
High Performance Computing
ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

October 03, 2019
Webinar

Understanding MPI Communicators & Data Structures

PRACTICAL LECTURE 5.1 @MorrisRiedel@MorrisRiedel@Morris Riedel

Review of Lecture 5 – Parallel Algorithms & Data Structures

 Derived MPI Data Types

 Parallel I/O & Hierarchical Data Format (HDF)

 Selected Parallel Algorithms using MPI

[1] Metrics tour [2] German MPI Lecture

Z = X+Y

[3] R. Thakur, PRACE Training,
Parallel I/O and MPI I/O

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 2 / 45

Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 3 / 45

Outline

 Non-Blocking Communications & Communicator Examples
 Blocking vs. Non-Blocking Communication – Revisited & Algorithms
 Non-Blocking Communication with Isend/Irecv & Wait Functions
 Understanding MPI Cartesian Communicator Dimensions & Shifts
 Using Non-Blocking Communication with Cartesian Communicators
 Simple Application Examples on Jötunn HPC System

 MPI Derived Data Types & Parallel I/O via HDF Examples
 Simple Examples of MPI Derived Data Types with Applications
 MPI I/O & Parallel Filesystems using HDF5 – Revisited
 Data Science Example with Parallel & Scalable HPDBSCAN Algorithm
 Understanding HDF5 Binary File Format & Using H5Dump Tool
 HPDBSCAN Clustering of Point Cloud Data Set Bremen on Jötunn HPC System

 This lecture is not considered to be a
full introduction to MPI programming
and the overall MPI functions library
and rather focusses on selected
commands and concepts particularly
relevant for our assignments, e.g. the
use of the MPI Cartesian communicator
& MPI derived data types & parallel I/O

 The goal of this practical lecture is to
make course participants aware of the
process of using different
communicators in MPI programs and
the use of data structures in MPI that
enable many scientific & engineering
applications in data sciences &
simulation sciences today

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 4 / 45

Selected Learning Outcomes – Revisited

 Students understand…
 Latest developments in parallel processing & high performance computing (HPC)
 How to create and use high-performance clusters
 What are scalable networks & data-intensive workloads
 The importance of domain decomposition
 Complex aspects of parallel programming e.g., scheduling(!)
 HPC environment tools that support programming

or analyze behaviour
 Different abstractions of parallel computing on various levels
 Foundations and approaches of scientific domain-

specific applications

 Students are able to …
 Programm and use HPC programming paradigms
 Take advantage of innovative scientific computing simulations & technology
 Work with technologies and tools to handle parallelism complexity

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 5 / 45

Non-Blocking Communications & Communicator Examples

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 6 / 45

Blocking vs. Non-blocking communication (cf. Lecture 4)

P1 P2 P3 P4 P5
 Blocking vs. non-blocking: MPI_Send() blocks until data is received; MPI_Isend() continues
 The use of these functions can cause different performance problems (e.g. here ‘late sender’)
 MPI_Wait() does wait for a given MPI request to complete before continuing
 MPI_Waitall() does wait for all given MPI requests (e.g. waiting for message) to complete before continuing

[1] Metrics tour

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 7 / 45

Blocking vs. Non-blocking Communication – Parallel Algorithms (cf. Lecture 5)

 Blocking vs. non-blocking: MPI_Send() blocks until data is received; MPI_Isend() continues
 The use of these functions can cause different performance problems (e.g. here ‘late sender’)
 MPI_Wait() does wait for a given MPI request to complete before continuing
 MPI_Waitall() does wait for all given MPI requests (e.g. waiting for message) to complete before continuing

[1] Metrics tour

[2] German MPI Lecture

 Lecture 10 shows how MPI non-blocking communication is used in Cartesian communicators for nearest neighbor communications
Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 8 / 45

MPI Non-Blocking Communication – Motivation & Methods Examples

 Motivation: Non-Blocking Communication
 Improved performance but harder to program (keep overview)
 E.g. allows computations and communication to overlap
 E.g. optimization patterns: e.g. MPI_Isend + MPI_Wait makes no sense

