
High Performance Computing
ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

November 04, 2019
Room V02-156

Parallel & Scalable Machine & Deep Learning

LECTURE 8 @MorrisRiedel@MorrisRiedel@Morris Riedel

 General Purpose Graphical Processing Units (GPGPUs) aka ‘GPUs‘

Review of Lecture 7 – Graphical Processing Units (GPUs)

Lecture 8 – Parallel & Scalable Machine & Deep Learning 2 / 50

[8] CPU/GPU Comparison

NVLink (v2) GPU Interconnect ~50 GB/s

[9] Summit Architecture Overview [3] Tensorflow Web page [4] Keras Web page [10] JSC GPU Course [12] NVIDIA Training

Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

Lecture 8 – Parallel & Scalable Machine & Deep Learning

11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
3 / 50

Outline

 Parallel & Scalable Machine Learning Techniques
 Short Introduction to Machine Learning Approaches
 HPDBSCAN MPI/OpenMP Implementation & Clustering
 piSVM MPI Implementation & Land Cover Classification
 Handwritten Character Recognition MNIST Dataset
 Artificial Neural Networks with TensorFlow & Keras

 Parallel & Scalable Deep Learning Techniques
 Convolutional Neural Networks via TensorFlow & Keras
 Distributed Training via multiple GPUs with Horovod
 Long Short-Term Memory & Autoencoder Networks
 Neural Architecture Search via Reinforcement Learning
 Modular Supercomputing & Data Analytics Module

Lecture 8 – Parallel & Scalable Machine & Deep Learning 4 / 50

 Promises from previous lecture(s):
 Practical Lecture 0.2: Lecture 8 will provide an overview of

performing unsupervised learning with clustering using the
parallel HPDBSCAN module

 Lecture 1 & 7: Lecture 8 will provide more details about
parallel & scalable machine & deep learning algorithms and
how many-core HPC is used

 Lecture 1: Lecture 8 will provide more details about parallel
& scalable machine & deep learning algorithms and remote
sensing applications

 Lecture 2 & 3: Lecture 8 will provide more details on MPI
application examples with a particular focus on parallel and
scalable machine learning

 Lecture 5 & Practical Lecture 5: Lecture 8 provides more
details about using MPI and OpenMP for data science
algorithms used in clustering and classification of data

 Lecture 7: Lecture 8 will provide more details about using
Tensorflow & Keras in Deep Learning via Python for a wide
variety of data science tasks

 Lecture 7: Lecture 8 will provide more details about parallel
& scalable machine & deep learning algorithms are used
with remote sensing datasets

 Lecture 7: Lecture 8 will provide more details about using
distributed training with Horovod & more examples of
speed-ups with multi GPU usage

Selected Learning Outcomes

 Students understand…
 Latest developments in parallel processing & high performance computing (HPC)
 How to create and use high-performance clusters
 What are scalable networks & data-intensive workloads
 The importance of domain decomposition
 Complex aspects of parallel programming
 HPC environment tools that support programming

or analyze behaviour
 Different abstractions of parallel computing on various levels
 Foundations and approaches of scientific domain-

specific applications

 Students are able to …
 Programm and use HPC programming paradigms
 Take advantage of innovative scientific computing simulations & technology
 Work with technologies and tools to handle parallelism complexity

Lecture 8 – Parallel & Scalable Machine & Deep Learning 5 / 50

Parallel & Scalable Machine Learning Techniques

Lecture 8 – Parallel & Scalable Machine & Deep Learning 6 / 50

Learning Approaches – What means Learning from data?

 Supervised Learning
 Majority of methods follow this

approach in this course
 Example: credit card approval based

on previous customer applications

 Unsupervised Learning
 Often applied before other learning  higher level data representation
 Example: Coin recognition in vending

machine based on weight and size

 Reinforcement Learning
 Typical ‘human way‘ of learning
 Example: Toddler tries to touch a hot cup of tea (again and again)

Lecture 8 – Parallel & Scalable Machine & Deep Learning 7 / 50

 The basic meaning of learning is ‘to use a set of observations to uncover an underlying process‘
 The three different learning approaches are supervised, unsupervised, and reinforcement learning

[14] Image sources: Species Iris Group of
North America Database, www.signa.org

[30] A.C. Cheng et al., ‘InstaNAS: Instance-aware Neural Architecture Search’, 2018

Machine Learning Models – Short Overview

Lecture 8 – Parallel & Scalable Machine & Deep Learning 8 / 50

 Machine learning methods can be roughly categorized in classification, clustering, or regression augmented with various techniques for data
exploration, selection, or reduction – despite the momentum of deep learning, traditional machine learning algorithms are still widely relevant today

 This course focus on supervised classification techniques and unsupervised clustering methods; more in complementary cloud course

