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Review of Practical Lecture 6.1 — Understanding OpenMP Parallel Programming

= Submission of Shared Memory Applications

= S|mp|e Comp||er [morris@jotunn hellothreads]$ sbatch submit-hellothreads.sh
. . Submitted batch job 200210
directives enable

parallelization in J6tunn login node [l —

wodule load gnu/5.3.0
OpenMP T

= Remember Jétunn compute nodes '

. . otal 28 ; S
a ppl ICatlon firwxrwxr-x 2 morris morris [morris@jotunn hellothreads]$ more slurm-200210.out output file

Scheduler

[morris@jotunn hellothreads]$ 1s -al

Hrwxrwxr-x 9 morris morris from your main thread.

. - rwxrwxr-x 1 morris morris : hellothreads froi thread 0 of 4.
|nde endent | rw-rw-r-- 1 morris morris :16 hellothreads.c _ from thread 1 of 4.
L rw-rw-r-- morris morris 0 slurm-200209_out

from thread 3 of 4.

s r-- morris morris 0 slurm-200210. out from thread 2 of 4

Of nu rrl ber | rwxr-xr-x 1 morris morris submit-hellothreads.sh gain from vour main thread.

// hpdbscan.h file #1/bin/bash
O t rea S #SBATCH - -job-name=HPDBSCAN
.. #SBATCH -0  HPDBSCAN-%j . out
#SBATCH -e HPDBSCAN-%j.err

#include <hdf5.h> #SBATCH - -nodes=2
#SBATCH --ntasks=4

. : #SBATCH - -ntasks-per-node=4
[} ineluds <ono.E> #SBATCH - -time=00:20: 00
ata Science

#SBATCH - -reservation=ml-hpc-1

/ local DBSCAN run I OMP_NUM_THREADS=4 I [1] M' Goetz &

. . . . /A
M a C h I n e Le a r n I n g A p p I I Catl O n S I#prag‘.ma omp parallel for schedule (dynamic, 32) private (neighboring points) # location executable M. Riedel et al'

firstprivate (previous cell) reduction(merge: rules) HPDBSCAN=/homea/hpclab/train001/tools/hpdbscan/dbscan

for (size_t point = lower; point < upper; ++point) { # your own copy of bremen small Proceedlngs IEEE

BREMENSHMALLDATA=/homea/hpclab/train001/bremensmall. h5

= F 8. HPDBSCAN para llel code # your o copy of breasn big Supercomputing

BREMENBIGDATA=/homea/hpclab/train001/bremen. h5

srun $HPDBSCAN -m 100 -e 300 -t 12 $BREMENSMALLDATA Conference, 2015

Clusters cluster (Dataset& dataset, Iint threads=omp_get_max_threads())I(

= Take advantage of simple

double execution_start = omp_get wtime();

OpenMP parallelization

// set the number of threads

= Performance: OpenMP & MPI EXTTT—
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Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning
9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns
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11.
12.
13.
14.
15.
16.

Scientific Visualization & Scalable Infrastructures
Terrestrial Systems & Climate

Systems Biology & Bioinformatics

Molecular Systems & Libraries

Computational Fluid Dynamics & Finite Elements

Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

= Practical Topics

» Theoretical / Conceptual Topics
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Outline

= General Purpose Graphical Processing Units (GPGPUs)

Multi-core CPUs vs. Many-core GPUs Revisited & TOP500 Impact
Terminology & NVIDIA Architecture Examples (Kepler, Pascal, Volta)
Understanding Node Architectures with GPUs & Summit HPC System
Interconnecting GPUs with NVLink/NVSwitch in ‘islands’ per Nodes
GPUDirect in Modular Supercomputing & Garpur Iceland HPC System

= GPU Libraries & Programming Models

= Data Science Impacts with Deep Learning & Multi GPU Horovod Interconnect

Simulation Sciences Impacts with Libraries (e.g., cuBLAS for basic linear algebra)
NVIDIA GPUs & Compute Unified Device Architecture (CUDA) Programming Model

Emerging different Vendors & AMD Radeon Examples
OpenACC & HIP Standard Programming Models

Promises from previous lecture(s):

Lecture 6 & Practical Lecture 6.1:
Lecture 7 will offer more details on
OpenMP relationships of programming
GPUs and similiarites to GPU
programming using OpenACC

Note that this lecture is not a full
programming course on GPUs with
CUDA, OpenACC, and HIP that would
require at least full 2-3 days

The goal is to understand the
enormous options to use GPUs today

i




Selected Learning Outcomes

» Students understand...

Latest developments in parallel processing & high performance computing (HPC)
How to create and use high-performance clusters
What are scalable networks & data-intensive workloads

e
The importance of domain decomposition - comapo sl
Complex aspects of parallel programming R T N e
HPC environment tools that support programming R S s SRS .~ T
or analyze behaviour ‘_“"’@"""“:'5":-,.»; ii’-;“"f___;r."_:; L e

Different abstractions of parallel computing on various levels

Foundations and approaches of scientific domain-
specific applications

= Students are able to ...

