
High Performance Computing
ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

October 10, 2019
Room V02-258

Parallel Programming with OpenMP

LECTURE 6 @MorrisRiedel@MorrisRiedel@Morris Riedel

Review of Practical Lecture 5.1 – MPI Communicators & Data Structures

Lecture 6 – Parallel Programming with OpenMP 2 / 50

 High-Level I/O Hierarchical Data Format (HDF) Example: Nearest Neighbour & Cartesian
...

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods,
reorder, &cartcomm);

MPI_Comm_rank(cartcomm, &rank);

...

MPI_Cart_coords(cartcomm, rank, 2, coords);

...

MPI_Cart_shift(cartcomm, 0, 1,
&nbrs[UP], &nbrs[DOWN]);

MPI_Cart_shift(cartcomm, 1, 1,
&nbrs[LEFT], &nbrs[RIGHT]);

printf(“rank= %d coords= %d %d“ having
neighbours(u,d,l,r)=%d %d %d %d \n“,
rank, coords[0], coords[1],

nbrs[UP], nbrs[DOWN], nbrs[LEFT], nbrs[RIGHT]);

// do some work with MPI communication operations...

... [1] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

Lecture 6 – Parallel Programming with OpenMP

11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
3 / 50

Outline

 Shared-Memory Programming Concepts
 OpenMP with Parallel & Serial Regions
 Fork/Join & Master and Worker Threads
 OpenMP Standard & Portability
 Hybrid Programming Motivation & PyCOMPSs/COMPSs
 OmpSs & OpenMP Data-Flow & Task-Based Evolutions

 OpenMP Parallel Programming Basics
 Basic building blocks
 Local/shared variables & Loops
 Synchronization & Critical Regions
 Selected Comparisons with MPI & Evolutions
 HPDBSCAN Clustering OpenMP & Jacobi Application Example

Lecture 6 – Parallel Programming with OpenMP 4 / 50

 Promises from previous lecture(s):
 Lecture 1: Lecture 6 will give in-depth

details on the shared-memory
programming model with OpenMP and
using its compiler directives

 Lecture 3: Lecture 6 will offer more
elaborate shared memory parallel
programming examples in context of
different HPC application domains

Shared-Memory Programming Concepts

Lecture 6 – Parallel Programming with OpenMP 5 / 50

Shared-Memory Computers – Revisited (cf. Lecture 1)

 Two varieties of shared-memory systems:
1. Unified Memory Access (UMA)
2. Cache-coherent Nonuniform Memory Access (ccNUMA)

 The Problem of ‘Cache Coherence’ (in UMA/ccNUMA)
 Different CPUs use Cache to ‘modify same cache values’
 Consistency between cached data &

data in memory must be guaranteed
 ‘Cache coherence protocols’ ensure a consistent view of memory

 A shared-memory parallel computer is a system in which a number
of CPUs work on a common, shared physical address space

Lecture 6 – Parallel Programming with OpenMP

[2] Introduction to High Performance Computing for Scientists and Engineers

Sh
ar

ed
 M

em
or

y

T1 T2 T3 T4 T5

6 / 50

Shared-Memory with UMA – Revisited (cf. Lecture 1)

 Selected Features
 Socket is a physical package (with multiple cores), typically a replacable

component
 Two dual core chips (2 core/socket)
 P = Processor core
 L1D = Level 1 Cache – Data (fastest)
 L2 = Level 2 Cache (fast)
 Memory = main memory (slow)
 Chipset = enforces cache coherence and

mediates connections to memory

 UMA systems use ‘flat memory model’: Latencies and bandwidth
are the same for all processors and all memory locations.

