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Holds PhD in Electrical and Computer Engineering (University of Iceland - 2016)

— BS and MS Degrees in Telecommunications Engineering (University of Trento — 2011,2013)

Postdoctoral researcher at Forschungszentrum Juelich - Juelich Supercomputing Centre (since 2016)
— Member of the High Productivity Data Processing group

— The group focuses on application-driven parallel and scalable machine learning methods that exploit innovative
high performance and distributed computing technologies

Research interests
— Processing and analysis of remote sensing big data

— Parallel and scalable machine (deep) learning techniques

Contact

— Email: g.cavallaro@fz-juelich.de




RECOMMENDED SOURCES

= Most of the material of this lecture includes modified contents that are taken from the following sources:

— €S231n Convolutional Neural Networks for Visual Recognition, Stanford (http://cs231n.github.io/ )

Stanford

University

— S191: Introduction to Deep Learning, MIT (http://introtodeeplearning.com/)

© MIT 6.S191: Introduction to Deep Learning
introtodeeplearning.com
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OUTLINE

= Remote Sensing Backgrounds

= Pattern Recognition Systems

= Features Extraction with Shallow Learning and Deep Learning

= Convolutional Neural Networks (CNNSs)

= Training Deep Networks with Backpropagation

= Distributed Deep Learning with HPC
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REMOTE SENSING

Remote (without physical contact) Sensing (measurement of information)

= QObtain information about the atmosphere and surface of Earth without needing to be in contact with it

= Achieved by sensing and recording emitted or reflected energy toward processing, analyzing, and interpreting

the retrieved information for decision-making

Measurement of radiation of different
wavelengths reflected or emitted from
distant objects or materials

They may be categorized by class/type,
substance, and spatial distribution

Incoming Solar
Radiation

Outgoing Radiation

Reflected
by Clouds

Het Emission
Emission b
from Surface g0 0OV

Emission
‘Water V. W

'apor,

€O,

[2] The Earth-Atmosphere Energy Balance

2 [1] Satellite (1960)

The term remote sensing was first used in the
United States in the 1950s by Ms. Evelyn
Pruitt of the U.S. Office of Naval Research
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ELECTROMAGNETIC (EM) SPECTRUM
What is Sensed?

HEIGHTS
ORBITAL
. L. ] HEIGHT ~ 700KM
= Continuous set of radiation sorted according to wavelength (or frequency)

— Subdivisions are set for convenience and by traditions within different disciplines
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[3] Electromagnetic Spectrum

= There is neither a source nor a remote sensing system that “work” over the whole EM spectrum
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ENERGY INTERACTIONS WITH SURFACE FEATURES

= Various fractions of the energy incident on the element are reflected, absorbed, and/or transmitted

E;(1) = ER(A) + E4(A) + Er (1)

E,(%) = Incident energy

ER(4) = Reflected energy

p(A) = Er@) Reflection coefficient

E;(A)
~ () = if(%) Transmission coefficient
I
a(l) = I;;A(%) Absorption coefficient
1

Ex(4) = Absorbed energy E+(2) = Transmitted energy

[4] K. Tempfii et al.

= From the conservation of energy theorem, it can be derived
E;(1) = Eg(A) + Er(1) + Ex(A)

p(AD)+TD)+ a(d) =1
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REFLECTANCE PROPERTIES OF SURFACE FEATURES
Spectral reflectance

= The reflectance properties of features can be quantified by measuring the portion of incident energy that is reflected

— This is measured as a function of wavelength

APL
: AVIRIS CONCEPT
— ltis called spectral reflectance
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= By analyzing the spectral reflectance it is possible
to discriminate between different land covers
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RECOGNITION PHASE

Extract information from the image and made available to the end user

= The result depends on the specification application considered, e.g.,

— Thematic maps of the territory

Urban
Crops
Forest
Shrubland
Bare rocks

— Change maps between 2 different dates

Grass
Snow
Water

— Environmental risk maps

— 3D Topographic maps

Old map
[6] C. Paris et al.

= Two main strategies:
— Not automatic (widespread in the past and still used today)

o With the help of photo interpreters (photointerpretation)

[7] Satellite Images

— Automatic recognition techniques

o E.qg., Pattern recognition systems

EXTRACT/SELECT POST-
-y _ —| —>] —| L--»
DATA PRE-PROCESSING FEATURES CLASSIFICATION PROCESSING label




CLASSIFICATION TASKS

Output variable takes a class label

= Pixel-wise classification T
o
; Each pixel has a particular
brightness value in each band water  wheat
W
W W
WiWW

—>

Satellite image data Classification Map of labels
(thematic map)

= Patch-based classification (with single or multiple land-cover class labels)

= o

permanently irrigated land, 8
vineyards, beaches, dunes,
sands, water courses

non-irrigated arable land

Residential Buildings Annual Crop
- discontinuous urban fabric,
b L s ; . non-irrigated arable land,
' ' coniferous forest, mixed ki .
— . land principally occupied
Y} forest, water bodies ;
" by agriculture,
e . YIRS, broad-leaved forest
Herbaceous Vegetation Highway

[8] P. Helber et al. [9] G. Sumbul et al.



