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Review of Practical Lecture 6.1 – Understanding OpenMP Parallel Programming
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 Submission of Shared Memory Applications
 Simple compiler

directives enable
parallelization in
OpenMP

 Remember
application
independent
of number 
of threads 

 Data Science & 
Machine Learning Applications
 E.g. HPDBSCAN parallel code
 Take advantage of simple 

OpenMP parallelization
 Performance: OpenMP & MPI

[1] M. Goetz & 
M. Riedel et al, 
Proceedings IEEE 
Supercomputing 
Conference, 2015



Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns
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11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
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Outline

 General Purpose Graphical Processing Units (GPGPUs)
 Multi-core CPUs vs. Many-core GPUs Revisited & TOP500 Impact
 Terminology & NVIDIA Architecture Examples (Kepler, Pascal, Volta)
 Understanding Node Architectures with GPUs & Summit HPC System
 Interconnecting GPUs with NVLink/NVSwitch in ‘islands‘ per Nodes
 GPUDirect in Modular Supercomputing & Garpur Iceland HPC System

 GPU Libraries & Programming Models
 Data Science Impacts with Deep Learning & Multi GPU Horovod Interconnect
 Simulation Sciences Impacts with Libraries (e.g., cuBLAS for basic linear algebra)
 NVIDIA GPUs & Compute Unified Device Architecture (CUDA) Programming Model
 Emerging different Vendors & AMD Radeon Examples
 OpenACC & HIP Standard Programming Models
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 Promises from previous lecture(s):
 Lecture 6 & Practical Lecture 6.1: 

Lecture 7 will offer more details on 
OpenMP relationships of programming 
GPUs and similiarites to GPU 
programming using OpenACC

 Note that this lecture is not a full 
programming course on GPUs with 
CUDA, OpenACC, and HIP that would 
require at least full 2-3 days 

 The goal is to understand the 
enormous options to use GPUs today



Selected Learning Outcomes

 Students understand…
 Latest developments in parallel processing & high performance computing (HPC)
 How to create and use high-performance clusters
 What are scalable networks & data-intensive workloads
 The importance of domain decomposition
 Complex aspects of parallel programming
 HPC environment tools that support programming 

or analyze behaviour
 Different abstractions of parallel computing on various levels
 Foundations and approaches of scientific domain-

specific applications 

 Students are able to …
 Programm and use HPC programming paradigms
 Take advantage of innovative scientific computing simulations & technology
 Work with technologies and tools to handle parallelism complexity
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General Purpose Graphical Processing Units (GPGPUs)
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Multi-core CPU Processors – Revisited (cf. Lecture 1)

 Significant advances in CPU (or microprocessor chips)
 Multi-core architecture with dual, 

quad, six, or n processing cores
 Processing cores are all on one chip

 Multi-core CPU chip architecture  
 Hierarchy of caches (on/off chip)
 L1 cache is private to each core; on-chip
 L2 cache is shared; on-chip
 L3 cache or Dynamic random access memory (DRAM); off-chip

one chip

[3] Distributed & Cloud Computing Book

 Clock-rate for single processors increased from 10 MHz (Intel 286) to 4 GHz (Pentium 4) in 30 years
 Clock rate increase with higher 5 GHz unfortunately reached a limit due to power limitations / heat
 Multi-core CPU chips have quad, six, or n processing cores on one chip and use cache hierarchies
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Many-core GPGPUs – Revisited (cf. Lecture 1)

 Use of very many simple cores
 High throughput computing-oriented architecture 
 Use massive parallelism by executing a lot of 

concurrent threads slowly
 Handle an ever increasing amount of multiple 

instruction threads
 CPUs instead typically execute a single 

long thread as fast as possible

 Many-core GPUs are used in large 
clusters and within massively 
parallel supercomputers today
 Named General-Purpose Computing on GPUs (GPGPU)
 Different programming models emerge

 Graphics Processing Unit (GPU) is great for data parallelism and task parallelism 
 Compared to multi-core CPUs, GPUs consist of a many-core architecture with 

hundreds to even thousands of very simple cores executing threads rather slowly

[3] Distributed & Cloud Computing Book
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GPU Acceleration – Revisited (cf. Lecture 1)

