
High Performance Computing
ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

November 11, 2019
Room V02-156

Hybrid Programming & Patterns

LECTURE 10 @MorrisRiedel@MorrisRiedel@Morris Riedel

Review of Lecture 9 – Debugging & Profiling & Performance Toolkits

[1] Scalasca Flyer [2] TotalView Tool

(Scalasca tool example using tracing: which performance problem – where
in the program – which processes of the HPC machine are affected)

Lecture 10 – Hybrid Programming & Patterns 2 / 50

Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
Lecture 10 – Hybrid Programming & Patterns 3 / 50

Outline

 Hybrid Programming
 Motivation & Memory Benefits & Programming Complexity
 Programming Hybrid Systems with Vector Mode & Task Mode
 Lessons Learned & Performance of Hybrid Programs
 Hybrid Programming using simultanously GPUs & CPUs
 Simulation Sciences & Data Science Applications in Context

 Patterns
 Neareast Neighbour Communication & Cartesian Communicators
 Stencil-based Iterative Methods following a Regular Structure
 Jacobi 2D Application Example & Working with Halo Regions
 Numerical Methods & Role of Partial Differential Equations (PDEs)
 Towards Realistic Simulations – Terrestrial Systems Example

 Promises from previous lecture(s):
 Lecture 1 & 6: Lecture 10 will provide

insights into hybrid programming
models and introduces selected
patterns used in parallel programming

 Lecture 1: Lecture 10 will introduce the
programming of accelerators with
different approaches and their key
benefits for applications

 Lecture 3 & 5: Lecture 10 on Hybrid
Programming and Patterns will offer
more details on stencil methods &
patterns in simulation science
applications

 Practical Lecture 5.1: Lecture 10 shows
how MPI non-blocking communication
is used in Cartesian communicators for
nearest neighbor communications

 Lecture 6: Lecture 10 will provide more
details about stencil-based iterative
methods & used patterns in many
different HPC application examples

Lecture 10 – Hybrid Programming & Patterns 4 / 50

Hybrid Programming

Lecture 10 – Hybrid Programming & Patterns 5 / 50

Programming Hybrid Systems – Motivation

 Inefficient ‘on-node communications‘
 MPI uses ‘buffering techniques‘ to transfer data (cf. Lecture 3 & 4)
 Transfers may require ‘multiple memory copies‘ to get data from A to B
 Comparable to a ‘memory copy‘ between different MPI processes

 Take advantage of shared memory techniques where feasible
 OpenMP threads can read memory on the same node (cf. Lecture 6)

MPI ?
modified from [3] Introduction to
High Performance Computing for
Scientists and Engineers

Lecture 10 – Hybrid Programming & Patterns 6 / 50

Hierarchical Hybrid Computers – Revisited (cf. Lecture 1)

 Features
 Shared-memory nodes (here ccNUMA) with local NIs
 NI mediates connections to other remote ‘SMP nodes’

 A hierarchical hybrid parallel computer is neither a purely shared-memory
nor a purely distributed-memory type system but a mixture of both

 Large-scale ‘hybrid’ parallel computers have shared-memory building
blocks interconnected with a fast network today

[3] Introduction to High Performance Computing for Scientists and Engineers

Lecture 10 – Hybrid Programming & Patterns 7 / 50

Programming Hybrid Systems & Patterns – Revisited (cf. Lecture 1)

 Experience from HPC Practice
 Most parallel applications still take no notice of the hardware structure
 Use of pure MPI for parallelization remains the dominant programming
 Historical reason: old supercomputers all distributed-memory type
 Use of accelerators is significantly increasing in practice today

 Challenges with the ‘mapping problem’
 Performance of hybrid (as well as pure MPI codes) depends crucially

on factors not directly connected to the programming model
 It largely depends on the association of threads and processes to cores
 Patterns (e.g., stencil methods) support the parallel programming

 Hybrid systems programming uses MPI as explicit internode
communication and OpenMP for parallelization within the node

 Parallel Programming is often supported by using ‘patterns’ such as stencil
methods in order to apply functions to the domain decomposition