Programm and use HPC programming paradigms
Take advantage of innovative scientific computing simulations & technology
Work with technologies and tools to handle parallelism complexity
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General Purpose Graphical Processing Units (GPGPUs)

O
O
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Multi-core CPU Processors — Revisited (cf. Lecture 1)

= Significant advances in CPU (or microprocessor chips) Multicore processor
= Multi-core architecture with dual, Core1 | | Core2 | [ - Core n
quad, six, or n processing cores L1 cache | |L1 cinche - L1 cache
= Processing cores are all on one chip ‘> \\‘a ';” 4
L2 cache
| T one chip
|

* Multi-core CPU chip architecture
= Hierarchy of caches (on/off chip)

L3 cache/DRAM

= L1 cache is private to each core; on-chip

= |2 cache is shared; on-chip

= L3 cache or Dynamic random access memory (DRAM); off-chip

Clock-rate for single processors increased from 10 MHz (Intel 286) to 4 GHz (Pentium 4) in 30 years
Clock rate increase with higher 5 GHz unfortunately reached a limit due to power limitations / heat
Multi-core CPU chips have quad, six, or n processing cores on one chip and use cache hierarchies

Lecture 7 — Graphical Processing Units (GPUs)

[3] Distributed & Cloud Computing Book
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Many-core GPGPUs — Revisited (cf. Lecture 1)

= Use of very many simple cores &PU

Multiprocessor 1 Multiprocessor N || |  ________

= High throughput computing-oriented architecture ' opU |

= Use massive parallelism by executing a lot of
Handle am ever increasing e —
= Handle an ever increasing amount of multiple & :

instruction threads

= CPUs instead typically execute a single
long thread as fast as possible

[3] Distributed & Cloud Computing Book

= Ma ny-core GPUs are used in la rge =  Graphics Processing Unit (GPU) is great for data parallelism and task parallelism
: : : . Compared to multi-core CPUs, GPUs consist of a many-core architecture with
Cl usters a nd Wlth IN Massive Iy hundreds to even thousands of very simple cores executing threads rather slowly

parallel supercomputers today
= Named General-Purpose Computing on GPUs (GPGPU)
= Different programming models emerge
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GPU Acceleration — Revisited (cf. Lecture 1)

" GPU accelerator architecture example
(e.g. NVIDIA card)

= GPUs can have 128 cores on one single GPU chip

GPU

Multiprocessor 1 Multiprocessor N || |  ________

LR G G [T

= Each core can work with eight threads of instructions H
= GPU is able to concurrently execute 128 * 8 = 1024 threads

» |nteraction and thus major (bandwidth)
bottleneck between CPU and GPU
is via memory interactions

[3] Distributed & Cloud Computing Book

= E.g. applications that use matrix — -
vector/matrix multiplication
(e.g. deep learning algorithms)

CPU acceleration means that GPUs accelerate computing due to a massive parallelism
with thousands of threads compared to only a few threads used by conventional CPUs

GPUs are designed to compute large numbers of floating point operations in parallel

A=DP*r

Lecture 7 — Graphical Processing Units (GPUs)
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NVIDIA GEFORCE — Gaming Industry History Example powered by GPUs

NVIDIA.

GEFORCE® rroDUCTS v  GEFORCE EXPERIENCE ~ DRIVERS ~ SUPPORT  WHERE TO BUY

THE RULES
HAVE CHANGED

BUY GEFORCE RTX",
GET CALL OF DUTY *:
MODERN WARFARE ".*

BuYNow CALLDUTY - (%5
MODERN ;7
WARFAR E :

[11] NVIDIA GEFORCE



NVIDIA Fermi GPU Example — GPU Era before Kepler/Maxwell/Pascal/Volta

/

!
!

/

[3] Distributed & Cloud Computing Book

-_
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CPU/GPU Comparison & Evolution

Theoretical Peak Performance, Double Precision

104 T T T T
NAQD
103 ________________________________________________________________________________________________
(6]
3
T
o}
-
Lo
(O]
INTEL Xeon CPUs —— |
P :
I R T A S o NVIDIA Tesla GPUs —Jil— |
; AMD Radeon GPUs —@—
A———A : _
2% 4 @vﬁ)‘p | | : INTEL Xeon Phis —Wp— |
T i : : : .
2008 2010 2012 2014 2016
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[22] cPU/GPU
Comparison
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TOP 500 List (June 2019) — Revisited (cf. Lecture 1) — Impact on GPUs Today

The Liat.

[2] TOP500 Supercomputing Sites
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June 2019

November 2018
June 2018
November 2017
June 2017
November 2016
June 2016
November 2015
June 2015
November 2014
June 2014 »
November 2013 »
June 2013 »
November 2012 4
June 2012 4
November 2011 4
June 2011 4
November 2010 »
June 2010 4
November 2009 »
June 2009 »
November 2008 »
June 2008 »
November 2007 4
June 2007 4
November 2006 4
June 2006 »
November 2005 »
June 2005 »