 GPU accelerator architecture example 
(e.g. NVIDIA card)
 GPUs can have 128 cores on one single GPU chip
 Each core can work with eight threads of instructions
 GPU is able to concurrently execute 128 * 8 = 1024 threads
 Interaction and thus major (bandwidth) 

bottleneck between CPU and GPU 
is via memory interactions

 E.g. applications that use matrix –
vector/matrix multiplication 
(e.g. deep learning algorithms)

[3] Distributed & Cloud Computing Book

 CPU acceleration means that GPUs accelerate computing due to a massive parallelism 
with thousands of threads compared to only a few threads used by conventional CPUs

 GPUs are designed to compute large numbers of floating point operations in parallel
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NVIDIA GEFORCE – Gaming Industry History Example powered by GPUs

Lecture 7 – Graphical Processing Units (GPUs) 10 / 50

[11] NVIDIA GEFORCE



NVIDIA Fermi GPU Example – GPU Era before Kepler/Maxwell/Pascal/Volta
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[3] Distributed & Cloud Computing Book
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CPU/GPU Comparison & Evolution

[22] CPU/GPU 
Comparison
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TOP 500 List (June 2019) – Revisited (cf. Lecture 1) – Impact on GPUs Today

massive number
of GPUs included

EU #1

[2] TOP500 Supercomputing Sites
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TOP 500 List (June 2019) – HPC #1 Machine Summit with Many-Core GPUs

 Selected Facts
 Hosted at Department of Energy’s (DOE) Oak Ridge National Laboratory (ORNL)
 Space: As big as two tennis courts
 Total number of nodes: 4608 Nodes
 Each node: two 22-core Power9 IBM CPUs

from Intel (Intel: 95.6% of all Top500 systems)
 Each node: six(!) NVIDIA Tesla V100 GPUs

(i.e., 4608 nodes x 6 GPUs = 27648 GPUs)
 Nodes linked together with Mellanox

dual-rail EDR Infiniband network
 Power consumption: 13 Megawatts
 Total system memory: >10 PetaByte (PB) 

512 GigaBytes (GB) DDR4 + 96 GB HBM2 + 
~ 1.6 TeraByte (TB) non-volatile memory (NVM)

 File system: 250 PB IBM transferring data at 2.5 TB/s
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[7] OakRidge Supercomputer Summit

 Fastest HPC system in Top500 today is the Summit HPC 
machine hosted by US Oak Ridge National Laboratory (ORNL)

 The Summit HPC machine consists of 4608 nodes with each 2 
22-core Power9 IBM CPUs from Intel per node & 6 GPUs NVIDIA 
Tesla V100 per node (27648 GPUs in total)



HPC #1 Machine Summit with Many-Core GPUs – Node Architecture with GPUs

 Facts
 Coherent memory across entire node
 NVLink (v2) fully interconnects 3 GPUs 

& 1 CPU with 50 GB/s on each side of node
 PCIe Gen 4 connects NVM & 

Network Interconnect (NIC)
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[8] Summit Architecture Overview

NVLink (v2) GPU Interconnect ~50 GB/s



HBM2 with 900 GB/s bandwidth

NVIDIA Tesla Volta (v100) GPU Example with High Bandwidth Memory 2 (HBM2)

 Selected Facts
 High-performance Random Access Memory (RAM) interface used in conjunction with HPC GPUs
 HBM2 are typically on-package solutions which cannot be (re-)configured after manufacture 
 Manufactured by SK Hynix Inc (South Korea) & SAMSUNG
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 JEDEC is the global leader in the development of global standards for the 
microelectronics industry that approved HBM as an industry standard 

 VIDIA Tesla Volta (v100) enables a high-performance random access memory 
(RAM) interface between the accelerator and so-called high bandwidth 
memory (version 2, HBM2) with up to 900 GB/s per GPU 

 HBM achieves higher bandwidth while using less power in a substantially 
smaller form factor than DDR4 SDRAM (Double Data Rate 4 Synchronous 
Dynamic Random-Access Memory) by stacking up to 8 DRAMs (i.e., 3D circuit)

 Approach: requiring the memory and processor to be physically close, 
decreasing memory paths

[6] DEEP Projects Web Page [12] JEDEC on HBM

(note: also other GPUs 
use HBM2 like 

AMD Radeon Instinct)



NVIDIA Tesla Volta (v100) GPU Example with Tensor Cores

 Selected Facts
 150 + 150 GB/s total bandwidth (NVLink v2)
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[8] Summit Architecture Overview [9] NVIDIA Tesla Volta v100

(cf. Invited Lecture by Dr. G. Cavallaro on Deep Learning & Remote Sensing)