PATTERN RECOGNITION
Classification is a task that falls into the general category of pattern recognition

= Pattern: a form, template, composite of features, or model (or, more abstractly, a set of rules)

— Which can be used to make or to generate objects or parts of an object

Completely . Spectral bands, spatial arrangement patterns Completely
Deterministic I Random

Vegetation

E.g., White noise

Reflectance

4 E.g., Crystal structure

Wavelength

[10] Remote Sensing

= Pattern recognition: automatic discovery of patterns in data through the use of tools from

— Statistics, probability, computational geometry, machine (deep) learning, signal processing, and algorithm design

= Use of these patterns to take actions such as classifying the data into different classes
Page 11



PATTERN RECOGNITION SYSTEM

Block Scheme

= Pre-processing

— Atmospheric and geometrics corrections, filtering, etc.,

= Feature extraction/selection
— Extraction of information parameters

— Selection of information parameters

= Classification

— Based on the information parameters previously extracted and selected

= Post processing

.| EXTRACT/SELECT | N POST- ot
3 DATA » PRE-PROCESSING FEATURES » CLASSIFICATION PROCESSING » label ) -
[11] Sentinel-2 satellite imagery THIS LECTURE
ACQUISTION DECISION

Page 12
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CLASSIFICATION PIPELINE

Two sub-tasks

1. ldentification of the features that are unique for each class of images

2. Detection of the presence of these features

© MIT 6.S191: Introduction to Deep Learning
introtodeeplearning.com

E.g, Compute vision problem

(key features in each category)

Nose, Wheels, Door,
Eyes, License Plate, Windows,
Mouth Headlights Steps

= Once it is established what are the features that are unique for each class

— For a new image, if the features of a class are present, then the class can be predicted with high probability
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ELEMENTS OF IMAGE INTERPRETATION

The visual interpretation of aerial and space images is a complex process

Representation of features from an overhead, often unfamiliar, vertical perspective

Wavelengths outside of the visible portion of the spectrum

Unfamiliar scales and resolutions

High temporal resolutions: shift from single image analysis to time-series processing

Computer Vision Remote Sensing

Nose, Wheels, Door,

Eves, License Plate, Windows,

Mouth Headlights Steps VAT RN
© MIT 6.S191: Introduction to Deep Learning Hyperspectral images: hundreds of channels SAR images: noisy data

introtodeeplearning.com

[13] F. Omriiuzun et al.



FEATURE EXTRACTION

Both manual and automatic approaches require

(1) domain knowledge, (2) definition of the features and (3) detection of the features to classify

The features are designed for a specific task

— Based on spatial, spectral, textural, morphological content, etc.

DATA FEATURE

— E.g. Enhancing the spatial information (with attribute profiles ) =~ Lausmoy [7] o T CsSeATON |-

EXTRACTION

Problems

— Images include brightness values that are under large variation

Viewpoint variation Scale variation Deformation Occlusion

i

S L

‘/g;\ é

Background cIutter Intra-class variation

Remote sensing images exist in a variety of conditions (e.g., different seasons)

’ ; Page 15
© MIT 6.S191: Introduction to Deep Learning
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DEEP LEARNING AND SHALLOW LEARNING

Can we learn a hierarchy of features directly from the data instead of hand engineering?

= Shallow learning: learning networks that usually have at most one to two layers
— E.G. Support Vector Machines (SVMs)
= They compute linear or nonlinear functions of the data (often hand-designed features)

= I

= Deep learning: means a deeper network with many layers of non-linear transformations

— No universally accepted definition of how many layers constitute a “deep” learner

Low level features Mid level features High level features

© MIT 6.S191: Introduction to Deep Learning Page 16
introtodeeplearning.com

Edges, dark spots Eyes, ears, nose Facial structure



MACHINE (DEEP) LEARNING

= Machine Learning: a subfield of Artificial Intelligence

— Machine learning is dealing with algorithms that can improve their functions by being exposed to data

— Studies algorithms that improve their function from data
— Great number of other subfields and methods
o Kernel Machines (Gaussian Processes, Support Vector Machines, ...)

o Decision Trees (Random Forests, ...)

o and much more ...
Artificial Intelligence (Al)

A wide area of techniques and tools that enable
computers to mimic human behaviour

Machine Learning (ML)

Learning from data without explicitly being
programmed with common programming languages

Deep Learning (DL)

Systems with the ability to learn underlying
features in data using large neural networks

= Deep Learning: a subfield of Machine Learning

Prerequisites for Machine Learning
1. Some pattern exits
2. No exact mathematical formula