 Also called Symmetric Multiprocessing (SMP)

[2] Introduction to High Performance Computing for Scientists and Engineers

Lecture 6 – Parallel Programming with OpenMP 7 / 50

Shared-Memory with ccNUMA – Revisited (cf. Lecture 1)

 Selected Features
 Eight cores (4 cores/socket); L3 = Level 3 Cache
 Memory interface = establishes a coherent link to enable one

‘logical’ single address space of ‘physically distributed memory’

 ccNUMA systems share logically memory that is physically distributed
(similar like distributed-memory systems)

 Network logic makes the aggregated memory appear as one single address space

[2] Introduction to High Performance Computing for Scientists and Engineers

Lecture 6 – Parallel Programming with OpenMP 8 / 50

Programming with Shared Memory using OpenMP – Revisited (cf. Lecture 1)

 Features
 Bindings are defined for C, C++, and Fortran languages
 Threads TX are ‘lightweight processes’ that mutually access data

 Shared-memory programming enables immediate access to all data from all
processors without explicit communication

 OpenMP is dominant shared-memory programming standard today
 OpenMP is a set of compiler directives to ‘mark parallel regions’

Sh
ar

ed
 M

em
or

y

T1 T2 T3 T4 T5

[3] OpenMP API Specification

Lecture 6 – Parallel Programming with OpenMP 9 / 50

[7] LLNL OpenMP Tutorial

(uniform memory access) (non-uniform memory access)

What means a ‘Shared Address Space’?

 Shared-memory programming enables immediate access to all data from all
processors without explicit communication

 OpenMP is dominant shared-memory programming standard today
 OpenMP is a set of compiler directives to ‘mark parallel regions’

Lecture 6 – Parallel Programming with OpenMP 10 / 50

(programming model: work on shared address space – ‘local acess to memory‘)

[3] OpenMP API Specification

What is OpenMP?

 OpenMP is a library for specifying ‘parallel regions in serial code’
 Defined by major computer hardware/software vendors portability!
 Enable scalability with parallelization constructs w/o fixed thread numbers
 Offers a suitable data environment for easier parallel processing of data
 Uses specific environment variables for clever decoupling of code/problem
 Included in standard C compiler distributions (e.g. gcc)

 Threads are the central entity in OpenMP
 Threads enable ‘work-sharing’ and

share address space (where data resides)
 Threads can be synchronized if needed
 Lightweight process that share

common address space with other threads
 Initiating (aka ‘spawning’) n threads is less

costly then n processes (e.g. variable space)

Lecture 6 – Parallel Programming with OpenMP 11 / 50

[3] OpenMP API Specification

 Recall ‘computing nodes’ are independent computing processors
(that may also have N cores each) and that are all part of one big
parallel computer

 Threads are lightweight processes that work with data in memory

Important Terminology

 Thread: An execution entity with a stack and
associated static memory, called thread private
memory

 OpenMP Thread: A thread that is managed by the
OpenMP runtime system

 Team: A set of one or more threads participating in
the execution of a parallel region

 Task: A specific instance of executable code and its
data environment that the OpenMP imlementation
can schedule for execution by threads

 Base Language: A programming language that
serves as the foundation of the OpenMP
specification

 Base Program: A program written in the base
language

 OpenMP Program: A program that consists of a base
program that is annotated with OpenMP directives or
that calls OpenMP API runtime library routines.

 Directive: In C/C++, a #pragma that specifies
OpenMP program behavior

Lecture 6 – Parallel Programming with OpenMP 12 / 50

[3] OpenMP API Specification

OpenMP
program

Understanding Parallel & Serial Regions

OpenMP
program

Modified from [2] Introduction to High Performance Computing for Scientists and Engineers

Lecture 6 – Parallel Programming with OpenMP 13 / 50

 fork() initiated by master thread (exists always) creates team of threads
 Team of threads concurrently work on shared-memory data actively in parallel regions
 join() initiates the ‘shutdown’ of the parallel region and terminates team of threads
 Team of threads maybe also put to sleep until next parallel region begins
 Number of threads can be different in each parallel region

[7] LLNL OpenMP Tutorial

(master thread always exsists)

OpenMP Standard enables Portability

 Key reasons for requiring a standard programming library
 Technical advancement in supercomputers is extremely fast
 Parallel computing experts switch organizations and face another system

 Applications using proprietary libraries where not portable
 Create whole applications from scratch or time-consuming code updates

 OpenMP is parallel programming model for UMA and ccNUMA

HPC Machine A
OpenMP Library

 OpenMP is an open standard that significantly supports the
portability of parallel shared-memory applications

