High Performance Computing

ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. — Ing. Morris Riedel

Adjunct Associated Professor

School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland

Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

I @Morris Riedel (O} @Morriskiedel N
in orris Riede Qi @MorrisRiede

LECTURE 6

Parallel Programming with OpenMP

October 10, 2019
Room V02-258

éLLJ,llI_:’E:COM PUTING WEEP HELMHOLTZ H c u AL TELLIGENGE

CENTRE Projects COOPERATION UNIT

5 e o0
SE = UNIVERSITY OF ICELAND ‘ LICH
59)) § SCHOOL OF ENGINEERING AND NATURAL SCIENCES J U

(/.

Forschungszentrum

FACULTY OF INDUSTRIAL ENGINEERING,
MECHANICAL ENGINEERING AND COMPUTER SCIENCE

Review of Practical Lecture 5.1 — MPI Communicators & Data Structures

= Example: Nearest Neighbour & Cartesian

MPI Init (&argc, &argv) ;
MPI Comm size (MPI_COMM WORLD, &numtasks) ;

MPI Cart create(MPI COMM WORLD, 2, dims, periods,
reorder, &cartcomm);

MPI Comm rank (cartcomm, &rank);

fa— A

MPI Cart coords(cartcomm, rank, 2, coords); \ X

MPI Cart shift(cartcomm, 0, 1,
&nbrs [UP], &nbrs[DOWN]);

MPI Cart shift(cartcomm, 1, 1,
&nbrs [LEFT], &nbrs[RIGHT]); No—

/V\
printf (“*rank= %d coords= %d %d“ having “\‘ -
neighbours(u,d,1l,r)=%d %d %d %d \n“,
rank, coords[0], coords[1],
nbrs [UP], nbrs[DOWN], nbrs[LEFT], nbrs[RIGHT]);

// do some work with MPI communication operations...

= High-Level I/O Hierarchical Data Format (HDF)

[morris@jotunn hpdbscan]$ pwd
/home/morris/2019-HPC-Course/hpdbscan
[morris@jotunn hpdbscan]$ 1s -al

morris

morris
-rWXr-xXr-x morris
- rWXr-xr-x morris
-rw-rw-r-- morris
-rw-rw-r-- morris
-rw-rw-r-- morris
-rw-rw-r-- morris
- rwWXr-xr-x morris

load gnu/5.3.0

load hdf5/1.8.17
load openmpi/1.10.2
load HPDBSCAN/mpi

HPDBSCAN=dbscan

BREMENSMALLDATA=/home/morris/2019-HPC-Course/hpdbscan/bremenSmall.h5

BREMENBIGDATA=/home/morris/2019-HPC-Course/hpdbscan/bremen.h5

morris
morris
morris
morris
morris
morris
morris
morris
morris

4096

4096
1302382632
72002416
0

490

0

492

535

mpirun $HPDBSCAN -m 300 -e 500 $BREMENSMALLDATA

[1] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

bremen.h5

bremenSmall.h5
HPDBSCAN-199934.err
HPDBSCAN-199934.out
HPDBSCAN-199935.err
HPDBSCAN-199935.out
submit-clustering-bremen.sh

NNNMNNNNNNN

[morris@jotunn hpdbscan]$ h5dump -n bremenSmall.h5
HDF5 "bremenSmall.h5" {

FILE_CONTENTS {

group /

dataset /COLORS

dataset /Clusters

dataset /DBSCAN

}

Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning
9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

Lecture 6 — Parallel Programming with OpenMP

11.
12.
13.
14.
15.
16.

Scientific Visualization & Scalable Infrastructures
Terrestrial Systems & Climate

Systems Biology & Bioinformatics

Molecular Systems & Libraries

Computational Fluid Dynamics & Finite Elements

Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

= Practical Topics

» Theoretical / Conceptual Topics

3/50

Outline

u Sha FEd-I\/Iemory Programming Conce ptS = Promises from previous lecture(s):
= OpenMP with Parallel & Serial Regions " detalle o the shared memery P
» Fork/Join & Master and Worker Threads g e e IO RegMEand
using its compiler directives
= OpenMP Standard & Portability = Lecture 3: Lecture 6 will offer more
. . . . laborate shared llel
= Hybrid Programming Motivation & PyCOMPSs/COMPSs z;g?';?‘n?‘nsin;r:xarr::rlzzri);‘::ac:st:xt of

different HPC application domains

OmpSs & OpenMP Data-Flow & Task-Based Evolutions

= OpenMP Parallel Programming Basics
= Basic building blocks
Local/shared variables & Loops
Synchronization & Critical Regions
Selected Comparisons with MPI & Evolutions
HPDBSCAN Clustering OpenMP & Jacobi Application Example

Lecture 6 — Parallel Programming with OpenMP 4/50

Shared-Memory Programming Concepts

O
O 0

Lecture 6 — Parallel Programming with OpenMP 5/50

Shared-Memory Computers — Revisited (cf. Lecture 1)

A shared-memory parallel computer is a system in which a number
of CPUs work on a common, shared physical address space

[2] Introduction to High Performance Computing for Scientists and Engineers

= Two varieties of shared-memory systems:
1. Unified Memory Access (UMA)
2. Cache-coherent Nonuniform Memory Access (ccNUMA)

» The Problem of ‘Cache Coherence’ (in UMA/ccNUMA)

= Different CPUs use Cache to ‘modify same cache values’

= Consistency between cached data &
data in memory must be guaranteed

= ‘Cache coherence protocols’ ensure a consistent view of memory

Lecture 6 — Parallel Programming with OpenMP

1l

T1 T2 T3 T4 T5

>
S
o)
£
Q
=
g
@
S
©
<
73

6/50

Shared-Memory with UMA - Revisited (cf. Lecture 1)

————————————————————————————

! . I
! P I
| P P R P P !
| ! S| !
‘[LD LiD_|! 3 [L LiD_|!
| L2 ! | L2 !
L - L - - R
Memory

Lecture 6 — Parallel Programming with OpenMP

UMA systems use ‘flat memory model’: Latencies and bandwidth
are the same for all processors and all memory locations.

