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RECOMMENDED SOURCES 

 Most of the material of this lecture includes modified contents that are taken from the following sources: 

− CS231n Convolutional Neural Networks for Visual Recognition, Stanford (http://cs231n.github.io/ )

− S191: Introduction to Deep Learning, MIT (http://introtodeeplearning.com/)
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OUTLINE 

 Remote Sensing Backgrounds 

 Pattern Recognition Systems 

 Features Extraction with Shallow Learning and Deep Learning

 Convolutional Neural Networks (CNNs)

 Training Deep Networks with Backpropagation

 Distributed Deep Learning with HPC
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REMOTE SENSING 

 Obtain information about the atmosphere and surface of Earth without needing to be in contact with it 

 Achieved by sensing and recording emitted or reflected energy toward processing, analyzing, and interpreting 
the retrieved information for decision-making 

Remote (without physical contact) Sensing (measurement of information)

[2] The Earth-Atmosphere Energy Balance

The term remote sensing was first used in the
United States in the 1950s by Ms. Evelyn
Pruitt of the U.S. Office of Naval Research

[1] Satellite (1960)

 Measurement of radiation of different
wavelengths reflected or emitted from
distant objects or materials

 They may be categorized by class/type,
substance, and spatial distribution
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ELECTROMAGNETIC (EM) SPECTRUM 

 Continuous set of radiation sorted according to wavelength (or frequency)
− Subdivisions are set for convenience and by traditions within different disciplines

 There is neither a source nor a remote sensing system that “work” over the whole EM spectrum

What is Sensed? 
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ENERGY INTERACTIONS WITH SURFACE FEATURES

 Various fractions of the energy incident on the element are reflected, absorbed, and/or transmitted𝐸ூ 𝜆 = 𝐸ோ 𝜆 + 𝐸஺ 𝜆 + 𝐸் 𝜆

 From the conservation of energy theorem, it can be derived 𝐸ூ 𝜆 = 𝐸ோ 𝜆 + 𝐸் 𝜆 + 𝐸஺ 𝜆𝜌 𝜆 + 𝜏 𝜆 +  𝛼(𝜆) = 1
[4] K. Tempfli et al.

𝜌 𝜆 = ாೃ ఒா಺ ఒ Reflection coefficient 𝜏(𝜆) = ா೅ ఒா಺ ఒ Transmission coefficient 𝛼(𝜆) = ாಲ ఒா಺ ఒ Absorption coefficient
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REFLECTANCE PROPERTIES OF SURFACE  FEATURES

 The reflectance properties of features can be quantified by measuring the portion of incident energy that is reflected

− This is measured as a function of wavelength 

− It is called spectral reflectance

𝜌 𝜆 = ாೝ ఒா೔ ఒ  ∗ 100
 By analyzing the spectral reflectance it is possible 

to discriminate between different land covers

Spectral reflectance 
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RECOGNITION PHASE  

 The result depends on the specification application considered, e.g., 

− Thematic maps of the territory

− Change maps between 2 different dates

− Environmental risk maps

− 3D Topographic maps

 Two main strategies: 
− Not automatic (widespread in the past and still used today)

o With the help of photo interpreters (photointerpretation)

− Automatic recognition techniques 
o E.g., Pattern recognition systems 

Extract information from the image and made available to the end user

Sentinel-2                               Old map                          Updated map

[6] C. Paris et al.  

[7] Satellite Images



CLASSIFICATION TASKS 

 Pixel-wise classification 

 Patch-based classification (with single or multiple land-cover class labels)

Output variable takes a class label 

[9] G. Sumbul et al. [8] P. Helber et al.



PATTERN RECOGNITION

 Pattern: a form, template, composite of features, or model (or, more abstractly, a set of rules)
− Which can be used to make or to generate objects or parts of an object

Classification is a task that falls into the general category of pattern recognition

Completely
Deterministic

E.g., Crystal structure 

Completely
Random

E.g., White noise

Spectral bands, spatial arrangement patterns

[10] Remote Sensing

 Pattern recognition: automatic discovery of patterns in data through the use of tools from

− Statistics, probability, computational geometry, machine (deep) learning, signal processing, and algorithm design

 Use of these patterns to take actions such as classifying the data into different classes
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PATTERN RECOGNITION SYSTEM 