massive number
of GPUs included

EU #1

Rmax Rpeak Power
Rank System Cores (TFlop/s) (TFlop/s) (kW)
1 Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, 2,614,592 148,600.0 200,794.9 10,096
NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM
DOE/SC/Oak Ridge National Laboratory
United States
2 Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, 1,572,480 94,640.0 125,712.0 7,438
NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM /
NVIDIA / Mellanox
DOE/NNSA/LLNL
United States
3 Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 10,649,600 93,014.6 125,435.9 15,371
1.45GHz, Sunway , NRCPC
National Supercomputing Center in Wuxi
China
4 Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, 4,981,760 61,4445 100,678.7 18,482
TH Express-2, Matrix-2000 , NUDT
National Super Computer Center in Guangzhou
China
5 Frontera - Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox L48 448 23,516.4 38,745.9
InfiniBand HDR , Dell EMC
Texas Advanced Computing Center/Univ. of Texas
United States
6 Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries 387,872 21,230.0 27,1543 2,384
interconnect, NVIDIA Tesla P100, Cray Inc.
Swiss National Supercomputing Centre (CSCS)
Switzerland
—
7 Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Intel Xeon Phi 979,072 20,158.7 41,461.2 7,578
7250 68C 1.4GHz, Aries interconnect, Cray Inc.
DOE/NNSA/LANL/SNL
United States
8 Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, 391,680 19,880.0 32,576.6 1,649
Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband
EDR, Fujitsu
National Institute of Advanced Industrial Science and Technology
(AIST)
Japan
9 SuperMUC-NG - ThinkSystem SDé650, Xeon Platinum 8174 24C 305,856 19,476.6 26,873.9

3.1GHz, Intel Omni-Path , Lenovo
Leibniz Rechenzentrum
Germany
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TOP 500 List (June 2019) — HPC #1 Machine Summit with Many-Core GPUs

= Selected Facts

Hosted at Department of Energy’s (DOE) Oak Ridge National Laboratory (ORNL)

Space: As big as two tennis courts
Total number of nodes: 4608 Nodes

Each node: two 22-core Power9 IBM CPUs
from Intel (Intel: 95.6% of all Top500 systems)

Each node: six(!) NVIDIA Tesla V100 GPUs
(i.e., 4608 nodes x 6 GPUs = 27648 GPUs)

Nodes linked together with Mellanox
dual-rail EDR Infiniband network

Power consumption: 13 Megawatts

Total system memory: >10 PetaByte (PB)
512 GigaBytes (GB) DDR4 + 96 GB HBM2 +
~ 1.6 TeraByte (TB) non-volatile memory (NVM)

File system: 250 PB IBM transferring data at 2.5 TB/s

Lecture 7 — Graphical Processing Units (GPUs)

OAK
RIDGE

National Laboratory

Fastest HPC system in Top500 today is the Summit HPC
machine hosted by US Oak Ridge National Laboratory (ORNL)
The Summit HPC machine consists of 4608 nodes with each 2

22-core Power9 IBM CPUs from Intel per node & 6 GPUs NVIDIA
Tesla V100 per node (27648 GPUs in total)

[7] OakRidge Supercomputer Summit
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HPC #1 Machine Summit with Many-Core GPUs — Node Architecture with GPUs

50 GB/s

256 GB 256 GB
(DDR4) (DDR4) {) Q
. . sa| & |5 w || | DRAM DRAM s2| & |5 n
| 0(0-3) 7 (28-31) | 14 (56-59) | | 22 (88-91) | | 29 (116-119) | | 36 (144-147) | % © o O~ 256 GB 256 GB % © o O~
| 1(47) 8 (32-35) | 15 (60-63) | I 23 (92-95) | | 30 (120-123) | | 37 (148-151) | R 8 T 8
| 2(8-11) 9(36-39) | 16 (64-67) | 64 GBls | 24 (96-99) | | 31 (124-127) | | 38 (152-155) |
| 3 (12-15) 10 (40-43) | 17 (68-71) | > | 25 (100-103) | | 32 (128-131) | | 39 (156-159) | Q Q
| 4(16-19) 11 (4447) | 18 (72-75) | | 26 (104-107) | | 33 (132-135) | | 40 (160-163) | g é) % g
| 5 (20-23) 12 (48-51) | 19 (76-79) | | 27 (108-111) | | 34 (136-139) | | 41 (164-167) | 50 GB/S o [0} [0} o 50 GB/S
| 6 (24-27) 13 (52-55) ] 20 (80-83) | | 28 (112-115) | | 35 (140-143) | | 42 (168-171) ] Vo) E E Vo)
'd \ 7/ N\ @ Y e ®
) =
I I % =3 5 o GB/s ol =85 5 o
<« 0 - | |[4—> <> <> <« 0
GPUO |4mh| GPU1 |4up| GPU2 GPU3 |¢up| GPU4 |4up| GPUS = %59 3 5= P9 P9 %59 3 &=
A A A A A A m m
L ) O] £
m oy m
. 50 GB/s I o) = © G S0GB/s I
NVLink (v2) GPU Interconnect ~50 GB/s Q 2
® Facts ® o
m m
. h . d sRB| 6 [ow SsBf 0 [ow
Coherent mMemory across entire node DO |le—p|d | |« | 0O |la—p|T -
2| 8 |o~ Tl 8 |O~
H 1 (e} (e}
= NVLink (v2) fully interconnects 3 GPUs

& 1 CPU with 50 GB/s on each side of node

= PCle Gen 4 connects NVM &
Network Interconnect (NIC)

>
6.0 GB/s Read
NVM |5 1 GB/s Write

[8] Summit Architecture Overview
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NVIDIA Tesla Volta (v100) GPU Example with High Bandwidth Memory 2 (HBM2)