Also called Symmetric Multiprocessing (SMP)

[2] Introduction to High Performance Computing for Scientists and Engineers

= Selected Features

= Socket is a physical package (with multiple cores), typically a replacable

component
= Two dual core chips (2 core/socket)
= P =Processor core
= L1D = Level 1 Cache — Data (fastest)
= |2 = Level 2 Cache (fast)
= Memory = main memory (slow)

= Chipset = enforces cache coherence and
mediates connections to memory

7/50

Shared-Memory with ccNUMA - Revisited (cf. Lecture 1)

" ccNUMA systems share logically memory that is physically distributed
(similar like distributed-memory systems)

. Network logic makes the aggregated memory appear as one single address space

[2] Introduction to High Performance Computing for Scientists and Engineers

i coherent
——————————————————————————— link S EEEEESEEEEEE

1 1 1
I 1 1
"TPlIIP|P|l P ; |
’ ! !
1

: LiD L1D L1D LiD : :
f L2 L2 L2 L2 : :
: L3 | |
1 1 1
1 1 1
1 I 1
I I
1 I 1

Memory

= Selected Features
= Eight cores (4 cores/socket); L3 = Level 3 Cache

= Memory interface = establishes a coherent link to enable one
‘logical’ single address space of ‘physically distributed memory’

Lecture 6 — Parallel Programming with OpenMP 8/50

Programming with Shared Memory using OpenMP — Revisited (cf. Lecture 1)

" Shared-memory programming enables immediate access to all data from all
processors without explicit communication

" OpenMP is dominant shared-memory programming standard today
= OpenMP is a set of compiler directives to ‘mark parallel regions’

[3] OpenMP API Specification
= Features

= Bindings are defined for C, C++, and Fortran languages
= Threads TX are ‘lightweight processes’ that mutually access data

Bus Interconnect

IHEE
11 1T
11131,
Shared Memory

-_- T1 T2 T3 T4 T5

(uniform memory access) (non-uniform memory access)

[7] LLNL OpenMP Tutorial

Lecture 6 — Parallel Programming with OpenMP 9/50

What means a ‘Shared Address Space’?

. Shared-memory programming enables immediate access to all data from all
processors without explicit communication

= OpenMP is dominant shared-memory programming standard today
. OpenMP is a set of compiler directives to ‘mark parallel regions’

[3] OpenMP API Specification

(programming model: work on shared address space — ‘local acess to memory’)

m GGNATERN .
link L ==

Lecture 6 — Parallel Programming with OpenMP 10/50

What is OpenMP?

" OpenMP is a library for specifying ‘parallel regions in serial code’ OpenMP

= Defined by major computer hardware/software vendors = portability!
Enable scalability with parallelization constructs w/o fixed thread numbers [3] OpenMP API Specification
Offers a suitable data environment for easier parallel processing of data

Uses specific environment variables for clever decoupling of code/problem

Included in standard C compiler distributions (e.g. gcc)

" Threads are the central entity in OpenMP

= Threads enable ‘work-sharing” and
share address space (where data resides)

= Threads can be synchronized if needed

= Lightweight process that share
common address space with other threads

= |nitiating (aka ‘spawning’) n threads is less
costly then n processes (e.g. variable space)

Lecture 6 — Parallel Programming with OpenMP

Recall ‘computing nodes’ are independent computing processors
(that may also have N cores each) and that are all part of one big
parallel computer

Threads are lightweight processes that work with data in memory

11/50

master thread

fork

join "

OpenMP
program

$44

\/

Lecture 6 — Parallel Programming with OpenMP

Important Terminology

parallel
region

serial
region

o

=, team of

.
=

threads

Thread: An execution entity with a stack and
associated static memory, called thread private
memory

OpenMP Thread: A thread that is managed by the
OpenMP runtime system

Team: A set of one or more threads participating in
the execution of a parallel region

Task: A specific instance of executable code and its
data environment that the OpenMP imlementation
can schedule for execution by threads

Base Language: A programming language that
serves as the foundation of the OpenMP
specification

Base Program: A program written in the base
language

OpenMP Program: A program that consists of a base
program that is annotated with OpenMP directives or
that calls OpenMP API runtime library routines.

Directive: In C/C++, a #pragma that specifies
OpenMP program behavior

OpenMP

[3] OpenMP API Specification

12 /50

Understanding Parallel & Serial Regions

master thread

fork

FeTed s

join "

OpenMP
program

serial
::- .
region

team of
threads

.
e

\/

Lecture 6 — Parallel Programming with OpenMP

fork() initiated by master thread (exists always) creates team of threads

Team of threads concurrently work on shared-memory data actively in parallel regions
join() initiates the ‘shutdown’ of the parallel region and terminates team of threads
Team of threads maybe also put to sleep until next parallel region begins

Number of threads can be different in each parallel region

Maoadified from [2] Introduction to High Performance Computing for Scientists and Engineers

(master thread always exsists)

master thread " e B “
s 2 EESee el threads

threads 3

S . threads .

parallel region parallel region parallel region

[7] LLNL OpenMP Tutorial

13 /50

OpenMP Standard enables Portability

= Key reasons for requiring a standard programming library
= Technical advancement in supercomputers is extremely fast
= Parallel computing experts switch organizations and face another system

= Applications using proprietary libraries where not portable
= Create whole applications from scratch or time-consuming code updates

= OpenMP is parallel programming model for UMA and ccNUMA
| = ‘ .

= OpenMP is an open standard that significantly supports the
portability of parallel shared-memory applications

" But different vendors might implement it differently

OpenMP Library Porting an OpenMP OpenMP Library
parallel application

Lecture 6 — Parallel Programming with OpenMP 14 /50

Programming Hybrid Systems — Motivation

= |[nefficient ‘on-node communications’ when using MPI instead of OpenMP
= MPI uses ‘buffering techniques’ to transfer data (cf. Lecture 2 & 4)
= Transfers may require ‘multiple memory copies’ to get data from Ato B
= Comparable to a ‘memory copy’ between different MPI processes

= Take advantage of shared memory techniqgues where feasible
* OpenMP threads can read memory on the same node

MPI ?

Communication network

Modified from [2] Introduction to High Performance Computing for Scientists and Engineers

Lecture 6 — Parallel Programming with OpenMP 15/50

Hierarchical Hybrid Computers — Revisited (cf. Lecture 1)

A hierarchical hybrid parallel computer is neither a purely shared-memory
nor a purely distributed-memory type system but a mixture of both

Large-scale ‘hybrid’ parallel computers have shared-memory building
blocks interconnected with a fast network today

[2] Introduction to High Performance Computing for Scientists and Engineers

Communication network
" Features

= Shared-memory nodes (here ccNUMA) with local Nlis
= N| mediates connections to other remote ‘SVIP nodes’

» Lecture 10 will provide insights into hybrid programming models and introduces selected patterns used in parallel programming

Lecture 6 — Parallel Programming with OpenMP

16 / 50

Programming Hybrid Systems & Patterns — Revisited (cf. Lecture 1)

" Hybrid systems programming uses MPI as explicit internode
communication and OpenMP for parallelization within the node
" Parallel Programming is often supported by using ‘patterns’ such as stencil
methods in order to apply functions to the domain decomposition
= Experience from HPC Practice
= Most parallel applications still take no notice of the hardware structure

= Use of pure MPI for parallelization remains the dominant programming P1 P2 P3 P4 PS5

