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Review of Lecture 4 — Advanced MPI Techniques
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[1] Metrics tour [2] LLNL MPI Tutorial [3] Introduction to Groups & Communicators [4] HPC Best Practices @ 10 Workshop modified from [5] Parallel 1/0

& Data Structures
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Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning
9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns
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11.
12.
13.
14.
15.
16.

Scientific Visualization & Scalable Infrastructures
Terrestrial Systems & Climate

Systems Biology & Bioinformatics

Molecular Systems & Libraries

Computational Fluid Dynamics & Finite Elements

Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

= Practical Topics

= Theoretical / Conceptual Topics
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Outline

u SEIECted Pa ra ”el A|g0 r|th ms =  Promises from previous lecture(s):
. . : : " Lecture 4: Lecture 5 offers more details
= Vector Addition in MPI using MPI Collectives on using blocking & non-blocking MPI
= Matrix — Vector Multiplication in MPI using MPI Collectives CEIIHERNE [0 ST EES £ el

science applications
Fast Fourier Transform (FFT) Library Tool using MPI Communicators |= Lecture 4: Lecture 5 offers more details

. . . . . . ) ) on using Parallel I/O and portable data
Using Non-Blocking Communication in Simulation Sciences formats in various simulation sciences

Advanced Parallel & Scalable Algorithm Examples in Context = BEL ST S e

= Selected Data Structures

= Tree-based Data Structures & Particle Interaction Examples
Basic MPI Datatypes and Arrays & Multi-dimensional Datasets
Derived MPI Datatypes & Small Examples
Relationships to Parallel 10 & Hierarchical Data Format (HDF)
Data Science example using Parallel I/0O for ‘Big Data‘ Clustering




Selected Learning Outcomes

» Students understand...

Latest developments in parallel processing & high performance computing (HPC)
How to create and use high-performance clusters
What are scalable networks & data-intensive workloads

e
The importance of domain decomposition - el
Complex aspects of parallel programming R e el
HPC environment tools that support programming S s T i om e,

or analyze behaviour
Different abstractions of parallel computing on various levels

Foundations and approaches of scientific domain-
specific applications

= Students are able to ...

Programm and use HPC programming paradigms
Take advantage of innovative scientific computing simulations & technology
Work with technologies and tools to handle parallelism complexity
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Selected Parallel Algorithms

O
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Distributed-Memory Computers — Revisited (cf. Lecture 1)

= Adistributed-memory parallel computer establishes a ‘system view’
where no process can access another process’ memory directly

dominant
programming model
Message Passing

Interface (MPI) Coammunication network

(a) Initial heatmap. (b) After 50 rounds. (c) After 200 rounds.

" Features
= Processors communicate via Network Interfaces (NI) [12] Modifed from ){(1:]5 Introduction to giig:;:rformance Computing
aternam eam

= NI mediates the connection to a Communication network
» This setup is rarely used = a programming model view today
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Parallel Programming with MPI & Basic Building Blocks (cf. Lecture 2)

= Message Passing Interface (MPI) Concepts

e { Point
eormicone: | I P
A

Communication

P/l P
/

NEW: 17

MPI
Collective

p )#m’ Communication
o
SATEn DATA: 80

P 0

DATA: 19
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i DATA: 80 application SEND
= - to "
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process A

network application RECV
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process B

global sum
+ P + as example
+ >~
S
_MERTif
+

= MPI Parallel Programming Basics

using a C compiler
C | n—)

hello.c  Usinga job script

Scheduler

#include <stdio.h>
#include <mpi.h>
int main(int argc, char** argv)
{
int rank, size;
MPI Init(&argc, &argv);

MPI Comm size (MPI_COMM WORLD,

MPI Comm rank (MPI COMM WORLD, &rank);

MPI_COMM_WORLD

© @
©
(o] @ ©
©
e @
(1]

©
o oo group1 group2 o oo
o © o

5

printf ("Hello World, I am %d out of %d\n",

rank, size);
MPI Finalize();

return 0;

© 0
e ©

communications @

g

[2] LLNL MPI Tutorial
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Formula Race Car Design & Room Heat Dissipation — Revisited (cf. Lecture 3)

