson et al., ‘On Understanding Big Data Impacts in Remotely Sensed Image Classification Using 
Support Vector Machine Methods’, Journal of Applied Earth Observations and Remote Sensing, 2015

[16] C. Cortes & V. Vapnik, ‘Support Vector Networks’, 
Machine Learning, 1995



Parallel Support Vector Machine (SVM) – piSVM MPI Implementation & Impact

 Original piSVM 1.2 version (2011)
 Open-source and based on libSVM library, C
 Message Passing Interface (MPI)
 New version appeared 2014-10 v. 1.3 

(no major improvements)
 Lack of ‘big data‘ support (e.g. memory)

 Tuned scalable parallel piSVM tool 1.2.1
 Highly scalable version maintained by Juelich
 Based on original piSVM 1.2 tool
 Optimizations: load balancing; MPI collectives
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[15] G. Cavallaro & M. Riedel & J.A. Benediktsson et al., ‘On Understanding Big Data Impacts in Remotely Sensed Image Classification Using 
Support Vector Machine Methods’, Journal of Applied Earth Observations and Remote Sensing [17] piSVM on SourceForge, 2008

Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

Using MPI_Allgather() instead

Using MPI_Allreduce() instead



Deep Learning Frameworks using GPUs also good for Artificial Neural Networks

 TensorFlow (cf. Lecture 7)
 One of the most popular deep learning frameworks available today
 Execution on multi-core CPUs or many-core GPUs

 Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-level deep learning frameworks like 
Tensorflow, CNTK, or Theano

 Created deep learning models with Keras run seamlessly on CPU and GPU via low-level deep learning frameworks
 The key idea behind the Keras tool is to enable faster experimentation with deep networks

[3] Tensorflow 
Web page Tensorflow is an open source library for deep learning models using a flow graph approach

 Tensorflow nodes model mathematical operations and graph edges between the nodes are 
so-called tensors (also known as multi-dimensional arrays)

 The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
 Tensorflow work with the high-level deep learning tool Keras in order to create models fast
 New versions of Tensorflow have Keras shipped with it as well & many further tools

 Keras (cf. Lecture 7)
 Often used in combination with low-level frameworks like Tensorflow

[4] Keras 
Web page
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Perceptron Model – Mathematical Notation for one Neuron

BiasOutput
Sum

non-linear
activation function

linear combination 
of input data

Trainable
Weights

Constants

Input 
Data

 Simplify the perceptron learning model 
formula with techniques from linear 
algebra for mathematical convenience
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Handwritten Character Recognition MNIST Dataset

 Metadata
 Not very challenging dataset, but good for benchmarks & tutorials

 When working with the dataset 
 Dataset is not in any standard image format like jpg,

bmp, or gif (i.e. file format not known to a graphics viewer)
 Data samples are stored in a simple file format that is designed 

for storing vectors and multidimensional matrices (i.e. numpy arrays)
 The pixels of the handwritten digit images are organized row-wise 

with pixel values ranging from 0 (white background) 
to 255 (black foreground)

 Images contain grey levels as a result of an anti-aliasing technique 
used by the normalization algorithm that generated this dataset

(10 class 
classification 

problem)
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 Handwritten Character Recognition 
MNIST dataset is a subset of a larger 
dataset from US National Institute of 
Standards (NIST)

 MNIST handwritten digits includes 
corresponding labels with values 0-9 and 
is therefore a labeled dataset

 MNIST digits have been size-normalized 
to 28 * 28 pixels & are centered in a fixed-
size image for direct processing

 Two separate files for training & test:
60000 training samples (~47 MB) &
10000 test samples (~7.8 MB)

(downloads data into ~home/.keras/datasets as
NPZ file format of numpy that provides

storage of array data using gzip compression)



MNIST Dataset – Data Access in Python & HPC Download Challenges

 Warning for very secure HPC environments
 Note that HPC batch nodes often do not allow for download of remote files

Compute
Node

Login
Node

Compute
Node

Compute
Node

Compute
Node

Scheduler

(downloads data into ~home/.keras/datasets as
NPZ file format of numpy that provides

storage of array data using gzip compression)
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 A useful workaround for download remotely 
stored datasets and files is to start the Keras 
script on the login node and after data 
download stop the script for a proper execution 
on batch nodes for training & inference



MNIST Dataset – Training/Testing Datasets & One Character Encoding 

 Work on two disjoint datasets
 One for training only (i.e. training set)
 One for testing only (i.e. test set)
 Exact seperation is rule of thumb per use case 

(e.g. 10 % training, 90% test)
 Practice: If you get a dataset take immediately test data away