 Selected useful methods
 E.g. MPI_Irecv() non-blocking receive
 E.g. MPI_Isend() non-blocking send
 E.g. MPI_Wait() waits for MPI requests
 E.g. MPI_Get_processor_name() identifies

particular piece of hardware (i.e. processor)
 E.g. MPI_Wtime() is elabsed time / processor
 Please refer to MPI specifications

online for more methods & details

[1] Metrics tour

 Lecture 9 will offer more examples where MPI non-blocking communication can influence the performance of parallel applications

(one could simply use send)

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 9 / 45

Non-Blocking Communicaton Application Example – MPI_Isend()

[4] Non-Blocking Application Example

 Our rank 0 processor takes the role of a nonblocking sender

 The method MPI_Get_processor_name() identifies a particular piece of hardware
w.r.t. to the concrete processor name (e.g., maybe same as gethostname()

 We use the MPI_Get_processor_name() function output to include in the message to
another task where exactly the processor is running right now that performs later the
non-blocking send

 The method MPI_Isend() begins a non-blocking send operation and outputs a request
 Here it is initiated by rank 0 and is send to rank 1 in MPI_COMM_WORLD

 MPI_Wait() waits for an MPI request to complete

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 10 / 45

Non-Blocking Communicaton Application Example – MPI_Irecv()

[4] Non-Blocking Application Example

 Our rank 1 processor takes the role of a nonblocking receiver

 The method MPI_Get_processor_name() identifies a particular piece of hardware
w.r.t. to the concrete processor name (e.g., maybe same as gethostname()

 We use the MPI_Get_processor_name() function output to show later in a local
message where the receiver is running right now that performs later the non-blocking
receive

 The method MPI_Irecv () begins a non-blocking receive operation & outputs a request
 Here it is initiated by rank 0 and is send to rank 1 in MPI_COMM_WORLD

 MPI_Wait() waits for an MPI request to complete

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 11 / 45

Load the right Modules for Compilers & Compile C & MPI Program

 Using modules to get the
right C compiler for
compiling broadcast.c
 ‘module load gnu openmpi‘
 Note: there are many C

compilers available, we
here pick one for our
particular HPC course that
works with the Message
Passing Interface (MPI)

 Note: If there are no errors,
the file nonblockexample is now a full
C program executable that
can be started by an OS

 New: C program with MPI message exchanges
(cf. Lecture 2 – Parallel Programming with MPI)

[5] Icelandic HPC
Machines & Community

nonblockexample.c

C
using a C compiler

mpicc

nonblockexample
executable

C

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 12 / 45

Parallel Processing – Executing an MPI Program with MPIRun & Script

 Submission using the Scheduler – Update(!)
 Example: SLURM on Jötunn HPC system
 Scheduler allocated 2 cores as requested
 MPIRun & scheduler distribute the

executable on the right nodes
 Note the outputs from the two ranks that perform

nonblocking send and receive operations

Jötunn compute nodes

Jötunn login node

Sc
he

du
le

r

output file

 The job script parameter #SBATCH –N X indicates the NUMBER X OF
NODES; allocation by scheduler then depends on HPC system setup

 The job script parameter #SBATCH –n X indicates the NUMBER X OF
CORES; allocation by scheduler then depends on HPC system setup

 Both parameters #SBATCH –n X and #SBATCH –N X can be
combined in the job script if needed to fine-tune the requirements for
how much cores are needed on how many nodes

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 13 / 45

MPI Communicators – Create MPI Cartesian Communicators (cf. Lecture 4)

[6] LLNL MPI Tutorial

(numbers reflect
unique identity

of processor
named ‘MPI rank)

 Create (sub-)groups of the processes &
virtual groups of processes
 E.g. optimized for cartesian topology

MPI_Cart_create()

 Creates a new communicator
out of MPI_COMM_WORLD

 Dims: array with length for each dimension
 Periods: logical array specifying whether the grid

is periodic or not
 Reorder: Allow reordering of ranks in output

communicator

 Assignment #3 will make use of the cartesian communicator in a simple application example that includes the moving of boats & fish

(e.g. using MPI messages in
scientific simulations and/or

engineering applications)

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 14 / 45

Cartesian Communicator Example – Conceptual View (cf. Lecture 4)

modified from [2] German MPI Lecture

dim[0] = 3

dim[1] = 4

(‘cartesian structure‘)

(e.g. using MPI messages in
scientific simulations and/or

engineering applications)

