
High Performance Computing
ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

September 23, 2019
Room V02-156

Parallel Algorithms & Data Structures

LECTURE 5 @MorrisRiedel@MorrisRiedel@Morris Riedel

Review of Lecture 4 – Advanced MPI Techniques

Lecture 5 – Parallel Algorithms & Data Structures 2 / 50

 Parallel & Scalable I/O Methods Selected Options for MPI Communications
(blocking vs.
non-blocking

communication)

MPI_Comm_Split()
to create sub-group

communicator

MPI_Cart_create()
to create cartesian

communicator

(how MPI communication
is affected by the

hardware network
impacts application

peformance)
Source:
IBM

modified from [5] Parallel I/O[1] Metrics tour [2] LLNL MPI Tutorial [3] Introduction to Groups & Communicators [4] HPC Best Practices @ IO Workshop

[23] German MPI Lecture

Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

Lecture 5 – Parallel Algorithms & Data Structures

11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
3 / 50

Outline

 Selected Parallel Algorithms
 Vector Addition in MPI using MPI Collectives
 Matrix – Vector Multiplication in MPI using MPI Collectives
 Fast Fourier Transform (FFT) Library Tool using MPI Communicators
 Using Non-Blocking Communication in Simulation Sciences
 Advanced Parallel & Scalable Algorithm Examples in Context

 Selected Data Structures
 Tree-based Data Structures & Particle Interaction Examples
 Basic MPI Datatypes and Arrays & Multi-dimensional Datasets
 Derived MPI Datatypes & Small Examples
 Relationships to Parallel IO & Hierarchical Data Format (HDF)
 Data Science example using Parallel I/O for ‘Big Data‘ Clustering

Lecture 5 – Parallel Algorithms & Data Structures 4 / 50

 Promises from previous lecture(s):
 Lecture 4: Lecture 5 offers more details

on using blocking & non-blocking MPI
communication in simulations and data
science applications

 Lecture 4: Lecture 5 offers more details
on using Parallel I/O and portable data
formats in various simulation sciences
& data science applications

Selected Learning Outcomes

 Students understand…
 Latest developments in parallel processing & high performance computing (HPC)
 How to create and use high-performance clusters
 What are scalable networks & data-intensive workloads
 The importance of domain decomposition
 Complex aspects of parallel programming
 HPC environment tools that support programming

or analyze behaviour
 Different abstractions of parallel computing on various levels
 Foundations and approaches of scientific domain-

specific applications

 Students are able to …
 Programm and use HPC programming paradigms
 Take advantage of innovative scientific computing simulations & technology
 Work with technologies and tools to handle parallelism complexity

Lecture 5 – Parallel Algorithms & Data Structures 5 / 50

Selected Parallel Algorithms

Lecture 5 – Parallel Algorithms & Data Structures 6 / 50

Distributed-Memory Computers – Revisited (cf. Lecture 1)

 Features
 Processors communicate via Network Interfaces (NI)
 NI mediates the connection to a Communication network
 This setup is rarely used  a programming model view today

 A distributed-memory parallel computer establishes a ‘system view’
where no process can access another process’ memory directly

dominant
programming model

Message Passing
Interface (MPI)

[12] Modified from
Caterham F1 team

[13] Introduction to High Performance Computing
for Scientists and Engineers

time t

time t

Lecture 5 – Parallel Algorithms & Data Structures 7 / 50

 MPI Parallel Programming Basics

#include <stdio.h>

#include <mpi.h>

int main(int argc, char** argv)

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello World, I am %d out of %d\n",
rank, size);

MPI_Finalize();

return 0;

}

Parallel Programming with MPI & Basic Building Blocks (cf. Lecture 2)

 Message Passing Interface (MPI) Concepts

[2] LLNL MPI Tutorial

hello.c

C
using a C compiler

Sc
he

du
le

r

using a job script

MPI
Point

to
Point

Communication

MPI
Collective

Communication

Lecture 5 – Parallel Algorithms & Data Structures 8 / 50

Formula Race Car Design & Room Heat Dissipation – Revisited (cf. Lecture 3)

 Pro: Network communication is relatively hidden and supported
 Contra: Programming with MPI still requires using ‘parallelization methods’
 Not easy: Write ‘technical code’ well integrated in ‘problem-domain code’

 Example: Race Car Simulation &
Heat dissipation in a Room
 Apply a good parallelization method

(e.g. domain decomposition)
 Write manually good MPI code for

(technical) communication
between processors
(e.g. across 1024 cores)

 Integrate well technical code
with problem-domain code
(e.g. computational fluid dynamics & airflow)

