
High Performance Computing
ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

October 14, 2019
Webinar

Understanding OpenMP Parallel Programming

PRACTICAL LECTURE 6.1 @MorrisRiedel@MorrisRiedel@Morris Riedel

Review of Practical Lecture 6 – Parallel Programming with OpenMP

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming

 Open Standard Shared Memory Programming Approach

[1] LLNL OpenMP Tutorial

(uniform memory access) (non-uniform memory access)

[2] OpenMP API Specification

2 / 30

(work sharing constructs)

[4] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

(hybrid MPI &
OpenMP job script

for best peformance)

Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming

11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
3 / 30

Outline

 Programming & Compiling C-based OpenMP Programs
 Shared Memory & Parallel Programming – Revisited
 Step-Wise Walkthrough for Programming a C & OpenMP Program
 Parallel Environment Setup & Number of Threads for Application
 Simple Application Example with OpenMP Compiler Directives
 Fine-grained Job Script Request & Allocation of Compute Resources

 Understanding OpenMP Work Sharing Constructs & Methods
 OpenMP Work Sharing Constructs – Revisited
 Simple Application Example with OpenMP For Loop Work Sharing
 OpenMP Synchronization Construct & Simple Critical Region Example
 Advanced Examples: ThreadPrivate & Persistence between Parallel Regions
 HPDBSCAN Clustering with OpenMP Data Science Example

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming

 This lecture is not considered to be a
full introduction to OpenMP
programming and the approach of
using shared memory and rather
focusses on selected commands and
concepts particularly relevant for our
assignments such as OpenMP
Sentinels and selected OpenMP
functionality, e.g., for loops & work
sharing constructs

 The goal of this practical lecture is to
make course participants aware of the
process of compiling simple C &
OpenMP programs and the use of
OpenMP that enable many scientific &
engineering applications in data
sciences & simulation sciences today

4 / 30

Selected Learning Outcomes – Revisited

 Students understand…
 Latest developments in parallel processing & high performance computing (HPC)
 How to create and use high-performance clusters
 What are scalable networks & data-intensive workloads
 The importance of domain decomposition
 Complex aspects of parallel programming e.g., scheduling(!)
 HPC environment tools that support programming

or analyze behaviour
 Different abstractions of parallel computing on various levels
 Foundations and approaches of scientific domain-

specific applications

 Students are able to …
 Programm and use HPC programming paradigms
 Take advantage of innovative scientific computing simulations & technology
 Work with technologies and tools to handle parallelism complexity

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 5 / 30

Programming & Compiling C-based OpenMP Programs

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 6 / 30

Important Terminology

 Thread: An execution entity with a stack and
associated static memory, called thread private
memory

 OpenMP Thread: A thread that is managed by the
OpenMP runtime system

 Team: A set of one or more threads participating in
the execution of a parallel region

 Task: A specific instance of executable code and its
data environment that the OpenMP imlementation
can schedule for execution by threads

 Base Language: A programming language that
serves as the foundation of the OpenMP
specification

 Base Program: A program written in the base
language

 OpenMP Program: A program that consists of a base
program that is annotated with OpenMP directives or
that calls OpenMP API runtime library routines.

 Directive: In C/C++, a #pragma that specifies
OpenMP program behavior

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 7 / 50

[2] OpenMP API Specification

OpenMP
program

What means a ‘Shared Address Space’ (cf. Lecture 6)?

 Shared-memory programming enables immediate access to all data from all
processors without explicit communication

 OpenMP is dominant shared-memory programming standard today
 OpenMP is a set of compiler directives to ‘mark parallel regions’

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 8 / 30

(programming model: work on shared address space – ‘local acess to memory‘)

[2] OpenMP API Specification

Modified from [3] Introduction to High Performance Computing for Scientists and Engineers

Programming with Shared Memory using OpenMP – Revisited (cf. Lecture 1)

 Features
 Bindings are defined for C, C++, and Fortran languages
 Threads TX are ‘lightweight processes’ that mutually access data

 Shared-memory programming enables immediate access to all data from all
processors without explicit communication

 OpenMP is dominant shared-memory programming standard today
 OpenMP is a set of compiler directives to ‘mark parallel regions’

Sh
ar

ed
 M

em
or

y

T1 T2 T3 T4 T5

[2] OpenMP API Specification

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming

[1] LLNL OpenMP Tutorial

(uniform memory access) (non-uniform memory access)