(‘throw it into the corner and forget about it during modelling‘)
 Once we learned from training data it has an ‘optimistic bias‘
 Usually start by exploring the dataset and its format & labels

Training Examples

(historical records, groundtruth data, examples)

‘test set’‘training set’
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 Different phases in machine learning
 Training phases is a hypothesis search
 Testing phase checks if we are on the right track 

once the hypothesis is clear
 Validation phane for model selection (set fixed 

parameters and set model types)



MNIST Dataset – Data Exploration Script Training Data & JupyterLab Example

 Loading MNIST 
training datasets 
(X) with labels (Y) 
stored in a binary 
numpy format

 Format is 28 x 28 
pixel values with 
grey level from 0 
(white background) 
to 255 (black 
foreground)

 Small helper 
function that prints 
row-wise one 
‘hand-written‘ 
character with the 
grey levels stored 
in training dataset

 Should reveal the 
nature of the 
number (aka label)

 Example: loop of the training dataset (e.g. first 10 characters as shown here)
 At each loop interval the ‘hand-written‘ character (X) is printed in ‘matrix notation‘ & label (Y)
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[2] Jupyter 
Web 
Page



MNIST Dataset with Perceptron Learning Model – Need for Reshape

 Two dimensional dataset (28 x 28)
 Does not fit well with input to Perceptron Model
 Need to prepare the data even more 
 Reshape data  we need one long vector
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 Note that the reshape from two dimensional MNIST data to one 
long vector means that we loose the surrounding context

 Loosing the surrounding context is one factor why later in this 
lecture deep learning networks achieving essentially better 
performance by, e.g., keeping the surrounding context



MNIST Dataset – Reshape & Normalization – Example
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(numbers are 
between 0 and 1)

(one long input vector
with length 784)

(two dimensional original input)



MNIST Dataset & Multi Output Perceptron Model

 10 Class Classification Problem
 Use 10 Perceptrons for 10 outputs with softmax activation function (enables probabilities for 10 classes)
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 Note that the output units are independent among each other in contrast to neural networks with one hidden layer
 The output of softmax gives class probabilities
 The non-linear Activation function ‘softmax‘ represents a generalization of the sigmoid function – it squashes an 

n-dimensional vector of arbitrary real values into a n-dimenensional vector of real values in the range of 0 and 1 –
here it aggregates 10 answers provided by the Dense layer with 10 neurons

(Dense
Layer)

(output
probabilities)

(Softmax
Layer)

(NB_CLASSES = 10)(softmax
activation)

(10 neurons sum 
with 10 bias)

(input m = 784)
(parameters = 784 * 10 + 10 bias 

= 7850)



MNIST Dataset & Compile Multi Output Perceptron Model

 Compile the model
 Optimizer as algorithm used to update 

weights while training the model
 Specify loss function (i.e. objective

function) that is used by the optimizer
to navigate the space of weights

 (note: process of optimization is also 
called loss minimization, cf. Invited
lecture Gabriele Cavallaro)

 Indicate metric for model evaluation
(e.g., accuracy)

 Specify loss function
 Compare prediction vs. given class label
 E.g. categorical crossentropy
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 Compile the model to be executed by the Keras backend (e.g. TensorFlow)
 Optimizer Gradient Descent (GD) uses all the training samples available for a 

step within a iteration
 Optimizer Stochastic Gradient Descent (SGD) converges faster: only one 

training samples used per iteration 
 Loss function is a multi-class logarithmic loss: target is ti,j and prediction is pi,j
 Categorical crossentropy is suitable for multiclass label predictions (default 

with softmax)

[5] Big Data Tips,
Gradient Descent



Full Script: MNIST Dataset – Model Parameters & Data Normalization

 NB_CLASSES: 10 Class Problem 
 NB_EPOCH: number of times the model is exposed to the overall training set – at 

each iteration the optimizer adjusts the weights so that the objective function is 
minimized

 BATCH_SIZE: number of training instances taken into account before the optimizer 
performs a weight update to the model

 OPTIMIZER: Stochastic Gradient Descent (‘SGD‘) – only one training sample/iteration

 Data load shuffled between training and testing set in files
 Data preparation, e.g. X_train is 60000 samples / rows of 28 x 28 pixel values that are 

reshaped in 60000 x 784 including type specification (i.e. float32)
 Data normalization: divide by 255 – the max intensity value

to obtain values in range [0,1]

Training Examples

(historical records, groundtruth data, examples)

‘test set’‘training set’

Lecture 8 – Parallel & Scalable Machine & Deep Learning 22 / 50

 Assignment #2 will explore the change of parameters in context of changes in running time when training models on GPUs vs. CPUs