 NVIDIA Tesla Volta (v100) is equipped with over 21 billion transistors with 5120 CUDA cores & 
640 tensor cores

 A tensor core is optimized for deep learning workloads by accelerating large matrix operations 
& perform mixed-precision matrix multiply & accumulate calculations in a single operation

 Predecessor of NVIDIA v100 was NVIDIA Tesla Pascal (p100) and widely used in HPC systems
 Predecessor of NVIDIA p100 was NVIDIA Tesla Kepler (e.g., K80 or K40) & used in HPC systems

Mixed precision (e.g. FP16 vs. FP32 better for deep 
learning due to a regularization effect for example)



Understanding Interconnects of GPUs: NVLink/NVSwitch ‘Islands‘

Summit Node Example : NVLink (v2) GPU Interconnect ~50 GB/s

Lecture 7 – Graphical Processing Units (GPUs) 18 / 50

[10] NVIDIA NVLink/NVSwitch

[8] Summit Architecture Overview

 NVLink is a high-speed direct GPU-to-GPU interconnect that supports 6 NVLink connections per NVIDIA Tesla Volta v100 GPU (bandwidth 300 GB/s) 
and can interconnet up to 8 NVIDIA Tesla Volta v100 GPUs

 NVSwitch incorporates multiple NVLinks to provide all-to-all GPU communication within a single node
 NVLink/NVSwitch are considered as ‘Islands‘ since they do not scale with workloads to a full HPC machine like the GPUDirect interface is enabling

 Multi-GPU Communication (usually required for HPC)
 E.g., NVLink enables GPU-to-GPU interconnects
 E.g., NVSwitch enables all-to-all GPU communication / node

(16 GPUs per server with 8 GPU pairs via 300 GB/s)
 ‘Islands‘: Scaling up to the full HPC system with GPUs 



Application Co-Design of HPC Architectures – Modular Supercomputing Example

 The modular supercomputing architecture (MSA)
enables a flexible HPC system design co-designed
by the need of different application workloads

[6] DEEP Projects Web Page
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Modular Supercomputing Architecture – Scaling with GPUDirect Implementation

 Extreme Scale Booster (ESB)
 Enables scalability based 

on many-core GPUs
 Reduces load on host CPUs

by enabling direct transfer
of data through MPI to
the GPUs (i.e., host CPU
becomes more of a slim 
network driver in this context)

 Ongoing research in
DEEP-EST EU project

[6] DEEP Projects Web Page

Lecture 7 – Graphical Processing Units (GPUs) 20 / 50

 Innovative GPU interconnects are 
realized via GPUDirect implementations 
that go beyond the current limits of 
NVLink/NVSwitch ‘islands‘



Modular Supercomputing Architecture – Data Analytics Module (DAM) 

 Data Analytics Module (DAM)
 Specific requirements for data

science & analytics frameworks
 16 nodes with 2x Intel Xeon

Cascade Lake; 24 cores
 1x NVIDIA V100 GPU / node
 1x Intel STRATIX10 FPGA PCIe3 / node
 384 GB DDR4 memory / node
 2 TB non-volatile memore / node

 DAM Prototype for teaching
 3 x 4 GPUs Tesla Volta V100
 Slurm scheduling system

[6] DEEP Projects Web Page
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 The DAM prototype machine as part of the modular supercomputing architecture will be used in Assignment #2 for deep learning 



HPC System – Garpur Cluster – Offering GPUs for Research in Iceland

 Slurm Scheduling System
 Usage via different queues
 Several queues, here just

selected examples

 Queue: Normal (36 nodes)
 2x Intel Xeon CPU (12 cores)
 128 GB Memory

 Queue: gpu (3 nodes)
 2x Tesla M2090 / node

 Queue: vgpu (2 nodes)
 1x Tesla Volta v100 / node

 Monitoring
 Ganglia shows resource load [13] Icelandic HPC Machines & Community
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[Video] GPU vs. CPU Visual Demonstration

[14] Mythbuster GPU vs. CPU Video
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GPU Libraries & Programming Models
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Parallel Computing Example on Many-Core GPUs – A Case for using Libraries

 General Purpose Graphical Processing Unit (GPGPU)
 Designed to compute large numbers of floating point 

operations in parallel, but with moderate performance

[3] Distributed & Cloud Computing Book

(nice parallelization possible
via independent computing)