= Historical reason: old supercomputers all distributed-memory type
= Use of accelerators is significantly increasing in practice today

= Challenges with the ‘mapping problem’

= Performance of hybrid (as well as pure MPI codes) depends crucially
on factors not directly connected to the programming model

= |t largely depends on the association of threads and processes to cores T1 T2 T3 T4 T5

= Patterns (e.g., stencil methods) support the parallel programming

» Lecture 10 will provide insights into hybrid programming models and introduces selected patterns used in parallel programming

Lecture 6 — Parallel Programming with OpenMP 17 /50

Programming Hybrid Systems with MPI & OpenMP

" Hybrid systems programming uses MPI as explicit internode
communication and OpenMP for parallelization within the node

" Parallel Programming is often supported by using ‘patterns’ such as stencil
methods in order to apply functions to the domain decomposition

P1 P2 P3 P4 P>

Shared Memory

T1 T2 T3 T4 T5

[7] LLNL OpenMP Tutorial

Lecture 6 — Parallel Programming with OpenMP 18 /50

Scientific Application Example: Data Mining & Clustering

= Hybrid data mining algorithm example

= Parallel Density-based Spatial Clustering for
Applications with Noise (DBSCAN)

= Using MPIl and OpenMP to scale better
= Standalone OpenMP is also possible to use

512 | —=— Hybrid DS1
256 —— Hybrid DS2
--- Linear

#!/bin/bash
#SBATCH --job-name=HPDBSCAN
#SBATCH -o HPDBSCAN-%j .out
#SBATCH -e HPDBSCAN-%j.err
#SBATCH --nodes=2

#SBATCH --ntasks=4

#SBATCH --ntasks-per-node=4
#SBATCH --time=00:20:00
#SBATCH --cpus-per-task=4
#SBATCH --reservation=ml-hpc-1

OMP_NUM_THREADS=4

a 64+

3

g 32

2 16 |
8..
4..
2..
._.

2 8 32 128 512
number of cores

Lecture 6 — Parallel Programming with OpenMP

location executable
HPDBSCAN=/homea/hpclab/train@01/tools/hpdbscan/dbscan

your own copy of bremen small
BREMENSMALLDATA=/homea/hpclab/train00l/bremenSmall. h5

your own copy of bremen big
BREMENBIGDATA=/homea/hpclab/train@@l/bremen.h5

srun $HPDBSCAN -m 100 -e 300 -t 12 $BREMENSMALLDATA

[1] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

19/50

Many-core GPGPUs — Revisited (cf. Lecture 1)

= Use of very many simple cores &PU

Multiprocessor 1 Multiprocessor N || | ________

= High throughput computing-oriented architecture ' opU |

= Use massive parallelism by executing a lot of
andle an ever increasing e —
= Handle an ever increasing amount of multiple & :

instruction threads

= CPUs instead typically execute a single
long thread as fast as possible

[9] Distributed & Cloud Computing Book

= Ma ny-core GPUs are used in la rge * Graphics Processing Unit (GPU) is great for data parallelism and task parallelism
: : : . Compared to multi-core CPUs, GPUs consist of a many-core architecture with
Cl usters a nd Wlth IN Massive Iy hundreds to even thousands of very simple cores executing threads rather slowly

parallel supercomputers today
= Named General-Purpose Computing on GPUs (GPGPU)
= Different programming models emerge

Lecture 6 — Parallel Programming with OpenMP 20/50

DEEP-EST EU Project — OmpSs & OpenMP Evolutions

= OmpSs is an innovative programming model influencing OpenMP
= Based on tasks and (data) dependencies — tasks as elementary unit of work
= Extend OpenMP model: better data-flow & #pragma omp target device(cuda) copy_in(\ . 55 .. o5

cpf [i;elements], \

6 inputs

heterogenity (e.g. GPGPUs SO [elements],| %, —
g y(g) K [!;elements],\ 7"’ \(device memory)

. sel)
= New Version: OmpSs-2 o rcloments) |
T [i;elements]) \
copy_out (answer[i;elements]) ——— eee-—sss——————— 1 output
[11] OmpSs Web Page (host memory)

GPU

Multiprocessor 1 Multiprocessor N || | ________

+ Prototype + Task + Taskloop + Task reductions \\! + Multidependences w }
. of tasking dependence prototyping + Dependences + Commutative PriR| 1Py Pyl | P i CPU ;
| I

+ Task on taskwaits + Dependences
Op en M

priorities + OMPT impl. ' on taskloops

O
Nowadays Mps_ -

[9] Distributed & Cloud Computing Book

m:sp [10] DEEP Projects Web Page
Projects

Lecture 6 — Parallel Programming with OpenMP 21/50

OmpSs Programming Model

OmpSs
Programming Model

void cholesky(float *aA[NT]J[NT]) {
int 4, j, k;
for (k=8; k<NT; k++) {
gpragms omp task inout [A[K][k])
spotrf (A[k]I[Kk]) ;
for (i=k+#1; 1<NT; i++) {
wpragma amp task in [A[K][k])} inout [A[K][i]]
stram (A[k][k], A[KI[11);

}
for (isk+1; i<HT; is++) {
for (j=k+1; j<i; _1+r] {
spragea omp task in (A[ll.][:l.] A|k][;|]} incut (a[j]1[4])
sgemm(A[k][1], ‘*[Kl[il Al][4]

}
spragma omp task in (A[k][1]) inout (A[i][i])
ssyrk (A[k][1], A[1][1]);

m Applications
—_ L

— Adding Task & Data Dependencies

OmpSs Programming Mode|

Power to the runtime

B4 A

OmpSs main goal is to act as a forefront and nursery of ideas for a data-flow task-based programming model

so these ideas can ultimately be incorporated in the OpenMP industrial standard

[12] OmpSs BSC Programming Models

Lecture 6 — Parallel Programming with OpenMP

22 /50

Enabling Parallelization Approaches with Task Multi-Dependencies

Lecture 6 — Parallel Programming with OpenMP

Elements Parallelization
00000 Q00000
O0000 OMP PARALLELDO | Q Q OQ0O
00000 + Q0000
00000 ompAtomic | QO OO0
00000 00000

OMP PARALLELDO { QOO0
88888 OMP PARALLELDO {Q QO Q0O
O0O00O0O ompPPARALLELDO {Q QO Q00
Q0000 omprarALLELDO {Q OO OO
OO0O0OO omperaraLELD0 {00 Q0O
OMP TASK DEPEND(MUTEXINOUTSET: ... : i=1, nb(j) }

[13] MontBlanc OmpSs Multi-Task Dependencies

> No Coloring

> Coloring

>' Multidependences

23 /50

COMPSs & PyCOMPSs

= COMPSs (COMP Superscalar)