® Pro: Network communication is relatively hidden and supported

= Contra: Programming with MPI still requires using ‘parallelization methods’
= Not easy: Write ‘technical code’ well integrated in ‘problem-domain code’

" Example: Race Car Simulation &
Heat dissipation in a Room

= Apply a good parallelization method
(e.g. domain decomposition)

= Write manually good MPI code for
(technical) communication
between processors

(e.g. across 1024 Cores) a) Initial 1e>) nap. (b) After 50 ;‘ounds. (c)AIterZOO’rounds.
= |ntegrate well technical code .y . ,
. . 6] Modifi 8] Int tion to High P C ti
with problem—domaln code [6] Modified from  [8] Introduction to High Performance Computing

Caterham F1 team  for Scientists and Engineers

(e.g. computational fluid dynamics & airflow)
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Collective Functions: Scatter (one-to-many) — Parallel Algorithm Example

Z

= X+Y

T_ DATA: 10 ¢ _
T

J DATA: 20
" DATA: 30 la\laT P1 P2 P3 P4 P5

Scatter distributes
different data to
many or even all
other processors

DATA: 06 DATA: 19
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Collective Functions: Gather (many-to-one) — Parallel Algorithm Example

= X+Y

N
DAT“ 17 mDATA <0 PL P2 P3 P4 PS5
[ ]

Gather collects data
from many or even
all other processors
to one specific
processor

P

N\ o

DATA: 06 M M DATA: 19
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Vector Addition in MPI using MPI Collectives

#include <mpi.h>
#define CHUNK = 1 /* simple example */
int main(int argec, char **argv) {
int rank, size, n, i;
double x[3]1, yI[3], zI[3];
double xpart [CHUNK], ypart[CHUNK], zpart[CHUNK] ;

n = atoi(argv[l]); /* Get input size */

‘simplified

/= X+Y

MPI Init(&argc, &argv); demo Code’
MPI_Comm rank (MPI_COMM WORLD, &rank);

MPI_Comm size (MPI_COMM WORLD, &size);

/* ...x,y,buff preparations with real values for vectors, e.g. via rank 0 ... */

MPI Scatter (x,CHUNK,MPI DOUBLE,xpart, CHUNK,MPI DOUBLE,0,MPI COMM WORLD) ;

=1
-_—_——

MPI Scatter (y,CHUNK,MPI DOUBLE,ypart, CHUNK,MPI DOUBLE,0,MPI COMM WORLD) ;

for (i=0; i<CHUNK; i++)

Scatter distributes
different data (x,y) to
many or even all
other processors in
the communicator

zpart[i] = xpart[i] + ypartl[i];

/* Collect the result */

I MPI Gather (zpart, CHUNK,MPI DOUBLE, z, CHUNK,MPI DOUBLE,0,MPI COMM WORLD) ; I-— ——

MPI Finalize();

return 0;

Gather collects data
from many or even all
other processors to
one specific
processor in the
communicator

Lecture 5 — Parallel Algorithms & Data Structures

int MPI Scatter(

void *sendbuf,

int sendent,

MPT Datatype scendtype,
wvold *recvbuf,

int recwvent,

MPT Datatype recvtype,
int root,

MPT Comm comm

int MPT Gather |

volid *sendbuf,

int sendecnt,

MPTI Datatype scsndtyps,
void *recvbufl,

int recvent,

MPT Datatype recviype,
int root,

MPT Comm comm
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Collective Functions: Reduce (many-to-one) — Parallel Algorithm Example

as exampl

+
N\ '
DATA: 80T

DATA: 06 DATA: 19
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NEW: 122 + global sumi i E i
e

P1 P2 P3 P4 PS5

Reduce combines
collection with
computation based on
data from many or even
all other processors

Usage of reduce
includes finding a
global minimum or
maximum, sum, or
product of the different
data located

at different processors
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Matrix-Vector Multiplication in MPI using MPI Collectives — Required Variables