 Step one: each GPU core has a column of matrix B (named as Bpart)
 Step one: each GPU core has an element of column vector C (named Cpart)

 Step two: Each GPU core performs an independent vector-scalar 
multiplication (i.e., independently based on their Bpart and Cpart contents)

 Step three: Each GPU core has a part of the result vector A (named Apart) 
and is written in device memory; results go to the main memory of CPU

 Step ‘zero‘: Data is loaded via the main memory of the CPU (i.e., host CPU 
memory) to the device memory of the GPU accessed by the many cores
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DEEP Learning takes advantage of Many-Core Technologies (cf. Lecture 1)

[4] Neural Network 3D Simulation

[5] A. Rosebrock

 Innovation via specific layers and architecture types
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 Lecture 8 will provide more details about parallel & scalable machine & deep learning algorithms and how many-core HPC is used
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Selected Deep Learning Frameworks & Tools used with GPUs

 TensorFlow
 One of the most popular deep learning frameworks available today
 Execution on multi-core CPUs or many-core GPUs

 Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-level deep learning frameworks like 
Tensorflow, CNTK, or Theano

 Created deep learning models with Keras run seamlessly on CPU and GPU via low-level deep learning frameworks
 The key idea behind the Keras tool is to enable faster experimentation with deep networks
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[17] Tensorflow 
Web page Tensorflow is an open source library for deep learning models using a flow graph approach

 Tensorflow nodes model mathematical operations and graph edges between the nodes are 
so-called tensors (also known as multi-dimensional arrays)

 The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
 Tensorflow work with the high-level deep learning tool Keras in order to create models fast
 New versions of Tensorflow have Keras shipped with it as well & many further tools

 Lecture 8 will provide more details about using Tensorflow & Keras in Deep Learning via Python for a wide variety of data science tasks

 Keras
 Often used in combination with low-level frameworks like Tensorflow

[18] Keras 
Web page



Multispectral Remote Sensing Dataset Example (cf. Invited Lecture G. Cavallaro)

Datasets Image
type

Image per
class

Scene 
classes

Annotation 
type

Total 
images

Spatial 
resolution (m) Image sizes Year Ref.

BigEarthNet Satellite MS 328 to 
217119 43 Multi label 590,326

10
20
60

120x120
60x60
20x20

2018

10m                   20m                60m

[9] 
G. Sumbul et al. 

[15] G. Sumbul et al. 
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 Lecture 8 will provide more details about parallel & scalable machine & deep learning algorithms are used with remote sensing datasets

[16] Big Earth Net Dataset



Deep Learning via RESNET-50 Architecture

 Classification of land cover in scenes (cf. Invited Talk G. Cavallaro)
 Very suitable for parallelization via distributed training on multi GPUs

 Lecture 8 will provide more details about parallel & scalable machine & deep learning algorithms are used with remote sensing datasets
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 RESNET-50 is a known neural network architecture that has established a strong baseline in terms of accuracy
 The computational complexity of training the RESNET-50 architecture relies in the fact that is has ~ 25.6 millions of trainable parameters
 RESNET-50 still represents a good trade-off between accuracy, depth and number of parameters
 The setups of RESNET-50 makes it very suitable for parallelization via distributed training on multi GPUs

[20] RESNET



node 

node 

node 

Distributed Training with Multi GPU Usage using Horovod

 Lecture 8 will provide more details about using distributed training with Horovod & more examples of speed-ups with multi GPU usage

[19] Horovod

 Horovod is a distributed training framework used in combination with low-level 
deep learning frameworks like Tensorflow

 Horovod uses MPI for inter-process communication, e.g., MPI_Allreduce()
 Distributed training using data parallelism approach means: (1) Gradients for 

different batches of data are calculated separately on each node; (2) But averaged 
across nodes to apply consistent updated to the deep learning model in each node

Time per epoch [sec]

24 nodes x 4 GPUs = 96 GPUs

MPI_Allreduce()
A partition of the JUWELS system 

has 56 compute nodes,
each with 4 NVIDIA V100 GPUs

(equipped with 16 GB of memory)
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NVIDIA & Compute Unified Device Architecture (CUDA)

 Compute Unified Device Architecture (CUDA)
 Industry standard programming model
 Dominant since NVIDIA is major producer of GPGPUs in the market
 Subset of programming language C
 Defines a programming model and a memory model