[8] Introduction to High Performance Computing
for Scientists and Engineers

time t

time t

[6] Modified from
Caterham F1 team

Lecture 5 – Parallel Algorithms & Data Structures 9 / 50

Collective Functions: Scatter (one-to-many) – Parallel Algorithm Example

P

M

P

M

P

M

P

M

DATA: 30
DATA: 20
DATA: 10

NEW: 10

DATA: 80

DATA: 19DATA: 06

NEW: 20
NEW: 30

 Scatter distributes
different data to
many or even all
other processors

P1 P2 P3 P4 P5

Lecture 5 – Parallel Algorithms & Data Structures 10 / 50

Z = X+Y

Collective Functions: Gather (many-to-one) – Parallel Algorithm Example

P

M

P

M

P

M

P

M

DATA: 17 DATA: 80

DATA: 19DATA: 06

NEW: 80
NEW: 19
NEW: 06

 Gather collects data
from many or even
all other processors
to one specific
processor

P1 P2 P3 P4 P5

Lecture 5 – Parallel Algorithms & Data Structures 11 / 50

Z = X+Y

Vector Addition in MPI using MPI Collectives

#include <mpi.h>

#define CHUNK = 1 /* simple example */

int main(int argc, char **argv) {

int rank, size, n, i;

double x[3], y[3], z[3];

double xpart[CHUNK], ypart[CHUNK], zpart[CHUNK];

n = atoi(argv[1]); /* Get input size */

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

/* ...x,y,buff preparations with real values for vectors, e.g. via rank 0 ... */

MPI_Scatter(x,CHUNK,MPI_DOUBLE,xpart,CHUNK,MPI_DOUBLE,0,MPI_COMM_WORLD);

MPI_Scatter(y,CHUNK,MPI_DOUBLE,ypart,CHUNK,MPI_DOUBLE,0,MPI_COMM_WORLD);

for (i=0; i<CHUNK; i++)

zpart[i] = xpart[i] + ypart[i];

/* Collect the result */

MPI_Gather(zpart,CHUNK,MPI_DOUBLE,z,CHUNK,MPI_DOUBLE,0,MPI_COMM_WORLD);

MPI_Finalize();

return 0;

}

Z = X+Y

‘simplified
demo code’

 Scatter distributes
different data (x,y) to
many or even all
other processors in
the communicator

 Gather collects data
from many or even all
other processors to
one specific
processor in the
communicator

Lecture 5 – Parallel Algorithms & Data Structures 12 / 50

Collective Functions: Reduce (many-to-one) – Parallel Algorithm Example

 Reduce combines
collection with
computation based on
data from many or even
all other processors

 Usage of reduce
includes finding a
global minimum or
maximum, sum, or
product of the different
data located
at different processors

P1 P2 P3 P4 P5

P

M

P

M

P

M

P

M

DATA: 17 DATA: 80

DATA: 19DATA: 06

NEW: 122

+
+

+

+

global sum
as example+

Lecture 5 – Parallel Algorithms & Data Structures 13 / 50

Matrix-Vector Multiplication in MPI using MPI Collectives – Required Variables

[14] Parallel Algorithms

#include <stdio.h>

#include <mpi.h>

#define NCOLS = 4 /* matrix columnwise domain decomposition */

int main(int argc, char **argv) {

int i,j,k,l, rank, size;

float A[NCOLS];

float Apart[NCOLS];

float Bpart[NCOLS];

float C[NCOLS];

float A_exact[NCOLS];

float B[NCOLS][NCOLS];

float Cpart[1];

root = 0;

/* preparing MPI environment and initalization of matrix */

...

Lecture 5 – Parallel Algorithms & Data Structures 14 / 50

‘simplified
demo code’

Matrix-Vector Multiplication in MPI using MPI Collectives – MPI Setup

[14] Parallel Algorithms

#include <stdio.h>

#include <mpi.h>

#define NCOLS = 4 /* matrix columnwise domain decomposition */

int main(int argc, char **argv) {

...

/* required variables are defined */

...

/* preparing MPI environment and initalization of matrix */

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

if (rank = 0) { /* initialize matrix B */

B[0][0] = 1; B[0][1] = 2; B[0][2] = 3; B[0][3] = 4; B[1][0] = 4; B[1][1] = -5; B[1][2] = 6;

B[1][3] = 4; B[2][0] = 7; B[2][1] = 8; B[2][2] = 9; B[2][3] = 2; B[3][0] = 3; B[3][1] = -1;

B[3][2] = 5; B[3][3] = 0;

/* initialize vector C */

C[0] = 1; C[1] = -4; C[2] = 7; C[3] = 3;

} /* Program continues with parallel calculations using collectives */

...