3. Data exists
- Idea: learning from data

— Challenges:
o Data is often complex

o Learning from data require processing time

Page 17



DEEP LEARNING

= Deep Learning: using a generic, flexible model family @ QO @
“Neural” Networks with multiple layers ® ® ®
. . w | @ o w|®
— Based on stacked, repetitive operations 1] . K
— Executed by simple, generic units O O O
— With parameters (“weights”) adapted from incoming data ® O O
@ O O
= Deep Neural Networks Hwy
X2 w; g
— Most models can be cooked down to stacked repetitive operations X3 W3 ul .y
— They are executed by simple units _ :
— Linear summation + non-linear transfer function *n w"

Wy
U= E Wi T
A

= The units are very simple y=9(u)
= The complexity arise when combining more of them
= The are many weights (connections) that are adjustable from the data

(they are not fixed)
Page 18



FULLY CONNECTED NEURAL NETWORK (FCNN)

Architecture Overview

= Receives an input a single vector and transforms it through a series of hidden layers

= Each hidden layer is made up of a set of neurons that have learnable weights and biases
— Each neuron receives some inputs, performs a dot product and follows it with a non-linearity
— Each neuron is fully connected to all neurons in the previous layer
— Neurons in a single layer function completely independently and do not share any connections

= The last fully-connected layer is the “output layer” and in classification settings it represents the class scores

. hidden layer 1 hidden laver 2 hidden layer 3
input layer

4 )
Yo
7 NS N5

T — N

_ — —

< A . e
“Qﬁ_-_;»:__— = AN, 1}‘? S output layer

e

e, S z S : ’ 2 %

/T

Bias: additional set of weights that require no

input, and this it corresponds to the output of Sitey .
the network when it has zero input (not tied to ZHEX HR :
_ PHEAT SN :
any previous layer) d NN S
T SN i
ot S \ e :C-fq

© MIT 6.S191: Introduction to Deep Learning Page 19
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HOW TO USE SPATIAL STRUCTURE IN THE INPUT

To inform the architecture of the network?

= Fully connected:
— Connect neuron in hidden layer to all neurons in input layer
— No spatial information

L 1— )\
X1| X2] X3 Input: lz—>Q—>O

X4| Xg| Xg = 2D image is vectorized /

— Moreover, when adding several neurons, the parameters grows quickly

= FCNN don’t scale well to full images

— The fully connectivity is wasteful, and the huge number of parameters can lead to overfitting

Example: 1000x1000 image

\\ 1M hidden units

- 10712 parameter:

. Page 20
[14] Convolutional Neural Networks



INPUT SPATIAL STRUCTURES

= Need of an architecture that makes the explicit assumption that the inputs are images

2-dimensional
array of pixels

= |dea
— Connect patches of input to neurons in hidden layer
— Neuron connected to region of input
— Only “sees” these values

— Reduce the number of weights

© MIT 6.S191: Introduction to Deep Learning
introtodeeplearning.com

[ Class 1 (X) |

or

Class 2 (0O)

Exploit the neighboring relationship

Page 21



APPLY FILTERS TO EXTRACT FEATURES

With Convolution

1. Apply a set of weights — a filter — to extract local features

Example: 1000x1000 image
IM hidden units

Filter size: 10x10
100M parameters

2. Use multiple filters (kernels) to extract different features
3. Spatially share parameters of each filter

» Features that matter in one part of the input should matter elsewhere

[14] Convolutional Neural Networks

% - Filter of size 4x4 : | 6 different weights
- Apply this same filter to 4x4 patches in input
- Shift by 2 pixels for next patch

This "patchy” operation is convolution

© MIT 6.S191: Introduction to Deep Learning
introtodeeplearning.com
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REVIEW THE CONVOLUTION

Example of classification task: classify X from a set of binary images

= For classification it would not be possible to simply compare the two matrices to check is they are equal

" The classier needs to classify an X as an X even if its shifted, shrunk, rotated, deformed, etc..

+ 1“
1

= Effective approach: compare the images piece by piece

= Search the important parts that define an X as an X (the meaningful features)

© MIT 6.S191: Introduction to Deep Learning
introtodeeplearning.com
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REVIEW THE CONVOLUTION
Filters to detect X features
= Think about each feature as small patches

= Use filters of weights for the convolutional operations

— To detect the corresponding features

= Convolution preserves the spatial relationship between pixels

— By learning image features in small squares of the input

element wise

; add outputs
multiply

= 9

i
=R e
R =
Rl =

Perfect correspondence between the

-1 -1]-1]-1]-1]-1] -1\-1 -1 filter and the region of the input that is

© MIT 6.S191: Introduction to Deep Learning . convolved 9 P

introtodeeplearning.com Page 24




REVIEW THE CONVOLUTION

Producing feature maps

= Feature map: reflects where in the input was activated by the applied filter

1/1{1|0(0
= E.g., Slide the 3x3 filter over the input image, ol1l1l1lo A1 al3a
element-wise multiply, and add the outputs 0(0|1|1/1 ® 0/1/0 om [2]4](3
0|0|1]1)0, 1|01 2134
0|1 ]M Qo 0“1 filter feature map
= Different filters can be used to produce different filter maps
- E.g., With 3 different convolutional filters (i.e., different weights)
Page 25
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Edge Detect “Strong" Edge
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ACTIVATIONS (FEATURE MAPS)
With CNN architectures