= Coarse-grained programming model oriented to distributed environments
= Powerful runtime that leverages low-level APIs (e.g., Amazon EC2 clouds)

[14] PyCOMPSs
= Manages data dependencies (objects and files)
@opyComDSs. aDL kask anpori iasi
rom pycompss.api.parameter import FILE_INOUT
COMP Superscalar (COMPSs) is a framework which aims to ease :
the development and execution of applications for distributed ;:sﬁ:;i::::? lezfa‘fi?fum)
infrastructures, such as Clusters, Grids and Clouds. e
PyCOMPSs is the Python binding of COMPSs fis = open(filePath, 'r’)
value = fis.read()
PyCOMPSs follows OpenMP & OmpSs approach: from a fis.close()
sequential Python code, it is able to run in parallel and distributed
Write value
fos = open(filePath, ’w’)
fos.write(str(int(value) + 1))
fos.close()
ef main_program():
from pycompss.api.api import compss_open
Check and get parameters
if len(sys.argv) != 2:
exit(-1)
initialValue = sys.argv[1]
FiTeName=rannrer?
Lecture 6 — Parallel Programming with OpenMP 24 /50

[Video] Scientific Application Example using OpenMP

P o) 0257050

[4] Lattice Boltzmann — Flow past an obstacle, YouTube Video

OpenMP Parallel Programming Basics

O
O 0

Lecture 6 — Parallel Programming with OpenMP 26 /50

Start ‘Thinking’ Parallel

= Parallel OpenMP program

= Knows about the existence of a certain number of threads that all work togeter as part of a bigger picture

=" OpenMP programs

= Written in a sequential programming language
and some parts are executed in parallel

= Run on a processor that ‘spawns’ numerous threads

= Parallelization
= Dedicated n parallel regions is key to the design in OpenMP (n=1,2,3....)
= E.g.loops/additions are good candidates for parallelization
= (if individual loop iterations are independent from each other)

= Start with the basic building blocks using OpenMP

= Defining code that enables ‘parallel computing’, step-by-step is possible

Lecture 6 — Parallel Programming with OpenMP 27 /50

Number of Threads & Scalability

= The real number of threads normally not known at compile time
= (There are methods for doing it in the program = do not use them!)
= Number is set in scripts and/or environment variable before executing
= Parallel programming is done without knowing number of threads

export OMP NUM THREADS=4

P S S
. ' l l lii\m*eam of
”. threads

int main ()

IS
compflq& ./helloworld.exe

{ * Hello World
executéoA master
#pragma omp parallel Hello World th d
printf (,Hello World"“) ; ‘ Hello World b rea
} Hello World ecomes T0

Lecture 6 — Parallel Programming with OpenMP

OpenMP programs should be
always written in a way that it
does not assume a specific
number of threads that in turn
enables a scalable program

Compiler directives are used
such as #pragma omp parallel

TO

T1

28 /50

OpenMP Basic Building Blocks: Hello World Example

#include <omp.h>

#include <stdio.h>
int main(argc,argv)

int argc; char *argvi[l; {

int nthreads, tid; "

#pragma omp parallel private(tid) ==

{

printf ("Hello World from thread = %d\n", tid);

if (tid == 0) {

nthreads = omp get num threads();

tid = omp get thread num(); fr==—=—=""

The OpenMP library contains OpenMP API definitions

Shared variable nthreads; local variable tid

The Sentinel is a special string that starts an OpenMP
compiler directive: ‘#pragma omp’

private defines local variables for each thread

Each thread works independently and thus needs
space to ‘store’ private local results

omp_get_thread_num() function provides unique
Thread ID (0...n-1)

Same code executed n times with n threads, but tid is
unique and thus different for each thread

[-

-

~~---
-y

printf ("Number of threads in parallel region = %dTrT“‘,ﬂrth.\;eid_s);

l

Similar like MPI ranks, here the Thread ID can be
used to perform different executions per threads

Only the master (tid=0) provides output of how many
threads are existing in the parallel region

—
—
— oy
~-~--
-y
-y
L™

omp_get_num_threads() function obtains number of
active threads in the current parallel region

» Practical examples and assignments in this course focus on parallel programming with MPI, but OpenMP is important in practice too

Lecture 6 — Parallel Programming with OpenMP

29 /50

Edit C Program with OpenMP Directives & Functions & Compilation

= Using basic gcc compiler
= ‘module load gnu openmpi’ —
[morris@jotunn hellothreads]$ gcc -fopenmp -o hellothreads hellothreads.c

[morris@jotunn hellothreads]$ 1s -al

= Note: there are many C otal 16
. . drwxrwxr-x 2 morris morris 46 okt 9 20:08
Compllers avallable we WY PWIY F-Y R marris marris 25 Akt Q9 20.04
’ -rwxrwxr-x 1 morris morris 8844 okt 9 20:08 hellothreads
1 morris morris 275 okt 9 20:05 hellothreads.c

- rw-rw-r- -

here pick one for our
particular HPC course that

works with OpenMP using a C compiler
c —
= Note: If there are no errors,

I
—

PR
i i

B

the file hellothreads is now hellothreads.c gcc -fopenmp

1

a full C program executable
that can be started by an OS

<

hellothreads

);

printf(
executable . . .
printf(, omp_get_thread_num(), omp_get_num_threads()); [1] Icelandic HPC Machines & Commumty
printf();
return 0;
30/50

Lecture 6 — Parallel Programming with OpenMP

OpenMP Work Sharing Constructs — Overview

master thread
v
/”
/”
’f
|1 1 _J4
i r i - r i

for - shares
iterations
of a loop
across the
team.
Represents
a type of
‘data
parallelism’
(cf. Lecture
3)

master thread

[7] LLNL OpenMP Tutorial

Lecture 6 — Parallel Programming with OpenMP

master thread

Lm team

v
NN
| 1
LA A

JOIN

master thread

Sections -
breaks
work into
separate,
discrete
sections.
Each
section is
executed

by a thread.