Lecture 5 – Parallel Algorithms & Data Structures 15 / 50

‘simplified
demo code’

Matrix-Vector Multiplication in MPI using MPI Collectives – Scatter Data

[14] Parallel Algorithms

#include <stdio.h>

#include <mpi.h>

#define NCOLS = 4 /* matrix columnwise domain decomposition */

int main(int argc, char **argv) { ...

/* Program continues with parallel calculations using collectives */

/* Put up a barrier until I/O is complete */

MPI_Barrier(MPI_COMM_WORLD);

/* Scatter matrix B */

MPI_Scatter(B,NCOLS,MPI_FLOAT,Bpart,NCOLS,MPI_FLOAT,0,MPI_COMM_WORLD);

/* Scatter vector C */

MPI_Scatter(C,1,MPI_FLOAT,Cpart,1,MPI_FLOAT, 0,MPI_COMM_WORLD);

/* Do the vector-scalar multiplication */

for(j=0; j < NCOLS; j++)

Apart[j] = Cpart[0] * Bpart[j];

/* Reduce to matrix A */

MPI_Reduce(Apart,A,NCOLS,MPI_FLOAT,MPI_SUM, 0,MPI_COMM_WORLD);

MPI_Finalize();

return 0;

}

Lecture 5 – Parallel Algorithms & Data Structures 16 / 50

 Scatter distributes different data (x,y) to many or
even all other processors in the communicator

 Each processor has a column of matrix B (named
as Bpart)

 Each processor has an element of column vector
C (named Cpart)‘simplified

demo code’

 Barrier enables a synchronization among all
processors and blocks until all processors reach
this line of code

Matrix-Vector Multiplication in MPI using MPI Collectives – Reduce Results

[14] Parallel Algorithms

#include <stdio.h>

#include <mpi.h>

#define NCOLS = 4 /* matrix columnwise domain decomposition */

int main(int argc, char **argv) { ...

/* Program continues with parallel calculations using collectives */

/* Put up a barrier until I/O is complete */

MPI_Barrier(MPI_COMM_WORLD);

/* Scatter matrix B */

MPI_Scatter(B,NCOLS,MPI_FLOAT,Bpart,NCOLS,MPI_FLOAT,0,MPI_COMM_WORLD);

/* Scatter vector C */

MPI_Scatter(C,1,MPI_FLOAT,Cpart,1,MPI_FLOAT, 0,MPI_COMM_WORLD);

/* Do the vector-scalar multiplication */

for(j=0; j < NCOLS; j++)

Apart[j] = Cpart[0] * Bpart[j];

/* Reduce to matrix A */

MPI_Reduce(Apart,A,NCOLS,MPI_FLOAT,MPI_SUM, 0,MPI_COMM_WORLD);

MPI_Finalize();

return 0;

}

Lecture 5 – Parallel Algorithms & Data Structures 17 / 50

 Reduce combines collection with computation based on
data from many or even all other processors

 Usage of reduce includes finding a global minimum or
maximum, sum, or product of the different data located
at different processors

 Each processor has a part of the result vector A (named
Apart) and is reduced on rank 0 as sum‘simplified

demo code’

 Each processor performs an independent vector-scalar
multipplication (based on their Bpart and Cpart contents)

Fast Fourier Transform (FFT) – Algorithm & Parallel Library Applications

 Example Applications
 Digital signal processing and solving Partial Differential Equations (PDE)
 Algorithms for quick multiplication of large integers
 Fourier series  study of periodic phenomena…

 Discrete Fourier Transform (DFT) – O (N²)
 Obtained by decomposing a sequence of values into components

of different frequencies (… analysis of non-periodic phenomena…)
 Computing it directly from the mathematical

definition is often too slow to be practical

 Fast Fourier Transform (FFT) – O (N log N)
 FFT is a way to compute the DFT and its inverse, but more quickly

 Tool Fast Fourier Transform in the West (FFTW)
 Multi-threaded C subroutine library with fortran interface (free software)
 FFTW versions include parallel transforms (shared & distributed memory)

Lecture 5 – Parallel Algorithms & Data Structures 18 / 50

[16] FFTW Manual

FFTW Library Tool – Parallel Algorithm with MPI Example

#include <fftw3-mpi.h>

int main(int argc, char **argv) {

const ptrdiff_t N0 = ..., N1 = ...;

fftw_plan plan;

fftw_complex *data;

ptrdiff_t alloc_local, local_n0, local_0_start, i, j;

MPI_Init(&argc, &argv);

fftw_mpi_init();

/* get local data size and allocate */

alloc_local = fftw_mpi_local_size_2d (N0, N1, MPI_COMM_WORLD, &local_n0, &local_0_start);

data = fftw_alloc_complex(alloc_local);