 But different vendors might implement it differently
HPC Machine B

OpenMP LibraryPorting an OpenMP
parallel application

Lecture 6 – Parallel Programming with OpenMP 14 / 50

Programming Hybrid Systems – Motivation

 Inefficient ‘on-node communications‘ when using MPI instead of OpenMP
 MPI uses ‘buffering techniques‘ to transfer data (cf. Lecture 2 & 4)
 Transfers may require ‘multiple memory copies‘ to get data from A to B
 Comparable to a ‘memory copy‘ between different MPI processes

 Take advantage of shared memory techniques where feasible
 OpenMP threads can read memory on the same node

Lecture 6 – Parallel Programming with OpenMP 15 / 50

MPI ?

Modified from [2] Introduction to High Performance Computing for Scientists and Engineers

Hierarchical Hybrid Computers – Revisited (cf. Lecture 1)

 Features
 Shared-memory nodes (here ccNUMA) with local NIs
 NI mediates connections to other remote ‘SMP nodes’

 A hierarchical hybrid parallel computer is neither a purely shared-memory
nor a purely distributed-memory type system but a mixture of both

 Large-scale ‘hybrid’ parallel computers have shared-memory building
blocks interconnected with a fast network today

[2] Introduction to High Performance Computing for Scientists and Engineers

Lecture 6 – Parallel Programming with OpenMP 16 / 50

 Lecture 10 will provide insights into hybrid programming models and introduces selected patterns used in parallel programming

Programming Hybrid Systems & Patterns – Revisited (cf. Lecture 1)

 Experience from HPC Practice
 Most parallel applications still take no notice of the hardware structure
 Use of pure MPI for parallelization remains the dominant programming
 Historical reason: old supercomputers all distributed-memory type
 Use of accelerators is significantly increasing in practice today

 Challenges with the ‘mapping problem’
 Performance of hybrid (as well as pure MPI codes) depends crucially

on factors not directly connected to the programming model
 It largely depends on the association of threads and processes to cores
 Patterns (e.g., stencil methods) support the parallel programming

 Hybrid systems programming uses MPI as explicit internode
communication and OpenMP for parallelization within the node

 Parallel Programming is often supported by using ‘patterns’ such as stencil
methods in order to apply functions to the domain decomposition

Lecture 6 – Parallel Programming with OpenMP

 Lecture 10 will provide insights into hybrid programming models and introduces selected patterns used in parallel programming
17 / 50

Programming Hybrid Systems with MPI & OpenMP

[7] LLNL OpenMP Tutorial

Lecture 6 – Parallel Programming with OpenMP 18 / 50

 Hybrid systems programming uses MPI as explicit internode
communication and OpenMP for parallelization within the node

 Parallel Programming is often supported by using ‘patterns’ such as stencil
methods in order to apply functions to the domain decomposition

Scientific Application Example: Data Mining & Clustering

 Hybrid data mining algorithm example
 Parallel Density-based Spatial Clustering for

Applications with Noise (DBSCAN)
 Using MPI and OpenMP to scale better
 Standalone OpenMP is also possible to use

[1] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Lecture 6 – Parallel Programming with OpenMP 19 / 50

Many-core GPGPUs – Revisited (cf. Lecture 1)

 Use of very many simple cores
 High throughput computing-oriented architecture
 Use massive parallelism by executing a lot of

concurrent threads slowly
 Handle an ever increasing amount of multiple

instruction threads
 CPUs instead typically execute a single

long thread as fast as possible

 Many-core GPUs are used in large
clusters and within massively
parallel supercomputers today
 Named General-Purpose Computing on GPUs (GPGPU)
 Different programming models emerge

 Graphics Processing Unit (GPU) is great for data parallelism and task parallelism
 Compared to multi-core CPUs, GPUs consist of a many-core architecture with

hundreds to even thousands of very simple cores executing threads rather slowly

[9] Distributed & Cloud Computing Book

Lecture 6 – Parallel Programming with OpenMP 20 / 50

DEEP-EST EU Project – OmpSs & OpenMP Evolutions

 OmpSs is an innovative programming model influencing OpenMP
 Based on tasks and (data) dependencies – tasks as elementary unit of work
 Extend OpenMP model: better data-flow &

heterogenity (e.g. GPGPUs)
 New Version: OmpSs-2

Lecture 6 – Parallel Programming with OpenMP 21 / 50

(device memory)