 Pre-processing
− Atmospheric and geometrics corrections, filtering, etc.,

 Feature extraction/selection
− Extraction of information parameters

− Selection of information parameters

 Classification 
− Based on the information parameters previously extracted and selected

 Post processing

Block Scheme 

[11] Sentinel-2 satellite imagery

[12] CORINE Land Cover 

PRE-PROCESSING EXTRACT/SELECT
FEATURES CLASSIFICATIONDATA labelPOST-

PROCESSING

ACQUISTION DECISION
THIS LECTURE

Page 12



CLASSIFICATION PIPELINE

1. Identification of the features that are unique for each class of images 

2. Detection of the presence of these features 

E.g, Compute vision problem

(key features in each category)

 Once it is established what are the features that are unique for each class
− For a new image, if the features of a class are present, then the class can be predicted with high probability 

Two sub-tasks
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ELEMENTS OF IMAGE INTERPRETATION

 Representation of features from an overhead, often unfamiliar, vertical perspective

 Wavelengths outside of the visible portion of the spectrum

 Unfamiliar scales and resolutions

 High temporal resolutions: shift from single image analysis to time-series processing

Computer Vision                                                            Remote Sensing    

The visual interpretation of aerial and space images is a complex process

SAR images: noisy dataHyperspectral images: hundreds of channels

[13] F. Ömrüuzun et al. 
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FEATURE EXTRACTION 

 Both manual and automatic approaches require  
− (1) domain knowledge, (2) definition of the features and (3) detection of the features to classify

 The features are designed for a specific task
− Based on spatial, spectral, textural, morphological content, etc.

− E.g. Enhancing the spatial information (with attribute profiles ) 

 Problems
− Images include brightness values that are under large variation 
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Remote sensing images exist in a variety of conditions (e.g., different seasons)
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DEEP LEARNING AND SHALLOW LEARNING 

 Shallow learning: learning networks that usually have at most one to two layers 
− E.G. Support Vector Machines (SVMs)

 They compute linear or nonlinear functions of the data (often hand-designed features) 

 Deep learning: means a deeper network with many layers of non-linear transformations 
− No universally accepted definition of how many layers constitute a “deep” learner

Can we learn a hierarchy of features directly from the data instead of hand engineering?

Page 16© MIT 6.S191: Introduction to Deep Learning
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MACHINE (DEEP) LEARNING 
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 Machine Learning: a subfield of Artificial Intelligence 
− Machine learning is dealing with algorithms that can improve their functions by being exposed to data

− Studies algorithms that improve their function from data

− Great number of other subfields and methods
o Kernel Machines (Gaussian Processes, Support Vector Machines, …)

o Decision Trees (Random Forests, …)

o and much more ...

 Deep Learning: a subfield of Machine Learning

Prerequisites for Machine Learning

1. Some pattern exits 

2. No exact mathematical formula 

3. Data exists 
− Idea: learning from data

− Challenges: 

o Data is often complex 

o Learning from data require processing time 



DEEP LEARNING 
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 Deep Learning: using a generic, flexible model family
− “Neural” Networks with multiple layers

− Based on stacked, repetitive operations

− Executed by simple, generic units

− With parameters (“weights”) adapted from incoming data

 Deep Neural Networks
− Most models can be cooked down to stacked repetitive operations 

− They are executed by simple units 

− Linear summation + non-linear transfer function

 The units are very simple
 The complexity arise when combining more of them 
 The are many weights (connections) that are adjustable from the data 

(they are not fixed)



FULLY CONNECTED NEURAL NETWORK (FCNN)

 Receives an input a single vector and transforms it through a series of hidden layers
 Each hidden layer is made up of a set of neurons that have learnable weights and biases

− Each neuron receives some inputs, performs a dot product and follows it with a non-linearity
− Each neuron is fully connected to all neurons in the previous layer

− Neurons in a single layer function completely independently and do not share any connections 
 The last fully-connected layer is the “output layer” and in classification settings it represents the class scores

Architecture Overview 

Page 19© MIT 6.S191: Introduction to Deep Learning
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Bias: additional set of weights that require no
input, and this it corresponds to the output of
the network when it has zero input (not tied to
any previous layer)



 Fully connected:
− Connect neuron in hidden layer to all neurons in input layer

− No spatial information 

 FCNN don’t scale well to full images 
− Moreover, when adding several neurons, the parameters grows quickly  

− The fully connectivity is wasteful, and the huge number of parameters can lead to overfitting