/* create plan for in-place forward DFT */

plan = fftw_mpi_plan_dft_2d(N0, N1, data, data, MPI_COMM_WORLD, FFTW_FORWARD, FFTW_ESTIMATE);

/* initialize data to some function my_function(x,y) */

for (i = 0; i < local_n0; ++i)

for (j = 0; j < N1; ++j)

data[i*N1 + j] = my_function(local_0_start + i, j);

/* compute transforms, in-place, as many times as desired */

fftw_execute(plan);

fftw_destroy_plan(plan);

MPI_Finalize();

return 0; }

Lecture 5 – Parallel Algorithms & Data Structures 19 / 50

 Does not allocate the entire 2 dimensional array
on each process, instead function
fftw_mpi_local_size_2d finds out what portion of
the array resides on each processor and this is
used to know how much space to allocate

 1d block distribution of the data (cf. Lecture 2),
distributed along the first dimension; e.g.
100 × 200 complex DFT, distributed over 4
processes: 25 × 200 slices / process of the data,
0 : 0 - 24, 1: 25 – 49 ,
2 : 50 – 74, 3 : 75 – 99

 Communicator MPI_COMM_WORLD indicates
here which processes will participate in the
transform

 Using a library tool like here for the Fast Fourier
Transform (FFT) could mean that MPI messages
are mostly abstracted away and only
communication elements remain

‘simplified
demo code’

[16] FFTW Manual

Collective Functions : Broadcast (one-to-many) – Parallel Algorithm Example

P

M

P

M

P

M

P

M

DATA: 17

DATA: 06 DATA: 19

DATA: 80

NEW: 17

NEW: 17NEW: 17  Broadcast
distributes the
same data to many
or even all other
processors

P1 P2 P3 P4 P5

Lecture 5 – Parallel Algorithms & Data Structures 20 / 50

Computational Steering of (Iterative) Parallel Algorithms using MPI

 Particle Simulations using PEPC library (see above)
 E.g. research star cluster dynamics in astrophysics or particle acceleration simulations via laser pulses
 E.g. Iterations over time using nbody6++ parallel algorithm
 Steering: changing parameters during the run-time of simulation [17] M. Riedel et al.,

computational steering, 2007

change
parameters
interactively

visualize
status

Lecture 5 – Parallel Algorithms & Data Structures 21 / 50

Performance Analysis is a Key Field in HPC – Revisited

 Analysis is typically performed using (automated) software tools
 Measure and analyze the runtime behaviour of parallel programs
 Identifies potential performance bottlenecks
 Offer performance optimization hints and views of the location in time
 Guides exploring causes of bottlenecks in communication/synchronization

[21] SCALASCA Performance Tool

 Lecture 9 will give details on how to measure performance in parallel programms & and related tools using various applications
Lecture 5 – Parallel Algorithms & Data Structures 22 / 50

Data Parallelism: Formulas Across Domain Decomposition

 From the problem to computational data structures
 Apply an ‘isotropic lattice‘ technique

‘change over time’
diffusion equation

k / y

i / x

 Lecture 10 on Hybrid Programming and Patterns will offer more details on stencil methods & patterns in simulation science applications

[20] Wikipedia on ‘stencil code’

Modified from [13] Introduction to High Performance
Computing for Scientists and Engineers

Lecture 5 – Parallel Algorithms & Data Structures 23 / 50

Large-scale Computing Infrastructures & Course-Grained Parallel Algorithms

 Large computing systems are often embedded in infrastructures
 Grid computing for distributed data storage and processing via middleware
 The success of Grid computing was renowned when being mentioned by Prof. Rolf-Dieter Heuer, CERN

Director General, in the context of the Higgs Boson Discovery:

 Other large-scale distributed infrastructures exist
 Partnership for Advanced Computing in Europe (PRACE)  EU HPC
 Extreme Engineering and Discovery Environment (XSEDE)  US HPC

 ‘Results today only possible due to extraordinary performance of
Accelerators – Experiments – Grid computing’

[18] Grid Computing Video

 Lecture 11 will give in-depth details on scalable approaches in large-scale HPC infrastructures and how to use them with middleware
Lecture 5 – Parallel Algorithms & Data Structures 24 / 50

Blocking vs. Non-blocking communication – Parallel Algorithms Example

 Blocking vs. non-blocking: MPI_Send() blocks until data is received; MPI_Isend() continues
 The use of these functions can cause different performance problems (e.g. here ‘late sender’)
 MPI_Wait() does wait for a given MPI request to complete before continuing
 MPI_Waitall() does wait for all given MPI requests (e.g. waiting for message) to complete before continuing

[1] Metrics tour

Lecture 5 – Parallel Algorithms & Data Structures 25 / 50

 Lecture 12 will provide more details on using blocking vs non-blocking communication in terrestrial systems & HPC climate simulations

[23] German MPI Lecture

Complex Climate Example – Numerical Weather Prediction (NWP) & Forecast

 Application areas
 Global & regional short-term

weather forecast models in operations
 Perform long-term climate prediction

research (e.g. climate change, polar research, etc.)