Classification Clustering Regression

 Groups of data exist
 New data classified

to existing groups

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

Parallel Programming with MPI & OpenMP – Data Science Applications for HPC

 Machine Learning Algorithms
 Example: Highly Parallel Density-based spatial clustering of applications with noise (DBSCAN)
 Selected Applications: Clustering different cortical layers in brain tissue & point cloud data analysis

Clustering

[13] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Lecture 8 – Parallel & Scalable Machine & Deep Learning 9 / 50

Parallel and Scalable Machine Learning – Parallel Support Vector Machine (SVM)

 ‘Different kind‘ of parallel algorithms
 ‘learn from data‘ instead of modelling/approximate reality with physics
 Parallel algorithms often useful to reduce ‘overall time for data analysis‘

 E.g. Parallel Support Vector Machines (SVMs) Technique
 Data classification algorithm PiSVM using MPI to reduce ‘training time‘
 Example: classification of land cover masses from satellite image data

Lecture 8 – Parallel & Scalable Machine & Deep Learning 10 / 50

[15] G. Cavallaro & M. Riedel & J.A. Benediktsson et al., ‘On Understanding Big Data Impacts in Remotely Sensed Image Classification Using
Support Vector Machine Methods’, Journal of Applied Earth Observations and Remote Sensing, 2015

[16] C. Cortes & V. Vapnik, ‘Support Vector Networks’,
Machine Learning, 1995

Parallel Support Vector Machine (SVM) – piSVM MPI Implementation & Impact

 Original piSVM 1.2 version (2011)
 Open-source and based on libSVM library, C
 Message Passing Interface (MPI)
 New version appeared 2014-10 v. 1.3

(no major improvements)
 Lack of ‘big data‘ support (e.g. memory)

 Tuned scalable parallel piSVM tool 1.2.1
 Highly scalable version maintained by Juelich
 Based on original piSVM 1.2 tool
 Optimizations: load balancing; MPI collectives

Lecture 8 – Parallel & Scalable Machine & Deep Learning 11 / 50

[15] G. Cavallaro & M. Riedel & J.A. Benediktsson et al., ‘On Understanding Big Data Impacts in Remotely Sensed Image Classification Using
Support Vector Machine Methods’, Journal of Applied Earth Observations and Remote Sensing [17] piSVM on SourceForge, 2008

Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

Using MPI_Allgather() instead

Using MPI_Allreduce() instead

Deep Learning Frameworks using GPUs also good for Artificial Neural Networks

 TensorFlow (cf. Lecture 7)
 One of the most popular deep learning frameworks available today
 Execution on multi-core CPUs or many-core GPUs

 Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-level deep learning frameworks like
Tensorflow, CNTK, or Theano

 Created deep learning models with Keras run seamlessly on CPU and GPU via low-level deep learning frameworks
 The key idea behind the Keras tool is to enable faster experimentation with deep networks

[3] Tensorflow
Web page Tensorflow is an open source library for deep learning models using a flow graph approach

 Tensorflow nodes model mathematical operations and graph edges between the nodes are
so-called tensors (also known as multi-dimensional arrays)

 The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
 Tensorflow work with the high-level deep learning tool Keras in order to create models fast
 New versions of Tensorflow have Keras shipped with it as well & many further tools

 Keras (cf. Lecture 7)
 Often used in combination with low-level frameworks like Tensorflow

[4] Keras
Web page

Lecture 8 – Parallel & Scalable Machine & Deep Learning 12 / 50

Perceptron Model – Mathematical Notation for one Neuron

BiasOutput
Sum

non-linear
activation function

linear combination
of input data

Trainable
Weights

Constants

Input
Data

 Simplify the perceptron learning model
formula with techniques from linear
algebra for mathematical convenience

Lecture 8 – Parallel & Scalable Machine & Deep Learning 13 / 50

Handwritten Character Recognition MNIST Dataset

 Metadata
 Not very challenging dataset, but good for benchmarks & tutorials

 When working with the dataset
 Dataset is not in any standard image format like jpg,

bmp, or gif (i.e. file format not known to a graphics viewer)
 Data samples are stored in a simple file format that is designed

for storing vectors and multidimensional matrices (i.e. numpy arrays)
 The pixels of the handwritten digit images are organized row-wise

with pixel values ranging from 0 (white background)
to 255 (black foreground)

 Images contain grey levels as a result of an anti-aliasing technique
used by the normalization algorithm that generated this dataset

(10 class
classification

problem)

Lecture 8 – Parallel & Scalable Machine & Deep Learning 14 / 50

 Handwritten Character Recognition
MNIST dataset is a subset of a larger
dataset from US National Institute of
Standards (NIST)

 MNIST handwritten digits includes
corresponding labels with values 0-9 and
is therefore a labeled dataset

 MNIST digits have been size-normalized
to 28 * 28 pixels & are centered in a fixed-
size image for direct processing