256 GB
(DDR4)

256 GB
(DDR4)

(note: also other GPUs

4 17068 4 170cBs
CPU O CPU 1

| 0(0-3) | | 7 (28-31) | | 14 (56-59) | | 22 (88-91) | | 29 (116-119) | | 36 (144-147) |
| 1(47) | | 8 (32-35) | | 15 (60-63) | | 23 (92-95) | | 30 (120-123) | | 37 (148-151) |
| 2(8-11) | | 9(36-39) | | 16 (64-67) | 64 GBls | 24 (96-99) | | 31 (124-127) | | 38 (152-155) |
| 3 (12-15) | | 10 (40-43) | | 17 (68-71) | > | 25 (100-103) | | 32 (128-131) | | 39 (156-159) |
| 4(16-19) | | 11 (4447) | | 18 (72-75) | | 26 (104-107) | | 33 (132-135) | | 40 (160-163) |
| 5 (20-23) | | 12 (48-51) | | 19 (76-79) | | 27 (108-111) | | 34 (136-139) | | 41 (164-167) |
[[seean | [[136255 | [ 200083 | [2812-115) | [[35(140-143) | [[42c168-71) |

1 N 1 N
GPUO |¢m)| GPU 1 |¢)| GPU 2 GPU 3 )| GPU4 || GPUS

3 4 . b . 4
16 GB 16 GB 16 GB ,W‘ ’W‘ ’W\
(HBM2) (HBM2) (HBM2) (HBM2) (HBM2) (HBM2)

= Selected Facts

= High-performance Random Access Memory (RAM) interface used in conjunction with HPC GPUs
= HBM?2 are typically on-package solutions which cannot be (re-)configured after manufacture
» Manufactured by SK Hynix Inc (South Korea) & SAMSUNG

HBM2 with 900 GB/s bandwidth

Lecture 7 — Graphical Processing Units (GPUs)

Mem. BW PCle gen3 x 16
~100 GByte/s 16 GB/s

<
@
use HBM2 like = Ll
AMD Radeon Instinct)

Mem. BW
Accelerator | 900 /s

HBM

As of today, PCle gen3 restricts
achievable latency and bandwidth

[6] DEEP Projects Web Page  [12] JEDEC on HBM

= JEDEC is the global leader in the development of global standards for the
microelectronics industry that approved HBM as an industry standard

" VIDIA Tesla Volta (v100) enables a high-performance random access memory
(RAM) interface between the accelerator and so-called high bandwidth
memory (version 2, HBM2) with up to 900 GB/s per GPU

" HBM achieves higher bandwidth while using less power in a substantially
smaller form factor than DDR4 SDRAM (Double Data Rate 4 Synchronous
Dynamic Random-Access Memory) by stacking up to 8 DRAMs (i.e., 3D circuit)

" Approach: requiring the memory and processor to be physically close,
decreasing memory paths
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NVIDIA Tesla Volta (v100) GPU Example with Tensor Cores

u
SEIeCted FaCtS @ PASCAL VOLTA TENSOR CORES
= 150 + 150 GB/s total bandwidth (NVLink v2) AVIDIA s e

= NVIDIA Tesla Volta (v100) is equipped with over 21 billion transistors with 5120 CUDA cores &
640 tensor cores

= Atensor core is optimized for deep learning workloads by accelerating large matrix operations
& perform mixed-precision matrix multiply & accumulate calculations in a single operation

" Predecessor of NVIDIA v100 was NVIDIA Tesla Pascal (p100) and widely used in HPC systems
" Predecessor of NVIDIA p100 was NVIDIA Tesla Kepler (e.g., K80 or K40) & used in HPC systems

Mixed precision (e.g. FP16 vs. FP32 better for deep
learning due to a regularization effect for example)
8X Tesla V100

! 8X V1 0 U TURING TENSOR CORES TURING TENSOR CORES TURING TERSI‘UI CORES
5.1 Hours 7.4 Hours

8X Tesla P100

15.5 Hours 8X P100 o
ours
8X K80
0 4 8 12 16 44 Hours
Time lo Solulion in Hours-Lower Is Beller
0 10 20 30 40 50

Time to Solution in Hours
- Lower is Better

(cf. Invited Lecture by Dr. G. Cavallaro on Deep Learning & Remote Sensing)

[8] Summit Architecture Overview [9] NVIDIA Tesla Volta v100



Understanding Interconnects of GPUs: NVLink/NVSwitch ‘Islands’

[8] Summit Architecture Overview

* Multi-GPU Communication (usually required for HPC)
= E.g., NVLink enables GPU-to-GPU interconnects

[10] NVIDIA NVLink/NVSwitch

= E.g., NVSwitch enables all-to-all GPU communication / node | 51 | | : |
. . . 170 GB/s 170 GB/s
(16 GPUs per server with 8 GPU pairs via 300 GB/s) CPUG cPUT
| 0(0-3) | | 7 (28-31) | | 14 (56-59) | | 22 (88-91) | | 29 (116-119) | | 36 (144-147) |
‘Islands’: Scaling up to the full HPC system with GPUs Cren) Do ] Cemer] e [ETe
| 2(8-11) | | 9(36-39) | | 16 (64-67) | 64 GBls | 24 (96-99) | | 31 (124-127) | | 38 (152-155) |
| 3 (12-15) | | 10 (40-43) | | 17 (68-71) | | 25 (100-103) | | 32 (128-131) | | 39 (156-159) ]
| 4(16-19) | | 11 (4447) | | 18 (72-75) | [ 26 (104-107) | | 33 (132-135) | | 40 (160-163) ]
| 5 (20-23) | | 12 (48-51) | | 19 (76-79) | | 27 (108-111) | | 34 (136-139) | | 41 (164-167) |
s 2 e Gpu i i = = | 6 (24-27) | | 13 (52-55) ] | 20 (80-83) | | 28 (112-115) | | 35 (140-143) | | 42 (168-171) ]
T s =