9 / 30

Step 1: SSH Access to HPC System – Jötunn HPC System Example

Hekla System

Jötunn HPC System

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 10 / 30

Step 2 & 3: C & OpenMP Basic Building Blocks: Hello World Example
 The OpenMP library contains OpenMP API definitions

 The Sentinel is a special string that starts an OpenMP
compiler directive: ‘#pragma omp’

 private defines local variables for each thread
 Each thread works independently and thus needs

space to ‘store’ private local results

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 11 / 30

#include <omp.h>

#include <stdio.h>

int main(argc,argv)

int argc; char *argv[]; {

int nthreads, tid;

#pragma omp parallel private(tid)

{

tid = omp_get_thread_num();

printf("Hello World from thread = %d\n", tid);

if (tid == 0) {

nthreads = omp_get_num_threads();

printf("Number of threads in parallel region = %d\n", nthreads);

}

}

}

 omp_get_thread_num() function provides unique
Thread ID (0…n-1)

 Same code executed n times with n threads, but tid is
unique and thus different for each thread

 omp_get_num_threads() function obtains number of
active threads in the current parallel region

 Similar like MPI ranks, here the Thread ID can be
used to perform different executions per threads

 Only the master (tid=0) provides output of how many
threads are existing in the parallel region

 Shared variable nthreads; local variable tid

Step 4 & 5: Load Modules (if needed) & Compilation

 Using basic gcc compiler
 Load Modules (if needed)
 Note: there are many C

compilers available, we
here pick one for our
particular HPC course that
works with OpenMP

 Note: If there are no errors,
the file hellothreads is now
a full C program executable
that can be started by an OS
having OpenMP directives

[5] Icelandic HPC Machines & Community

hellothreads.c

C
using a C compiler

gcc -fopenmp

hellothreads
executable

C

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 12 / 30

Step 6: Parallel Processing – Executing an MPI Program with MPIRun & Script

 Submission using the Scheduler
 Example: SLURM on Jötunn HPC system
 Scheduler allocated 1 node as requested
 MPIRun & scheduler distribute the

executable on the right node (can be used
with srun, sometimes performance differences)

 Output consists of
the amount of
outputs given by
number of threads in
environment variable
(OMP_NUM_THREADS)

Jötunn compute nodes

Jötunn login node

Sc
he

du
le

r

output file

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming

 #SBATCH --ntasks-per-node=1 specifies just one process (e.g., 4 means four MPI
ranks on one node)

 #SBATCH --nodes=1 specifies number of overall compute nodes
 #SBATCH --ntasks=1 specifies number of instances command is executed
 #SBATCH --cpus-per-task specifies how many CPUs each task can use
 Export OMP_NUM_THREADS specificies number of threads/process

13 / 30

Understanding OpenMP Work Sharing Constructs & Methods

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 14 / 30

OpenMP Work Sharing Constructs (cf. Lecture 6) – Revisited

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 15 / 30

[1] LLNL OpenMP Tutorial

 for - shares
iterations
of a loop
across the
team.
Represents
a type of
‘data
parallelism’
(cf. Lecture
3)

 Sections -
breaks
work into
separate,
discrete
sections.
Each
section is
executed
by a thread.
Can be
used to
implement
a type of
‘functional
parallelism’
(cf. Lecture
3)

 Single -
serializes a
section of
code

Data Parallelism: Medium-grained Loop Parallelization (cf. Lecture 3)

 Idea: Computations performed on individual array
elements are independent of each other
 Good for parallel execution by N processors

(e.g., using shared memory parallel programming)

c is a constant!
a, b are different arrays

t1

t2 < t1
Modified from [3] Introduction to High Performance
Computing for Scientists and Engineers

Sh
ar

ed
 M

em
or

y

T1 T2 T3 T4 T5

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 16 / 30

OpenMP Work Sharing Construct: Advanced For Loop Example with Printout

#include <omp.h>

#define N 1000

#define CHUNKSIZE 100

main(int argc, char *argv[]) {

int i, chunk, nthreads;

float a[N], b[N], c[N];

/* Some initializations */

for (i=0; i < N; i++)

a[i] = b[i] = i * 1.0;

chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private(i)

{

nthreads = omp_get_num_threads();

printf("Number of threads in parallel region = %d\n", nthreads);

#pragma omp for schedule(dynamic,chunk) nowait

for (i=0; i < N; i++)

c[i] = a[i] + b[i];

} /* end of parallel region */

return 0;