 (Unlimited) Scalability
 Parallel portions of application 

executed on the GPU device as kernels
 Program for one thread can be 

instantiated on many parallel threads
 Program runs on any number of processors 

without recompiling
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 NVIDIA Compute Unified Device Architecture (CUDA) is a vendor-specific programming model for NVIDIA GPUs
 CUDA Kernels run on NVIDIA GPUs and are written in CUDA to take advantage of many-core GPUs



Different Types of NVIDIA GPUs & Simulation Sciences Impact with Libraries

 Example: Three ‘different types of NVIDIA GPUs‘ 
 Designed for different levels of performance requirements

Lecture 7 – Graphical Processing Units (GPUs) 32 / 50

[25] NVIDIA Training



Working with GPUs (1)
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[21] JSC GPU Course



Working with GPUs (2)
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[21] JSC GPU Course



Working with GPUs (3)
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[21] JSC GPU Course



Working with GPUs (4)

Lecture 7 – Graphical Processing Units (GPUs) 36 / 50

[21] JSC GPU Course



Working with GPUs (5)
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[21] JSC GPU Course



Library cuBLAS for Parallel Algebra using GPUs (1)

 Standard basic linear algebra subroutines (BLAS)
 Specification of 152 routines for linear algebra
 Famous example: SAXPY

 cuBLAS Library
 Freely available as part of 

the CUDA Toolkit and OpenACC Toolkit

 Standard Basic Linear Algebra Subroutines (BLAS) represents a specification for low-level 152 
routines for performing common linear algebra operations such as vector addition, scalar 
multiplication, dot prodcuts, linear combinations, and matrix multiplication

 cuBLAS is a library that enables parallel algebra using GPUs supporting all 152 BLAS routines
 SAXPY stands for single precision y = a * x + y
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[23] cuBLAS

(simple CPU example version)



Library cuBLAS for Parallel Algebra using GPUs (2)
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[21] JSC GPU Course



Recent Support of OpenMP for Programming GPUs with Directives (cf. Lecture 6)
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...

#pragma omp target map (tofrom:y), map(to:x)

#pragma omp teams num_teams(10) num_threads(10)

#pragma omp distribute

for (...) {

...

#pragma omp parallel for

for (...) {

}

...

}

...

 OpenMP is the de-facto standard for multi-
threaded programming on CPU

 OpenMP includes since version 4.0 (better since 
4.5) also capabilities for programming GPUs

 OpenACC is similar to OpenMP, because it is 
modeled after OpenMP, but for accelerators

[9] Distributed & Cloud Computing Book

[21] JSC GPU Course



SAXPY with OpenACC Accelerator Model using GPUs

 OpenACC Accelerator Model
 For computation & memory spaces

 Two separate memory spaces
 Needs transfers back and forth
 Transfers hidden from programmer
 Memories are not coherent
 Compiler & GPU runtime helps to

make it easy for the developers

[21] JSC GPU Course
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 The OpenACC Accelerator model enables an easy acceleration of 
code elements with compiler directives similiar like OpenMP

 The OpenACC Accelerator model executes the main program on the 
host and the device code is transferred to accelerator

 In the openACC Accelerator model the execution on the accelerator 
is started and the host waits until return (exceptions with async)



Impact & Changes of GPU Vendors – Example 

 NVIDIA GPUs
 Market dominance and most codes are written in NVIDIA CUDA C/C++

 AMD Radeon Instinct GPUs
 Frontier Supercomputer expected to be fastest supercomputer with 1.5 exaflops of peak processing
 Frontier will employ AMD Epyc CPUs and Radeon Instinct GPUs (CUDA is not supported by AMD hardware)
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[21] JSC GPU Course



Heterogeneous Compute Interface for Portability (HIP)

 Selected Facts
 Open source
 Part of AMD ROCm software stack
 Almost no performance penalty on 

NVIDIA GPUs + works on AMD GPUs
 Includes tools to convert existing CUDA codes
 Not a drop-in replacement for CUDA & 

developer knowledge is necessary for porting

 Heterogeneous Compute Interface for Portability (HIP) is a C++ runtime API & Kernel language to write portable codes for AMD & NVIDIA GPUs
 The HIP kernel language is similar to CUDA in order to be easy for CUDA developers since most of the GPU codes are written in CUDA today
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[21] JSC GPU Course

CUDA

HIP



HIP vs CUDA Example
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[21] JSC GPU Course



[Video] Simulation Sciences Impact: AMBER Tool with GPUs

[24] Amber with GPUs Video
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