HOW TO USE SPATIAL STRUCTURE IN THE INPUT
To inform the architecture of the network?
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Input:
 2D image is vectorized

𝑥ଵ 𝑥ଶ 𝑥ଷ𝑥ସ 𝑥ହ 𝑥଺𝑥଻ 𝑥଼ 𝑥ଽ

[14] Convolutional Neural Networks



INPUT SPATIAL STRUCTURES 

 Need of an architecture that makes the explicit assumption that the inputs are images

 Idea 
− Connect patches of input to neurons in hidden layer

− Neuron connected to region of input

− Only “sees” these values

− Reduce the number of weights
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?

Exploit the neighboring relationship  
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APPLY FILTERS TO EXTRACT FEATURES 

1. Apply a set of weights – a filter – to extract local features
2. Use multiple filters (kernels) to extract different features
3. Spatially share parameters of each filter
 Features that matter in one part of the input should matter elsewhere

With Convolution 
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REVIEW THE CONVOLUTION 

 For classification it would not be possible to simply compare the two matrices to check is they are equal 
 The classier needs to classify an X as an X even if its shifted, shrunk, rotated, deformed, etc..

 Effective approach: compare the images piece by piece 
 Search the important parts that define an X as an X (the meaningful features)

Example of classification task: classify X from a set of binary images 
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REVIEW THE CONVOLUTION 

 Think about each feature as small patches 
 Use filters of weights for the convolutional operations 

− To detect the corresponding features 

 Convolution preserves the spatial relationship between pixels 
− By learning image features in small squares of the input

Filters to detect X features 
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Perfect correspondence between the 
filter and the region of the input that is 
convolved © MIT 6.S191: Introduction to Deep Learning

introtodeeplearning.com



REVIEW THE CONVOLUTION 

 Feature map: reflects where in the input was activated by the applied filter 

 E.g., Slide the 3x3 filter over the input image, 

element-wise multiply, and add the outputs

 Different filters can be used to produce different filter maps
− E.g., With 3 different convolutional filters (i.e., different weights) 

Producing feature maps

Page 25© MIT 6.S191: Introduction to Deep Learning
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ACTIVATIONS (FEATURE MAPS)

 The initial volume stores the raw image pixels 
 Volume of activations shown as a column (i.e., lay out each volume’s slices in rows)
 The last volume holds the scores for each class 

With CNN architectures 
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CONVOLUTIONAL NEURAL NETWORKS

 Sequence of layers that transforms one volume of activations to another through a differentiable function
 Three main types of layers to build the architecture:

− Convolutional Layer
o Apply filters with learned weights to generate feature maps

o Introduce non-linearity with an activation function (e.g., ReLU) 

− Pooling Layer
o Downsampling operation on each feature map

− Fully-Connected Layer
o Perform classification

Three main operations 
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 Train the model with the training set

 Learn the weights of filters in convolutional layers (i.e., feature maps)

© MIT 6.S191: Introduction to Deep Learning
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IMPORTANCE OF ACTIVATION FUNCTIONS 

 E.g., How to build a Neural Network to distinguish green vs red points?

Introduce non-linearities into the network

Page 28© MIT 6.S191: Introduction to Deep Learning
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INTRODUCING NON-LINEARITY 

 The activation function is applied after every convolution operation 
 Each activation function (or non-linearity) 

− Takes a single number 

− And performs a certain fixed mathematical operation on it

 There are several activation functions you may encounter in practice

Input images are highly non linear
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RECTIFIED LINEAR UNIT 

 Compared to the sigmoid/tanh functions
− (+) It was found to greatly accelerate the convergence of Stochastic Gradient Descent (SGD) 
− (+) Simply thresholding a matrix of activations at zero (no expensive operations, e.g., exponentials)

Has become very popular in the last few years
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[16] A. Krizhevsky et al.