(host memory)

[10] DEEP Projects Web Page

[11] OmpSs Web Page

[9] Distributed & Cloud Computing Book

OmpSs Programming Model – Adding Task & Data Dependencies

 OmpSs main goal is to act as a forefront and nursery of ideas for a data-flow task-based programming model
so these ideas can ultimately be incorporated in the OpenMP industrial standard

Lecture 6 – Parallel Programming with OpenMP 22 / 50

[12] OmpSs BSC Programming Models

Enabling Parallelization Approaches with Task Multi-Dependencies

[13] MontBlanc OmpSs Multi-Task Dependencies

Lecture 6 – Parallel Programming with OpenMP 23 / 50

COMPSs & PyCOMPSs

 COMPSs (COMP Superscalar)
 Coarse-grained programming model oriented to distributed environments
 Powerful runtime that leverages low-level APIs (e.g., Amazon EC2 clouds)
 Manages data dependencies (objects and files)

 COMP Superscalar (COMPSs) is a framework which aims to ease
the development and execution of applications for distributed
infrastructures, such as Clusters, Grids and Clouds.

 PyCOMPSs is the Python binding of COMPSs
 PyCOMPSs follows OpenMP & OmpSs approach: from a

sequential Python code, it is able to run in parallel and distributed

[14] PyCOMPSs

Lecture 6 – Parallel Programming with OpenMP 24 / 50

[Video] Scientific Application Example using OpenMP

[4] Lattice Boltzmann – Flow past an obstacle, YouTube Video

Lecture 6 – Parallel Programming with OpenMP 25 / 50

OpenMP Parallel Programming Basics

Lecture 6 – Parallel Programming with OpenMP 26 / 50

Start ‘Thinking’ Parallel

 Parallel OpenMP program
 Knows about the existence of a certain number of threads that all work togeter as part of a bigger picture

 OpenMP programs
 Written in a sequential programming language

and some parts are executed in parallel
 Run on a processor that ‘spawns’ numerous threads

 Parallelization
 Dedicated n parallel regions is key to the design in OpenMP (n = 1,2,3….)
 E.g. loops/additions are good candidates for parallelization
 (if individual loop iterations are independent from each other)

 Start with the basic building blocks using OpenMP
 Defining code that enables ‘parallel computing’, step-by-step is possible

Lecture 6 – Parallel Programming with OpenMP 27 / 50

P
mT

T

…

T

Number of Threads & Scalability

 The real number of threads normally not known at compile time
 (There are methods for doing it in the program do not use them!)
 Number is set in scripts and/or environment variable before executing
 Parallel programming is done without knowing number of threads

Lecture 6 – Parallel Programming with OpenMP 28 / 50

 OpenMP programs should be
always written in a way that it
does not assume a specific
number of threads that in turn
enables a scalable program

 Compiler directives are used
such as #pragma omp parallel

int main()

{

#pragma omp parallel

printf(„Hello World“);

}

int main()

{

#pragma omp parallel

printf(„Hello World“);

}

./helloworld.exe

Hello World

Hello World

Hello World

Hello World

./helloworld.exe

Hello World

Hello World

Hello World

Hello World

compile &
execute

mT T0

T1

T2

T3

master
thread
becomes T0

OpenMP Basic Building Blocks: Hello World Example
 The OpenMP library contains OpenMP API definitions

 The Sentinel is a special string that starts an OpenMP
compiler directive: ‘#pragma omp’

 private defines local variables for each thread
 Each thread works independently and thus needs

space to ‘store’ private local results

Lecture 6 – Parallel Programming with OpenMP 29 / 50

#include <omp.h>

#include <stdio.h>

int main(argc,argv)

int argc; char *argv[]; {

int nthreads, tid;

#pragma omp parallel private(tid)