 Two separate files for training & test:
60000 training samples (~47 MB) &
10000 test samples (~7.8 MB)

(downloads data into ~home/.keras/datasets as
NPZ file format of numpy that provides

storage of array data using gzip compression)

MNIST Dataset – Data Access in Python & HPC Download Challenges

 Warning for very secure HPC environments
 Note that HPC batch nodes often do not allow for download of remote files

Compute
Node

Login
Node

Compute
Node

Compute
Node

Compute
Node

Scheduler

(downloads data into ~home/.keras/datasets as
NPZ file format of numpy that provides

storage of array data using gzip compression)

Lecture 8 – Parallel & Scalable Machine & Deep Learning 15 / 50

 A useful workaround for download remotely
stored datasets and files is to start the Keras
script on the login node and after data
download stop the script for a proper execution
on batch nodes for training & inference

MNIST Dataset – Training/Testing Datasets & One Character Encoding

 Work on two disjoint datasets
 One for training only (i.e. training set)
 One for testing only (i.e. test set)
 Exact seperation is rule of thumb per use case

(e.g. 10 % training, 90% test)
 Practice: If you get a dataset take immediately test data away

(‘throw it into the corner and forget about it during modelling‘)
 Once we learned from training data it has an ‘optimistic bias‘
 Usually start by exploring the dataset and its format & labels

Training Examples

(historical records, groundtruth data, examples)

‘test set’‘training set’

Lecture 8 – Parallel & Scalable Machine & Deep Learning 16 / 50

 Different phases in machine learning
 Training phases is a hypothesis search
 Testing phase checks if we are on the right track

once the hypothesis is clear
 Validation phane for model selection (set fixed

parameters and set model types)

MNIST Dataset – Data Exploration Script Training Data & JupyterLab Example

 Loading MNIST
training datasets
(X) with labels (Y)
stored in a binary
numpy format

 Format is 28 x 28
pixel values with
grey level from 0
(white background)
to 255 (black
foreground)

 Small helper
function that prints
row-wise one
‘hand-written‘
character with the
grey levels stored
in training dataset

 Should reveal the
nature of the
number (aka label)

 Example: loop of the training dataset (e.g. first 10 characters as shown here)
 At each loop interval the ‘hand-written‘ character (X) is printed in ‘matrix notation‘ & label (Y)

Lecture 8 – Parallel & Scalable Machine & Deep Learning 17 / 50

[2] Jupyter
Web
Page

MNIST Dataset with Perceptron Learning Model – Need for Reshape

 Two dimensional dataset (28 x 28)
 Does not fit well with input to Perceptron Model
 Need to prepare the data even more
 Reshape data  we need one long vector

Lecture 8 – Parallel & Scalable Machine & Deep Learning 18 / 50

 Note that the reshape from two dimensional MNIST data to one
long vector means that we loose the surrounding context

 Loosing the surrounding context is one factor why later in this
lecture deep learning networks achieving essentially better
performance by, e.g., keeping the surrounding context

MNIST Dataset – Reshape & Normalization – Example

Lecture 8 – Parallel & Scalable Machine & Deep Learning 19 / 50

(numbers are
between 0 and 1)

(one long input vector
with length 784)

(two dimensional original input)

MNIST Dataset & Multi Output Perceptron Model

 10 Class Classification Problem
 Use 10 Perceptrons for 10 outputs with softmax activation function (enables probabilities for 10 classes)

Lecture 8 – Parallel & Scalable Machine & Deep Learning 20 / 50

 Note that the output units are independent among each other in contrast to neural networks with one hidden layer
 The output of softmax gives class probabilities
 The non-linear Activation function ‘softmax‘ represents a generalization of the sigmoid function – it squashes an

n-dimensional vector of arbitrary real values into a n-dimenensional vector of real values in the range of 0 and 1 –
here it aggregates 10 answers provided by the Dense layer with 10 neurons

(Dense
Layer)

(output
probabilities)

(Softmax
Layer)

(NB_CLASSES = 10)(softmax
activation)

(10 neurons sum
with 10 bias)

(input m = 784)
(parameters = 784 * 10 + 10 bias

= 7850)

MNIST Dataset & Compile Multi Output Perceptron Model

 Compile the model
 Optimizer as algorithm used to update

weights while training the model
 Specify loss function (i.e. objective

function) that is used by the optimizer
to navigate the space of weights

 (note: process of optimization is also
called loss minimization, cf. Invited
lecture Gabriele Cavallaro)

 Indicate metric for model evaluation
(e.g., accuracy)

 Specify loss function
 Compare prediction vs. given class label
 E.g. categorical crossentropy