= The initial volume stores the raw image pixels

= Volume of activations shown as a column (i.e., lay out each volume’s slices in rows)

= The last volume holds the scores for each class

ELU RELU

CONV lCONV CONV [ CONV

[15] CS231n

-

RELU RELU RELU RELU

-

l co;vlowvl

-
-
-
-
s
=
_':
-

‘car

truck

@itplane

ship

horse
| |
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CONVOLUTIONAL NEURAL NETWORKS

Three main operations

= Sequence of layers that transforms one volume of activations to another through a differentiable function
= Three main types of layers to build the architecture:

— Convolutional Layer

o Apply filters with learned weights to generate feature maps

o Introduce non-linearity with an activation function (e.g., ReLU)
— Pooling Layer

o Downsampling operation on each feature map
— Fully-Connected Layer

o Perform classification

]

» Train the model with the training set

» Learn the weights of filters in convolutional layers (i.e., feature maps)

Fully-
connected
Page 27
layer © MIT 6.S191: Introduction to Deep Learning 9
introtodeeplearning.com

Input image Convolution Maxpooling
(feature maps)




IMPORTANCE OF ACTIVATION FUNCTIONS

Introduce non-linearities into the network

= E.g., How to build a Neural Network to distinguish green vs red points?

= g * 09-
04 ..“.’o ] 4 oo o

*® o L
ek ~ 08

o
I AR X T 3 Bz
t % \f‘ ".o..o‘. ’
.. '.
061 o lgoq, ’.“ooﬁ Lo :’.‘ ° "I
° «»
..o...}.!:' 05F

05

L ]
I AR £ 9 00

I 04

Linear Activation functions produce linear Non-linearities allow us to approximate
decisions no matter the network size arbitrarily complex functions
© MIT 6.S191: Introduction to Deep Learning Page 28

introtodeeplearning.com




INTRODUCING NON-LINEARITY

Input images are highly non linear

= The activation function is applied after every convolution operation

= Each activation function (or non-linearity)

— Takes a single number

— And performs a certain fixed mathematical operation on it

= There are several activation functions you may encounter in practice

Sigmoid Function

]
0.8 9@

0.6

0.4

0.2

5 0 5
1

15] CS231n -
115 1+e7 7

gz)=

g9'(z)= g1 -g(2)

-0.5

Hyperbolic Tangent Rectified Linear Unit (ReLU)

9(2) /
g'@)

3 9(2)
0.5 g'@)

5
4
3
2
1
0

-5 0 5 -5 0 5

eZ — e~ 2

9@ = ey 9G) = max(0,2)
1 z>0
! _ _ 2 ! = ’
g9'@)=1-g@) 9 (z) {o, otherwise
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RECTIFIED LINEAR UNIT

Has become very popular in the last few years

= Compared to the sigmoid/tanh functions
— (+) It was found to greatly accelerate the convergence of Stochastic Gradient Descent (SGD)

— (+) Simply thresholding a matrix of activations at zero (no expensive operations, e.g., exponentials)

Input Feature Map Rectified Feature Map Rectified Linear Unit (ReLU)

10}
B
(L3 3
Y §
.r
i1

L .."‘ Y
1

2 b

-

AAAAAAAA

A A 'S
=10 -5 5 10

g(z) =max(0, z)

white = posmve YEIVES

|
i

Only non-negativé values

[15] CS231n
© MIT 6.S191: Introduction to Deep Learning

introtodeeplearning.com
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POOLING LAYER

Reduce the dimensionality and preserve spatial invariance

= |tis common to periodically insert a Pooling layer in-between successive Convolutional layers

= |ts function is to progressively reduce the spatial size of the representation

— To reduce the amount of parameters and computation in the network

— Hence to also control overfitting

= Introduces zero parameters since it computes a fixed function of the input

224x224x64

112x112x64
pool

_

/
|

224

— B 112
downsampling
112

[15] CS231n

Single depth slice

1

1

2

4

max pool with 2x2 filters
and stride 2

)
3
1

6
2
2

7
1
3

8
0
4
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CNN FOR CLASSIFICATION

Feature learning pipeline

/42g
g

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING

k3

FEATURE LEARNING

1. Learn features in input image through convolution

2. Introduce non-linearity through activation function (real-world data is non-linear!) ©M7 6.191: introduction to Deep Learning

introtodeeplearning.com

3. Reduce dimensionality and preserve spatial invariance with pooling
Page 32



CNN FOR CLASSIFICATION

Class Probabilities

— CAR
— TRUCK
— VAN

JENNERREN
jNImBESER

J-IIIIIII‘H

|:| |:| — BICYCLE

FLATTEN FULLY SOFTMAX

CONNECTED
L % o
Y

CLASSIFICATION

= Convolutional and Pooling layers output high-level features of input

e . . © MIT 6.5191: | ducti D L i
= Fully connected layer uses these features for classifying input image introtodeaplearninecom - CF Fearning