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 15 / 45

Cartesian Communicator Example – Source-code View (cf. Lecture 4)

#include <stdio.h>

#include <mpi.h>

int main (int argc, char** argv) {

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

dims[0]=3; dims[1] = 4;

periods[0]=true; periods[1]=true;

reorder = false;

MPI_Cart_create(MPI_COMM_WORLD, 2, dims,
periods, reorder, &comm_2d);

MPI_Cart_coords(comm_2d, rank, 2, &coords);

MPI_Cart_shift(comm_2d, 0, 1, &source, &dest);

a = rank; b = 1;

MPI_Sendrecv(a, 1, MPI_REAL, dest, 13, b, 1,
MPI_REAL, source, 13, comm_2d, &status);

MPI_Finalize();

return 0;

}

 Preparing parameter dims as array with length for each dimension (here 3 x 4)
 Preparing parameter periods as logical array specifying whether the cartesian

grid is period
 Preparing parameter reorder as not reordering of ranks in output communicator

 MPI_Cart_create() creates a new communicator (cartesian structure) according to
specified dimensions in variables

 MPI_Cart_coords() obtains process coordinates in cartesian topology – note that
this JUST obtaines the current process coordinates – no actual shift is done yet

 MPI_Cart_shift() obtains ‘ranks’ for shifting data in cartesian topology – note that
this JUST prepares for a shift understanding which ranks are affected by shift

 A real shift is done
using a typical MPI
message exchange
with the obtained
ranks and in the space
of the Cartesian
communicator

[2] German MPI Lecture

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 16 / 45

 C uses the definition that false is ‘exact value 0‘ and true is ‘unequal 0‘ (e.g. 1)
 The usefulness of the different levels of periodicity depends on the

application logic of the corresponding scientific simulation
 Setting the periodic or non-periodic levels influences the shifts patterns

Cartesian Communicator Example – MPI_Cart_create()

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 17 / 45

Cartesian Communicators – Periodicity in Detail

lperiod(1) = TRUE

lperiod(2) = FALSE

lperiod(1) = FALSE

lperiod(2) = TRUE

lperiod(1) = TRUE

lperiod(2) = TRUE

0
(0,0)

1
(0,1)

2
(0,2)

3
(1,0)

4
(1,1)

5
(1,2)

0
(0,0)

1
(0,1)

2
(0,2)

3
(1,0)

4
(1,1)

5
(1,2)

0
(0,0)

1
(0,1)

2
(0,2)

3
(1,0)

4
(1,1)

5
(1,2)

 C uses the definition that false is ‘exact value 0‘ and true is ‘unequal 0‘ (e.g. 1)
 The usefulness of the different levels of periodicity depends on the

application logic of the corresponding scientific simulation
 Setting the periodic or non-periodic levels influences the shifts patterns

[2] German MPI Lecture

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 18 / 45

 Obtains coordinate from each process from the cartesian communicator

Cartesian Communicator Example – MPI_Cart_coords()

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 19 / 45

 (just!) prepares a ‘shift’ to neighbours down in the Grid (in this example) according cartesian
setup (obtain the rank of them)

 Think: dimension[0] = ‘direction‘ of the Grid – think better coordinate dimension here
 Think: Upwards in dimension means ‘down‘

Cartesian Communicator Example – MPI_Cart_shift()

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 20 / 45

 Shifts prepares the communication with neighbours with send/receive operations along each different
directions and obtain ranks to be used in send/receive operations

Cartesian Communicators – Standard Shifts
MPI_Cart_shift(comm, dir, disp, iback, iforw, ierr)

 Positive Shift
 disp = +1

 Negative Shift
 disp = -1

0
(0,0)

1
(0,1)

2
(0,2)

(iback) (iforw)

0
(0,0)

1
(0,1)

2
(0,2)

(iforw) (iback)

[2] German MPI Lecture

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 21 / 45

Cartesian Communicators – Problematic Shifts
MPI_CART_SHIFT(comm, dir, disp, iback, iforw, ierr)

 Negative Shift (periodic)
 disp = -1

 Off-end Shift (non-periodic)
 disp = -1

size
-1

0 1

(iforw) (iback)

MPI_PROC_NULL 0 1

(iforw) (iback)