HoPUi ] i GPUiE

Z 1 N 7 1 N

GPUO [¢h| GPU1 || GPU2 GPU3 |¢=h| GPU4 || GPUS

003 quup |icPUEE L] p) iy pd) ey g ||

GPU S GPUE GPU if GPU 5 GPU GPU i3 GPU S = GPU

Summit Node Example : NVLink (v2) GPU Interconnect ~50 GB/s

. NVLink is a high-speed direct GPU-to-GPU interconnect that supports 6 NVLink connections per NVIDIA Tesla Volta v100 GPU (bandwidth 300 GB/s)
and can interconnet up to 8 NVIDIA Tesla Volta v100 GPUs

" NVSwitch incorporates multiple NVLinks to provide all-to-all GPU communication within a single node
. NVLink/NVSwitch are considered as ‘Islands‘ since they do not scale with workloads to a full HPC machine like the GPUDirect interface is enabling

Lecture 7 — Graphical Processing Units (GPUs) 18 /50



Application Co-Design of HPC Architectures — Modular Supercomputing Example

[DEEP

~ Module 1
- Central
' Cluste

High Energy Physics Earth Science Space Weather

Module 5

NETWORK
FEDERATION

Data Analytics Module Deep i

4 D . D Learning
A:ﬁlﬁ\ﬂltés /"’_']P\ | workflow

k";. ; Module 4 Module

Quantum Neuromorphic .
HBP Annealer system  Climatology

; kflow
Data Analytics o~ L b
workflow w y

. . . SCALABLE
Molecular Dynamics Neuroscience Radio Astronomy STORAGE.

SERYICE
MODULE

=

A

. The modular supercomputing architecture (MSA) [6] DEEP Projects Web Page

enables a flexible HPC system design co-designed
by the need of different application workloads
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Modular Supercomputing Architecture — Scaling with GPUDirect Implementation

CLUSTER
MODULE

SCALABLE
STORAGE
SERVICE
MODULE

MODULE

‘N

[6] DEEP Projects Web Page
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Extreme Scale Booster (ESB)

= Enables scalability based
on many-core GPUs

= Reduces load on host CPUs
by enabling direct transfer
of data through MPI to
the GPUs (i.e., host CPU
becomes more of a slim

network driver in this context)

= Ongoing research in
DEEP-EST EU project

<
o
(=]
(m]

Mem. BW PCle gen3 x 16

~100 GByte/s

16 GB/s

CPU

As of today, PCle gen3 restricts
achievable latency and bandwidth

L] Innovative GPU interconnects are

that go beyond the current limits of
NVLink/NVSwitch ‘islands’

realized via GPUDirect implementations

Conventional CPU/GPGPU
Offload

o
o
N ©
=
4 Data
B
3
ctl)\ln\?rln Results
1—-> | —
—
E Data
%
=
o8
NW Results

comm.
—
G

Mem. BW
Accelerator oo cBis

HBM

Optimized CPU/GPGPU
Offload

@ Data

jouiay

NwW
comm. Results
—

Data A

2

=

@
NW Results

—
comm. E
C—p
Data A

jouiay]
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Modular Supercomputing Architecture — Data Analytics Module (DAM)

= Data Analytics Module (DAM)

= Specific requirements for data
science & analytics frameworks

= 16 nodes with 2x Intel Xeon
Cascade Lake; 24 cores

= 1x NVIDIA V100 GPU / node
= 1x Intel STRATIX10 FPGA PCle3 / node
= 384 GB DDR4 memory / node

= 2 TB non-volatile memore / node

= DAM Prototype for teaching mﬁﬁf

= 3 x4 GPUs Tesla Volta V100
= Slurm scheduling system

[6] DEEP Projects Web Page

» The DAM prototype machine as part of the modular supercomputing architecture will be used in Assignment #2 for deep learning
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HPC System — Garpur Cluster — Offering GPUs for Research in Iceland

= Slurm Scheduling System
= Usage via different queues

= Several queues, here just
selected examples

= Queue: Normal (36 nodes)
= 2x Intel Xeon CPU (12 cores)
= 128 GB Memory

" Queue: gpu (3 nodes)
= 2x Tesla M2090 / node

" Queue: vgpu (2 nodes)
= 1x Tesla Volta v100 / node

= Monitoring
= Ganglia shows resource load

Lecture 7 — Graphical Processing Units (GPUs)

Garpur Usage 2018 by groups
60 -
50 -
40 -
® 30 -
) I
0- . R B S
% B c o 4 7
5, %, 0, , %, %,
o %, %y, %, %, ,
% i %, L3 RS
%%, %,
& %

e — -
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B User Now: 57.5%
O Nice Now: ©.1%
B System Now: 2.0%
O wait Now: 1.6%
B Steal Now: 0.0%
B Sintr Now: 0.0%
O Idle Now: 38.9%

Min: 0.0% Avg: 0.0%
Min: 0.0% Avg: 0.0%
Min: 38.5% Avg: 38.8%

Garpur

About

Garpur is a joint project between the University of Iceland and University of Reykjavik with funding from the Icelandic Centre for Research (Rannis).
Resear col ns performed on Garpur ranges from transport in quantum wires to ice sheet modeling of glaciers.