{

tid = omp_get_thread_num();

printf("Hello World from thread = %d\n", tid);

if (tid == 0) {

nthreads = omp_get_num_threads();

printf("Number of threads in parallel region = %d\n", nthreads);

}

}

}

 omp_get_thread_num() function provides unique
Thread ID (0…n-1)

 Same code executed n times with n threads, but tid is
unique and thus different for each thread

 omp_get_num_threads() function obtains number of
active threads in the current parallel region

 Similar like MPI ranks, here the Thread ID can be
used to perform different executions per threads

 Only the master (tid=0) provides output of how many
threads are existing in the parallel region

 Practical examples and assignments in this course focus on parallel programming with MPI, but OpenMP is important in practice too

 Shared variable nthreads; local variable tid

Edit C Program with OpenMP Directives & Functions & Compilation

 Using basic gcc compiler
 ‘module load gnu openmpi‘
 Note: there are many C

compilers available, we
here pick one for our
particular HPC course that
works with OpenMP

 Note: If there are no errors,
the file hellothreads is now
a full C program executable
that can be started by an OS

[1] Icelandic HPC Machines & Community

hellothreads.c

C
using a C compiler

gcc -fopenmp

hellothreads
executable

C

Lecture 6 – Parallel Programming with OpenMP 30 / 50

OpenMP Work Sharing Constructs – Overview

Lecture 6 – Parallel Programming with OpenMP 31 / 50

[7] LLNL OpenMP Tutorial

 for - shares
iterations
of a loop
across the
team.
Represents
a type of
‘data
parallelism’
(cf. Lecture
3)

 Sections -
breaks
work into
separate,
discrete
sections.
Each
section is
executed
by a thread.
Can be
used to
implement
a type of
‘functional
parallelism’
(cf. Lecture
3)

 Single -
serializes a
section of
code

Data Parallelism: Medium-grained Loop Parallelization (cf. Lecture 3)

 Idea: Computations performed on individual array
elements are independent of each other
 Good for parallel execution by N processors

(e.g., using shared memory parallel programming)

c is a constant!
a, b are different arrays

t1

t2 < t1
Modified from [2] Introduction to High Performance
Computing for Scientists and Engineers

Sh
ar

ed
 M

em
or

y

T1 T2 T3 T4 T5

Lecture 6 – Parallel Programming with OpenMP 32 / 50

OpenMP Work Sharing Construct: Simple For Loop Example

#include <omp.h>

int main(int argv, char **argv)

{

int n, i;

double *x, *y;

/* Get input size */

n = atoi(argv[1]);

x = (double *)malloc(n*sizeof(double));

y = (double *)malloc(n*sizeof(double));

#pragma omp parallel for private(i) shared (x,y)

for (i=0; i<n; i++)

{

x[i] = x[i] + y[i];

}

/* x containts the result for all vector elements */

}

X = X+Y

‘simplified
demo code’

Lecture 6 – Parallel Programming with OpenMP 33 / 50

 The Sentinel is a special string that starts an OpenMP
compiler directive

 Smart programming support by OpenMP: Loops are very
often part of scientific applications

 Less burden for programmer: no manual definition of local
variables (e.g. i automatically localized)

 Directive is optimized to enable a parallel loop (i.e. parallel
for) starting a parallel region

 Private defines local variables for each thread
 Each thread works independently and thus needs space to

‘store’ local results – here i as index
 Shared defines global variables that exist only one time
 Each thread works independently but shared variables can

be written and read from all threads

OpenMP Work Sharing Construct: Advanced For Loop Example

include <omp.h>

#define N 1000

#define CHUNKSIZE 100

main(int argc, char *argv[]) {

int i, chunk;

float a[N], b[N], c[N];

/* Some initializations */

for (i=0; i < N; i++)

a[i] = b[i] = i * 1.0;

chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private(i)

{

#pragma omp for schedule(dynamic,chunk) nowait

for (i=0; i < N; i++)

c[i] = a[i] + b[i];

} /* end of parallel region */

return 0;

}

Lecture 6 – Parallel Programming with OpenMP 34 / 50

 Arrays a, b, c, and chunk will be shared by all threads
 Variable i is private to each thread: each thread will

have its own unique copy of i

 Schedule: Describes how iterations of the loop are
divided among the threads in the team; the default
schedule is implementation dependent