 Size-1 indicates that the next shift is going to
perform a ‘turnaround / period‘ given a periodic
cartesian communicator setup

 MPI_PROC_NULL ‘as dummy process‘ indicates
here that the next shift is leaving the defined
dimension of the cartesian communicator in a
non-periodic setup

[2] German MPI Lecture

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 22 / 45

Cartesian Communicator Example – MPI_Sendrecv()

 We send a as rank information
 We initialize b = 100 to check if we receive something
 MPI_Sendrecv sends a to dest and obtains b from source: dest and source prepared from MPI_Cart_shift()

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 23 / 45

Cartesian Communicator Example – Create Outputs

 (just!) prepares a ‘shift’ to neighbours down in the
Grid (in this example) according cartesian setup
(obtain the rank of them)

 Think: dimension[0] = ‘direction‘ of the Grid – think
better coordinate dimension here

 Think: Upwards in dimension means ‘down‘
 Coordinates are printed as well as the sending and

receiving of information

 We send a as rank information
 We initialize b = 100 to check if we receive

something
 MPI_Sendrecv sends a to dest and obtains b from

source: dest and source prepared from
MPI_Cart_shift()

[2] German MPI Lecture

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 24 / 45

Cartesian Communicator Example – Compile & Submit Batch Script & Output

(the number of 12 cores is ok and fits grid
dimension of communicator)

(below is an error as an example that occurs when the number of processes not
match the required grid dimension of the cartesian communicator)

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 25 / 45

Cartesian Communicator Example – Understanding Output

[2] German MPI Lecture

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 26 / 45

Using Non-Blocking Communication with Cartesian Communicators (1)

#include <stdio.h>

#include <mpi.h>

#define SIZE 16

#define UP 0

#define DOWN 1

#define LEFT 2

#define RIGHT 3

int main (int argc, char** argv) {

int numtasks, rank, source, dest, outbuf, i, tag=1;

int inbuf[4]={MPI_PROC_NULL,MPI_PROC_NULL, MPI_PROC_NULL,

MPI_PROC_NULL};

int nbrs[4];

int dims[2] = {4,4}, periods[2] = {0,0}, reorder=0;

int coords[2];

MPI_Comm cartcomm;

...

MPI_Request reqs[8];

MPI_Status stats[8];

...

MPI_Init(&argc, &argv);

... // starting with MPI program...

}

 ‘constants for numbers’: offer here
better code readability, not a must

 Prepares variables to be used in
asynchronous communication;

 MPI_PROC_NULL indicates a ‘rank’
for a so-called ‘dummy process’

 Prepares variables related to our 2D
problem,4x4 with 4 neighbours

 Prepares variables for creating a
Cartesian communicator later

 Prepares variables used for non-
blocking MPI

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures

modified from [11] MPI Tutorial
‘simplified
demo code’

27 / 45

Using Non-Blocking Communication with Cartesian Communicators (2)

...

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods,
reorder, &cartcomm);

MPI_Comm_rank(cartcomm, &rank);

...

MPI_Cart_coords(cartcomm, rank, 2, coords);

...

MPI_Cart_shift(cartcomm, 0, 1,
&nbrs[UP], &nbrs[DOWN]);

MPI_Cart_shift(cartcomm, 1, 1,
&nbrs[LEFT], &nbrs[RIGHT]);

printf(“rank= %d coords= %d %d“ having
neighbours(u,d,l,r)=%d %d %d %d \n“,
rank, coords[0], coords[1],

nbrs[UP], nbrs[DOWN], nbrs[LEFT], nbrs[RIGHT]);

// do some work with MPI communication operations...

...

MPI_Finalize();

return 0;

}

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures

modified from [11] MPI Tutorial

 Creates a cartesian coordinator based on our
above initialized variables, here 2D 4x4

 Obtains rank from each process, here from the
cartesian communicator

 Obtains coordinate from each process from the
cartesian communicator

 (just!) prepares a ‘shift’ to neighbours up and
down as well as left and right according cartesian
setup (obtain the rank of them)

 Prints out the neighbours
with cooresponding rank

was 0

was &d

mpicc: stray \302 in program: remove invalid characters due to copy&paste

‘simplified
demo code’

28 / 45

Using Non-Blocking Communication with Cartesian Communicators (3)

// do some work with MPI communication operations...