= Express output as probability of image belonging to a particular class
Page 33



CNN FOR CLASSIFICATION

Training with Backpropagation

B — — CAR
® — — TRUCK
w | — VAN
’ ] [] — eicycLe
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CORUP:-EE“D SOFTMAX
FEATURE LEARNING CLASSIFICATION

= | earn weights for convolutional filters and fully connected layers

© MIT 6.S191: Introduction to Deep Learning
introtodeeplearning.com
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MACHINE LEARNING: FORMS OF LEARNING

= Supervised learning: correct responses Y for input data X are given
— Y “teacher” signal, correct “outcomes”, “labels” for the data X
— Usually: estimate unknown f: X = Y, Y = f(X; W)

— Classic frameworks: classification, regression

= Unsupervised learning: only data X are given
— Find “hidden” structure, patterns in the data;
— In general, estimate unknown probability density p(X)
— Broad class of latent (“hidden”) variable models

— Classical frameworks: clustering, dimensionality reduction

= Reinforcement learning: data X, including (sparse) reward r(X)
— Discover actions a that minimize total future reward R
— Active learning: experience X depends on choice of a
— Estimate p(alX),p(r|X),V(X), Q(X, a) - future rewards predictors

For all holds: Define a loss L(W), optimize by tuning parameters W

V(s) internal model

w(s,a) ( lmpl

reward
X

sensory input (states)
. T

_ 45



DEEP LEARNING

Learning as an Optimization Procedure

= | earning as optimization problem
— Defining loss L(cost) function sets up optimization problem
— Optimization can be done in various ways
— Deep Neural Networks: gradient descent methods dominate

— Automatic differentiation

= £(X; W), P(Y|X, W): unknown () o (o (@[ )
— ->Learn from data! O O O
» Define loss L(f(X;W),Y) W, . . W, .
= Minimize loss: adapt W from the data X|— .+ . B . Y
= Data-driven Optimization O O O
— Using gradient descent O O O

XeR" - fX; W) - Y € R™ Page 36



EXAMPLE PROBLEM

Will | pass this class?

= Train a neural network to determine if you will pass this class

= Simple two feature model

— x;= number of lectures you attend

— x,= hours spent on the final project

X2 = Hours
spent on the
final project

A

>
x1 = Number of lectures you attend

Annotated dataset
Previous students from previous years that

Legend

. Pass
@ -~

© MIT 6.S191: Introduction to Deep Learning
introtodeeplearning.com
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EXAMPLE PROBLEM

Will | pass this class?

= |f you want to know if you are going to pass the class, you can plot yourself in the features space

- E.g., 4 lectures attended, and 5 hours spent on the final project

— Are you going to pass or fail?

X, = Hours
spent on the
final project

A
L

@

Legend
o ® °
? \[4] @® P
5 @ i
®
®
® o
[
]
> © MIT 6.S191: Introduction to Deep Learning
introtodeeplearning.com

x1 = Number of lectures you attend

= How to build a neural network to learn this by looking at the previous students (annotated dataset)?

Page 38



EXAMPLE PROBLEM

Will | pass this class?

= E.g., 2 inputs fed into a single layer neural network with 3 hidden units

The final output probability that you will pass the exam is 0.1 (10%)

This outcome contradicts the expectations when looking at the feature space

Why the neural network provide such a bad prediction?

The network was not trained

— At this moment these are just meaningless input numbers

Z

X1
1) ~ Predicted: 0.1
x( ) = [4 ’5] 22 Y1 Actual: 1

Y X2

Z3

. © MIT 6.S191: Introduction to Deep Learning
= Need to teach the network how to get the right answer introtodeeplearning.com
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QUANTIFYING LOSS
How to tell the network when it makes a mistake

» The loss of the network:

— |Is what defines when the network makes the wrong prediction
— Measures the cost incurred from incorrect predictions

2
[ Y X
(1) . Predicted:0.1
xV =[4,5] %2 Y1 Actual: 1
8
Z3

= |t takes as input the predicted output and the groundtruth actual output L(]c (X (i). w y (l))
= [f they are close, the loss is going to be low \ ’ {

PREDICTED ACTUAL

© MIT 6.S191: Introduction to Deep Learning
introtodeeplearning.com
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EMPIRICAL LOSS

Input data: from many students

How the model perform across the entire population of students?