}
Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 17 / 30

 Arrays a, b, c, and chunk will be shared by all threads
 Variable i is private to each thread: each thread will

have its own unique copy of i

 Schedule: Describes how iterations of the loop are
divided among the threads in the team; the default
schedule is implementation dependent

 The iterations of the loop will be distributed
dynamically in CHUNK sized pieces: when a thread
finishes one chunk, it is dynamically assigned another

 Threads will not synchronize upon completing their
individual pieces of work (nowait)

[1] LLNL OpenMP Tutorial

C = A+B

(we show many threads
work on addition)

(we can also play with
the i iterator here
and do printouts

and individual thread ids)

OpenMP Synchronization Construct: Critical Region Example

#include <omp.h>

main(int argc, char *argv[]) {

int x;

x = 0;

#pragma omp parallel shared(x)

{

#pragma omp critical

x = x + 1;

} /* end of parallel region */

printf("Number of x after parallel region = %d\n", x);

return 0;

}

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 18 / 30

[1] LLNL OpenMP Tutorial

 If a thread is currently executing inside a critical region
and another thread reaches that critical region and
attempts to execute it, it will block until the first thread
exits that critical region

 All threads in the team will attempt to execute in parallel,
however, because of the critical construct surrounding
the increment of x, only one thread will be able to
read/increment/write x at any time

 Note the ‘race conditions’ of variable x otherwise: Race
Condition in shared-memory: shared variable x will be
set concurrently by the different threads – not with
critical regions

(we can show what
happens if the

critical region is removed)

OpenMP ThreadPrivate Directive – Persistence between Parallel Regions (1)

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 19 / 30

[1] LLNL OpenMP Tutorial

#include <omp.h>

int a, b, i, tid;

float x;

#pragma omp threadprivate(a, x)

main(int argc, char *argv[]) {

omp_set_dynamic(0);

printf("1st Parallel Region:\n");

#pragma omp parallel private(b,tid)

{

tid = omp_get_thread_num();

a = tid;

b = tid;

x = 1.1 * tid +1.0;

printf("Thread %d: a,b,x= %d %d %f\n",tid,a,b,x);

} /* end of parallel region */

printf("Master thread doing serial work here\n");

...

}

 Threadprivate() directive specifies that variables are replicated, with each thread
having its own copy

 Can be used to make global file scope variables (C/C++/Fortran local and persistent to
a thread through the execution of multiple parallel regions

 Threadprivate() variables differ from private variables because they are able to persist
between different parallel regions of a code

 Explicitly turn off dynamic threads

OpenMP ThreadPrivate Directive – Persistence between Parallel Regions (2)

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 20 / 30

[1] LLNL OpenMP Tutorial

#include <omp.h>

int a, b, i, tid;

float x;

#pragma omp threadprivate(a, x)

main(int argc, char *argv[]) {

...

printf("Master thread doing serial work here\n");

...

printf("2nd Parallel Region:\n");

#pragma omp parallel private(tid)

{

tid = omp_get_thread_num();

printf("Thread %d: a,b,x= %d %d %f\n",tid,a,b,x);

} /* end of parallel region */

}

OpenMP Reduction Clause Example – Vector Dot Product Example

#include <omp.h>

main(int argc, char *argv[]) {

int i, n, chunk;

float a[100], b[100], result;

n = 100;

chunk = 10;

result = 0.0;

for (i=0; i < n; i++) {

a[i] = i * 1.0;

b[i] = i * 2.0;

}

#pragma omp parallel for \

default(shared) private(i) \

schedule(static,chunk) \

reduction(+:result)

for (i=0; i < n; i++)

result = result + (a[i] * b[i]);

printf("Final result= %f\n",result);

}

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 21 / 30

[1] LLNL OpenMP Tutorial

 Reduction clause performs a reduction operation on the variables that appear in its list
 A private copy for each list variable is created and initialized for each thread
 At the end of the reduction, the reduction variable is applied to all private copies of the shared variable, and the

final result is written to the global shared variable
 Reduction operations are a smart alternative to manual critical regions definitions around operations of variables
 Reduction operation automatically localizes variable
 Several operations are common in scientific applications: +, *, -, &, |, ^, &&, ||, max, min
 REDUCTION() with operator + on variable s enables here …
 Starting with a local copy of s for each thread
 During progress of parallel region each local copy of s will be accumulated seperately by each thread
 At the end of the parallel region automatically synchronized and accumulated with resulting master thread variable

 Vector Dot Product Example: Result is a scalar!
 Iterations of the parallel loop will be distributed in equal sized blocks to each thread in the

team (schedule static)
 At the end of the parallel loop construct, all threads will add their values of "result" to update

the master thread's global copy

‘Big Data‘ Science Example – Parallel & Scalable Clustering Algorithm – Revisited

[4] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Clustering

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 22 / 30

HPDBSCAN Clustering OpenMP Application Example in Data Sciences

// hpdbscan.h file

...