Lecture 10 – Hybrid Programming & Patterns 8 / 50

Programming Hybrid Systems & Patterns – Memory Benefits

 Using ‘OpenMP in combination with MPI’
 Still one buffer, but shared with the

threads (spawned from one process)
 Complex programming, but rewards in good performance

OpenMP

MPI

(amount of computing remains constant)

 Avoiding the memory requirements of
individual MPI processes that include
memory space for data, text, heap and
stack (needed for processing)

 Safe buffer space allocated for MPI
communication for each individual MPI
processes that consume valuable
memory space (e.g. also for I/O
buffers)

 Hybrid systems programming uses
MPI as explicit internode
communication and OpenMP for
parallelization within the node – but
achieving a speed-up & scalability is
not always the goal

 Using hybrid systems programming
reduces the memory requirement
overhead from multiple processes –
bears the potential to get access to
more memory/process in applications

modified from [3] Introduction to High Performance Computing for Scientists and Engineers

Lecture 10 – Hybrid Programming & Patterns 9 / 50

[4] MPI/OpenMP Hybrid Programming

Programming Hybrid Systems – Simple Example

Lecture 10 – Hybrid Programming & Patterns 10 / 50

#include <stdio.h>

#include <mpi.h>

int main (int argc, char** argv) {

int rank, size, n, info;

double *x, *y, *buff;

MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &info);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

...

chunk = n / size;

...

MPI_Scatter(buff, chunk, MPI_Double, x,

chunk, MPI_DOUBLE, 0, MPI_COMM_WORLD);

MPI_Scatter(&buff[n], chunk, MPI_DOUBLE, y,
chunk, MPI_DOUBLE, 0, MPI_COMM_WORLD);

...

#pragma omp parallel for private(i, chunk) shared(x,y)

doSomething(&chunk, &done, X, ¶mA, y, ¶mB);

...

MPI_Gather(x, chunk, MPI_DOUBLE, buff, chunk,
MPI_DOUBLE, 0 MPI_COMM_WORLD);

MPI_Finalize();

return 0;

}

 Change of MPI_Init() to MPI_Init_thread() to prepare
the MPI environment that threads will be used in
program

 MPI_Init_thread() has a parameter ‘required’ that
specifies requested level of thread support (e.g
MPI_THREAD_FUNNELED)

 MPI_Init_thread() returns a parameter with the actural
‘provided’ level of support from MPI library

 Use of OpenMP directives in MPI code but stick to
level of thread safety

‘simplified
demo code’

Programming Hybrid Systems – Thread Safety

 User specifies ‘guarantees‘ to the MPI library in initialization
 4 different options, (d) MPI_THREAD_SINGLE – MPI-only application

[3] Introduction to High Performance Computing for Scientists and Engineers

 (a) MPI_THREAD_FUNNELED: Only the master
thread will make calls to the MPI library; thread
that calls MPI_Init_thread is master thread

 (b) MPI_THREAD_SERIALIZED: Only one
thread at a time will make calls to the MPI
library; every thread is able to call an MPI
routine

 (c) MPI_THREAD_MULTIPLE: Any thread will
make calls to the MPI library at any time; MPI
library is responsible for thread safety (slow)

Lecture 10 – Hybrid Programming & Patterns 11 / 50

Combining MPI with OpenMP

 Any MPI process spawns n worker threads (‘fine-grained parallel’)
 Augmenting a parallel MPI program with OpenMP compiler directives
 MPI process takes the role of the OpenMP master thread (becomes T0)
 Need to specify the maximum number of threads for a certain region

 Example
 Useful for compute-intensive loops (cf. Lecture 6 specific loop support)
 Consequence: some processes are in pure MPI parts, others in hybrid parts

 Two implementation approaches
 Vector mode and Task mode
 Differ in the degree of

interaction between MPI and OpenMP

 Exploiting an additional level of finer granularity
with ‘multi-threading’ can be sometimes the only
way to increase parallelism beyond MPI limits
(e.g. application logic constraints)