The empirical loss measures the total loss over our entire dataset
— Compute the loss of each of the student

— And compute the mean

When training the network we don’t want to minimize the loss for a particular student but we want to minimize
the loss across the entire dataset

I
N b
o — N
)

f(x)
Also known as:

y
0.1 |
: 08 0
06 |
= Objective function

. COSt.f_unctiO.n Jw) = _S‘f(f(x(l) W) ©)
I |

= Empirical Risk —

PREDICTED ACTUAL

© MIT 6.S191: Introduction to Deep Learning
introtodeeplearning.com
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BINARY CROSS ENTROPY LOSS

= This is a binary classification problem (soft max can be used)
= Cross entropy loss can be used with models that output a probability between 0 and 1

— Compute the loss between 0 and 1 outputs and the true labels

L 7 e F

4,5 T 0.1 |
x= |2 | . 0.8 0

5, 8 & 0 losl |

I X2 :

- — 23 _._ L _

IV~ | | |
Jw) = EZ y® logq(x(?; W)+ (1~ gﬁ))log(l - \f(x(lY); W)

ACTUAL PREDICTED ACTUAL PREDICTED
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LOSS OPTIMIZATION

= How to use the loss to iteratively update and the train the network over time given some data?
= Objective: find the network weights that minimize the empirical loss

n

1 . .

W* = arg min—z L(f(xD; W), y®)
w "

* .
W - argﬁ/nln ](W) © MIT 6.S191: Introduction to Deep Learning
T introtodeeplearning.com

W ={W©® w® 1 Set of all the weights in the network (first layer, second layer, etc..)

Compute this optimization problem over all these weights
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LOSS OPTIMIZATION

What a loss function looks like

= Function that takes as input the weights and gives the loss
= The loss is a function of the network weights

* Find the lowest point in this landscape that correspond to the minimum loss

— Find the correspondent weights

W*= arg min J(W)
w

Loss value

J(wg,wq) °

07 e 08
© MIT 6.S191: Introduction to Deep Learning " os a ‘—"'“"‘ My > < Wl Page 44
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LOSS OPTIMIZATION

= Randomly pick an initial (wy, w;)

J(wo, wy) |

© MIT 6.S191: Introduction to Deep Learning Page 45
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LOSS OPTIMIZATION

= Compute gradient at this local point _ag (;:,’)

— In this landscape the gradient tells us the direction of the maximum (steepest) ascent

](WOJ Wl) .
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LOSS OPTIMIZATION

= Reverse the gradient and take a small step in opposite direction

](WOJ Wl) -u
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GRADIENT DESCENT

= Repeat until convergence

— The gradient is computed over and over

](WUJ Wl) .
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GRADIENT DESCENT

Algorithm = How to compute it? This is a crucial
part of deep learning and neural
networks in general
» This is what all matters when
optimizing the network
» |tis also the most computational part

This procedure can be summarizing with the following algorithm

1. Initialize weights randomly ~N (0, 5?)

2. Loop until convergence

3 Compute gradient % (it explains how the loss changes with respect to each of the weights)
4. Update weights W =W —n % (in the opposite direction of the gradient )

5. Return weights

Use a small amount (the step) i.e., the learning rate

|.e., How much do you trust the computed gradient
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LOSS FUNCTIONS

Optimization through gradient descent " \/_1
> \Imm\ guess

= Take the weights and subtract, move via the negative gradient

w

Small learning rate converges slowly
and gets stuck in false local minima

aL(W)
W=W-—n W \ \/_’%\

T S

Large learning rates overshoot,
become unstable and diverge

= How large is the step we take at each iteration 1
— In practice it is very difficult to set this parameter s S
— Itis very important in order to avoid local minima w

Stable learning rates converge
smoothly and avoid local minima

Page 50
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COMPUTING GRADIENTS: BACKPROPAGATION

Example with a simple network, one input, one hidden unit and one output

= Computing the gradient of the loss with the respect to w, correspond to tells us how much a small change in
w, affects our loss

= How does a small change in one weight (e.g., w,) affect the final loss J(W)?

X > Z1 > ? > j(W)
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COMPUTING GRADIENTS: BACKPROPAGATION

= |f it is written as a derivative

= Start by computing this by simply expanding this derivative by using the chain rule

§ Wi v wy v . W) ajw)

Use the chain rule
aWZ

A

§ . oJ(W) _ aJW) 4 99
X ! >z —— y oW odw, dy ow,

© MIT 6.S191: Introduction to Deep Learning Page 52
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COMPUTING GRADIENTS: BACKPROPAGATION

And we compute for w; it looks like

Repeat this for every weight in the network

- Jw)y

dJ(W) _ 0JW) . 09
aW]_ 637 6W2

T T

apply chain rule

apply chain rule

QW) _ W) , 33 9z
aW]_ 65; 621 6W1

© MIT 6.S191: Introduction to Deep Learning
introtodeeplearning.com

— Using gradients from later layers to backpropagate those errors back into the original input

Do this for all the weights and this gives us the gradient for each weight
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BATCH GRADIENT DESCENT (BGD)

Gradient is very computational to compute

= When it is computed for all the samples within a given training dataset

1.