[15] CS231n 
© MIT 6.S191: Introduction to Deep Learning
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POOLING LAYER

 It is common to periodically insert a Pooling layer in-between successive Convolutional layers 
 Its function is to progressively reduce the spatial size of the representation 

− To reduce the amount of parameters and computation in the network

− Hence to also control overfitting
 Introduces zero parameters since it computes a fixed function of the input

Reduce the dimensionality and preserve spatial invariance 
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CNN FOR CLASSIFICATION

1. Learn features in input image through convolution
2. Introduce non-linearity through activation function (real-world data is non-linear!)
3. Reduce dimensionality and preserve spatial invariance with pooling

Feature learning pipeline 
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CNN FOR CLASSIFICATION

 Convolutional and Pooling layers output high-level features of input
 Fully connected layer uses these features for classifying input image
 Express output as probability of image belonging to a particular class

Class Probabilities 
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CNN FOR CLASSIFICATION

 Learn weights for convolutional filters and fully connected layers

Training with Backpropagation 
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MACHINE LEARNING: FORMS OF LEARNING 

 Supervised learning: correct responses 𝒀 for input data 𝑿 are given 
− 𝒀 “teacher” signal, correct “outcomes”, “labels” for the data 𝑿
− Usually: estimate unknown 𝑓: 𝑋 → Y, 𝒀 = 𝑓(𝑿; 𝑾)
− Classic frameworks: classification, regression

 Unsupervised learning: only data X are given 
− Find “hidden” structure, patterns in the data;

− In general, estimate unknown probability density p(𝑿)
− Broad class of latent (“hidden”) variable models

− Classical frameworks: clustering, dimensionality reduction

 Reinforcement learning: data 𝑿, including (sparse) reward r(𝑿)
− Discover actions 𝒂 that minimize total future reward 𝑅
− Active learning: experience 𝑿 depends on choice of 𝒂
− Estimate 𝑝 𝒂 𝑿 , 𝑝 𝑟 𝑿 , 𝑉 𝑿 , 𝑄 𝑿, 𝒂 - future rewards predictors 

For all holds: Define a loss ℒ 𝐖 , optimize by tuning parameters W Page 35



DEEP LEARNING

 Learning as optimization problem
− Defining loss ℒ(cost) function sets up optimization problem

− Optimization can be done in various ways

− Deep Neural Networks: gradient descent methods dominate

− Automatic differentiation

 𝑓 𝑿; 𝑾 , P(𝐘|𝐗, 𝐖): unknown 
− -> Learn from data!

 Define loss ℒ(𝑓 𝑿; 𝑾 , 𝑌)
 Minimize loss: adapt 𝑾 from the data
 Data-driven Optimization

− Using gradient descent 

Learning as an Optimization Procedure  
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EXAMPLE PROBLEM 

 Train a neural network to determine if you will pass this class 
 Simple two feature model

− 𝑥ଵ= number of lectures you attend

− 𝑥ଶ= hours spent on the final project 

Will I pass this class? 
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Annotated dataset
Previous students from previous years that

© MIT 6.S191: Introduction to Deep Learning
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EXAMPLE PROBLEM 

 If you want to know if you are going to pass the class, you can plot yourself in the features space
− E.g., 4 lectures attended, and 5 hours spent on the final project 

− Are you going to pass or fail? 

 How to build a neural network to learn this by looking at the previous students (annotated dataset)?

Will I pass this class? 
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EXAMPLE PROBLEM 

 E.g., 2 inputs fed into a single layer neural network with 3 hidden units 
 The final output probability that you will pass the exam is 0.1 (10%)
 This outcome contradicts the expectations when looking at the feature space 
 Why the neural network provide such a bad prediction?  
 The network was not trained 

− At this moment these are just meaningless input numbers 

 Need to teach the network how to get the right answer 

Will I pass this class? 
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QUANTIFYING LOSS

 The loss of the network: 
− Is what defines when the network makes the wrong prediction 
− Measures the cost incurred from incorrect predictions

How to tell the network when it makes a mistake 
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PREDICTED              ACTUAL

ℒ(𝑓 𝑥 ௜ ; 𝑾 , 𝑦 ௜ )
© MIT 6.S191: Introduction to Deep Learning
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 It takes as input the predicted output and the groundtruth actual output 
 If they are close, the loss is going to be low  



𝐽 𝑾 = 1𝑛 ෍ ℒ(𝑓 𝑥 ௜ ; 𝑾 , 𝑦(௜))௡
௜ିଵ

EMPIRICAL LOSS

 Input data: from many students 
 How the model perform across the entire population of students? 
 The empirical loss measures the total loss over our entire dataset

− Compute the loss of each of the student 

− And compute the mean 

 When training the network we don’t want to minimize the loss for a particular student but we want to minimize 
the loss across the entire dataset 
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Also known as:
 Objective function
 Cost function
 Empirical Risk © MIT 6.S191: Introduction to Deep Learning
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BINARY CROSS ENTROPY LOSS 