// e.g. exchanging simple data with all neighbours

...

outbuf = rank;

for (i=0; i<4;i++) {

dest=nbrs[i];

source=nbrs[i];

MPI_Isend(&outbuf, 1, MPI_INT, dest, tag,

MPI_COMM_WORLD, &reqs[i]);

MPI_Irecv(&inbuf[i], 1, MPI_INT, source, tag,
MPI_COMM_WORLD, &reqs[i+4]); // 4 as a kind of offset

}

...

MPI_Waitall(8, reqs, stats);

printf(“rank= %d has received
(u,d,l,r)= %d %d %d %d \n“,

rank, inbuf[UP], inbuf[DOWN],
inbuf[LEFT], inbuf[RIGHT]);

MPI_Finalize();

return 0;

}
modified from [11] MPI Tutorial

‘simplified
demo code’

 Each process has 4 neigbhours so sends out 4
pieces of information and receives 4 pieces of
information 8 overall

 Loop: 4 x asynchronous communication: a non-
blocking send using the ‘shift’ rank information
indirectly via dest

 Loop: 4 x asynchronous communication: a non-
blocking receive using the ‘shift’ rank information
indirectly via source

 Synchronization: Wait for all 8 asynchronous
communications to be finalized & printout data

was &inbuf

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 29 / 45

Using Non-Blocking Communication with Cartesian Communicators (4)

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 30 / 45

Using Non-Blocking Communication with Cartesian Communicators (5)

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures

0
(0,0)

1
(0,1)

2
(0,2)

3
(0,3)

4
(1,0)

5
(1,1)

6
(1,2)

7
(1,3)

8
(2,0)

9
(2,1)

10
(2,2)

11
(2,3)

12
(3,0)

13
(3,1)

14
(3,2)

15
(3,3)

(periodic)
31 / 45

MPI Derived Data Types & Parallel I/O via HDF Examples

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 32 / 45

MPI Derived Datatypes – MPI_Type_contigous() Example

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 33 / 45

(like a vector: datatype consists of a number
of contiquos items of the same datatype)

[12] RookieHPC

MPI Derived Datatypes – MPI_Type_vector() Example

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 34 / 45

[12] RookieHPC

MPI Derived Datatypes – MPI_Type_indexed() Example

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 35 / 45

[12] RookieHPC

Data Science Example: DBSCAN Clustering Algorithm – Revisited (cf. Lecture 5)

 DBSCAN Algorithm
 Introduced 1996 and most cited clustering algorithm
 Groups number of similar points into clusters of data
 Similarity is defined by a distance measure (e.g. euclidean distance)

 Distinct Algorithm Features
 Clusters a variable number of clusters

(cf. K-Means Clustering with K clusters)
 Forms arbitrarily shaped clusters (except ‘bow ties‘)
 Identifies inherently also outliers/noise

(MinPoints = 4)

(DR = Density Reachable)

(DDR = Directly Density
Reachable)
(DC = Density Connected)

 Lecture 8 provides more details about using MPI and OpenMP for data science algorithms used in clustering and classification of data

[7] Ester et al.

 Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering
algorithm that requires only two parameters and has no requirement to specify number of clusters

 Parameter Epsilon: Algorithm looks for a similar point within a given search radius Epsilon
 Parameter minPoints: Algorithm checks that cluster consist of a given minimum number of points

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 36 / 45

‘Big Data‘ Science Example – Parallel & Scalable Clustering Algorithm – Revisited

[8] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Clustering

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 37 / 45

High-Level I/O Hierarchical Data Format (HDF) for Data Structures – Revisited

 Simple ‘compound type‘ example:
 Array of data records with some descriptive information (5x3 dimension)
 HDF5 data structure type with int(8);

int(4); int(16); 2x3x2 array (float32)

[3] R. Thakur, PRACE Training,
Parallel I/O and MPI I/O

 The Hierarchical Data
Format (HDF) is a
technology suite that
enables the work with
extremely large and
complex data collections

 A HDF version 5 file is a
container to organize data
objects – it looks like a
filesystem within a file

(application example parallel &
scalable clustering with HPDBSCAN

using Bremen data in HDF5)