Initialize weights randomly ~N (0, 52)
Loop until convergence

U,
ow

Compute gradient

0L(X;W;Y)

Update weights W =W —n o

. Return weights
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STOCHASTIC GRADIENT DESCENT (SGD)

= Strategy
— Pick a single point
— Compute the gradient with respect to that single point and use it to update the weights

= We might go in a direction/step that is not representative for the entire dataset

1. Initialize weights randomly ~N' (0, 52)

2. Loop until convergence

3. Pick single data point i Easy to compute but
very noisy (stochastic)!
: aJ;(W) — ry noisy ( ic)
4. Compute gradient —-—=
oW
D. Update weights W =W —1n _aﬁ(;‘;‘;’;Y)

6. Return weights



MINI-BATCH GRADIENT DESCENT

Batching the data into mini-batches

= Tradeoff between BGD and SGD
= Gives an estimate of the true gradient by averaging the gradient from each of the B points

= Minibatch sampling: implemented by shuffling the dataset S, and processing that permutation by obtaining
contiguous segments of size B from it

1. Initialize weights randomly ~N (0, 52)

2. Loop until convergence

3. Pick batch of B data points

4. Compute gradient a]a‘f::v) = % . ang(VW)
S.

6.

Update weights W =W —n aﬁ(g;‘;w)
Return weights

Fast to compute and a much better

P 56
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DISTRIBUTED TRAINING
With Data Parallelism

= Mini-Batch Gradient Descent:
— More accurate estimation of gradient and smoother convergence
— Allows for larger learning rates (i.e., trust more the gradient , training faster)

— Can parallelize computation and achieve significant speed increases

Send batches across the GPUs, compute their gradient simultaneously and aggregate them back

L 2.
S|=f="

[17] Horovod Page 57




" GPU accelerator architecture example

GPU Acceleration (cf. Lecture 1)

GPU
Multiprocessor 1 Multiprocessor N PR
(e.g. NVIDIA card) | | Bl 5 | Bl TE
= GPUs can have 128 cores on one single GPU chip
= Each core can work with eight threads of instructions S ey ' Main |
= GPU is able to concurrently execute 128 * 8 = 1024 threads —

Interaction and thus major (bandwidth)

bottleneck between CPU and GPU

is via memory interactions

E.g. applications that use matrix —
vector/matrix multiplication
(e.g. deep learning algorithms)

A —Dxr

[18] Distributed & Cloud Computing Book

CPU acceleration means that GPUs accelerate computing due to a massive parallelism
with thousands of threads compared to only a few threads used by conventional CPUs

GPUs are designed to compute large numbers of floating point operations in parallel

TR

» Lecture 10 will introduce the programming of accelerators with different approaches and their key benefits for applications




DEEP Learning takes advantage of Many-Core Technologies (cf. Lecture 1)

O Hl /] g & [V 31 # 3]
A3 e 1] 7] [ [F) 6] (5] M
R o
deg el DEORRENGN
R EEE LD B nan A
# 6l 8 4 & f] Qlgl [l
ZI 1] el 3] 82 [/ 2]zl 8
g 8l el 75 R g0 e
2l Yl (& (g 0 [7] & 3] [/] 5]

Innovation via specific layers and architecture types

[21] A. Rosebrock

[20] Neural Network 3D Simulation

P —

feature extraction classification

> Lecture 8 will provide more details about parallel & scalable machine & deep learning algorithms and how many-core HPC is used




DISTRIBUTED TRAINING
With Data Parallelism

= The gradients for different batches of data are calculated separately on each node

= But averaged across nodes to apply consistent updates to the model copy in each node

Data Store

MPI_Allreduce

50

1. Ru;:I Data

Training Process
. Averaged node
Model Gradients P i
Training Process
' node
Averaged
Model Gradients Gradiaias
Training Process
L node
" Averaged
e ot Gradients
2. (:umpl;t! Model 3. Avetagr.: Gradients 4. Upﬁe Model

Updates (Gradients)
[17] Horovod
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Deep Learning Application Example — Using HPC (cf. Lecture 1)

0days 00 hours 00 minutes
Sentinel-2 constellation:
summer solstice

Using Convolutional Neural Networks (CNNs)
with hyperspectral remote sensing image data

[22] J. Lange and M. Riedel et al.,
IGARSS Conference, 2018

7
J— [Forest|
7
~ River

1D Max Pooling Fully Connected Softmax Output:
3D Convolution (spectral dimension) el Layers Layer  Probabilities
—_ -— L]
n
& :
71
[ ] u u o —>
R I
. . .
—- " | il 58
H ' = ™ ™ e ——>
™ [ ] [ ] o —>
@ ™ [ ] [ ] o —>
= [ [
- - | |
u

Feature

Representation / Value

Conv. Layer Filters
Conv. Layer Filter size
Dense Layer Neurons

Optimizer
Loss Function
Activation Functions
Training Epochs
Batch Size
Learning Rate
Learning Rate Decay