#include <hdf5.h>

#include <omp.h>

...

// local DBSCAN run

#pragma omp parallel for schedule(dynamic, 32) private(neighboring_points)
firstprivate(previous_cell) reduction(merge: rules)

for (size_t point = lower; point < upper; ++point) {

...

Clusters cluster(Dataset& dataset, int threads=omp_get_max_threads()) {

#ifdef WITH_OUTPUT

double execution_start = omp_get_wtime();

#endif

// set the number of threads

omp_set_num_threads(threads);

...

[4] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 23 / 30

 How Many Threads within a parallel region?
 omp_get_max_threads() : generally reflects the number of

threads as set by the OMP_NUM_THREADS environment variable
 omp_set_num_threads(threads) routine affects the number of

threads to be used for subsequent parallel regions

Investigating Computatoinal Job Details – Scontrol Command of Scheduler

 Runs against the wall on Jötunn (01:00:00 walltime)
 Number of threads = 4 too low

(was only bremensmall data)
 Potentially also parameter

setting can be problematic
(e.g., e=800 in this example)

 Experiment with parameters
and adding more threads
(or going hybrid with MPI)

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 24 / 30

Scientific Application Example: Data Mining & Clustering of Big Data Hybrid!

 Hybrid data mining algorithm example
 Parallel Density-based Spatial Clustering for

Applications with Noise (DBSCAN)
 Using MPI and OpenMP to scale better
 Standalone OpenMP is also possible to use

[4] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 25 / 30

(Bremen Small Data 16 threads worked ~ 30 min, big data?)

Recent Support of OpenMP for Programming GPUs with Directives

 Lecture 7 will offer more details on OpenMP relationships of programming GPUs and similiarites to GPU programming using OpenACC
Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 26 / 30

...

#pragma omp target map (tofrom:y), map(to:x)

#pragma omp teams num_teams(10) num_threads(10)

#pragma omp distribute

for (...) {

...

#pragma omp parallel for

for (...) {

}

...

}

...

 OpenMP is the de-facto standard for multi-
threaded programming on CPU

 OpenMP includes since version 4.0 (better since
4.5) also capabilities for programming GPUs

 OpenACC is similar to OpenMP, because it is
modeled after OpenMP, but for accelerators

[6] Distributed & Cloud Computing Book

Monitoring, Debugging and Performance Analysis Tools for OpenMP

 Different Tools exist
 E.g. TotalView Debugger
 E.g. Linux top command
 E.g. Linux ps command

 Lecture 9 will provide a set of tools that can be used for monitoring, debugging, and performance analysis of MPI and OpenMP

[7] LLNL OpenMP Tutorial

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 27 / 30

Lecture Bibliography

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 28 / 30

Lecture Bibliography

 [1] LLNL OpenMP Tutorial, Online:
https://computing.llnl.gov/tutorials/openMP/

 [2] The OpenMP API specification for parallel programming, Online:
http://openmp.org/wp/openmp-specifications/

 [3] Introduction to High Performance Computing for Scientists and Engineers, Georg Hager & Gerhard Wellein, Chapman & Hall/CRC Computational Science,
ISBN 143981192X

 [4] M. Goetz, C. Bodenstein, M. Riedel, ‘HPDBSCAN – Highly Parallel DBSCAN’, in proceedings of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC2015), Machine Learning in HPC Environments (MLHPC) Workshop, 2015, Online:
https://www.researchgate.net/publication/301463871_HPDBSCAN_highly_parallel_DBSCAN

 [5] Icelandic HPC Machines & Community, Online:
http://ihpc.is

 [6] K. Hwang, G. C. Fox, J. J. Dongarra, ‘Distributed and Cloud Computing’, Book, Online:
http://store.elsevier.com/product.jsp?locale=en_EU&isbn=9780128002049

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 29 / 30

Practical Lecture 6.1 – Understanding OpenMP Parallel Programming 30 / 30