#include <stdio.h>

#include <mpi.h> a, by oCo+ bo1C1+ by 20 4+ by 505
#define NCOLS = 4 /* matrix columnwise domain decomposition */ a] bl,OCO x bl:lcl e bchz rs bl=303
int main(int argc, char **argv) { = =

a, b, oco+ by 6+ b, 50,4+ b, 40,

int i,j,k,1, rank, size;

float A[NCOLS]; A=B*C a, b3.000+ b3.lcl+ b3.202+ b3.303

float Apart [NCOLS];
float Bpart [NCOLS];
float C[NCOLS];

float A exact[NCOLS];
float B[NCOLS] [NCOLS] ;
float Cpart[1l];

root = 0;

/* preparing MPI environment and initalization of matrix */

‘simplified

’
demo code [14] Parallel Algorithms
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Matrix-Vector Multiplication in MPI using MPI Collectives — MPI Setup

#include <stdio.h>

#include <mpi.h> a, bo,oco+ bo,101+ bo,zcz+ bo,scs
#define NCOLS = 4 /* matrix columnwise domain decomposition */
2 a | _ b oo+ bye+ by, + by e
int main(int argc, char **argv) { =y —
a, b, oco+ by 6+ b, 50,4+ b, 40,
/* required variables are defined */ A=B*C _(13~ -_b3:000+ b3:101+ b3T202+ b3:3c3_

/* preparing MPI environment and initalization of matrix */
MPI Init(&argc, &argv);

MPI_ Comm rank (MPI_COMM WORLD, &rank);

MPI_ Comm size (MPI_COMM WORLD, &size);

if (rank = 0) { /* initialize matrix B */

B[0] [0] = 1; B[O0]l[1] = 2; B[0][2] = 3; BIO][3] = 4; B[11[0] = 4; B[1]1[1] = -5; B[1ll1I[2] = 6;

B[11[3] = 4; BI2][0] = 7; BI[2]1[1] = 8; BI[2]1[2] = 9; BI[2]1[3] = 2; BI31[0] = 3; BI[3][1] = -1;

B[3][2] = 5; BI31I[3] = 0;

/* initialize vector C */

cfo] = 1; c[1] = -4; C[2] = 7; CI3] = 3; . . po
‘simplified

} /* Program continues with parallel calculations using collectives */ ,

demo code

[14] Parallel Algorithms
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Matrix-Vector Multiplication in MPI using MPI Collectives — Scatter Data

#include <stdio.h>

#include <mpi.h> a, bo,oco+ bo,101+ bo,zcz+ bo,scs

#define NCOLS = 4 /* matrix columnwise domain decomposition */
2 a | _ b oo+ bye+ by, + by e
int main(int argc, char **argv) { ... =y —
a, b, oco+ by 6+ b, 50,4+ b, 40,

/* Program continues with parallel calculations using collectives */

/* Put up a barrier until I/O is complete */ A=B*C a3 b3:000 + bllcl + blzcz * b3:3c3

MPI Barrier (MPI_COMM WORLD) ; N - I B

/* Scatter matrix B */ \s\\

MPI Scatter (B,NCOLS,MPI FLOAT,Bpart,NCOLS,MPI FLOAT,0,MPI COMM WORLD) ; \\ N\\\

/* Scatter vector C */ N \“x\\ =  Barrier enables a synchronization among all
MPI_Scatter(C,1,MPI_FLOAT,Cpart,1,MPI_FLOAT, 0,MPI_COMM WORLD); | \\\ h pr.c>c1_assorfs and blocks until all processors reach
/* Do the vector-scalar multiplication */ \\\\ \\\ CIIMUCCE

for(j=0; j < NCOLS; j++) \*\\\ \\

Apart[j] = Cpart[0] * Bpart[jl; ~\\\\\\\\ =  Scatter distributes differer!t data (x,y) to many or
/* Reduce to matrix A */ ~\\:\ even all other processors in the comn:numcator
MPI Reduce (Apart,A,NCOLS,MPI FLOAT,MPI SUM, 0,MPI COMM WORLD) ; \\* - EsacBhpg:t(;cessor has a column of matrix B (named
MPI_Finalize(); . Each processor has an element of column vector
return 0; ‘simplified C (named Cpart)