Full Script: MNIST Dataset – Fitting a Multi Output Perceptron Model

 Assignment #2 will explore the change of parameters in context of changes in running time when training models on GPUs vs. CPUs
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 The Sequential() Keras model is a linear  pipeline (aka ‘a stack‘) of 
various neural network layers including Activation functions of 
different types (e.g. softmax)

 Dense() represents a fully connected layer used in ANNs that means 
that each neuron in a layer is connected to all neurons located in the 
previous layer

 The non-linear activation function ‘softmax‘ is a generalization of the 
sigmoid function – it squashes an n-dimensional vector of arbitrary 
real values into a n-dimenensional vector of real values in the range 
of 0 and 1 – here it aggregates 10 answers provided by the Dense 
layer with 10 neurons

 Loss function is a multi-class logarithmic loss: target is ti,j and the 
prediction is pi,j

 Train the model (‘fit‘) using selected batch & epoch sizes on training 
& test data

(full script continued from previous slide)



MNIST Dataset – A Multi Output Perceptron Model – Output & Evaluation
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(Dense
Layer)

(output
probabilities)

(Softmax
Layer)

(NB_CLASSES = 10)(softmax
activation)

(10 neurons sum 
with 10 bias)

(input m = 784)

 How to improve the model design by extending the neural network topology?
 Which layers are required?
 Think about input layer need to match the data – what data we had?
 Maybe hidden layers?
 How many hidden layers?
 What activation function for which layer (e.g. maybe ReLU)?
 Think Dense layer – Keras?
 Think about final Activation as Softmay (cf. Day One)  output probability



MNIST Dataset – Add Two Hidden Layers for Artificial Neural Network (ANN)

 All parameter value remain the same as before
 We add N_HIDDEN as parameter in order to set 128 neurons in one 

hidden layer – this number is a hyperparameter that is not directly 
defined and needs to be find with parameter search 

 The non-linear Activation function ‘relu‘ represents a so-called Rectified Linear Unit (ReLU) 
that only recently became very popular because it generates good experimental results in 
ANNs and more recent deep learning models – it just returns 0 for negative values and 
grows linearly for only positive values

 A hidden layer in an ANN can be represented by a fully connected Dense layer in Keras by 
just specifying the number of hidden neurons in the hidden layer

 Assignment #2 will explore the change of parameters in context of changes in running time when training models on GPUs vs. CPUs

(activation functions ReLU & Tanh)

[6] big-data.tips, 
‘Relu Neural Network’

[7] big-data.tips, 
‘tanh’
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MNIST Dataset – ANN Model Parameters & Output Evaluation

 Multi Output Perceptron: 
~91,01% (20 Epochs)

 ANN 2 Hidden Layers:
~95,14 % (20 Epochs)
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 Dense Layer connects every neuron in this dense layer to the next 
dense layer with each of its neuron also called a fully connected 
network element with weights as trainiable parameters

 Choosing a model with different layers is a model selection that 
directly also influences the number of parameters (e.g. add Dense 
layer from Keras means new weights)

 Adding a layer with these new weights means much more 
computational complexity since each of the weights must be 
trained in each epoch (depending on #neurons in layer)



[YouTube Lectures] More Details about Machine Learning Basics

[1] Morris Riedel, ‘Introduction to Machine Learning Algorithms‘, Invited YouTube Lecture, six
lectures, University of Ghent, 2017
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Parallel & Scalable Deep Learning Techniques
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DEEP Learning takes advantage of Many-Core Technologies (cf. Lecture 1 & 7)

[4] Neural Network 3D Simulation

[5] A. Rosebrock

 Innovation via specific layers and architecture types

 Lecture 8 will provide more details about parallel & scalable machine & deep learning algorithms and how many-core HPC is used

?
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Understanding Feature Maps & Convolutions – Online Web Tool
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[18] Harley, A.W., An Interactive Node-Link Visualization of Convolutional Neural Networks



MNIST Dataset – Convolutional Neural Network (CNN) Model

[19] A. Gulli et al.