 The iterations of the loop will be distributed
dynamically in CHUNK sized pieces: when a thread
finishes one chunk, it is dynamically assigned another

 Threads will not synchronize upon completing their
individual pieces of work (nowait)

[7] LLNL OpenMP Tutorial

C = A+B

OpenMP Work Sharing Construct: Sections Example

#include <omp.h>

#define N 1000

main(int argc, char *argv[]) {

int i;

float a[N], b[N], c[N], d[N];

for (i=0; i < N; i++) {

a[i] = i * 1.5;

b[i] = i + 22.35;

}

#pragma omp parallel shared(a,b,c,d) private(i)

{

#pragma omp sections nowait

{

#pragma omp section

for (i=0; i < N; i++)

c[i] = a[i] + b[i];

#pragma omp section

for (i=0; i < N; i++)

d[i] = a[i] * b[i];

Lecture 6 – Parallel Programming with OpenMP 35 / 50

 The sections directive is a non-iterative work-sharing
construct. It specifies that the enclosed section(s) of
code are to be divided among the threads in the team

 Independent section directives are nested within a
sections directive

[7] LLNL OpenMP Tutorial

 Each section is executed once by a thread in the team.
 Different sections may be executed by different threads:

It is possible for a thread to execute more than one
section if it is quick enough and the implementation
permits such

 Different blocks of work in sections will be done by
different threads

OpenMP Synchronization Construct: Critical Region Example

#include <omp.h>

main(int argc, char *argv[]) {

int x;

x = 0;

#pragma omp parallel shared(x)

{

#pragma omp critical

x = x + 1;

} /* end of parallel region */

return 0;

}

Lecture 6 – Parallel Programming with OpenMP 36 / 50

[7] LLNL OpenMP Tutorial

 If a thread is currently executing inside a critical region
and another thread reaches that critical region and
attempts to execute it, it will block until the first thread
exits that critical region

 All threads in the team will attempt to execute in parallel,
however, because of the critical construct surrounding
the increment of x, only one thread will be able to
read/increment/write x at any time

 Note the ‘race conditions’ of variable x otherwise: Race
Condition in shared-memory: shared variable x will be
set concurrently by the different threads – not with
critical regions

OpenMP ThreadPrivate Directive – Persistence between Parallel Regions (1)

Lecture 6 – Parallel Programming with OpenMP 37 / 50

[7] LLNL OpenMP Tutorial

#include <omp.h>

int a, b, i, tid;

float x;

#pragma omp threadprivate(a, x)

main(int argc, char *argv[]) {

omp_set_dynamic(0);

printf("1st Parallel Region:\n");

#pragma omp parallel private(b,tid)

{

tid = omp_get_thread_num();

a = tid;

b = tid;

x = 1.1 * tid +1.0;

printf("Thread %d: a,b,x= %d %d %f\n",tid,a,b,x);

} /* end of parallel region */

printf("Master thread doing serial work here\n");

...

}

 Threadprivate() directive specifies that variables are replicated, with each thread
having its own copy

 Can be used to make global file scope variables (C/C++/Fortran local and persistent to
a thread through the execution of multiple parallel regions

 Threadprivate() variables differ from private variables because they are able to persist
between different parallel regions of a code

 Explicitly turn off dynamic threads

OpenMP ThreadPrivate Directive – Persistence between Parallel Regions (2)

Lecture 6 – Parallel Programming with OpenMP 38 / 50

[7] LLNL OpenMP Tutorial

#include <omp.h>

int a, b, i, tid;

float x;

#pragma omp threadprivate(a, x)

main(int argc, char *argv[]) {

...

printf("Master thread doing serial work here\n");

...

printf("2nd Parallel Region:\n");

#pragma omp parallel private(tid)

{

tid = omp_get_thread_num();

printf("Thread %d: a,b,x= %d %d %f\n",tid,a,b,x);