Lecture 10 – Hybrid Programming & Patterns 12 / 50

Hybrid Vector Mode Implementation

Lecture 10 – Hybrid Programming & Patterns 13 / 50

 OpenMP worksharing
constructs are put in context
of compute-intensive loops

 MPI calls are performed
OUTSIDE OpenMP parallel
regions

[3] Introduction to High Performance Computing for Scientists and Engineers

OpenMP parallel region

 Halo regions need to be copied
frequently since they are
needed for computation while
a halo is a copy of remote data

 Using instead OpenMP can
reduce the size of halo regions
that need to be stored (cf.
Jacobi example)

Hybrid Task Mode Implementation

 OpenMP parallel environment
is created and master threads
performs MPI calls

 MPI calls can be performed
INSIDE OpenMP parallel
regions

 Useful for functional
task decompositions

 Enable decoupling of
communication and
computation

[3] Introduction to High Performance Computing for Scientists and Engineers

OpenMP
parallel
region

Lecture 10 – Hybrid Programming & Patterns 14 / 50

???

(will lead to massive complexity in a
large HPC application program)

Comparison of Vector Mode and Task Mode

 Vector Mode (recommended)
 Basically no real disadvantages,

just less flexible as Task Mode
 Independent programming of

OpenMP & MPI (‘simplicity‘)

 Task Mode (only for experts and
to get the most out of systems)
 Many disadvantages and thus only for experts
 E.g. blows up sourcecode and

increases code complexity significantly
 E.g. impacts on thread safety and specific support is available in libraries
 E.g. incremental hybrid parallelization impossible, MPI parts need rewrite

 Vector mode implementation is straightforward
to program and keeps clean code

 Programming hybrid like this means
programming MPI/OpenMP parts independently

 Applications benefit where the number of MPI
processes are constraint by application logic

 Task mode is the most flexible option for
programming hybrid but also most difficult

 Programming hybrid like this means having MPI
calls as part of OpenMP parallel regions

 Convenient OpenMP worksharing parallelization
directives not used to differentiate threads

Lecture 10 – Hybrid Programming & Patterns 15 / 50

Comparison of Vector Mode and Task Mode – Hybrid Benefits

[23] G. Hager

Lecture 10 – Hybrid Programming & Patterns 16 / 50

Comparison of Vector Mode and Task Mode – Hybrid Drawbacks

[23] G. Hager

Lecture 10 – Hybrid Programming & Patterns 17 / 50

Mapping Challenges – Different Options for Hybrid Programming

[23] G. Hager

Lecture 10 – Hybrid Programming & Patterns 18 / 50

Application Example & Performance Considerations

 Lessons Learned: hybrid MPI/OpenMP vs. plain MPI programming
 Example: 3D Jacobi application over Gigabit Ethernet & Infiniband (often)
 Measurement: MLUPs (mega lattice side updates per second)
 Network: Infiniband shows rarely benefit from hybrid programming

Lecture 10 – Hybrid Programming & Patterns 19 / 50

[3] Introduction to High Performance
Computing for Scientists and Engineers

3D domain decomposition topology:
number of processes in each
Cartesian direction

 Do hybrid programming only if pure MPI scalability is not satisfactory (i.e. often Infiniband in HPC)
 Working hard on hybrid programming makes less sense, rather work on perfectly scaling MPI code
 Since multi-core systems are expected to grow, above statements need to be reviewed every year

Scientific Application Example: Data Mining & Clustering

 Hybrid data mining algorithm example
 Parallel Density-based Spatial Clustering for

Applications with Noise (DBSCAN)
 Using MPI and OpenMP to scale better
 Standalone OpenMP is also possible to use

[5] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Lecture 10 – Hybrid Programming & Patterns 20 / 50

Many-core GPGPUs – Revisited (cf. Lecture 1)

 Use of very many simple cores
 High throughput computing-oriented architecture
 Use massive parallelism by executing a lot of

concurrent threads slowly
 Handle an ever increasing amount of multiple

instruction threads
 CPUs instead typically execute a single

long thread as fast as possible

 Many-core GPUs are used in large
clusters and within massively
parallel supercomputers today
 Named General-Purpose Computing on GPUs (GPGPU)
 Different programming models emerge