Can be
used to
implement
a type of
‘functional
parallelism’
(cf. Lecture
3)

master thread

¥
e
|
¥ v v ¥

team
JOIN
master thread

Single -
serializes a
section of
code

31/50

Data Parallelism: Medium-grained Loop Parallelization (cf. Lecture 3)

= |dea: Computations performed on individual array
elements are independent of each other

= Good for parallel execution by N processors
(e.g., using shared memory parallel programming)

c is a constant! do|i=1,500
: . , PE e >
a, b are different arrays a(i)=c*b (i) 1
do|i=1,1000 enddo . . 7 QE_,

a(i)=c*b (i) B BN
i ‘ do|i=501,1000 . . Bl g
______ - a(i)=c*b (i) I B g —
t i -
1 enddo v
T1 T2 T3 T4 T5
Moadified from [2] Introduction to High Performance @~ === == == == == == == == >

Computing for Scientists and Engineers t2 < 't1

Lecture 6 — Parallel Programming with OpenMP 32/50

OpenMP Work Sharing Construct: Simple For Loop Example

#include <omp.h>
int main(int argv, char **argv)

{

‘simplified

demo code’

int n, 1i;

double *x, *y;

/* Get input size */
n = atoi(argvll]);

x (double *)malloc(n*sizeof (double));

y (double *)malloc(n*sizeof (double));

#pragma omp parallel for private(i) shared (x,y)

for (i=0; i<n; i++)

{
x[i]l = x[i] + yI[il;
}

X =X+Y

/* x containts the result for all vector elements */

Lecture 6 — Parallel Programming with OpenMP

The Sentinel is a special string that starts an OpenMP
compiler directive

Smart programming support by OpenMP: Loops are very
often part of scientific applications

Less burden for programmer: no manual definition of local
variables (e.g. i automatically localized)

Directive is optimized to enable a parallel loop (i.e. parallel
for) starting a parallel region

Private defines local variables for each thread

Each thread works independently and thus needs space to
‘store’ local results — here i as index

Shared defines global variables that exist only one time

Each thread works independently but shared variables can
be written and read from all threads

33/50

OpenMP Work Sharing Construct: Advanced For Loop Example

include <omp.h>

Arrays a, b, ¢, and chunk will be shared by all threads
Variable i is private to each thread: each thread will

’ " h -
#define N 1000 ,/ have its own unique copy of i
#define CHUNKSIZE 100 /’
7’ a q q
main(int argc, char *argv[]) { R4 Schedule: Describes how iterations of the loop are
int i. chunk: /’ divided among the threads in the team; the default
’ ' C=A+B R schedule is implementation dependent
; ’ . . . C .
float a[Nl, bINI, cINI; S The iterations of the loop will be distributed
/* Some initializations */ PRd ,¢’ dynamically in CHUNK sized pieces: when a thread
e -7 finishes one chunk, it is dynamically assigned another
for (i=0; i < N; i++) s 7
e ,¢’ Threads will not synchronize upon completing their
alil = b[i] =1 * 1.0; R g individual pieces of work (nowait)
P2 ’
chunk = CHUNKSIZE; R g
’ -,
”
#pragma omp parallel shared(a,b,c,chunk) private(i) f ’¢’
”
{ L
’/
#pragma omp for schedule (dynamic,chunk) nowait STATIC
for (i=0; i < N; i++) T1 T2 T3 T4 T T2 T3 T4
c[i]l = al[il + bI[il;
)/ end of el fon */ DYNAMIC
en o para e region T3 T2 T T4 T T4 T3 T4

return 0;

Lecture 6 — Parallel Programming with OpenMP

[7] LLNL OpenMP Tutorial

34 /50

OpenMP Work Sharing Construct: Sections Example

#include <omp.h>

#define N 1000

main(int arge, char *argv[]) {
int i;
float a[N], bIN], c[N], 4IN];

for (i=0; i < N; i++) {

ali]l = i * 1.5;
- - — - - - master thread
bli] = i + 22.35; = The sections directive is a non-iterative work-sharing
construct. It specifies that the enclosed section(s) of '
} - code are to be divided among the threads in the team
-
#pragma omp parallel shared(a,b,c,d) private (i),—*’ = Independent section directives are nested within a m
(=" sections directive I I |
-
-
#ipragma omp sections nowait ol = = N 4 team
{ . Each section is executed once by a thread in the team. r . .
- _ = Different sections may be executed by different threads: 1|' ‘L 1|' !
pragma omp section It is possible for a thread to execute more than one
for (i=0; i < N; i++) f====mm=————=—====23 section if it is quick enough and the implementation m
- i
CIi] = ali] + bIil; - pt.ermlts such . . .
PPt s . Different blocks of work in sections will be done by
#pragma omp section ‘,a" different threads
c . . . L~ master thread
or (i=0; i < N; i++)
dli] = afi] * bli]; [7] LLNL OpenMP Tutorial v

Lecture 6 — Parallel Programming with OpenMP 35/50

OpenMP Synchronization Construct: Critical Region Example

#include <omp.h>

main(int argc, char *argv[l) { = If a thread is currently executing inside a critical region

and another thread reaches that critical region and

attempts to execute it, it will block until the first thread

x = 0; exits that critical region

" All threads in the team will attempt to execute in parallel,
however, because of the critical construct surrounding

int x;

#pragma omp parallel shared(x) T the increment of x, only one thread will be able to
{ PPt e read/increment/write x at any time
” mgm - -
T " * Note the ‘race conditions’ of variable x otherwise: Race
#pragma omp critical —— c .- . . - q
L - ondition in shared-memory: shared variable x will be
x =x+1; set concurrently by the different threads — not with

critical regions

} /* end of parallel region */

return 0;

[7] LLNL OpenMP Tutorial

Lecture 6 — Parallel Programming with OpenMP 36/50

OpenMP ThreadPrivate Directive — Persistence between Parallel Regions (1)

#include <omp.h>

int a, b, i, tid; "
float x;

]
#pragma omp threadprivate(a, x) JF===============m===
main(int argec, char *argv[]) { .

omp_set_dynamic (0) ;

Threadprivate() directive specifies that variables are replicated, with each thread
having its own copy

Can be used to make global file scope variables (C/C++/Fortran local and persistent to
a thread through the execution of multiple parallel regions

Threadprivate() variables differ from private variables because they are able to persist
between different parallel regions of a code

printf ("lst Parallel Region:\n");

#pragma omp parallel private(b,tid)

Explicitly turn off dynamic threads

{

tid = omp get thread num();

a = tid;

b = tid;

x = 1.1 * tid +1.0;

printf ("Thread %d: a,b,x= %d %d %f\n",tid,a,b,x);
} /* end of parallel region */

printf ("Master thread doing serial work here\n");

Lecture 6 — Parallel Programming with OpenMP

[7] LLNL OpenMP Tutorial

37/50

OpenMP ThreadPrivate Directive — Persistence between Parallel Regions (2)

#include <omp.h>

int a, b, i, tid;

main(int argec, char *argv[]) {

printf ("Master thread doing serial work here\n");

printf ("2nd Parallel Region:\n");
#pragma omp parallel private(tid)
{
tid = omp _get thread num();
printf ("Thread %d: a,b,x= %d %d %f\n",tid,a,b,x);

} /* end of parallel region */

Lecture 6 — Parallel Programming with OpenMP

float x;

Output:

1st Parallel Region:

Thread O: a,b,x= 0 0 1.000000
Thread 2: a,b,x=2 2 3.200000
Thread 3: a,b,x= 3 3 4.300000
Thread 1: a,b,x=11 2.100000
dkkkhkhkkhkhkhkhkdhkhkhhhkdkhkhhhkdkhkhhkdkhhkhkkdkhhkkkk

Master thread doing serial work here
kkkhkkkhkkhkhkkhkkhkkkhkkhkkkhkkkhkkhkkkkkkkkkk

2nd Parallel Region:

Thread O: a,b,x= 0 0 1.000000
Thread 3: a,b,x= 3 0 4.300000
Thread 1: a,b,x=1 0 2.100000
Thread 2: a,b,x=2 0 3.200000

[7] LLNL OpenMP Tutorial

38 /50

OpenMP Reduction Clause Example — Vector Dot Product Example

#include <omp.h>
main(int arge, char *argv[]) {
int i, n, chunk;

float a[100], b[100], result;

n = 100;
chunk = 10; U
U
result = 0.0; /l
/
for (i=0; i < mn; i++) {/’
/
alil = i * 1.0; /
b[i] i * 2.0 I,
il = i . ,,,
} /

4

Reduction clause performs a reduction operation on the variables that appear in its list
A private copy for each list variable is created and initialized for each thread

At the end of the reduction, the reduction variable is applied to all private copies of the shared variable, and the
final result is written to the global shared variable

Reduction operations are a smart alternative to manual critical regions definitions around operations of variables
Reduction operation automatically localizes variable

Several operations are common in scientific applications: +, *, -, &, |, A, &&, ||, max, min

REDUCTION() with operator + on variable s enables here ...

Starting with a local copy of s for each thread

During progress of parallel region each local copy of s will be accumulated seperately by each thread

At the end of the parallel region automatically synchronized and accumulated with resulting master thread variable

#pragma omp parallel for
default (shared) private(i)

schedule (static, chunk)

reduction (+:result)

for (i=0; i < n; i++)

result = result + (al[i]l * b[i]l);

printf ("Final result= %f\n",result);

STATIC
T1 T2 T3 T4 T T2 T3 T4

= Vector Dot Product Example: Result is a scalar!

= Iterations of the parallel loop will be distributed in equal sized blocks to each thread in the

- team (schedule static)

At the end of the parallel loop construct, all threads will add their values of "result" to update
the master thread's global copy

[7] LLNL OpenMP Tutorial

Selected Comparisons with MPI

= Some aspects are similar, because both enable parallel computing
= Obtaining unique IDs: MPI ranks vs. OpenMP thread-num
= Master-worker approach (if rank==0 vs. if tid ==0)

= No explicit communication constructs to enable inter-process communication in OpenMP =2
assuming shared-memory
= Data exchange: Message exchanges between processes vs. shared variable
= Synchronization functions nevertheless exist in both: e.g. barriers
= Clever automatisms for usual problems: MPI reduce vs. OpenMP reduction

" socket
_*

Lecture 6 — Parallel Programming with OpenMP 40 /50

Recent Support of OpenMP for Programming GPUs with Directives

#pragma omp target map (tofrom:y), map(to:x)
#pragma omp teams num teams(10) num threads(10)
#pragma omp distribute

for (...) { —
Multiprocessor 1 Multiprocessor N || | ________

(P[] B 5 B[R] [Rl | eru
#pragma omp parallel for }
for (...) {]:E ____ij;___

} Device memory T::i memory |

} [9] Distributed & Cloud Computing Book

= OpenMP is the de-facto standard for multi-

parallel

fork

OpenACC is similar to OpenMP, because it is
modeled after OpenMP, but for accelerators

threaded programming on CPU
" OpenMP includes since version 4.0 (better since :
4.5) also capabilities for programming GPUs master S master

R 2

OpenMP

#pragma acc data copyout(y[0:N]) create(x[0:N])
{
double sum = 0.0;
#ipragma acc parallel loop
for (int 1=0; i<N; i++) {
x[1] ;
y[i]

1.0;

2.0;

}

#ipragma acc parallel loop

for (int 1=0; i<N; i++) {
y[i] = i=x[i]+y[i];

}

}

parallel

. =
3
master £ /

» Lecture 7 will offer more details on OpenMP relationships of programming GPUs and similiarites to GPU programming using OpenACC

Monitoring, Debugging and Performance Analysis Tools for OpenMP

= Different Tools exist

= E.g. TotalView Debugger

= E.g.
= E.g. Linux ps command

$ ps -Lf
UID PID PPID LWP C NLWP STIME TTY TIME
blaise 22529 28240 22529 0 5 11:31 pts/53 00:00:00
blaise 22529 28240 22530 99 5 11:31 pts/53 00:01:24
blaise 22529 28240 22531 99 5 11:31 pts/53 00:01:24
blaise 22529 28240 22532 99 5 11:31 pts/53 00:01:24
blaise 22529 28240 22533 99 5 11:31 pts/53 00:01:24
% ps -T
PID SPID TTY TIME CMD
22529 22529 pts/53 00:00:00 a.out
22529 22530 pts/53 00:01:49 a.out
22529 22531 pts/53 00:01:49 a.out
22529 22532 pts/53 00:01:49 a.out
22529 22533 pts/53 00:01:49 a.out
% ps -Lm
PID LWP TTY TIME CMD
22529 - pts/53 00:18:56 a.out
- 22529 - 00:00:00 -
- 22530 - 00:04:44 -
- 22531 - 00:04:44 -
- 22532 - 00:04:44 -
- 22533 - 00:04:44 -

Linux top command

PR

out
out
out
out
out

Z= matvec

File Edit View Group Process Thread Action Point Debug Tools Window

Group (Control) [> ii @ ib

Go Halt Kill Restart

Nexl Step Out Run T0|Record GoBack Prev Ui

sa9 2> @ 4 3

Thread 1 46912514346912 Sto|

Stack Trace A Stack Frame
“Inpuser lock Eres, FEEEEEEAIEN | || FUnetion ’“BEVEE 3
“knpe_critical, Fe-Thecrrrdson | ||| Mo arqunents i
0] matvec L_MAIN _ 44 par_regionl_2_68, FP=T. FEATE °Wt AL Eg-mn“““ e
_knp_invoke_nicrotask, FR=TEEEEEETETO | e e
“kmp_invoke_task_func, FP=T © (REAL*4 (10))
~

Tenp_fork _call,
Jpo_fork call,

1 Tain,
__Libe_start_mai
TStarct,

]

35 20

36

ki WRITE (*

] FORMAT(

39 ENDO

40 PRINT *

41 PRINT *

42

43 | Create a f
= |SOMP PARALLEL

45 TID = OMP |

46

47 | Loop work-

48 ISOMP DO PRIVATE
Do 1

51

52

53
=
Action Points] Threa
11 (46912514346912;
1.2 (46912516646656)
1.3 (46912589793024
1.4 (46912728200152;
1.5 p (4691273240752
1.6 '\ (4691273660595}
1.7 (46012002446208]
ia asar

'l'\d

matvec

===

=)

File Edit View Group Process thread Action Point Debug Tools Window ﬂelp|
Group (Control) bii@ ib ‘Oj Q W J ‘ﬁ @E

MNext Step Out Run To

Go Halt Kill

estart

Stack Trace o

Thread 3 (45691 2569793024) (Stopped)

Record GoBack Prev Un!