} /* end of parallel region */

}

OpenMP Reduction Clause Example – Vector Dot Product Example

#include <omp.h>

main(int argc, char *argv[]) {

int i, n, chunk;

float a[100], b[100], result;

n = 100;

chunk = 10;

result = 0.0;

for (i=0; i < n; i++) {

a[i] = i * 1.0;

b[i] = i * 2.0;

}

#pragma omp parallel for \

default(shared) private(i) \

schedule(static,chunk) \

reduction(+:result)

for (i=0; i < n; i++)

result = result + (a[i] * b[i]);

printf("Final result= %f\n",result);

}

Lecture 6 – Parallel Programming with OpenMP 39 / 50

[7] LLNL OpenMP Tutorial

 Reduction clause performs a reduction operation on the variables that appear in its list
 A private copy for each list variable is created and initialized for each thread
 At the end of the reduction, the reduction variable is applied to all private copies of the shared variable, and the

final result is written to the global shared variable
 Reduction operations are a smart alternative to manual critical regions definitions around operations of variables
 Reduction operation automatically localizes variable
 Several operations are common in scientific applications: +, *, -, &, |, ^, &&, ||, max, min
 REDUCTION() with operator + on variable s enables here …
 Starting with a local copy of s for each thread
 During progress of parallel region each local copy of s will be accumulated seperately by each thread
 At the end of the parallel region automatically synchronized and accumulated with resulting master thread variable

 Vector Dot Product Example: Result is a scalar!
 Iterations of the parallel loop will be distributed in equal sized blocks to each thread in the

team (schedule static)
 At the end of the parallel loop construct, all threads will add their values of "result" to update

the master thread's global copy

Selected Comparisons with MPI

 Some aspects are similar, because both enable parallel computing
 Obtaining unique IDs: MPI ranks vs. OpenMP thread-num
 Master-worker approach (if rank==0 vs. if tid ==0)

 No explicit communication constructs to enable inter-process communication in OpenMP
assuming shared-memory
 Data exchange: Message exchanges between processes vs. shared variable
 Synchronization functions nevertheless exist in both: e.g. barriers
 Clever automatisms for usual problems: MPI reduce vs. OpenMP reduction

Lecture 6 – Parallel Programming with OpenMP 40 / 50

Recent Support of OpenMP for Programming GPUs with Directives

 Lecture 7 will offer more details on OpenMP relationships of programming GPUs and similiarites to GPU programming using OpenACC
Lecture 6 – Parallel Programming with OpenMP 41 / 50

...

#pragma omp target map (tofrom:y), map(to:x)

#pragma omp teams num_teams(10) num_threads(10)

#pragma omp distribute

for (...) {

...

#pragma omp parallel for

for (...) {

}

...

}

...

 OpenMP is the de-facto standard for multi-
threaded programming on CPU

 OpenMP includes since version 4.0 (better since
4.5) also capabilities for programming GPUs

 OpenACC is similar to OpenMP, because it is
modeled after OpenMP, but for accelerators

[9] Distributed & Cloud Computing Book

Monitoring, Debugging and Performance Analysis Tools for OpenMP

 Different Tools exist
 E.g. TotalView Debugger
 E.g. Linux top command
 E.g. Linux ps command

 Lecture 9 will provide a set of tools that can be used for monitoring, debugging, and performance analysis of MPI and OpenMP

[7] LLNL OpenMP Tutorial

Lecture 6 – Parallel Programming with OpenMP 42 / 50

Jacobi 2D Application Example – Shared Memory with OpenMP Possible

 Solver
 Each diagonal element is solved and approximate value is plugged in
 The process is iterated until it converges

 Update function 2D Jacobi iterative method example
 E.g. computes the arithmetic mean of a cell‘s four neighbours
 E.g. solving diffusion equations (heat dissipation example)

[2] Introduction to High Performance Computing for Scientists and Engineers

[5] Wikipedia on
‘stencil code’

 Lecture 10 will provide more details about stencil-based iterative methods & used patterns in many different HPC application examples
Lecture 6 – Parallel Programming with OpenMP 43 / 50

 The Jacobi iterative method is a
stencil-based iterative method used in
numerical linear algebra

 Algorithm for determining the
solutions of diagonally dominant
system of linear equations

‘Big Data‘ Science Example – Parallel & Scalable Clustering Algorithm – Revisited

[1] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Clustering

Lecture 6 – Parallel Programming with OpenMP 44 / 50

HPDBSCAN Clustering OpenMP Application Example in Data Sciences

// hpdbscan.h file

...