Lecture 8 – Parallel & Scalable Machine & Deep Learning 21 / 50

 Compile the model to be executed by the Keras backend (e.g. TensorFlow)
 Optimizer Gradient Descent (GD) uses all the training samples available for a

step within a iteration
 Optimizer Stochastic Gradient Descent (SGD) converges faster: only one

training samples used per iteration
 Loss function is a multi-class logarithmic loss: target is ti,j and prediction is pi,j
 Categorical crossentropy is suitable for multiclass label predictions (default

with softmax)

[5] Big Data Tips,
Gradient Descent

Full Script: MNIST Dataset – Model Parameters & Data Normalization

 NB_CLASSES: 10 Class Problem
 NB_EPOCH: number of times the model is exposed to the overall training set – at

each iteration the optimizer adjusts the weights so that the objective function is
minimized

 BATCH_SIZE: number of training instances taken into account before the optimizer
performs a weight update to the model

 OPTIMIZER: Stochastic Gradient Descent (‘SGD‘) – only one training sample/iteration

 Data load shuffled between training and testing set in files
 Data preparation, e.g. X_train is 60000 samples / rows of 28 x 28 pixel values that are

reshaped in 60000 x 784 including type specification (i.e. float32)
 Data normalization: divide by 255 – the max intensity value

to obtain values in range [0,1]

Training Examples

(historical records, groundtruth data, examples)

‘test set’‘training set’

Lecture 8 – Parallel & Scalable Machine & Deep Learning 22 / 50

 Assignment #2 will explore the change of parameters in context of changes in running time when training models on GPUs vs. CPUs

Full Script: MNIST Dataset – Fitting a Multi Output Perceptron Model

 Assignment #2 will explore the change of parameters in context of changes in running time when training models on GPUs vs. CPUs
Lecture 8 – Parallel & Scalable Machine & Deep Learning 23 / 50

 The Sequential() Keras model is a linear pipeline (aka ‘a stack‘) of
various neural network layers including Activation functions of
different types (e.g. softmax)

 Dense() represents a fully connected layer used in ANNs that means
that each neuron in a layer is connected to all neurons located in the
previous layer

 The non-linear activation function ‘softmax‘ is a generalization of the
sigmoid function – it squashes an n-dimensional vector of arbitrary
real values into a n-dimenensional vector of real values in the range
of 0 and 1 – here it aggregates 10 answers provided by the Dense
layer with 10 neurons

 Loss function is a multi-class logarithmic loss: target is ti,j and the
prediction is pi,j

 Train the model (‘fit‘) using selected batch & epoch sizes on training
& test data

(full script continued from previous slide)

MNIST Dataset – A Multi Output Perceptron Model – Output & Evaluation

Lecture 8 – Parallel & Scalable Machine & Deep Learning 24 / 50

(Dense
Layer)

(output
probabilities)

(Softmax
Layer)

(NB_CLASSES = 10)(softmax
activation)

(10 neurons sum
with 10 bias)

(input m = 784)

 How to improve the model design by extending the neural network topology?
 Which layers are required?
 Think about input layer need to match the data – what data we had?
 Maybe hidden layers?
 How many hidden layers?
 What activation function for which layer (e.g. maybe ReLU)?
 Think Dense layer – Keras?
 Think about final Activation as Softmay (cf. Day One)  output probability

MNIST Dataset – Add Two Hidden Layers for Artificial Neural Network (ANN)

 All parameter value remain the same as before
 We add N_HIDDEN as parameter in order to set 128 neurons in one

hidden layer – this number is a hyperparameter that is not directly
defined and needs to be find with parameter search

 The non-linear Activation function ‘relu‘ represents a so-called Rectified Linear Unit (ReLU)
that only recently became very popular because it generates good experimental results in
ANNs and more recent deep learning models – it just returns 0 for negative values and
grows linearly for only positive values

 A hidden layer in an ANN can be represented by a fully connected Dense layer in Keras by
just specifying the number of hidden neurons in the hidden layer

 Assignment #2 will explore the change of parameters in context of changes in running time when training models on GPUs vs. CPUs

(activation functions ReLU & Tanh)

[6] big-data.tips,
‘Relu Neural Network’

[7] big-data.tips,
‘tanh’

Lecture 8 – Parallel & Scalable Machine & Deep Learning 25 / 50

MNIST Dataset – ANN Model Parameters & Output Evaluation

 Multi Output Perceptron:
~91,01% (20 Epochs)

 ANN 2 Hidden Layers:
~95,14 % (20 Epochs)

Lecture 8 – Parallel & Scalable Machine & Deep Learning 26 / 50

 Dense Layer connects every neuron in this dense layer to the next
dense layer with each of its neuron also called a fully connected
network element with weights as trainiable parameters

 Choosing a model with different layers is a model selection that
directly also influences the number of parameters (e.g. add Dense
layer from Keras means new weights)

 Adding a layer with these new weights means much more
computational complexity since each of the weights must be
trained in each epoch (depending on #neurons in layer)

[YouTube Lectures] More Details about Machine Learning Basics

[1] Morris Riedel, ‘Introduction to Machine Learning Algorithms‘, Invited YouTube Lecture, six
lectures, University of Ghent, 2017

Lecture 8 – Parallel & Scalable Machine & Deep Learning 27 / 50

Parallel & Scalable Deep Learning Techniques

Lecture 8 – Parallel & Scalable Machine & Deep Learning 28 / 50

DEEP Learning takes advantage of Many-Core Technologies (cf. Lecture 1 & 7)

[4] Neural Network 3D Simulation

[5] A. Rosebrock

 Innovation via specific layers and architecture types

 Lecture 8 will provide more details about parallel & scalable machine & deep learning algorithms and how many-core HPC is used

?