late April 2016

In late 2017 Garpur recieved and upgrade which more that doubled the performance of the cluster.
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[13] Icelandic HPC Machines & Community
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[Video] GPU vs. CPU Visual Demonstration
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[14] Mythbuster GPU vs. CPU Video
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GPU Libraries & Programming Models

O
O 0
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Parallel Computing Example on Many-Core GPUs — A Case for using Libraries

= General Purpose Graphical Processing Unit (GPGPU)

= Designed to compute large numbers of floating point GPU
operations in parallel, but with moderate performance Multiprocessor 1 Multiprocessor N ——

[B][®] -7 B [B][®] - (B || Feru

Step ‘zero‘: Data is loaded via the main memory of the CPU (i.e., host CPU s
memory) to the device memory of the GPU accessed by the many cores

" Step one: each GPU core has a column of matrix B (named as Bpart)
=  Step one: each GPU core has an element of column vector C (hamed Cpart)

- [3] Distributed & Cloud Computing Book
. Step two: Each GPU core performs an independent vector-scalar

multiplication (i.e., independently based on their Bpart and Cpart contents)

" Step three: Each GPU core has a part of the result vector A (named Apart) a, | bo OCOE bo 11K bo 2O+ bo 3C3
and is written in device memory; results go to the main memory of CPU ’ | ’ ’
a | _ by ool byt b1 205 b s
a, b, yCoft| b21afH 612644 8565
(nice parallelization possible

A=R*C

via independent computing) - - -
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DEEP Learning takes advantage of Many-Core Technologies (cf. Lecture 1)

O Hl /] g & [V 31 # 3]
A3 e 1] 7] [ [F) 6] (5] M
R o
deg el DEORRENGN
R EEE LD B nan A
# 6l 8 4 & f] Qlgl [l
ZI 1] el 3] 82 [/ 2]zl 8
g 8l el 75 R g0 e
2l Yl (& (g 0 [7] & 3] [/] 5]

Innovation via specific layers and architecture types

[5] A. Rosebrock

[4] Neural Network 3D Simulation

P —

feature extraction classification

> Lecture 8 will provide more details about parallel & scalable machine & deep learning algorithms and how many-core HPC is used




Selected Deep Learning Frameworks & Tools used with GPUs

= TensorFlow

= One of the most popular deep learning frameworks available today

= Execution on multi-core CPUs or many-core GPUs

" Tensorflow is an open source library for deep learning models using a flow graph approach

" Tensorflow nodes model mathematical operations and graph edges between the nodes are
so-called tensors (also known as multi-dimensional arrays)

=  The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
" Tensorflow work with the high-level deep learning tool Keras in order to create models fast
= New versions of Tensorflow have Keras shipped with it as well & many further tools

client

run

master

worker A

m Keras

= Often used in combination with low-level frameworks like Tensorflow

worker B

[17] Tensorflow
Web page

Keras

[18] Keras
Web page

L] Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-level deep learning frameworks like

Tensorflow, CNTK, or Theano

" Created deep learning models with Keras run seamlessly on CPU and GPU via low-level deep learning frameworks

= The key idea behind the Keras tool is to enable faster experimentation with deep networks

Lecture 8 will provide more details about using Tensorflow & Keras in Deep Learning via Python for a wide variety of data science tasks




Multispectral Remote Sensing Dataset Example (cf. Invited Lecture G. Cavallaro)

Datasets Image Image per| Scene Annotation Total Spatial Image sizes| Year Ref
type class classes type images |resolution (m) & )
91
G. Sumbul et al.
328 to 10 120x120 | 2018
BigEarthNet Satellite MS 217119 43 Multi label 590,326 20 60x60
60 20x20
permanently irrigated land. A ]Fm.]l_i:-‘i%m_Cd.lu::hk: tand,
sclerophyllous vegetation, ruit frees and berry N [15] G. Sumbul et al.
beaches, dunes, sands, p]anfanr:ni_l -.?gm-frmsn)-
O estuaries. sea and ocean m.mh' _U amlmlﬂml
500 woodland/shrub
20 [16] Big Earth Net Dataset
60 § permanently irrigated land.
120 60 vineyards, beaches, dunes, g non-irrigated arable land
sands, water courses
120 . . .
1om »om com discontinuous urban fabric,

non-irrigated arable land,
land principally occupied
/by agriculture,
broad-leaved forest

coniferous forest, mixed
forest, water bodies

» Lecture 8 will provide more details about parallel & scalable machine & deep learning algorithms are used with remote sensing datasets
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Deep Learning via RESNET-50 Architecture

= Classification of land cover in scenes (cf. Invited Talk G. Cavallaro)
= Very suitable for parallelization via distributed training on multi GPUs
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(] ™ ™|

[20] RESNET

RESNET-50 is a known neural network architecture that has established a strong baseline in terms of accuracy

The computational complexity of training the RESNET-50 architecture relies in the fact that is has ~ 25.6 millions of trainable parameters
RESNET-50 still represents a good trade-off between accuracy, depth and number of parameters

The setups of RESNET-50 makes it very suitable for parallelization via distributed training on multi GPUs

» Lecture 8 will provide more details about parallel & scalable machine & deep learning algorithms are used with remote sensing datasets
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Distributed Training with Multi GPU Usage using Horovod

Time per epoch [sec]