#include <hdf5.h>

#include <omp.h>

...

// local DBSCAN run

#pragma omp parallel for schedule(dynamic, 32) private(neighboring_points)
firstprivate(previous_cell) reduction(merge: rules)

for (size_t point = lower; point < upper; ++point) {

...

Clusters cluster(Dataset& dataset, int threads=omp_get_max_threads()) {

#ifdef WITH_OUTPUT

double execution_start = omp_get_wtime();

#endif

// set the number of threads

omp_set_num_threads(threads);

...

[1] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Lecture 6 – Parallel Programming with OpenMP 45 / 50

[8] M. Goetz HPDBSCAN Bitbucket Repository

 How Many Threads within a parallel region?
 omp_get_max_threads() : generally reflects the number of

threads as set by the OMP_NUM_THREADS environment variable
 omp_set_num_threads(threads) routine affects the number of

threads to be used for subsequent parallel regions

 Using the standard OpenMP omp.h header file
 Using #pragma omp parallel for loop compiler

directive in combination with reduction operation

[Video] Raytracing Application with OpenMP

[6] Speeding up a Ray tracer with OpenMP, YouTube Video

Lecture 6 – Parallel Programming with OpenMP 46 / 50

Lecture Bibliography

Lecture 6 – Parallel Programming with OpenMP 47 / 50

Lecture Bibliography (1)

 [1] M. Goetz, C. Bodenstein, M. Riedel, ‘HPDBSCAN – Highly Parallel DBSCAN’, in proceedings of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC2015), Machine Learning in HPC Environments (MLHPC) Workshop, 2015, Online:
https://www.researchgate.net/publication/301463871_HPDBSCAN_highly_parallel_DBSCAN

 [2] Introduction to High Performance Computing for Scientists and Engineers, Georg Hager & Gerhard Wellein, Chapman & Hall/CRC Computational Science,
ISBN 143981192X

 [3] The OpenMP API specification for parallel programming, Online:
http://openmp.org/wp/openmp-specifications/

 [4] Lattice Boltzmann – Flow past an obstacle, Online:
https://www.youtube.com/watch?v=fspGcBpxguo

 [5] Wikipedia on ‘stencil code‘, Online:
http://en.wikipedia.org/wiki/Stencil_code

 [6] Speeding up a Ray tracer with OpenMP, YouTube Video, Online:
http://www.youtube.com/watch?v=S9Z5MeQS_LU

 [7] LLNL OpenMP Tutorial, Online:
https://computing.llnl.gov/tutorials/openMP/

 [8] M. Goetz HPDBSCAN Bitbucket Repository, Online:
https://bitbucket.org/markus.goetz/hpdbscan/src/default/

 [9] K. Hwang, G. C. Fox, J. J. Dongarra, ‘Distributed and Cloud Computing’, Book, Online:
http://store.elsevier.com/product.jsp?locale=en_EU&isbn=9780128002049

 [10] DEEP Projects Web page, Online:
http://www.deep-projects.eu/

Lecture 6 – Parallel Programming with OpenMP 48 / 50

Lecture Bibliography (2)

 [11] OmpSs, Online:
https://pm.bsc.es/ompss-2

 [12] OmpSs BSC Programming Models, Online:
https://www.bsc.es/research-development/research-areas/programming-models/the-ompss-programming-model

 [13] MontBlanc OmpSs Multi-Dependencies Extension Approved in OpenMP, Online:
https://www.montblanc-project.eu/press-corner/news/ompss-multidependences-extension-approved-openmp-technical-report-6-tr6

 [14] PyCOMPSs, Online:
https://hbp-hpc-platform.fz-juelich.de/?hbp_software=pycompss

Lecture 6 – Parallel Programming with OpenMP 49 / 50

Lecture 6 – Parallel Programming with OpenMP 50 / 50