 Graphics Processing Unit (GPU) is great for data parallelism and task parallelism
 Compared to multi-core CPUs, GPUs consist of a many-core architecture with

hundreds to even thousands of very simple cores executing threads rather slowly

[6] Distributed & Cloud Computing Book

Lecture 10 – Hybrid Programming & Patterns 21 / 50

GPU Acceleration – Revisited (cf. Lecture 7)

 GPU accelerator architecture example
(e.g. NVIDIA card)
 GPUs can have 128 cores on one single GPU chip
 Each core can work with eight threads of instructions
 GPU is able to concurrently execute 128 * 8 = 1024 threads
 Interaction and thus major (bandwidth)

bottleneck between CPU and GPU
is via memory interactions

 E.g. applications that use matrix –
vector/matrix multiplication
(e.g. deep learning algorithms)

[6] Distributed & Cloud Computing Book

 CPU acceleration means that GPUs accelerate computing due to a massive parallelism
with thousands of threads compared to only a few threads used by conventional CPUs

 GPUs are designed to compute large numbers of floating point operations in parallel

Lecture 10 – Hybrid Programming & Patterns 22 / 50

Another Type of Hybrid Programming: CPUs & GPGPUs

 Emerging ‘hybrid programming model‘
 Using General-purpose computing on graphics processing units (GPGPUs)
 Combine with traditional CPUs to accelerate elements of processing
 Idea: exploit parallelism across host CPU cores in addition to the GPU cores

 Programming
 NVidea Compute Unified Device Architecture (CUDA)

as dominant propriety framework (cf. Lecture 7)
 GPU-accelerated scientific applications increasing
 AMD Radeon and other accelerators with new programming languages

[7] ‘Boosting CUDA Applications with CPU-GPU
Hybrid Computing’

[8] NVidea Tesla

[9] AMD Radeon Instinct

Lecture 10 – Hybrid Programming & Patterns 23 / 50

[Video] Application Example

[10] Jasmine Particle in Cell codes Framework

Lecture 10 – Hybrid Programming & Patterns 24 / 50

Patterns

Lecture 10 – Hybrid Programming & Patterns 25 / 50

Meaning of (Common) Patterns

 Not ‘Software Design Patterns‘
 Often used in software engineering

for repeating patterns in programming
 Only rarely used in scientific computing,

major reason: ‘physics rule code‘
 Tried a number of times in HPC ,

e.g. object oriented frameworks / libraries / papers / reference models, …

 Common Patterns in HPC
 Similiar thinking as ‘design patterns‘, but more ‘teaching common practice‘
 Refer rather to commonly used methods again used often in parallel codes

 Various impacts & usage
 Patterns affect how to organize data structures and domain decomposition
 Common patterns are able to reduce communication or computation
 Increases often also code readability

Lecture 10 – Hybrid Programming & Patterns 26 / 50

[11] E. Gamma et al., 1994

Blocking vs. Non-blocking Communication – Parallel Algorithms & Patterns

 Blocking vs. non-blocking: MPI_Send() blocks until data is received; MPI_Isend() continues
 The use of these functions can cause different performance problems (e.g. here ‘late sender’)
 MPI_Wait() does wait for a given MPI request to complete before continuing
 MPI_Waitall() does wait for all given MPI requests (e.g. waiting for message) to complete before continuing

[14] Metrics tour

[15] German MPI Lecture

Lecture 10 – Hybrid Programming & Patterns 27 / 50

Example: Cartesian Communicators – Practice & Experience (cf. Lecture 4)

 Methods for creating new communicators
 Create a cartesian communicator out of existing communicator
 Splitting an existing communicator
 Duplicating an existing ecommunicator
 Modifying a group of processes
 Reordering

 Cartesian Communicators – ‘MPI virtual topology‘
 NOT directly related with physical topology of hardware (network)
 Implementations of MPI might perform corresponding mapping (network)
 Describes the topological interrelation between processes
 Enable nearest neighbour communication patterns in a simple form