 NWP model characteristics
 Use ordinary/partial differential equations (PDEs)

(i.e. use laws of physics, fluids, motion, chemistry)
 Domain decomposition example: 3D grid cells
 Computing/cell: winds, heat transfer, solar

radiation, relative humidity & surface hydrology
 Interactions with neighboring cells: used

to calculate atmosopheric properties over time

 Lecture 12 will provide more details on using different domain decompositions for terrestrial systems and climate simulations on HPC

 Numerical Weather Prediction (NWP) uses mathematical models
of the atmosphere and oceans to predict the weather based on
current weather observations (e.g. weather satellites) as inputs

 Performing complex calculations necessary for NWP requires
supercomputers (limit ~6 days) using HPC techniques

 NWP belongs to the field of numerical methods that obtain
approximate solutions to problems  certain uncertainty remains

modified from [19] Wikipedia on
‘Numerical Weather Prediction’

Lecture 5 – Parallel Algorithms & Data Structures 26 / 50

Climate – WRF Model Parallel Application – pNetCDF

 Need for Parallel I/O (cf. Lecture 4)
 WRF is output-bound (‘writes costs much’)

 Use Serial & parallel NetCDF
 Provides an I/O layer implemented

with parallel NetCDF (pNetCDF)
 I/O performance gain is considerable against using not pNetCDF

 Parallel Network Common Data Form (NETCDF) is designed to store & organize
array-oriented data

 Portable data formats are needed to efficiently process data in heterogeneous
HPC environments

 Parallel NetCDF can be used to significantly improve I/O output performance of
WRF codes

[22] Opportunities for WRF Model
Acceleration

(different options that do not scale)

Lecture 5 – Parallel Algorithms & Data Structures 27 / 50

Monte Carlo Parallel Algorithms

 Scientific case:
 Understanding protein folding in computational

biophysics for an increased understanding of human body
 Proteins perform functions within

living organisms (e.g. respond to stimuli)
 Proteins differ in their sequence of amino acids,

results in different foldings
 Correct and unique 3D structure is essential to the functions of proteins
 Process of protein folding as a parallel computing application

 Using Monte Carlo simulations
 Simulations that use stochastic methods to generate new configurations of a system
 Initial conditions of particles, then Monte Carlo ‘moves’ that changes configuration of particles

 Lecture 13 will provide more details on using different & scalable parallel algorithms for systems biology & bioinformatics applications
Lecture 5 – Parallel Algorithms & Data Structures 28 / 50

 Scientific case:
 Understanding physical movements of atoms and molecules in the context of n-body simulations

 Molecular dynamics algorithms for interacting ‘particles‘
 Determine trajectories of atoms and molecules
 Numerically solving the Newton‘s equations of motion
 Forces between particles and potential

energy is parallel computed according
to molecular mechanics force field methods

 Using a library
 E.g. MP2C code: particle-based hydrodynamics (fluid simulations)

 Lecture 14 will give in-depth details on parallel and scalable molecular systems algorithms, tools, methods, and the use of libraries
Lecture 5 – Parallel Algorithms & Data Structures 29 / 50

Flow field in a gas diffusion membrane

[Video] Finite Element Simulation Example in Product Engineering

[15] Finite element simulation of full scale car crash

Lecture 5 – Parallel Algorithms & Data Structures 30 / 50

Selected Data Structures

Lecture 5 – Parallel Algorithms & Data Structures 31 / 50

Tree-Code Parallel Algorithms – Example N-body & Particle Simulations

 Tree codes – ‘another form of smart domain decomposition‘
 E.g. to speed up ’N-body simulations’ with long range interactions
 Enable realistic simulations of n-body systems with increasing particles
 Offers the understanding why data structures & domain decomposition

are important to be jointly considered in parallel algorithms

[6] PEPC Web page

Lecture 5 – Parallel Algorithms & Data Structures 32 / 50

Tree-Code Parallel Algorithms – Reduce Number of Required Particle Interactions

 Pretty Efficient Parallel Coulomb (PEPC) Solver
 Implementation of classical ‘Barnes-Hut Tree Code‘ for N-body problems
 Divides ‘simulation space‘ into cubic cells as ‘octree‘ to reduce computing
 Particles in nearby cells are treated individually
 Particles in distant cells are treated as a single large particle