 This is a binary classification problem (soft max can be used)
 Cross entropy loss can be used with models that output a probability between 0 and 1

− Compute the loss between 0 and 1 outputs and the true labels 
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𝐽 𝑾 = 1𝑛 ෍ 𝑦(௜) log(𝑓 𝑥 ௜ ; 𝑾 ) + 1 − 𝑦 ௜ log (1 − 𝑓 𝑥 ௜ ; 𝑾 )௡
௜ିଵ

ACTUAL                                PREDICTED                                               ACTUAL                         PREDICTED 
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LOSS OPTIMIZATION 

𝑾∗ = arg min 1𝑛 ෍ ℒ(𝑓 𝑥 ௜ ; 𝑾 , 𝑦(௜))௡
௜ିଵ   

𝑾∗= arg min J(𝐖) 
𝐖  ={𝐖 ଴ , 𝐖(ଵ), …}  Set of all the weights in the network (first layer, second layer, etc..)

Compute this optimization problem over all these weights 
Page 43

𝑾
𝑾 © MIT 6.S191: Introduction to Deep Learning

introtodeeplearning.com

 How to use the loss to iteratively update and the train the network over time given some data? 

 Objective: find the network weights that minimize the empirical loss 



LOSS OPTIMIZATION

 Function that takes as input the weights and gives the loss
 The loss is a function of the network weights 
 Find the lowest point in this landscape that correspond to the minimum loss 

− Find the correspondent weights 

What a loss function looks like
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𝑾∗= arg min J(𝐖)𝑾
Loss value

© MIT 6.S191: Introduction to Deep Learning
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LOSS OPTIMIZATION

 Randomly pick an initial (𝑤଴, 𝑤ଵ)

Page 45© MIT 6.S191: Introduction to Deep Learning
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LOSS OPTIMIZATION

 Compute gradient at this local point   డ௃ 𝑾డ𝑾
− In this landscape the gradient tells us the direction of the maximum (steepest) ascent

Page 46© MIT 6.S191: Introduction to Deep Learning
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LOSS OPTIMIZATION

 Reverse the gradient and take a small step in opposite direction 
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GRADIENT DESCENT 

 Repeat until convergence 
− The gradient is computed over and over 
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GRADIENT DESCENT 

This procedure can be summarizing with the following algorithm  

1. Initialize weights randomly ~𝒩(0, 𝜎ଶ)
2. Loop until convergence

3. Compute gradient    డ௃ 𝑾డ𝑾 (it explains how the loss changes with respect to each of the weights) 

4. Update weights    𝑊 ≔ 𝑊 − 𝜂 డ௃ 𝑾డௐ (in the opposite direction of the gradient )

5. Return weights  

Use a small amount (the step) i.e., the learning rate
I.e., How much do you trust the computed gradient 

Algorithm 
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 How to compute it? This is a crucial
part of deep learning and neural
networks in general

 This is what all matters when
optimizing the network

 It is also the most computational part



LOSS FUNCTIONS

 Take the weights and subtract, move via the negative gradient 

 How large is the step we take at each iteration 
− In practice it is very difficult to set this parameter 

− It is very important in order to avoid local minima 

Optimization through gradient descent
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𝑊 ≔ 𝑊 − 𝜂 𝜕ℒ 𝑊𝜕𝑊
How to set the learning rate?

Small learning rate converges slowly 
and gets stuck in false local minima

Large learning rates overshoot, 
become unstable and diverge

Stable learning rates converge 
smoothly and avoid local minima



COMPUTING GRADIENTS: BACKPROPAGATION

 Computing the gradient of the loss with the respect to 𝒘𝟐 correspond to tells us how much a small change in 𝒘𝟐 affects our loss 
 How does a small change in one weight (e.g., 𝒘𝟐) affect the final loss 𝐽 𝑾 ?