= Sta"ck Frame

_ sched_yield,
“np_yield,
ThpTvait_yield 4,

p_ecquire_quening L

" fnpS_critical,
0] matwec L_MAIN
_knp_invoke_microtas]

“knp_Launch_thread,

T Toopening lock with chacksPlEk_mp_quEulng_luckl
. FP
U m: EammhIEETE

kg invoks_task_func,

FP=Eaasb03££230 [§ |[Function ..

4 FP-2aashDIFF24D No argunents]
FP-Zaaab0IL£290 | |||Block "3b1eshl”
FP=2aash03ff2el i 2 {0x00000002)

)
aaab03££390 Block "$b1"

a

2aab03f£2E0 b
FP:ZasabDEffEQD

c
FP=2aazh03ffasl tatal

4_par_regionl_2_GE[L

5 11 (0x0000000b)

(REAL*4 (10, 10))
(REAL*4 (10))
(REAL* (10))
2.200000e+02

210 knp_Laiinch_vorl

Functlun matvec’l
45 TID = OMP_GET
46
47 | Loop work-sha:
48 |S0MP DO PRIVATE(T)
49 DO I =1, Sz
50 D07 =1, 8
51 0(I) = 0
52 ENDDO
53

40 FORMAT (" threar
+ ' Running

53
601 1$0MP END CRITICAL
61

62 ENDDO
€3 1$0MP END DO
64

Action Points] Threads

TotalView for HPC 2016.07.22
FEile Edit View Tools

Hostname j
=-<local> 1 1 p1
2-Breakpoint 1 1 p1
=-0x00403d72 1 1 P13
=-omp_matvec.f#56 1 1 P15
= Breakpmnt 1 1 pl.s
1! p15
| 0)Qaaaaaab4423 1 1 pla
=-<unknown line> 1 1 pla
=-Stopped 1 1 pl.a
1.4 1 1 pla
S-m@aaaaafd7an 1 1 niA]

Configure <<

P (e (s e

(46312514346012) T in %18 knp_hakery checkjj 3|
(46812516646655) T in pthread_ cum‘l timedwait J
46912589793024) T in __sched yiel:

1.4 (4£312728209152) T in do, _Lookup_x

1.5 (46812732407552) ©1 in matvec'L_HAIN 44 par_region0 2 68

1.6 (4691P736605952] T _Jmp_wait_yield 4

1.7 (4£312092446208) T in pthread_cond_wait

1A 4R01 T and_stnrad? S|

=] Terminal
File Edit View Terminal Tabs Help

top - 14:13:21 up 2 days, 23:17, 20 users, 1load average: 3.34, 1.59, 0.73
Tasks: 471 total, 5 running, 465 sleeping, 1 stopped, 0 zombie

Cpu(s): 33.4%us, 1.7%sy, 0.0%ni, 56.6%id, B8.0%wa, 0.2%hi, 0.0%si, 0.0%st

117572k buffers
16511060k cached

Mem: 24479116k total,
Swap: 4096564k total,

19015304k used,
89432k used,

5463812k free,
4007132k free,

) USER

18010 blaise 25 0 92292 1248 920 R 100.0 0.0 0:42.68 a.out
18012 blaise 25 © 92292 1248 0920 R 108.0 0.9 0:42.62 a.out
18013 blaise 25 0 92292 1248 920 R 108.0 0.0 0:42.65 a.out
18014 blaise 25 0 92292 1248 920 R 99.7 0.0 0:42.61 a.out

617 root 15 <] o] 0 D0 1.3 0.0 0:15.36 pdflush

4344 root 15 o] o] 0] 0s 0.7 0.0 1:37.12 kiblnd_sd_02
4345 root 15 o] o] 0] 0S5 0.7 0.0 1:38.24 kiblnd_sd_03
4352 root 15 o] o] 0 05 0.7 0.0 1:37.56 kiblnd_sd_18
5055 root 15 @ 0 0 065 0.7 0.8 10:19.15 ptlrpcd

[7] LLNL OpenMP Tutorial

> Lecture 9 will provide a set of tools that can be used for monitoring, debugging, and performance analysis of MPI and OpenMP

Lecture 6 — Parallel Programming with OpenMP

42 /50

Jacobi 2D Application Example — Shared Memory with OpenMP Possible

= Solver
= Each diagonal element is solved and approximate value is plugged in = The Jacobi iterative method is a
.. o stencil-based iterative method used in
= The process is iterated until it converges numerical linear algebra

. Algorithm for determining the

= Update function 2D Jacobi iterative method example solutions of diagonally dominant

system of linear equations

= E.g. computes the arithmetic mean of a cell’s four neighbours

= E.g. solving diffusion equations (heat dissipation example) ® é '. o o

|

I-I-I“
1 @ © @ @
[5] Wikipedia on) () ~—0 @
‘stencil code’
T‘I
So So00 S400 Seoo Ss00 S1o00 % vy vy

e — o @ ¢ ¢ ¢

[2] Introduction to High Performance Computing for Scientists and Engineers

> Lecture 10 will provide more details about stencil-based iterative methods & used patterns in many different HPC application examples

Lecture 6 — Parallel Programming with OpenMP 43 /50

‘Big Data‘ Science Example — Parallel & Scalable Clustering Algorithm — Revisited

leielgt |56 |7 512 | —o— Hybrid DS1
- AP —+ Hybrid DS2
U s R 2
I rin e A R LY LS i o
Clustering BRSENE {& 3e o 64 Linear %
)y 33. l.f‘, g |42 |42 | E 32
7 1% =9: 50 | @2 3 2 16
A '%‘:t ? g
IR PR AR 4
S 72 0'.:";. L3 CEJ NN R >
Overlayed spatial grid 1 5 8 32 128 512
O HPDBSCAN number of cores
I P "
A |‘ [T Overlay || Estimate J_ Merge i
ﬁ | | hypergrid | splits |"|: halos E
|' Data 1 l \ I 1 l i-|- ——
Sort and — i Locl E PN procossor ! | procassor J
distribute [{,n,iéfr‘ | pBscan _H_@gggw) @] ; O
L | L} ! I OZH E 24 L] 2
Preprocessing Clustering i O O o O O
L e U o J fo! C O
e | e oLV SRIRe 3
I—| Cluster relabeling | O : _ﬁ i O O
st A6 Que 1 Q3
[1] M. Goetz and M. Riedel et al, PO =110 T I T