Lecture 8 – Parallel & Scalable Machine & Deep Learning 29 / 50

Understanding Feature Maps & Convolutions – Online Web Tool

Lecture 8 – Parallel & Scalable Machine & Deep Learning 30 / 50

[18] Harley, A.W., An Interactive Node-Link Visualization of Convolutional Neural Networks

MNIST Dataset – Convolutional Neural Network (CNN) Model

[19] A. Gulli et al.

 Increasing the number of filters learned to 50 in the next layer from 20 in the first
layer

 Increasing the number of filters in deeper layers is a common technique in deep
learning architecture modeling

 Flattening the output as input for a Dense layer (fully connected layer)
 Fully connected / Dense layer responsible with softmay activation for classification

based on learned filters and features

Lecture 8 – Parallel & Scalable Machine & Deep Learning 31 / 50

MNIST Dataset – Model Parameters & 2D Input Data

 OPTIMIZER: Adam - advanced optimization technique that includes the concept of
a momentum (a certain velocity component) in addition to the acceleration
component of Stochastic Gradient Descent (SGD)

 Adam computes individual adaptive learning rates for different parameters from
estimates of first and second moments of the gradients

 Adam enables faster convergence at the cost of more computation and is
currently recommended as the default algorithm to use (or SGD + Nesterov
Momentum)

[11] D. Kingma et al., ‘Adam: A Method for Stochastic Optimization’

 Compared to the Multi-Output Perceptron and Artificial Neural Networks (ANN)
model, the input dataset remains as 2d matricew with 1 x 28 x 28 per image,
including also the class vectors that are converted to binary class matrices

Lecture 8 – Parallel & Scalable Machine & Deep Learning 32 / 50

 Assignment #2 will explore the change of parameters in context of changes in running time when training models on GPUs vs. CPUs

MNIST Dataset – CNN Model Output & Evaluation

 Multi Output Perceptron:
~91,01% (20 Epochs)

 ANN 2 Hidden Layers:
~95,14 % (20 Epochs)

 CNN Deep Learning Model:
~99,36 % (20 Epochs)

Lecture 8 – Parallel & Scalable Machine & Deep Learning 33 / 50

[19] A. Gulli et al.

?Why not
100%

some samples even for
a human unrecognizable

More Computation: Deep Learning via RESNET-50 Architecture (cf. Lecture 7)

 Classification of land cover in scenes (cf. Invited Talk G. Cavallaro)
 Very suitable for parallelization via distributed training on multi GPUs

 RESNET-50 is a known neural network architecture that has established a strong baseline in terms of accuracy
 The computational complexity of training the RESNET-50 architecture relies in the fact that is has ~ 25.6 millions of trainable parameters
 RESNET-50 still represents a good trade-off between accuracy, depth and number of parameters
 The setups of RESNET-50 makes it very suitable for parallelization via distributed training on multi GPUs

[21] RESNET

Lecture 8 – Parallel & Scalable Machine & Deep Learning 34 / 50

node

node

node

Distributed Training via Multi GPUs with Horovod – Remote Sensing Example

[25] Horovod

 Horovod is a distributed training framework used in combination with low-level
deep learning frameworks like Tensorflow

 Horovod uses MPI for inter-process communication, e.g., MPI_Allreduce()
 Distributed training using data parallelism approach means: (1) Gradients for

different batches of data are calculated separately on each node; (2) But averaged
across nodes to apply consistent updated to the deep learning model in each node

Time per epoch [sec]

24 nodes x 4 GPUs = 96 GPUs

MPI_Allreduce()

A partition of the JUWELS system
has 56 compute nodes,

each with 4 NVIDIA V100 GPUs
(equipped with 16 GB of memory)

Lecture 8 – Parallel & Scalable Machine & Deep Learning 35 / 50

[21] RESNET

Distributed Training via Multi GPUs with Horovod – ImageNet Example

 Dataset: ImageNet
 Total number of

images: 14.197.122
 Images with bounding

box annotations: 1.034.908

[23] ImageNet Web page

(huge collection of images with high level categories)

[22] J. Dean et al., ‘Large-Scale Deep Learning’

(ImageNet as a
benchmark in
deep learning
community)