48, 32, 32
3,3,5), (3,3,5), (3,3,5)
128,128
SGD
mean squared error
ReLU
600
50
1
5x107°

Find Hyperparameters & joint ‘new-old‘ modeling &
transfer learning given rare labeled/annotated data in
science (e.g. 36,000 vs. 14,197,122 images ImageNet)

[23] G. Cavallaro, M. Riedel et al., IGARSS 2019

> Lecture 8 will provide more details about parallel & scalable machine & deep learning algorithms and remote sensing applications

Lecture 1 — High Performance Computing
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HPC Relationship to ‘Big Data’ in Machine & Deep Learning (cf. Lecture 1)

‘small datasets’

manual feature
engineering’
changes the
ordering

High Performance
Computing & Cloud
Computing

Medium Deep Learning Networks

Small Neural Networks

Traditional Learning Models

Model Performance / Accuracy

Random
Forests

Q\}’ ‘% D<; SVMs :m W Computing with R
SRE | i e

oo Statistical

: . 2 scikit-learn Weka  Octave

Dataset Volume

Lecture 1 — High Performance Computing

> ‘Big Data’ [24] www.big-data.tips
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EXAMPLE

Multispectral Remote Sensing Dataset

Image Image per| Scene Annotation Total Spatial
Datasets . . Image sizes | Year Ref.
type class classes type images |resolution (m) g
9]
G. Sumbul et al.
378 to 10 120x120 | 2018
BigEarthNet Satellite MS 217119 43 Multi label 590,326 20 60x60
60 20x20
permanently irrigated land. ][?(mlﬂn—\i%fu‘w ;lgibk: land,
sclerophyllous vegetation, it trees ::m( _er.) .
beaches, duncs, sands, p]amanfmﬁ_l "%gln—fmce\lry
O estuaries, sea and ocean allx_as. u a.mlltmnal
500 woodland/shrub
20
60 permanently irrigated land. .
120 60 vineyards, beaches, dunes, non-irrigated arable land https://www.tensorflow.org/datasets/datasets#bigearthnet
sands, water courses
120 . ) .
10m 20m 60m- | discontinuous urban fabric,

non-irrigated arable land.
land principally occupied
by agriculture,
broad-leaved forest

coniferous forest, mixed
forest, water bodies

[9] G. Sumbul et al. Page 63



RESNET-50
Classifier

= 25.6 millions of trainable parameters
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= |t has established a strong baseline in terms of accuracy

— Representing good trade-off between accuracy, depth and number of parameters

It is very well suitable for parallelization: distributed training
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EXPERIMENTS
At JSC with the JUWELS HPC System

= A partition of the system consists of 56 compute nodes
— With each having four Nvidia V100 GPUs (equipped with 16GB of memory)

Jilich Wizard for European Leadership Science (JUWELS)

"
g

Time per epoch [sec]

,.,, - 24 nodes x 4 GPUs = 96 GPUs
: I P

: Page 65
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TRAINING DEEP NEURAL NETWORKS

Loss minimization is highly non-trivial

= How to ensure to get to a global minima (instead of a local minima)?
— There is no guarantee

= Also, many local minima

® Finding the optimal true minimum is difficult

)5

ow

L A LA

w
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TRAINING DEEP NEURAL NETWORKS
Loss minimization is highly non-trivial
= There is one fundamental problem of machine learning

— The reall/true loss function is hidden

= You always work with the limited training data

— No matter how huge it is
— You are always working with a tiny subset of the real problem

= We compute the empirical loss (the loss on the training data)

= How to estimate the true loss? ,
» j.e., How good or bad the network performs on the data
that the network did not see during the training?

“Visualizing the loss landscape
of neural nets”. Dec 201 7.

© MIT 6.S191: Introduction to Deep Learning Page 71
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TRAINING DEEP NEURAL NETWORKS

Is it possible?

= One would expect that ML would never work (i.e., this kind of learning will just fail)
- E.G., Overfitting, adapting too much to the training data (lookup table procedure - memorize)

= Previous common wisdom: learning in deep architectures not tractable

© MIT 6.S191: Introduction to Deep Learning
introtodeeplearning.com
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TRAINING DEEP NEURAL NETWORKS - KEY IMPROVEMENTS

What are the reason for the boost in performance

= |mproved stochastic gradient descent (SGD)
— Preventing vanishing or exploding gradients over many layers
o Proper random weight initialization
o Suitable transfer functions
o Network architecture modification (e.g, skip connections)

— Update rules with adaptive momentum (Nesterov), adaptive learning rate (stochastic annealing; Adam, RMSProp)

Regularization against overfitting (DropOut, Batch Normalization, decaying weights, sparse activation, etc)

= Huge amounts of labeled data (ImageNet, CoCo, etc), freely available

Data augmentation techniques extending data sets

Parallelization, specialized hardware (e.g, GPU, TPU) based acceleration
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