 Cartesian communicators are useful methods to implement nearest neighbour communication
patterns that are used in many applications in scientific computing and simulation sciences

Lecture 10 – Hybrid Programming & Patterns 28 / 50

Stencil-based Iterative Methods

 Simulation sciences & numerical methods
 Stencil-based iterative methods
 Applicable with exceptions with other methods: Finite element method

(selected codes on regular grids can use stencil codes)

 Selected application examples
 Computational Fluid Dynamics (CFD) codes
 Partial differential equations (PDE) solver
 Jacobi method
 Gauss-Seidel method
 Image processing

 Stencil-based iterative methods update array elements according to a fixed pattern called ‘stencil‘
 The key of stencil methods is its regular structure mostly implemented using arrays in codes
 Method is often used in computational science as part of scientific and angineering applications

Lecture 10 – Hybrid Programming & Patterns 29 / 50

[12] Wikipedia on ‘stencil code’

Jacobi 2D Application Example – Shared Memory with OpenMP not Enough?

 Solver
 Each diagonal element is solved and approximate value is plugged in
 The process is iterated until it converges

 Update function 2D Jacobi iterative method example
 E.g. computes the arithmetic mean of a cell‘s four neighbours
 E.g. solving diffusion equations (heat dissipation example)

[3] Introduction to High Performance Computing for Scientists and Engineers

[12] Wikipedia on
‘stencil code’

 The Jacobi iterative method is a
stencil-based iterative method used in
numerical linear algebra

 Algorithm for determining the
solutions of diagonally dominant
system of linear equations

Lecture 10 – Hybrid Programming & Patterns 30 / 50

Jacobi 2D Application Example – Diffusion Equation

 Iterative (time) step  a ‘stencil update‘
 A correction at coordinate (xi, yi) is calculated using a diffusion equation
 Calculation needs the ‘old’ values from the four next neighbouring points
 ‘Old‘ means: the values from the previous iteration!
 After all points have been updated (a ‘sweep’) repeat & next time step
 Updated values must be written to a second array

Lecture 10 – Hybrid Programming & Patterns 31 / 50

[3] Introduction to High Performance Computing for Scientists and Engineers

‘shaded’ area is
cache contents

i

k

Jacobi 2D Application Example – Arithmetic Mean & Neighbouring Cells

 From the problem to computational data structures
 Apply an ‘isotropic lattice‘ technique

‘change over time’
diffusion equation

k / y

i / x [12] Wikipedia on ‘stencil code’

Modified from [3] Introduction to High Performance
Computing for Scientists and Engineers

Lecture 10 – Hybrid Programming & Patterns 32 / 50

arithmetic mean
(¼) from four
neighbouring
isotropic cells

Jacobi 2D Application Example – Algorithm

 Time step: calculation from to to t1
 Performance considerations

 Compute view: Floating point operations per second (FLOPs)
 Data view: Stores & loads from cache (or memory if cache misses occur)

Lecture 10 – Hybrid Programming & Patterns 33 / 50

[3] Introduction to High Performance Computing for Scientists and Engineers

Jacobi 2D Application Example – Halo Regions

 Two-dimensional Jacobi solver
 Shared-memory and complete domain fits into memory

 Relatively easy: all grid sites in all domains can be updated before the processors have to synchronize at
the end of the sweep (i.e. time step)

 Distributed-memory with no access to ‘neighbours memory’
 Complex: updating the boundary sites of

one domain requires data from
adjacent domain(s) maybe out of memory

 Idea: before a domain update (next step),
all boundary values needed for the
upcoming sweep must be communicated
to the relevant neighboring domains

 Store this data somewhere, so extra grid
point(s) introduced (halo/ghost layers)

boundary halo
[3] Introduction to High Performance
Computing for Scientists and Engineers

(a wider halo
than ‘one‘ is
also possible)

Lecture 10 – Hybrid Programming & Patterns 34 / 50

Jacobi 2D Application Example – Halo Regions & Communication Costs

 Two-dimensional Jacobi solver in context of communication cost:
 Often choosing the optimal domain decomposition is application-specific
 Next neighbour interactions needed and can vary (more/less shaded cells)
 Simple: Cutting in four stripes domains (left) incurs more communication
 Optimal decomposition: four domains (right) incurs less communication