A partition of the JUWELS system
has 56 compute nodes,
each with 4 NVIDIA V100 GPUs

(equipped with 16 GB of memory)

24 nodes x 4 GPUs =96 GPUs

Data Store

50

" Horovod is a distributed training framework used in combination with low-level
deep learning frameworks like Tensorflow

. Horovod uses MPI for inter-process communication, e.g., MPI_Allreduce()

" Distributed training using data parallelism approach means: (1) Gradients for
different batches of data are calculated separately on each node; (2) But averaged
across nodes to apply consistent updated to the deep learning model in each node

-
P

#
-

1. Read Data

MPI_Allreduce()
Training Process
]
Averaged node
Model Gradients e
Training Process
] - node
Model o Gradients G rad! lle’ m' :
Training Process
L ]
node
. Averaged
Madel Gradients Gradients
2. Cornp|:|‘[g Model 3 Avwaé Gradients 4, l.lpd;ie Model
Updates (Gradients)
[19] Horovod

» Lecture 8 will provide more details about using distributed training with Horovod & more examples of speed-ups with multi GPU usage
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NVIDIA & Compute Unified Device Architecture (CUDA)

= Compute Unified Device Architecture (CUDA)
= |ndustry standard programming model
= Dominant since NVIDIA is major producer of GPGPUs in the market
= Subset of programming language C
= Defines a programming model and a memory model

= (Unlimited) Scalability

= Parallel portions of application
executed on the GPU device as kernels

= Program for one thread can be
instantiated on many parallel threads

" Program runs on any number of processors
without recompiling

NVIDIA Compute Unified Device Architecture (CUDA) is a vendor-specific programming model for NVIDIA GPUs
CUDA Kernels run on NVIDIA GPUs and are written in CUDA to take advantage of many-core GPUs
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Different Types of NVIDIA GPUs & Simulation Sciences Impact with Libraries

= Example: Three ‘different types of NVIDIA GPUs’

= Designed for different levels of performance requirements

GeForce® Quadro® Tesla™
Entertainment| Design & Creation High-Performance Computing

450+ GPU-ACCELERATED APPLICATIONS

O AMBER Q ANSYS Fluent

O GAUSSIAN O GROMACS

@ sovna @) Namp

O OpenFOAM O Simulia Abaqus

©) vasp @ wrr

[25] NVIDIA Training
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Working with GPUs (1)

Scheduler

Processing Flow

CPU — GPU — CPU

>
| -
o
€
7]
=
-]
o
o

Interconnect

[21] JSC GPU Course
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Working with GPUs (2)

Processing Flow
CPU — GPU — CPU

Scheduler

CPU Memory

Interconnect

Transfer data from CPU memory to GPU memory

DRAM

I
I
I
- I
I

[21] JSC GPU Course
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Working with GPUs (3)

ihveinrk Lt
CPU — GPU — CPU

o

CPU Memory
Interconnect

L2
Transfer data from CPU memory to GPU memory, transfer

program

DRAM

[21] JSC GPU Course
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Working with GPUs (4)

Processing Flow
CPU — GPU — CPU

EIpl

CPU Memory
Interconnect

Transfer data from CPU memory to GPU memory, transfer
program

Load GPU program, execute on SMs, get (cached) data from
memory; write back

[21] JSC GPU Course
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Working with GPUs (5)

Processing Flow

Scheduler
CPU — GPU — CPU

CPU Memory

Transfer data from CPU memory to GPU memory, transfer
program

Load GPU program, execute on SMs, get (cached) data from
memory; write back

Transfer results back to host memory
[21] JSC GPU Course
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Library cuBLAS for Parallel Algebra using GPUs (1)

= Standard basic linear algebra subroutines (BLAS)

= Specification of 152 routines for linear algebra (simple CPU example version)

" Famous examp|e: SAXPY void saxpy(int n, float a, float * x, float = y) {
for (int 1 = 0; 1 < n; i++)
— — — . . e . y[l] = a * X[l] + y[l]y
SAXPY:y = ax + y, with single precision }
int a = 42;
int n = 10;
= cuBLAS Library i

= Freely available as part of
the CUDA Toolkit and OpenACC Toolkit

saxpy(n, a, x, v);

=  Standard Basic Linear Algebra Subroutines (BLAS) represents a specification for low-level 152
routines for performing common linear algebra operations such as vector addition, scalar
multiplication, dot prodcuts, linear combinations, and matrix multiplication

" cuBLAS is a library that enables parallel algebra using GPUs supporting all 152 BLAS routines
=  SAXPY stands for single precisiony=a*x +y

[23] cuBLAS
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Library cuBLAS for Parallel Algebra using GPUs (2)

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(shandle);o———

float * d_x, * d_y;

cudaMallocManaged(&d_x, n = sizeof(x[0]);e—
cudaMallocManaged(&d_y, n = sizeof(y[0]);

cublasSetVector(n, sizeof(x[0]), x, 1, d x, 1);0—
cublasSetVector(n, sizeof(y[0]), vy, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);e—

cublasGetVector(n, sizeof(y[0]), d_y, 1, v, 1);e—

cudaFree(d_x); cudaFree(d_y);

-

cublasDestroy(handle);e—

[21] JSC GPU Course
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Initialize

Allocate GPU memory

Copy data to GPU

Call BLAS routine

Copy result to host

Finalize
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Recent Support of OpenMP for Programming GPUs with Directives (cf. Lecture 6)