 Open source tool Horovod enables distributed deep learning with TensorFlow / Keras
 Machine & Deep Learning: speed-up is just secondary goal after 1st goal accuracy
 Speed-up & parallelization good for faster hyperparameter tuning, training, inference
 Third goal is to avoid much feature engineering through ‘feature learning‘

[25] Horovod

Lecture 8 – Parallel & Scalable Machine & Deep Learning 36 / 50

(setup 1.2 Mio Images 224x224 pixels: TensorFlow
1.4, Python 2.7, CUDA 8, cuDNN 6, Horovod 0.11.2,

MVAPICH-2.2-GDR on JURECA K80 GPUs)

Parallel Computing & HPC using GPUs for Deep Learning – Selected Impacts

[33] T. Ben-Nun &
T. Hoefler

Lecture 8 – Parallel & Scalable Machine & Deep Learning 37 / 50

 Complementary Cloud Computing & Big Data Course offers more parallel programming models such as map-reduce & Apache Spark

 Facts: GPUs are mostly used today for deep learning
compared to CPUs, FPGA, and specialized hardware

 Facts: ~55% of all users that use deep learning use it
with multiple nodes instead of just a single node

 Facts: The communication layer MPI is mostly used as
communication layer for distributed training
compared to Spark, Remote Procedure Calls,
MapReduce, or traditional Sockets

 Most users use deep learning today with minibatches
that are selected numbers of samples for performing
the optimization (e.g. SGD on minibatches)

 Minibatches should be not too small to increate
performance, but also not too large to increase
validation error

More Complex Deep Learning Model Example: Long Short-Term Memory (LSTM)

Lecture 8 – Parallel & Scalable Machine & Deep Learning 38 / 50

[32] MIT Course

 A Recurrent Neural Network (RNN) consists of cyclic
connections that enable the neural network to better model
sequence data compared to a traditional feed forward artificial
neural network (ANN)

 RNNs consists of ‘loops‘ (i.e. cyclic connections) that allow for
information to persist while training

 The repeating RNN model structure is very simple whereby each
has only a single layer (e.g. tanh)

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

(‘delay’)

(RNNs)

(LSTMs)

 Long Short Term Memory (LSTM) networks are a
special kind of Recurrent Neural Networks (RNNs)

 LSTMs learn long-term dependencies in data by
remembering information for long periods of time

 The LSTM chain structure consists of four neural
network layers interacting in a specific way

(Key challenge:
find the right
parameters)

More Complex Deep Learning Model Example: Autoencoder Networks

Lecture 8 – Parallel & Scalable Machine & Deep Learning 39 / 50

[28] J. Haut, G. Cavallaro and M. Riedel et al.,
IEEE Transactions on Geoscience and Remote Sensing, 2019

 Complementary Cloud Computing & Big Data Course offers more details on using Apache Hadoop/Spark for Machine/Deep Learning

[29] Apache Spark Web page

 Find right set of hyper-parameters and the
right neural network architecture for
autoencoder is a manual time-consuming and
error-prone process

 Needs urgently HPC, but a systematic and
automated way is required as trying out all
options of hyper-parameters and architectures
is computationally infeasible

 As resolutions of sensors becomes better and
more data is available it is likely that the
learning model will be increasingly complex in
the future that in turn raises demands for
automated architecture search and meta-
learning approaches

Deep Learning Application Examples – Key Challenge: Find the Right Parameters

[26] J. Lange and M. Riedel et al.,
IGARSS Conference, 2018

[27] G. Cavallaro, M. Riedel et al., IGARSS 2019

 Using Convolutional Neural Networks (CNNs)
with hyperspectral remote sensing image data

 Find Hyperparameters & joint ‘new-old‘ modeling &
transfer learning given rare labeled/annotated data in
science (e.g. 36,000 vs. 14,197,122 images ImageNet)

 Find right set of hyper-parameters and the
right neural network architecture is a manual
time-consuming and error-prone process

 Needs urgently HPC, but a systematic and
automated way is required as trying out all
options of hyper-parameters and architectures
is computationally infeasible

 What is the right optimization method?

 How many convolutional layers we need?

 How many neurons in dense layers?

 What is the right filter size?

 How do we train best?
Lecture 8 – Parallel & Scalable Machine & Deep Learning 40 / 50

Massive Requirement for HPC Resources: Neural Architecture Search (NAS)

Lecture 8 – Parallel & Scalable Machine & Deep Learning 41 / 50

[30] A.C. Cheng et al., ‘InstaNAS: Instance-aware Neural Architecture Search’, 2018

 Often a
Recurrent
Neural
Network (RNN)
technique that
performs the
agent steps

 Derived specific architectures that perform
good for specific dataset samples

 E.g. what is the accuracy or error rate we
obtain as metric to guide the search for
specific architectures for specific dataset
samples

 E.g. what is the latency of the network for a
given dataset sample to guide the search for
specific architectures that offer better latency
by keeping accuracy(!)