[3] Introduction to High Performance
Computing for Scientists and Engineers

3 * 16 = 48 4 * 8 = 32

Lecture 10 – Hybrid Programming & Patterns 35 / 50

 Halo regions are needed for local
computation while a halo / ghost
layer is a copy of remote data

 Reducing the amount of halo
regions with OpenMP in large-
scale MPI applications can be
useful

(introduce more and more physical parameters over time…)

(compute more physical laws…)

 Scientific computing with HPC simulates ‘ ~realistic behaviour ‘
 Apply common patterns over time & simulate based on numerical methods
 Increasing granularity (e.g. domain decomposition) needs more computing

(add scientific domain studies:
e.g. rainfall, ocean waves, wind, oil, storms…)

(add objects to study: boats, fish, birds, people, oil platform, …)

Terrestrial Systems Example – Towards Realistic Simulations – Granularity

 Lecture 12 will provide more details on using different domain decompositions for terrestrial system and climate simulations on HPC

(message passing of
status in each cell)

Lecture 10 – Hybrid Programming & Patterns 36 / 50

Terrestrial Systems Example – Need for Numerical Methods in HPC

 Behaviour ‘governed by equations‘ are computed
 Nature is (too) complex & interconnected: simplification

 Behaviour governed by ‘difference equations‘
 System state only change at discrete instants of time
 System state ‘not change in time continously‘

 Behaviour governed by ‘differential equations‘
 System state evolves ‘continously in time‘

 Selected ‘scientific questions‘ for simulations
 Under what circumstances will a system evolve into

an ‘equilibrium–state’ (state which does not change)
 Under what circumstances will the system evolve into

a ’periodic state’ (states the system return to over time)

[21] SimLab Terrestrial Systems

 Lecture 12 will provide more details on using different domain decompositions for terrestrial system and climate simulations on HPC

(solutions can be computed simply by applying
definitions iteratively)

(harder to solve, e.g. initial
value problem)

[19] Introduction to SC

 Solving some mathematical
problems & equations is too
computational intensive 
approximate

 Numerical methods are
methods that obtain
numerical approximation
solutions to problems

Lecture 10 – Hybrid Programming & Patterns 37 / 50

Terrestrial Systems – Role of Partial Differential Equations (PDEs)

 HPC simulation modelling
 PDEs enable rates of change (of continous variables)
 PDEs used to formulate problems

involving functions of several variables
 PDEs describe a wide variety of phenomena

(e.g. sound, heat, electrostatics, fluid flow, etc.)
 PDEs model multi-dimensional dynamical systems

 Differences to ‘ordinary differential equations‘
 Ordinary differential equations deal with

functions of a single variable and their derivatives
 Ordinary differential equations model

one-dimensional dynamical system

[19] Introduction to SC

Solving those equations is often too complicated
computationally expensive or impossible to analytically
compute driving the need for numerical approximation

 HPC models often use toolkits (e.g. PETSc) for Partial Differential
Equations (PDEs) that are differential equations that contains
unknown multivariable functions and their partial derivatives

 A general method in HPC modelling use parallel PDEs tools to
approximate solutions to problems

modified from [20] Wikipedia on ‘Partial Differential Equation’

 Lecture 12 will provide more details on using different domain decompositions for terrestrial system and climate simulations on HPC
Lecture 10 – Hybrid Programming & Patterns 38 / 50

Terrestrial Systems – ParFlow Model Parallel Application Example

 Modelling ‘hydrology‘ processes
 Parallel watershed flow model (ParFlow)
 Simulate surface and subsurface fluid flow
 Use in the assessment and management

of groundwater and surface water
 Investigate system physics and feedbacks
 Understand interactions at a range of scales
 Suitable for large scale & high resolution