Example with a simple network, one input, one hidden unit and one output 
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COMPUTING GRADIENTS: BACKPROPAGATION

 If it is written as a derivative
 Start by computing this by simply expanding this derivative by using the chain rule

 Backward from the loss trough the output 
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డ௃ 𝑾డ௪మ Use the chain rule

© MIT 6.S191: Introduction to Deep Learning
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డ௃ 𝑾డ௪మ = డ௃ 𝑾డ௬ො * డ௬ොడ௪మ



COMPUTING GRADIENTS: BACKPROPAGATION

 And we compute for 𝑤ଵ it looks like 

 Back propagate the gradients further back to the network

 Repeat this for every weight in the network 
− Using gradients from later layers to backpropagate those errors back into the original input 

 Do this for all the weights and this gives us the gradient for each weight 
Page 53

డ௃ 𝑾డ௪భ = డ௃ 𝑾డ௬ො * డ௬ොడ௪మ
apply chain rule apply chain rule

© MIT 6.S191: Introduction to Deep Learning
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డ௃ 𝑾డ௪భ = డ௃ 𝑾డ௬ො * డ௬ොడ௭భ ∗ డ௭భడ௪భ



BATCH GRADIENT DESCENT (BGD) 
Gradient is very computational to compute 
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 When it is computed for all the samples within a given training dataset 

1. Initialize weights randomly ~𝒩(0, 𝜎ଶ)
2. Loop until convergence

3. Compute gradient    డ௃(𝑾)డ𝑾
4. Update weights    𝑊 ≔ 𝑊 − 𝜂 డℒ ௑;ௐ;௒డௐ
5. Return weights  



STOCHASTIC GRADIENT DESCENT (SGD)

 Strategy
− Pick a single point 

− Compute the gradient with respect to that single point and use it to update the weights 

 We might go in a direction/step that is not representative for the entire dataset 
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1. Initialize weights randomly ~𝒩(0, 𝜎ଶ)
2. Loop until convergence
3. Pick single data point 𝒊
4. Compute gradient    డ௃೔(𝑾)డ𝑾
5. Update weights    𝑊 ≔ 𝑊 − 𝜂 డℒ ௑;ௐ;௒డௐ
6. Return weights  

Easy to compute but
very noisy (stochastic)!



MINI-BATCH GRADIENT DESCENT
Batching the data into mini-batches 
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 Tradeoff between BGD and SGD
 Gives an estimate of the true gradient by averaging the gradient from each of the B points
 Minibatch sampling: implemented by shuffling the dataset S, and processing that permutation by obtaining 

contiguous segments of size B from it

1. Initialize weights randomly ~𝒩(0, 𝜎ଶ)
2. Loop until convergence
3. Pick batch of B data points 

4. Compute gradient    డ௃೔(𝑾)డ𝑾 = 𝟏𝑩 ∑ డ௃ೖ(𝑾)డ𝑾஻௞ୀଵ
5. Update weights    𝑊 ≔ 𝑊 − 𝜂 డℒ ௑;ௐ;௒డௐ
6. Return weights  

Fast to compute and a much better
estimate of the true gradient!



DISTRIBUTED TRAINING

 Mini-Batch Gradient Descent:

− More accurate estimation of gradient and smoother convergence

− Allows for larger learning rates (i.e., trust more the gradient , training faster)

− Can parallelize computation and achieve significant speed increases

Send batches across the GPUs, compute their gradient simultaneously and aggregate them back 

With Data Parallelism 
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GPU Acceleration (cf. Lecture 1)

 GPU accelerator architecture example 
(e.g. NVIDIA card)
 GPUs can have 128 cores on one single GPU chip
 Each core can work with eight threads of instructions
 GPU is able to concurrently execute 128 * 8 = 1024 threads
 Interaction and thus major (bandwidth) 

bottleneck between CPU and GPU 
is via memory interactions

 E.g. applications that use matrix –
vector/matrix multiplication 
(e.g. deep learning algorithms)

[18] Distributed & Cloud Computing Book

 CPU acceleration means that GPUs accelerate computing due to a massive parallelism 
with thousands of threads compared to only a few threads used by conventional CPUs

 GPUs are designed to compute large numbers of floating point operations in parallel

 Lecture 10 will introduce the programming of accelerators with different approaches and their key benefits for applications



DEEP Learning takes advantage of Many-Core Technologies (cf. Lecture 1)

[20] Neural Network 3D Simulation

[21] A. Rosebrock

 Innovation via specific layers and architecture types

 Lecture 8 will provide more details about parallel & scalable machine & deep learning algorithms and how many-core HPC is used



DISTRIBUTED TRAINING

 The gradients for different batches of data are calculated separately on each node 
 But averaged across nodes to apply consistent updates to the model copy in each node