Lecture 5 – Parallel Algorithms & Data Structures 33 / 50

[6] PEPC Web page

 In physics-based
simulation science
applications a tree-code
parallel algorithm can
significantly reduce the
number of particle pair
interactions that must be
computed

 Particles in nearby cells
are treated individually in
complex computations

 Particles in distant cells
are treated as a single
large particle to reduce
interactions

Tree-Code Parallel Algorithms – Particle Space & Domain Decomposition Example

 Example: Parallel Tree Buildup & Tree Data Structures
 Interaction between particles based on ‘known physical laws‘

Level 0 Level 1

Level 2 Level 3
[6] PEPC Web page

Lecture 5 – Parallel Algorithms & Data Structures 34 / 50

Basic MPI Datatypes & Multi-Dimensional Datasets

 Basic MPI Datatypes (aka ‘intrinsic or primitive‘ data types)
 Simple, used in many applications and work towards ‘code portability‘
 MPI_INT; MPI_CHAR; MPI_LONG; MPI_FLOAT; MPI_DOUBLE; …
 E.g. need to match MPI_Datatype in MPI_Send and MPI_Recv operations
 E.g. value described by a data-type, a count and memory location
 Challenge: the data must be contiguous in memory (here void* buf)

 Arrays for multi-dimensional datasets
 Typically used in conjunction with one and only one basic data type
 Flexible and used in a wide variety of applications (e.g. matrices, etc.)

Int MPI_Send(void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Int MPI_Recv(void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status* status)

Lecture 5 – Parallel Algorithms & Data Structures 35 / 50

 Some applications require
data structures that are
more sophisticated data
types and formats

 Several applications
require another simple
mechanism for
exchanging common data
than just basic MPI
datatypes or simple multi-
dimensional datasets

Derived MPI Datatypes – Principles

 Motivation: convenient & efficient & suited for application needs
1. Construct a new datatype using dedicated MPI routines (see below)
2. Commit the new datatype – MPI_Type_Commit()

3. Take advantage of the new datatype, e.g. in send/receive operations

 MPI derived datatype (e.g. when you need it often)
 Represents a ‘map for understanding‘ and interpreting message data
 Transforms an ‘old datatype‘ and building contraints to a ‘new datatype‘
 Note: although the old datatype will remain, easier to use the new datatype

 MPI construction routines
 Enable a wide variety of possible

self-developed data structures used in MPI communication
 MPI_Type_contiguous(), MPI_Type_vector(), MPI_Type_indexed()

 MPI_Type_struct(), MPI_Type_hvector(), MPI_Type_hindexed()

Lecture 5 – Parallel Algorithms & Data Structures 36 / 50

 Derived MPI datatypes are
constructed from existing
other datatypes (e.g. basic
data types)

 Used to avoid repeated
sends of varied basic
types (i.e. slow, clumsy,
and error prone)

 Enable a suitable memory
layout for complex data
structures that consist of
several different types

(how do we send a
string with 3 chars?)

Derived MPI Datatypes – MPI_Type_contiguous()

 Allocations of a datatype into contiguous locations
MPI_Type_contiguous(3, oldtype, newtype);

...

int buffer[100];

MPI_Type_contiguous(100, MPI_CHAR, &stringtype);

MPI_Type_commit(&stringtype);

/* sending and receiving party
understand the data structure type*/

if (rank==0) {

MPI_Send(buffer,1,stringtype,1, 123, MPI_COMM_WORLD);

} else {

MPI_Recv(buffer,1,stringtype,0,123, MPI_COMM_WORLD, &status);

}

...

Lecture 5 – Parallel Algorithms & Data Structures 37 / 50

(simple example, but as this works we can go more sophisticated)

 Allocations of a datatype into block-wise locations
 Locations consist of equally spaced blocks
 Stride: number of elements between start of each block (integer)

Derived MPI Datatypes – MPI_Type_vector()

MPI_Type_vector(5, 2, 3, oldtype, newtype);

data

blocklength

stride

...

MPI_Type_contiguous(3, MPI_INT, &goodnumber);

MPI_Type_commit(&goodnumber);

MPI_Type_vector(3,2,3, goodnumber, &lotsofgoodnumbers);

MPI_Type_commit(&lotsofgoodnumbers);

...

MPI_Send(buffer, 1, lotsofgoodnumbers, 1, 123, MPI_COMM_World);

...