Proceedings IEEE Supercomputing Conference, 2015

Lecture 6 — Parallel Programming with OpenMP 44 / 50

HPDBSCAN Clustering OpenMP Application Example in Data Sciences

// hpdbscan.h file [8] M. Goetz HPDBSCAN Bitbucket Repository #1/bin/bash
#SBATCH - - j ob-name=HPDBSCAN

E n #SBATCH -o HPDBSCAN-%j.out
= Using the standard OpenMP omp.h header file #SBATCH -e HPDBSCAN-%j.err
i . . #SBATCH - -nodes=2
bl _———====-" Using #pragma omp parallel for loop compiler GeBATCH - mtacikecs
L - - - - - - - -
#include <omp.h> fp====""" directive in combination with reduction operation :ggﬂg: "2}3253(;'?%?33“:4
___=V #SBATCH - -cpus-per-task=4
" #SBATCH --reservation=ml-hpc-1

-

// local DBSCAN run ____—” y OMP_NUM_THREADS=4
- ’
#pragma omp parallel for schedule(dynamic, 32) private(neighboring points) /’ # location executable
firstprivate (previous cell) reduction (merge: rules) ,/, HPDBSCAN=/homea/hpclab/train001/tools/hpdbscan/dbscan
for (size t point = lower; point < upper; ++point) { ,’, # your own copy of bremen small
- ,z BREMENSMALLDATA=/homea/hpclab/train00l/bremenSmall. h5
’
,/ # your own copy of bremen big
. o’ BREMENBIGDATA=/homea/hpclab/train@0l/bremen.h5

Clusters cluster (Dataset& dataset, [int threads=omp get max threads())|{ R

L ,’ srun $HPDBSCAN -m 100 -e 300 -t 12 $BREMENSMALLDATA
#ifdef WITH OUTPUT Sso R

~
~ ’
double execution start = omp_get wtime(); ~\~ i
~ ’
~ ’
#endif S
// set the number of threads = How Many Threads within a parallel region?
omp set num threads (threads) " omp_get_max_threads() : generally reflects the number of
7 Y - - - . =
e il threads as set by the OMP_NUM_THREADS environment variable

. omp_set_num_threads(threads) routine affects the number of
threads to be used for subsequent parallel regions

[1] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Lecture 6 — Parallel Programming with OpenMP 45 /50

[Video] Raytracing Application with OpenMP

wem.. fraps takes 1 cpu (12.5%)

[6] Speeding up a Ray tracer with OpenMP, YouTube Video

Lecture Bibliography

O
O 0

Lecture 6 — Parallel Programming with OpenMP 47 / 50

Lecture Bibliography (1)

= [1] M. Goetz, C. Bodenstein, M. Riedel, ‘HPDBSCAN — Highly Parallel DBSCAN’, in proceedings of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC2015), Machine Learning in HPC Environments (MLHPC) Workshop, 2015, Online:
https://www.researchgate.net/publication/301463871 HPDBSCAN highly parallel DBSCAN

= [2] Introduction to High Performance Computing for Scientists and Engineers, Georg Hager & Gerhard Wellein, Chapman & Hall/CRC Computational Science,
ISBN 143981192X

= [3] The OpenMP API specification for parallel programming, Online:
http://openmp.org/wp/openmp-specifications/

= [4] Lattice Boltzmann — Flow past an obstacle, Online:
https://www.youtube.com/watch?v=fspGcBpxguo

= [5] Wikipedia on ‘stencil code’, Online:
http://en.wikipedia.org/wiki/Stencil code

= [6] Speeding up a Ray tracer with OpenMP, YouTube Video, Online:
http://www.youtube.com/watch?v=59Z5MeQS LU

= [7] LLNL OpenMP Tutorial, Online:
https://computing.linl.gov/tutorials/openMP/

= [8] M. Goetz HPDBSCAN Bitbucket Repository, Online:
https://bitbucket.org/markus.goetz/hpdbscan/src/default/

= [9] K.Hwang, G. C. Fox, J. J. Dongarra, ‘Distributed and Cloud Computing’, Book, Online:
http://store.elsevier.com/product.jsp?locale=en EU&isbn=9780128002049

= [10] DEEP Projects Web page, Online:
http://www.deep-projects.eu/

Lecture 6 — Parallel Programming with OpenMP 48 / 50

Lecture Bibliography (2)

= [11] OmpSs, Online:
https://pm.bsc.es/ompss-2
= [12] OmpSs BSC Programming Models, Online:
https://www.bsc.es/research-development/research-areas/programming-models/the-ompss-programming-model
= [13] MontBlanc OmpSs Multi-Dependencies Extension Approved in OpenMP, Online:
https://www.montblanc-project.eu/press-corner/news/ompss-multidependences-extension-approved-openmp-technical-report-6-tré6
= [14] PyCOMPSs, Online:
https://hbp-hpc-platform.fz-juelich.de/?hbp software=pycompss

Lecture 6 — Parallel Programming with OpenMP 49 /50

measurement % '§ pe:iw
unding
Services Policy-based = concepts device analysis
forms cross-disciplinary resources E Cent cllmate Computer expertise

yearllk ComPUtatlonal CUmPUtmg o e I = disciplines ggyts :5_ Enable E

Cross-Disciplinary =
nodes A- ‘E Environment < °Modelling

EU d methOds 5 bl 5 =S Key scientific important £

oaches
unstruction
Fusion

Iﬂ

centers E basis IMTTASLrUCtUre =
C|ence simulations Esétﬁrzasgete'rfhantofé sies

k=

; hms. brain increasing

Jatabase:sm . a
ySis

a n al DLCL stored Resources analyze h E”

diff

SMAQ international
References

[
=1
o
@
e
=

MapReduce

msupercomputlng Work |mages
: 2 2 Scientific sofen

i RJJ external

=% performance

& computational ,’ esearc 5
research °¢ GCI@MCEHPC § Juslich T mm%a‘egaset%

S}'S em Cllmate mOdelllng AR5 Hardware é’ﬂg access m: hundreds Mutshel S:;::f:rskg
DLCLs Understandmg structures ech”;!“ﬁ‘es Earth = © Structure &
any Simulation £ directory = & project General 2

Provlde NASA Energy systems day o Health

use

alt

Summar
GI'IS
ervlc

=

ta-in
en

distrlhute
manag

Proce:

Lecture 6 — Parallel Programming with OpenMP

via EUDATprOEeSSIHg&ﬁgmn TB
computing using Euro ean

50 /50