#pragma omp target map (tofrom:y), map(to:x)
#pragma omp teams num teams(10) num threads(10)

#pragma omp distribute

for (...) { GPU
Multiprocessor 1 Multiprocessor N
#pragma omp parallel for
for (...) {
}
} [9] Distributed & Cloud Computing Book

. OpenMP is the de-facto standard for multi-
threaded programming on CPU

=  OpenMP includes since version 4.0 (better since
4.5) also capabilities for programming GPUs master

parallel

\ED

join

OpenACC is similar to OpenMP, because it is
modeled after OpenMP, but for accelerators

master
\

[21] JSC GPU Course
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OpenMP

N

<~

#pragma acc data copyout(y[0:N]) create(x[0:N])
{
double sum = 0.0;
#ipragma acc parallel loop
for (int 1=0; i<N; i++) {
x[1] ;
y[i]

1.0;
2.0;

}

#pragma acc parallel loop
for (int 1=0; i<N; i++) {
y[il = isx[il+y[il;

}

}

parallel

ol
3
master 2
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SAXPY with OpenACC Accelerator Model using GPUs

= OpenACC Accelerator Model

* For computation & memory spaces

= Two separate memory spaces
= Needs transfers back and forth
= Transfers hidden from programmer
= Memories are not coherent

= Compiler & GPU runtime helps to
make it easy for the developers

= The OpenACC Accelerator model enables an easy acceleration of
code elements with compiler directives similiar like OpenMP

" The OpenACC Accelerator model executes the main program on the

host and the device code is transferred to accelerator

= In the openACC Accelerator model the execution on the accelerator

is started and the host waits until return (exceptions with async)

Lecture 7 — Graphical Processing Units (GPUs)

Wait for code
| start main Las

I
l Run code [21] JSC GPU Course
I
]

Wait

L

-
Return to host

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc parallel loop copy(y) copyin(x)
for (int i = 0; 1 < n; 1++)
y[i]l = a = x[i] + y[il;

}

int a = 42;

int n 10;

float x[nl, yInl;
// fill x, y

saxpy_acc(n, a, X, y);
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Impact & Changes of GPU Vendors — Example

= NVIDIA GPUs
= Market dominance and most codes are written in NVIDIA CUDA C/C++

= AMD Radeon Instinct GPUs

= Frontier Supercomputer expected to be fastest supercomputer with 1.5 exaflops of peak processing
= Frontier will employ AMD Epyc CPUs and Radeon Instinct GPUs (CUDA is not supported by AMD hardware)

g,(\);\ K RIDGE

Natic nal Labor: tory

@) ENERGY I'Ff(‘\‘ JINCTTHER

———I-k

(K ‘ =Ry

AMDZ1

[21] JSC GPU Course
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Heterogeneous Compute Interface for Portability (HIP)

m Selected Facts __global_._ void vector.add

(float xout, float =xa, float b, int n)
= Open source

int i= blockDim.xxblockldx .x+threadldx.x;
= Part of AMD ROCm software stack CUDA if (i<n)
{
= Almost no performance penalty on out[i] = a[i] + b[i];
NVIDIA GPUs + works on AMD GPUs .
* |ncludes tools to convert existing CUDA codes
. --global__ void vector_add
= Not a drop-in replacement for CUDA & (float =out, float =a, float b, int n)
developer knowledge is necessary for porting int i= blockDim.xxblockldx.x+threadldx.x;
P it (i<n)
CUDA HIP _ . .
Thread Thread/ Work item out[i] =ali] + b[i];
Thread block Workgroup
Warp Wavefront }
Global Memory Global Memory
Shared memory Local memory
Local memory Private memory
Streaming Multiprocessor ~ Compute Unit [21] JSC GPU Course

" Heterogeneous Compute Interface for Portability (HIP) is a C++ runtime API & Kernel language to write portable codes for AMD & NVIDIA GPUs
" The HIP kernel language is similar to CUDA in order to be easy for CUDA developers since most of the GPU codes are written in CUDA today
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HIP vs CUDA Example

int main(){
float =a, xb, *xout;
float *a_.d, xb_d, *xout_d;
a = (floatx)malloc(sizeof(float) * N);
//same for b and out then fill a and b

Malloc (( voidxx)&a._d

, sizeof(float) * N);

//same for b_.d and out_d

Memcpy(a-d, a, sizeof(float)

x N, MemcpyHostToDevice) ;

//same for b_d

Memcpy(out, out.d, sizeof(float)=N,
MemcpyDeviceToHost) ; }

Lecture 7 — Graphical Processing Units (GPUs)

int main(){
float =xa, xb, *xout;
float xa_d, x=b_d, *xout_d;
a = (floatx)malloc(sizeof(float) = N);
//same for b and out then fill a and b
hipMalloc ((void xx)&a_d
, sizeof(float) * N);
//same for b_.d and out._d
hipMemcpy(a-d, a, sizeof(float)
« N, hipMemcpyHostToDevice) ;

//same for b_d
hipLaunchKernelGGL(vector_add,

gridsize,blocksize,sh_memsize, stream,

out_d, a_d, b_d, N);
hipMemcpy(out, out.d, sizeof(float)=N,
hipMemcpyDeviceToHost) ; }

[21] JSC GPU Course
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[Video] Simulation Sciences Impact: AMBER Tool with GPUs

[24] Amber with GPUs Video
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