 Parallel ‘numerical‘ application
 Developed over 10 years (aka stable code)
 Offers advanced numerical solvers for

massively parallel HPC systems

[16] R. Maxwell

 Lecture 12 will provide more details on using different domain decompositions for terrestrial system and climate simulations on HPC
Lecture 10 – Hybrid Programming & Patterns 39 / 50

 ParFlow enables the parallel simulation of
hydrology processes with (sub-)surface fluid flows

[17] ParFlow Web page

Terrestrial Systems – ParFlow Model Example using Parallel Programming

 Parallelization Techniques
 3D Grid domain decomposition
 3D code (use octree-space partitioning algorithm)
 Implements hybrid programming
 Requirement of ‘halo regions‘

for numerical equations

 Lecture 12 will provide more details on using different domain decompositions for terrestrial system and climate simulations on HPC
Lecture 10 – Hybrid Programming & Patterns 40 / 50

[17] ParFlow Web page

Domain decomposition

Distributed memory
across the grid & halo updates

Shared memory
within the grid

Terrestrial Systems – CLM Model Parallel Application Example

 Modelling ‘land surface‘ processes
 Community land model (CLM)
 Simulates concepts of ecological climatology
 Understand how natural & human changes

in vegetation affect the climate
 Examine physical, chemical, and biological

processes that affect (or are affected by
climate across spatial / temporal scales

 Investigate terrestrial ecosystems
through their cycling of energy, water,
chemical elements, and trace gases

 Explore impact of terrestrial ecosystems
as important determinants of climate

 Lecture 12 will provide more details on how to couple scientific simulation codes that simulate parts of a domain with different physics

[16] R. Maxwell

 CLM enables the parallel simulation of
land-surface with physical & chemical
& biological processes

[18] CLM Web page

Lecture 10 – Hybrid Programming & Patterns 41 / 50

Terrestrial Systems – CLM Model Application – Parallel Programming

 Parallelization Techniques
 Implements ‘hybrid programming‘
 OpenMP within a node (cf. Lecture 6)
 MPI routines for parallelism across nodes

(cf. Lecture 3)

 Coupled as module
 Code is often fully coupled with ParFlow
 Coupling is performed in a way that

CLM is incorporated into ParFlow
as a module (full coupled, fully parallel)

 E.g. flow of water on land-surface
affects groundwater model

 Lecture 12 will provide more details on how to couple scientific simulation codes that simulate parts of a domain with different physics

CLM module

ParFlow library

[16] R. Maxwell

Lecture 10 – Hybrid Programming & Patterns 42 / 50

Systems Biology – Parallel Neuroscience Application Example

 Scientific case: understanding the function of the human brain
 Neuron/NEST code:

 Parallel application codes to simulate biologically
realistic neural networks (neurons + synapses)

 Simulate models of the brain at different levels
 Different ‘granularity’: Molecular, cellular, network level
 Simulated brain will reach

up to ~900 TB (Big Data!)

Simulated ~2 billion neurons
 1 second biological time
 40 minutes compute time

(on K supercomputer)
[22] HBP Project

(the biggest supercomputers today
just reach ~4.5% of human scale)

Lecture 10 – Hybrid Programming & Patterns 43 / 50

 Lecture 13 will provide more details on various systems biology & bioinformatics application codes that use parallel computing

 Lecture 13 will provide more details on various systems biology & bioinformatics application codes that use parallel computing

 Simulations of spiking – parallel neural network models
 Use parallelization (e.g. MPI cf. Lecture 3 and hybrid programming)

Largest spiking neural network simulation to date:
1.86∙109 neurons, 11.1∙1012 synapses

550 Mio. Neurons, 5.5∙1012 synapses on 458752 cores

(blue: 8 threads, red: 16 threads per node)

(11.250 synapses/neuron – light blue JUQUEEN, red: K computer)

Systems Biology – Parallel Neuroscience Application – Parallel Programming

Lecture 10 – Hybrid Programming & Patterns 44 / 50

(triangles: maximum network size,
dots: simulation time)

[22] HBP Project

[Video] Jacobi 3D Heat Dissipation Simulation

[13] LibGeoDecomp - Jacobi Solver (Heat Dissipation)