(Example: Combine new datatypes  less complex)

Lecture 5 – Parallel Algorithms & Data Structures 38 / 50

Derived MPI Datatypes – MPI_Type_indexed()

 Allocations of a datatype into a (non uniform) sequence of blocks
 Each blocks can contain a different number of copies
 Each block can have a different displacement
array_of_blocklengths[] = {2,3,1,2,2,2} /* below BL */

array_of_displacements[] = {3,9,12,15,18} /* below DIS */

MPI_Type_indexed (6, array_of_blocklengths, array_of_displacements, oldtype, newtype);

BL[0] BL[1] BL[2] BL[3] BL[4] BL[5]

DIS[0]

DIS[1]

DIS[2]

DIS[3]

DIS[4]
Lecture 5 – Parallel Algorithms & Data Structures 39 / 50

 Understanding and tuning parallel I/O is needed with ‘big data’
 Leverage aggregate communication and I/O bandwidth of client machines

 Support: Add additional software components/libraries layers
 Coordination of file access & mapping of application model to I/O model
 Components and libraries get increasingly specialized / layer
 High-Level I/O libraries like NetCDF or Hierarchical Data Format (HDF) are standards in the community

[8] R. Thakur, PRACE Training,
Parallel I/O and MPI I/O

Parallel Filesystems are just one part
out of three in the whole I/O process

MPI I/O & Parallel Filesystems – Revisited (cf. Lecture 4)

Data

I/O

Lecture 5 – Parallel Algorithms & Data Structures 40 / 50

Data Science Example: DBSCAN Clustering Algorithm

 DBSCAN Algorithm
 Introduced 1996 and most cited clustering algorithm
 Groups number of similar points into clusters of data
 Similarity is defined by a distance measure (e.g. euclidean distance)

 Distinct Algorithm Features
 Clusters a variable number of clusters

(cf. K-Means Clustering with K clusters)
 Forms arbitrarily shaped clusters (except ‘bow ties‘)
 Identifies inherently also outliers/noise

(MinPoints = 4)

(DR = Density Reachable)

(DDR = Directly Density
Reachable)
(DC = Density Connected)

 Lecture 8 provides more details about using MPI and OpenMP for data science algorithms used in clustering and classification of data

[11] Ester et al.

 Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering
algorithm that requires only two parameters and has no requirement to specify number of clusters

 Parameter Epsilon: Algorithm looks for a similar point within a given search radius Epsilon
 Parameter minPoints: Algorithm checks that cluster consist of a given minimum number of points

Lecture 5 – Parallel Algorithms & Data Structures 41 / 50

‘Big Data‘ Science Example – Parallel & Scalable Clustering Algorithm – Revisited

[9] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Clustering

Lecture 5 – Parallel Algorithms & Data Structures 42 / 50

Using High-Level I/O Hierarchical Data Format (HDF) for Data Structures

 Simple ‘compound type‘ example:
 Array of data records with some descriptive information (5x3 dimension)
 HDF5 data structure type with int(8);

int(4); int(16); 2x3x2 array (float32)

[8] R. Thakur, PRACE Training,
Parallel I/O and MPI I/O

Lecture 5 – Parallel Algorithms & Data Structures 43 / 50

 The Hierarchical Data
Format (HDF) is a
technology suite that
enables the work with
extremely large and
complex data collections

 A HDF version 5 file is a
container to organize data
objects – it looks like a
filesystem within a file

(application example parallel &
scalable clustering with HPDBSCAN

using Bremen data in HDF5)

[10] HDF@ I/O workshop

‘Big Data‘ Science Example: Using High-Level I/O Hierarchical Data Format (HDF)

 Parallelization Strategy
 Chunk data space equally
 Overlay with hypergrid
 Apply cost heuristic
 Redistribute points (data locality)
 Execute DBSCAN locally
 Merge clusters at chunk edges
 Restore initial order

 Data organization
 Use of HDF5

(cf. Lecture 5)
 Cluster Id stored

in HDF5 file

 Lecture 8 provides more details about using MPI and OpenMP for data science algorithms used in clustering and classification of data

[9] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Lecture 5 – Parallel Algorithms & Data Structures 44 / 50

[Video] Aerospace Engineering Industry Simulations

[7] ANSYS, Aerospace Industry demands

Lecture 5 – Parallel Algorithms & Data Structures 45 / 50

Lecture Bibliography

Lecture 5 – Parallel Algorithms & Data Structures 46 / 50

Lecture Bibliography (1)