 Employed neural networks architectures are often developed manually
by human experts that is time-consuming and error-prone

 Deep learning success has been accompanied by a rising demand for
architecture engineering, where increasingly more complex neural
architectures are designed manually

 Neural Architecture Search (NAS) methods can be categorized in (a)
search space, (b) search strategy, and (c) performance estimation
strategy

 Automated Neural Architecture (NAS) search methods aim to solve
this problem as a process of automating Architecture engineering

[31] M. Riedel, ‘NAS with Reinforcement Learning’

Modular Supercomputing – Mapping of Machine/Deep Learning Processes

Lecture 8 – Parallel & Scalable Machine & Deep Learning 42 / 50

GPU Module Many-core BoosterCluster
Module

BN

BN

BN

BN

BN BN

BN

BN

BN

CN

CN

Data Analytics
Module

DN

Network Attached
Memory Module

NAM NAM

Quantum
Annealer
Module

(planned)

Storage
Module

GN

GN

GN

GN

GN GN

DiskDiskDisk Disk

Neuromorphic
System &

Deep Learning
Chips

DN

Machine
Learning
Training

Deep
Learning

Data
Models

Innovative
Ideas, e.g. trained
models in memory,
put/get store for data,
non-volatile memory,
etc.

Innovative
chips, e.g. use of
deep learning
optimized chip
designs

Deep
Learning

Machine Learning
Testing & Inference

Innovative computing
paradigms for
specific tasks, e.g.
solving optimization
tasks in machine
learning algorithms

‘Big data‘ /
parallel I/O

[24] DEEP Projects
Web Page

Modular Supercomputing Architecture – Data Analytics Module (DAM)

 Data Analytics Module (DAM)
 Specific requirements for data

science & analytics frameworks
 16 nodes with 2x Intel Xeon

Cascade Lake; 24 cores
 1x NVIDIA V100 GPU / node
 1x Intel STRATIX10 FPGA PCIe3 / node
 384 GB DDR4 memory / node
 2 TB non-volatile memore / node

 DAM Prototype for teaching
 3 x 4 GPUs Tesla Volta V100
 Slurm scheduling system

[24] DEEP Projects Web Page

 The DAM prototype machine as part of the modular supercomputing architecture will be used in Assignment #2 for deep learning
Lecture 8 – Parallel & Scalable Machine & Deep Learning 43 / 50

Every group need to register
in JUSER Project JOAIML

SSH Keys – Use Private/Public Key Pair to Access DEEP HPC System

 Remember to use your
Private SSH Key to connect
to the DEEP system
 Corresponding Public SSH key

is already uploaded on the
HPC System (remote host)
per username(!)

 (cf. Practical Lecture 0.1)

Lecture 8 – Parallel & Scalable Machine & Deep Learning 44 / 50

[20] Morris Riedel, ‘Deep Learning - Using a Convolutional Neural Network‘, Invited YouTube
Lecture, six lectures, University of Ghent, 2017

[YouTube Lectures] More Details about Deep Learning Basics

Lecture 8 – Parallel & Scalable Machine & Deep Learning 45 / 50

Lecture Bibliography

Lecture 8 – Parallel & Scalable Machine & Deep Learning 46 / 50

Lecture Bibliography (1)

 [1] Morris Riedel, ‘Introduction to Machine Learning Algorithms‘, Invited YouTube Lecture, six lectures University of Ghent, 2017, Online:
https://www.youtube.com/watch?v=KgiuUZ3WeP8&list=PLrmNhuZo9sgbcWtMGN0i6G9HEvh08JG0J

 [2] Jupyter Web Page, Online:
https://jupyter.org/

 [3] Tensorflow, Online:
https://www.tensorflow.org/

 [4] Keras Python Deep Learning Library, Online:
https://keras.io/

 [5] Big Data Tips, ‘Gradient Descent‘, Online:
http://www.big-data.tips/gradient-descent

 [6] www.big-data.tips, ‘Relu Neural Network‘, Online:
http://www.big-data.tips/relu-neural-network

 [7] www.big-data.tips, ‘tanh‘, Online:
http://www.big-data.tips/tanh

 [8] CPU/GPU Performance Comparison, Online:
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardwarecharacteristics-over-time/

 [9] Summit Supercomputer Architecture Overview, Online:
https://www.olcf.ornl.gov/wp-content/uploads/2019/05/Summit_System_Overview_20190520.pdf

 [10] A. Herten et al., Introduction to GPU Programming JSC Course
 [11] D. Kingma and Jimmy Ba, ‘Adam: A Method for Stochastic Optimization‘, Online:

https://arxiv.org/abs/1412.6980
 [12] SDSC, Nvidia Training – Introduction, Online:

http://www.sdsc.edu/us/training/assets/docs/NVIDIA-01-Intro.pdf

Lecture 8 – Parallel & Scalable Machine & Deep Learning 47 / 50

Lecture Bibliography (2)