Lecture 10 – Hybrid Programming & Patterns 45 / 50

Lecture Bibliography

Lecture 10 – Hybrid Programming & Patterns 46 / 50

Lecture Bibliography (1)

 [1] Scalasca Flyer – Scalasca Performance Analysis Tool, Online:
http://www.scalasca.org/

 [2] TotalView Debugger, Online:
http://www.roguewave.com/products/totalview.aspx

 [3] Introduction to High Performance Computing for Scientists and Engineers, Georg Hager & Gerhard Wellein, Chapman & Hall/CRC Computational Science,
ISBN 143981192X

 [4] YouTube Video, ‘MPI/OpenMP Hybrid Programming – Getting the most from multi-core‘, Online:
http://www.youtube.com/watch?v=TiQRPMBBmDs

 [5] M. Goetz, C. Bodenstein, M. Riedel, ‘HPDBSCAN – Highly Parallel DBSCAN’, in proceedings of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC2015), Machine Learning in HPC Environments (MLHPC) Workshop, 2015, Online:
https://www.researchgate.net/publication/301463871_HPDBSCAN_highly_parallel_DBSCAN

 [6] K. Hwang, G. C. Fox, J. J. Dongarra, ‘Distributed and Cloud Computing’, Book, Online:
http://store.elsevier.com/product.jsp?locale=en_EU&isbn=9780128002049

 [7] Changmin Lee, Won Woo Ro, Jean-Luc Gaudiot, ‘Boosting CUDA Applications with CPU–GPU Hybrid Computing’, Int J Parallel Prog (2014) 42:384–404, DOI
10.1007/s10766-013-0252-y

 [8] NVidea Tesla, Online:
http://www.nvidia.de/object/tesla-high-performance-computing-de.html

 [9] AMD Radeon Instinct for HPC, Online:
https://www.amd.com/en/products/servers-hpc-accelerators

 [10] YouTube Video, ‘Sample jasmine 2D bubble simulation’, Online:
http://www.youtube.com/watch?v=pQYi9LKyI0I

Lecture 10 – Hybrid Programming & Patterns 47 / 50

Lecture Bibliography (2)

 [11] Erich Gamma et al., ‘Design Patterns Elements of Reusable Object-Oriented Software’,
ISBN 0201633612, Prentice Hall, 1994

 [12] Wikipedia on ‘stencil code‘, Online:
http://en.wikipedia.org/wiki/Stencil_code

 [13] YouTube Video, ‘LibGeoDecomp - Jacobi Solver (Heat Dissipation)’, Online:
http://www.youtube.com/watch?v=jBbanIGoIhE

 [14] M. Geimer et al., ‘SCALASCA performance properties: The metrics tour’
 [15] German Lecture ‘Umfang von MPI 1.2 und MPI 2.0‘
 [16] Reed Maxwell, ‘The ParFlow Hydrologic Model: HPC Highlights and Lessons Learned’
 [17] ParFlow Project, Online:

http://computation.llnl.gov//casc/parflow/parflow_home.html
 [18] Community Land Model (CLM), Online:

http://www.cgd.ucar.edu/tss/clm/
 [19] Lecture notes Introduction to Scientific Computing, TU Braunschweig, Online:

https://www.tu-braunschweig.de/wire/lehre/skripte/index.html;jsessionid=TRIFORK661360156949
 [20] Wikipedia on ‘Partial Differential Equation‘, Online:

http://en.wikipedia.org/wiki/Partial_differential_equation

Lecture 10 – Hybrid Programming & Patterns 48 / 50

Lecture Bibliography (3)

 [21] Terrestrial Systems Simulation Lab, Online:
http://www.hpsc-terrsys.de/simlab

 [22] Human Brain Project, Online:
https://www.humanbrainproject.eu/de

 [23] G.Hager, MPI+OpenMP hybrid computing (on modern multicore systems), Online:
http://www.speedup.ch/workshops/w39_2010/slides/hager.pdf

Lecture 10 – Hybrid Programming & Patterns 49 / 50

Lecture 10 – Hybrid Programming & Patterns 50 / 50