 Increasing the number of filters learned to 50 in the next layer from 20 in the first 
layer

 Increasing the number of filters in deeper layers is a common technique in deep 
learning architecture modeling

 Flattening the output as input for a Dense layer (fully connected layer)
 Fully connected / Dense layer responsible with softmay activation for classification

based on learned filters and features
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MNIST Dataset – Model Parameters & 2D Input Data  

 OPTIMIZER: Adam - advanced optimization technique that includes the concept of 
a momentum (a certain velocity component) in addition to the acceleration 
component of Stochastic Gradient Descent (SGD)

 Adam computes individual adaptive learning rates for different parameters from 
estimates of first and second moments of the gradients

 Adam enables faster convergence at the cost of more computation and is 
currently recommended as the default algorithm to use (or SGD + Nesterov 
Momentum)

[11] D. Kingma et al., ‘Adam: A Method for Stochastic Optimization’

 Compared to the Multi-Output Perceptron and Artificial Neural Networks (ANN) 
model, the input dataset remains as 2d matricew with 1 x 28 x 28 per image, 
including also the class vectors that are converted to binary class matrices
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 Assignment #2 will explore the change of parameters in context of changes in running time when training models on GPUs vs. CPUs



MNIST Dataset – CNN Model Output & Evaluation

 Multi Output Perceptron: 
~91,01% (20 Epochs)

 ANN 2 Hidden Layers:
~95,14 % (20 Epochs)

 CNN Deep Learning Model:
~99,36 % (20 Epochs)
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[19] A. Gulli et al.

?Why not 
100%

some samples even for 
a human unrecognizable



More Computation: Deep Learning via RESNET-50 Architecture (cf. Lecture 7)

 Classification of land cover in scenes (cf. Invited Talk G. Cavallaro)
 Very suitable for parallelization via distributed training on multi GPUs

 RESNET-50 is a known neural network architecture that has established a strong baseline in terms of accuracy
 The computational complexity of training the RESNET-50 architecture relies in the fact that is has ~ 25.6 millions of trainable parameters
 RESNET-50 still represents a good trade-off between accuracy, depth and number of parameters
 The setups of RESNET-50 makes it very suitable for parallelization via distributed training on multi GPUs

[21] RESNET
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node 

node 

node 

Distributed Training via Multi GPUs with Horovod – Remote Sensing Example

[25] Horovod

 Horovod is a distributed training framework used in combination with low-level 
deep learning frameworks like Tensorflow

 Horovod uses MPI for inter-process communication, e.g., MPI_Allreduce()
 Distributed training using data parallelism approach means: (1) Gradients for 

different batches of data are calculated separately on each node; (2) But averaged 
across nodes to apply consistent updated to the deep learning model in each node

Time per epoch [sec]

24 nodes x 4 GPUs = 96 GPUs

MPI_Allreduce()

A partition of the JUWELS system 
has 56 compute nodes,

each with 4 NVIDIA V100 GPUs
(equipped with 16 GB of memory)
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[21] RESNET



Distributed Training via Multi GPUs with Horovod – ImageNet Example

 Dataset: ImageNet
 Total number of 

images: 14.197.122
 Images with bounding 

box annotations: 1.034.908

[23] ImageNet Web page

(huge collection of images with high level categories)

[22] J. Dean et al., ‘Large-Scale Deep Learning’

(ImageNet as a 
benchmark in 
deep learning 
community)

 Open source tool Horovod enables distributed deep learning with TensorFlow / Keras 
 Machine & Deep Learning: speed-up is just secondary goal after 1st goal accuracy
 Speed-up & parallelization good for faster hyperparameter tuning, training, inference
 Third goal is to avoid much feature engineering through ‘feature learning‘ 

[25] Horovod
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(setup 1.2 Mio Images 224x224 pixels: TensorFlow 
1.4, Python 2.7, CUDA 8, cuDNN 6, Horovod 0.11.2, 

MVAPICH-2.2-GDR on JURECA K80 GPUs)



Parallel Computing & HPC using GPUs for Deep Learning – Selected Impacts

[33] T. Ben-Nun & 
T. Hoefler
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 Complementary Cloud Computing & Big Data Course offers more parallel programming models such as map-reduce & Apache Spark 

 Facts: GPUs are mostly used today for deep learning 
compared to CPUs, FPGA, and specialized hardware

 Facts: ~55% of all users that use deep learning use it 
with multiple nodes instead of just a single node

 Facts: The communication layer MPI is mostly used as 
communication layer for distributed training 
compared to Spark, Remote Procedure Calls, 
MapReduce, or traditional Sockets

 Most users use deep learning today with minibatches 
that are selected numbers of samples for performing 
the optimization (e.g. SGD on minibatches)

 Minibatches should be not too small to increate 
performance, but also not too large to increase 
validation error



More Complex Deep Learning Model Example: Long Short-Term Memory (LSTM)
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[32] MIT Course

 A Recurrent Neural Network (RNN) consists of cyclic 
connections that enable the neural network to better model 
sequence data compared to a traditional feed forward artificial 
neural network (ANN)

 RNNs consists of ‘loops‘ (i.e. cyclic connections) that allow for 
information to persist while training

 The repeating RNN model structure is very simple whereby each 
has only a single layer (e.g. tanh)