With Data Parallelism 
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MPI_Allreduce

node 

node 

node 

[17] Horovod



Deep Learning Application Example – Using HPC (cf. Lecture 1)

[22] J. Lange and M. Riedel et al., 
IGARSS Conference, 2018

[23] G. Cavallaro, M. Riedel et al., IGARSS 2019

 Using Convolutional Neural Networks (CNNs)
with hyperspectral remote sensing image data

 Lecture 8 will provide more details about parallel & scalable machine & deep learning algorithms and remote sensing applications

 Find Hyperparameters & joint ‘new-old‘ modeling & 
transfer learning given rare labeled/annotated data in 
science (e.g. 36,000 vs. 14,197,122 images ImageNet)
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HPC Relationship to ‘Big Data‘ in Machine & Deep Learning (cf. Lecture 1)

SVMs
Random
Forests

M
od

el
 P

er
fo

rm
an

ce
 / 

Ac
cu

ra
cy

Dataset Volume

Large Deep Learning Networks

Medium Deep Learning Networks

Small Neural Networks

Traditional Learning Models

 ‘Big Data‘

‘small datasets‘

manual feature
engineering‘
changes the

ordering

MatLab
Statistical 
Computing with R

Training
Time

OctaveWekascikit-learn

High Performance 
Computing & Cloud 

Computing

[24] www.big-data.tips

JURECA
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EXAMPLE 
Multispectral Remote Sensing Dataset
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Datasets Image
type

Image per
class

Scene 
classes

Annotation 
type

Total 
images

Spatial 
resolution (m) Image sizes Year Ref.

BigEarthNet Satellite MS 328 to 
217119 43 Multi label 590,326

10
20
60

120x120
60x60
20x20

2018

10m                   20m                60m

https://www.tensorflow.org/datasets/datasets#bigearthnet

[9] 
G. Sumbul et al. 

[9] G. Sumbul et al. 



RESNET-50

 25.6 millions of trainable parameters 

 It has established a strong baseline in terms of accuracy
− Representing good trade-off between accuracy, depth and number of parameters

 It is very well suitable for parallelization: distributed training

Classifier 
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EXPERIMENTS

 A partition of the system consists of 56 compute nodes 
− With each having four Nvidia V100 GPUs (equipped with 16GB of memory)

At JSC with the JUWELS HPC System 
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Jülich Wizard for European Leadership Science (JUWELS) 

Time per epoch [sec]

24 nodes x 4 GPUs = 96 GPUs
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TRAINING DEEP NEURAL NETWORKS

 How to ensure to get to a global minima (instead of a local minima)?
− There is no guarantee 

 Also, many local minima 
 Finding the optimal true minimum is difficult 

Loss minimization is highly non-trivial
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TRAINING DEEP NEURAL NETWORKS

 There is one fundamental problem of machine learning 
− The real/true loss function is hidden 

 You always work with the limited training data
− No matter how huge it is 

− You are always working with a tiny subset of the real problem 

 We compute the empirical loss (the loss on the training data) 

Loss minimization is highly non-trivial

Page 71

 How to estimate the true loss? , 
 i.e., How good or bad the network performs on the data 

that the network did not see during the training?

© MIT 6.S191: Introduction to Deep Learning
introtodeeplearning.com



TRAINING DEEP NEURAL NETWORKS

 One would expect that ML would never work (i.e., this kind of learning will just fail)
− E.G., Overfitting,  adapting too much to the training data (lookup table procedure - memorize) 

 Previous common wisdom: learning in deep architectures not tractable

Is it possible? 

Page 72© MIT 6.S191: Introduction to Deep Learning
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TRAINING DEEP NEURAL NETWORKS – KEY IMPROVEMENTS 

 Improved stochastic gradient descent (SGD)
− Preventing vanishing or exploding gradients over many layers

o Proper random weight initialization
o Suitable transfer functions
o Network architecture modification (e.g, skip connections)

− Update rules with adaptive momentum (Nesterov), adaptive learning rate (stochastic annealing; Adam, RMSProp)

 Regularization against overfitting (DropOut, Batch Normalization, decaying weights, sparse activation, etc)

 Huge amounts of labeled data (ImageNet, CoCo, etc), freely available

 Data augmentation techniques extending data sets

 Parallelization, specialized hardware (e.g, GPU, TPU) based acceleration

What are the reason for the boost in performance
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