 [13] M. Goetz, C. Bodenstein, M. Riedel, ‘HPDBSCAN – Highly Parallel DBSCAN’, in proceedings of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC2015), Machine Learning in HPC Environments (MLHPC) Workshop, 2015, Online:
https://www.researchgate.net/publication/301463871_HPDBSCAN_highly_parallel_DBSCAN

 [14] Species Iris Group of North America Database, Online:
http://www.signa.org

 [15] G. Cavallaro, M. Riedel, M. Richerzhagen, J. A. Benediktsson and A. Plaza, "On Understanding Big Data Impacts in Remotely Sensed Image Classification
Using Support Vector Machine Methods," in the IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 10, pp. 4634-
4646, Oct. 2015, Online:
https://www.researchgate.net/publication/282524415_On_Understanding_Big_Data_Impacts_in_Remotely_Sensed_Image_Classification_Using_Support_Ve
ctor_Machine_Methods

 [16] C. Cortes & V. Vapnik (1995). Support-vector networks. Machine learning, 20(3), 273-297, Online:
https://doi.org/10.1007/BF00994018

 [17] Original piSVM tool, Online:
http://pisvm.sourceforge.net/

 [18] Harley, A.W., An Interactive Node-Link Visualization of Convolutional Neural Networks, Online:
http://scs.ryerson.ca/~aharley/vis/conv/flat.html

 [19] A. Gulli and S. Pal, ‘Deep Learning with Keras‘ Book, ISBN-13 9781787128422, 318 pages, Online:
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

 [20] Morris Riedel, ‘Deep Learning - Using a Convolutional Neural Network‘, Invited YouTube Lecture, six lectures, University of Ghent, 2017, Online:
https://www.youtube.com/watch?v=gOL1_YIosYk&list=PLrmNhuZo9sgZUdaZ-f6OHK2yFW1kTS2qF

 [21] Kaiming He et al., ‘Deep Residual Learning for Image Recognition’, Online:
https://arxiv.org/pdf/1512.03385.pdf

 [22] J. Dean et al., ‘Large scale deep learning’, Keynote GPU Technical Conference, 2015

Lecture 8 – Parallel & Scalable Machine & Deep Learning 48 / 50

Lecture Bibliography (3)

 [23] ImageNet Web page, Online:
http://image-net.org

 [24] DEEP Projects Web page, Online:
http://www.deep-projects.eu/

 [25] Horovod: Uber’s Open Source Distributed Deep Learning Framework for TensorFlow, Online:
https://www.slideshare.net/databricks/horovod-ubers-open-source-distributed-deep-learning-framework-for-tensorflow

 [26] J. Lange, G. Cavallaro, M. Goetz, E. Erlingsson, M. Riedel, ‘The Influence of Sampling Methods on Pixel-Wise Hyperspectral Image Classification with 3D
Convolutional Neural Networks’, Proceedings of the IGARSS 2018 Conference

 [27] Cavallaro, G., Bazi, Y., Melgani, F., Riedel, M.: Multi-Scale Convolutional SVM Networks for Multi-Class Classification Problems of Remote Sensing Images,
in conference proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019), July 28 – August 2nd, 2019, Yokohama, Japan

 [28] Haut, J.M., Gallardo, J.A., Paoletti, M.E., Cavallaro, G., Plaza, J., Plaza, A., Riedel, M.: Cloud Deep Networks for Hyperspectral Image Analysis, IEEE
Transactions on Geoscience and Remote Sensing, PP(99):1-17, 2019, Online:
https://www.researchgate.net/publication/335181248_Cloud_Deep_Networks_for_Hyperspectral_Image_Analysis

 [29] Apache Spark, Online:
https://spark.apache.org/

 [30] Cheng, A.C, Lin, C.H., Juan, D.C., InstaNAS: Instance-aware Neural Architecture Search, Online:
https://arxiv.org/abs/1811.10201

 [31] M. Riedel, ‘Neural Architecture Search with Reinforcement Learning’, Online:
http://www.morrisriedel.de/neural-architecture-search-with-reinforcement-learning

 [32] S.191 MIT Intro to Deep Learning, ‘Sequence Modeling with Neural Networks’ Online:
https://www.youtube.com/watch?v=CznICCPa63Q&t=29s

 [33] T. Ben-Nun & T. Hoefler, ‘Demystifying Parallel and Distributed Deep Learning: An In-depth Concurrency Analysis‘, Online:
http://doi.acm.org/10.1145/3320060

Lecture 8 – Parallel & Scalable Machine & Deep Learning 49 / 50

Lecture 8 – Parallel & Scalable Machine & Deep Learning 50 / 50