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

(‘delay’)

(RNNs)

(LSTMs)

 Long Short Term Memory (LSTM) networks are a 
special kind of Recurrent Neural Networks (RNNs)

 LSTMs learn long-term dependencies in data by 
remembering information for long periods of time

 The LSTM chain structure consists of four neural 
network layers interacting in a specific way

(Key challenge: 
find the right 
parameters)



More Complex Deep Learning Model Example: Autoencoder Networks
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[28] J. Haut, G. Cavallaro and M. Riedel et al.,
IEEE Transactions on Geoscience and Remote Sensing, 2019

 Complementary Cloud Computing & Big Data Course offers more details on using Apache Hadoop/Spark for Machine/Deep Learning

[29] Apache Spark Web page

 Find right set of hyper-parameters and the 
right neural network architecture for 
autoencoder is a manual time-consuming and 
error-prone process

 Needs urgently HPC, but a systematic and 
automated way is required as trying out all 
options of hyper-parameters and architectures 
is computationally infeasible

 As resolutions of sensors becomes better and 
more data is available it is likely that the 
learning model will be increasingly complex in 
the future that in turn raises demands for 
automated architecture search and meta-
learning approaches



Deep Learning Application Examples – Key Challenge: Find the Right Parameters

[26] J. Lange and M. Riedel et al., 
IGARSS Conference, 2018

[27] G. Cavallaro, M. Riedel et al., IGARSS 2019

 Using Convolutional Neural Networks (CNNs)
with hyperspectral remote sensing image data

 Find Hyperparameters & joint ‘new-old‘ modeling & 
transfer learning given rare labeled/annotated data in 
science (e.g. 36,000 vs. 14,197,122 images ImageNet)

 Find right set of hyper-parameters and the 
right neural network architecture is a manual 
time-consuming and error-prone process

 Needs urgently HPC, but a systematic and 
automated way is required as trying out all 
options of hyper-parameters and architectures 
is computationally infeasible

 What is the right optimization method?

 How many convolutional layers we need?

 How many neurons in dense layers?

 What is the right filter size?

 How do we train best?
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Massive Requirement for HPC Resources: Neural Architecture Search (NAS)
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[30] A.C. Cheng et al., ‘InstaNAS: Instance-aware Neural Architecture Search’, 2018

 Often a 
Recurrent 
Neural 
Network (RNN) 
technique that 
performs the 
agent steps

 Derived specific architectures that perform 
good for specific dataset samples

 E.g. what is the accuracy or error rate we 
obtain as metric to guide the search for 
specific architectures for specific dataset 
samples

 E.g. what is the latency of the network for a 
given dataset sample to guide the search for 
specific architectures that offer better latency 
by keeping accuracy(!)

 Employed neural networks architectures are often developed manually 
by human experts that is time-consuming and error-prone

 Deep learning success has been accompanied by a rising demand for 
architecture engineering, where increasingly more complex neural 
architectures are designed manually

 Neural Architecture Search (NAS) methods can be categorized in (a) 
search space, (b) search strategy, and (c) performance estimation 
strategy

 Automated Neural Architecture (NAS) search methods aim to solve 
this problem as a process of automating Architecture engineering

[31] M. Riedel, ‘NAS with Reinforcement Learning’



Modular Supercomputing – Mapping of Machine/Deep Learning Processes
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[24] DEEP Projects 
Web Page



Modular Supercomputing Architecture – Data Analytics Module (DAM) 

 Data Analytics Module (DAM)
 Specific requirements for data

science & analytics frameworks
 16 nodes with 2x Intel Xeon

Cascade Lake; 24 cores
 1x NVIDIA V100 GPU / node
 1x Intel STRATIX10 FPGA PCIe3 / node
 384 GB DDR4 memory / node
 2 TB non-volatile memore / node

 DAM Prototype for teaching
 3 x 4 GPUs Tesla Volta V100
 Slurm scheduling system

[24] DEEP Projects Web Page

 The DAM prototype machine as part of the modular supercomputing architecture will be used in Assignment #2 for deep learning 
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Every group need to register 
in JUSER Project JOAIML



SSH Keys – Use Private/Public Key Pair to Access DEEP HPC System

 Remember to use your
Private SSH Key to connect
to the DEEP system
 Corresponding Public SSH key

is already uploaded on the
HPC System (remote host) 
per username(!) 

 (cf. Practical Lecture 0.1)
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[20] Morris Riedel, ‘Deep Learning - Using a Convolutional Neural Network‘, Invited YouTube 
Lecture, six lectures, University of Ghent, 2017

[YouTube Lectures] More Details about Deep Learning Basics
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