 [1] M. Geimer et al., ‘SCALASCA performance properties: The metrics tour’
 [2] LLNL MPI Tutorial, Online:

https://computing.llnl.gov/tutorials/mpi/
 [3] Introduction to Groups and Communicators, Online:

http://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/
 [4] Wolfgang Frings, ‘HPC I/O Best Practices at JSC‘, Online:

http://www.fz-juelich.de/ias/jsc/DE/Leistungen/Dienstleistungen/Dokumentation/Praesentationen/folien-parallelio-2014_table.html?nn=469624
 [5] Parallel I/O, YouTube Video, Online:

http://www.youtube.com/watch?v=cXbEVsExU9c
 [6] PEPC Web page, FZ Juelich, Online:

http://www.fz-juelich.de/ias/jsc/EN/AboutUs/Organisation/ComputationalScience/Simlabs/slpp/SoftwarePEPC/_node.html
 [7] YouTube Video, ‘Aerospace Industry Demands Accurate, Fast, and Reliable Simulation Technology‘, Online:

http://www.youtube.com/watch?v=otj39Zk1-aM
 [8] Rajeev Thakur, Parallel I/O and MPI-IO, Online:

http://www.training.prace-ri.eu/uploads/tx_pracetmo/pio1.pdf
 [9] M. Goetz, C. Bodenstein, M. Riedel, ‘HPDBSCAN – Highly Parallel DBSCAN’, in proceedings of the ACM/IEEE International Conference for High Performance

Computing, Networking, Storage, and Analysis (SC2015), Machine Learning in HPC Environments (MLHPC) Workshop, 2015, Online:
https://www.researchgate.net/publication/301463871_HPDBSCAN_highly_parallel_DBSCAN

 [10] Michael Stephan,‘Portable Parallel IO - ‘Handling large datasets in heterogeneous parallel environments‘, Online:
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/parallelio-2014/parallel-io-hdf5.pdf?__blob=publicationFile

 [11] Ester, Martin, et al. "A density-based algorithm for discovering clusters in large spatial databases with noise." Kdd. Vol. 96. 1996, Online:
https://dl.acm.org/citation.cfm?id=3001507

Lecture 5 – Parallel Algorithms & Data Structures 47 / 50

Lecture Bibliography (2)

 [12] Caterham F1 Team Races Past Competition with HPC, Online:
http://insidehpc.com/2013/08/15/caterham-f1-team-races-past-competition-with-hpc

 [13] Introduction to High Performance Computing for Scientists and Engineers,
Georg Hager & Gerhard Wellein, Chapman & Hall/CRC Computational Science, ISBN 143981192X

 [14] Parallel Algorithms Underlying MPI Implementations, Online:
http://www.slidefinder.net/p/parallel_algorithms_underlying_mpi_implementations/13-parallelalgorithmsunderlyingmpiimplementations/17131238/p2

 [15] YouTube Video, ‘Finite element simulation of full scale car crash based 100% on solid elements‘, Online:
http://www.youtube.com/watch?v=NrvuFiDqn5A

 [16] FFTW Tool, M. Frigo & S.G. Johnson, Online:
http://www.fftw.org/fftw3_doc/

 [17] M. Riedel, Th. Eickermann, S. Habbinga, W. Frings, P. Gibbon, D. Mallmann, F. Wolf, A. Streit, Th. Lippert, Felix Wolf, Wolfram Schiffmann, Andreas Ernst,
Rainer Spurzem, Wolfgang E. Nagel, ‘Computational Steering and Online Visualization of Scientific Applications on Large-Scale HPC Systems within e-Science
Infrastructures‘, pp.483-490, Third IEEE International Conference on e-Science and Grid Computing, 2007, Online:
https://www.researchgate.net/publication/4309569_Computational_Steering_and_Online_Visualization_of_Scientific_Applications_on_Large-Scale_HPC_Systems_within_e-Science_Infrastructures

 [18] How EMI Contributed to the Higgs Boson Discovery, YouTube Video, Online:
http://www.youtube.com/watch?v=FgcoLUys3RY&list=UUz8n-tukF1S7fql19KOAAhw

 [19] Wikipedia on ‘Numerical Weather Prediction’, Online:
http://en.wikipedia.org/wiki/Numerical_weather_prediction

 [20] Wikipedia on ‘stencil code‘, Online:
http://en.wikipedia.org/wiki/Stencil_code

 [21] Scalasca Performance Analysis Tool, Online:
http://www.scalasca.org/

Lecture 5 – Parallel Algorithms & Data Structures 48 / 50

Lecture Bibliography (3)

 [22] John Michalakes et al., ‘Opportunities for WRF Model Acceleration’, Online:
http://www2.mmm.ucar.edu/wrf/users/workshops/WS2012/ppts/1.4.pdf

 [23] German Lecture ‘Umfang von MPI 1.2 und MPI 2.0‘

Lecture 5 – Parallel Algorithms & Data Structures 49 / 50

Lecture 5 – Parallel Algorithms & Data Structures 50 / 50