[9] HDF@ I/O workshop

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 38 / 45

High-Level I/O Hierarchical Data Format (HDF) for Data Structures & H5Dump

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures

 Point cloud data stored in HDF5 create a local copy read/write!
 Binary file format not normal text, e.g., using more fails, but h5dump works

[10] h5Dump Tool Description

39 / 45

‘Big Data‘ Science Example: Using High-Level I/O Hierarchical Data Format (HDF)

 Parallelization Strategy
 Chunk data space equally
 Overlay with hypergrid
 Apply cost heuristic
 Redistribute points (data locality)
 Execute DBSCAN locally
 Merge clusters at chunk edges
 Restore initial order

 Data organization
 Use of HDF5

(cf. Lecture 5)
 Cluster Id stored

in HDF5 file

 Lecture 8 provides more details about using MPI and OpenMP for data science algorithms used in clustering and classification of data

[8] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 40 / 45

HPDBSCAN Clustering of Point Cloud Data Set Bremen on Jötunn HPC System

 Submit
 Using your own copy of datasets in HDF5 format (read & write!), /Clusters are 0
 Using installed modules for HPDBSCAN
 Using typical batch system script specifying DBSCAN parameters

[5] Icelandic HPC
Machines & Community

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 41 / 45

HPDBSCAN Clustering – Understanding Two Outputs: Text & HDF5 File

 Lecture 8 provides more details about using MPI and OpenMP for data science algorithms used in clustering and classification of data
Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures

 The standard out of the HPDBSCAN
parallel & scalable DBSCAN
clustering algorithm is not the
result of the DBSCAN clustering
algorithm and only shows meta
information such as the numbers of
clusters found, noise, and running
time

 The real outcome of the parallel &
scalable HPDBSCAN algorithm is
directly written into the HDF5 file
assigning for each point cloud data
element a specific cluster ID, or
using minus numbers to indicate
noise points (no real clusters)

 The input data for the parallel & scalable
HPDBSCAN clustering algorithm is a HDF5
file and all the processors read in parallel
chunks of the data

 The HDF5 file before the execution of
HPDBSCAN has 0 as Cluster Ids for its
specific initialization

Jötunn compute nodes

Sc
he

du
le

r

42 / 45

Lecture Bibliography

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 43 / 45

Lecture Bibliography

 [1] M. Geimer et al., ‘SCALASCA performance properties: The metrics tour’
 [2] German Lecture ‘Umfang von MPI 1.2 und MPI 2.0‘
 [3] Rajeev Thakur, Parallel I/O and MPI-IO, Online:

http://www.training.prace-ri.eu/uploads/tx_pracetmo/pio1.pdf
 [4] Non-Blocking Communication Example, Online:

http://beige.ucs.indiana.edu/B673/node153.html
 [5] Icelandic HPC Machines & Community, Online:

http://ihpc.is
 [6] LLNL MPI Tutorial, Online:

https://computing.llnl.gov/tutorials/mpi/
 [7] Ester, Martin, et al. "A density-based algorithm for discovering clusters in large spatial databases with noise." Kdd. Vol. 96. 1996, Online:

https://dl.acm.org/citation.cfm?id=3001507
 [8] M. Goetz, C. Bodenstein, M. Riedel, ‘HPDBSCAN – Highly Parallel DBSCAN’, in proceedings of the ACM/IEEE International Conference for High Performance

Computing, Networking, Storage, and Analysis (SC2015), Machine Learning in HPC Environments (MLHPC) Workshop, 2015, Online:
https://www.researchgate.net/publication/301463871_HPDBSCAN_highly_parallel_DBSCAN

 [9] Michael Stephan,‘Portable Parallel IO - ‘Handling large datasets in heterogeneous parallel environments‘, Online:
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/parallelio-2014/parallel-io-hdf5.pdf?__blob=publicationFile

 [10] H5Dump Tool, Online:
https://support.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Dump

 [11] Blaise Barney, Lawrence Livermore National Laboratory, ‘MPI Tutorial’, Online:
https://computing.llnl.gov/tutorials/mpi/

 [12] Rookie HPC MPI, Online:
https://www.rookiehpc.com/mpi/index.php

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 44 / 45

Practical Lecture 5.1 – Understanding MPI Communicators & Data Structures 45 / 45