7
} demo code [14] Parallel Algorithms
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Matrix-Vector Multiplication in MPI using MPI

#include <stdio.h>

#include <mpi.h>

#define NCOLS = 4 /* matrix columnwise domain decomposition */
int main(int argc, char **argv) { ... =
/* Program continues with parallel calculations using collectives */
/* Put up a barrier until I/O is complete */ A=R*C

MPI Barrier (MPI_COMM WORLD) ;
/* Scatter matrix B */

MPI Scatter (B,NCOLS,MPI FLOAT,Bpart,NCOLS,MPI FLOAT,0,MPI COMM WORLD) ;

Collectives — Reduce Results

a, | by o+ bO,lcl: bo,zczl: by 3¢5
a | by oo+ byscift| by 20| H by 56
a, . b, yedH by1cfH b, 264H b, 54
a, | __[73:000|+ by et bs .ol H b3:3c3_

/* Scatter wvector C */

MPI Scatter(C,1,MPI FLOAT,Cpart,l1,MPI FLOAT, 0,MPI COMM WORLD) ;

Each processor performs an independent vector-scalar
multipplication (based on their Bpart and Cpart contents)

/* Do the vector-scalar multiplication */ -

for(j=0; j < NCOLS; j++) Pl -

Apart[j] = Cpart[0] * Bpartl[jl;

/* Reduce to matrix A */

MPI Reduce (Apart,A,NCOLS,MPI FLOAT,MPI SUM, 0,MPI COMM WORLD); f="=

MPI_Finalize(); .

return 0; ISimpIified

Reduce combines collection with computation based on
data from many or even all other processors

Usage of reduce includes finding a global minimum or
maximum, sum, or product of the different data located
at different processors

Each processor has a part of the result vector A (named
Apart) and is reduced on rank 0 as sum

y demo code’

Lecture 5 — Parallel Algorithms & Data Structures

[14] Parallel Algorithms
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Fast Fourier Transform (FFT) — Algorithm & Parallel Library Applications

= Example Applications
= Digital signal processing and solving Partial Differential Equations (PDE)
= Algorithms for quick multiplication of large integers

= Fourier series = study of periodic phenomena...

= Discrete Fourier Transform (DFT) — O (N?)

= Obtained by decomposing a sequence of values into components
of different frequencies (... analysis of non-periodic phenomena...)

= Computing it directly from the mathematical
definition is often too slow to be practical

= Fast Fourier Transform (FFT) — O (N log N)

= FFT is a way to compute the DFT and its inverse, but more quickly

= Tool Fast Fourier Transform in the West (FFTW)

= Multi-threaded C subroutine library with fortran interface (free software)

o o ] ,
= FFTW versions include parallel transforms (shared & distributed memory) [16] FFTW Manua

Lecture 5 — Parallel Algorithms & Data Structures 18 /50



FFTW Library Tool — Parallel Algorithm with MPI Example

#include <fftw3-mpi.h>

int main(int argc, char **argv) {
const ptrdiff t NO = ..., N1 = ...;
fftw plan plan;
fftw _complex *data;
ptrdiff t alloc_local, local n0, local 0_start, i, j:
MPI_Init(&argc, &argv);
fftw mpi init();

/* get local data size and allocate */

data = fftw alloc_complex(alloc_local) ;

/* create plan for in-place forward DFT */

Iplan = fftw mpi plan dft 2d(NO, N1, data, data, MPI_COMM WORLD, FFTW_FORWARD, FFTW_ESTIMATE); [l

N
/* initialize data to some function my function(x,y) */ \\
for (i = 0; i < local nO0; ++i)
for (j = 0; j < N1; ++3j)
datal[i*N1 + j] = my function(local 0_start + i, j);

/* compute transforms, in-place, as many times as desired */

I . [ o
fftw_execute(plan); S'mphf'ed

d de’
fftw_destroy plan(plan); emo coae

MPI_Finalize();

return 0; }
Lecture 5 — Parallel Algorithms & Data Structures

Using a library tool like here for the Fast Fourier
Transform (FFT) could mean that MPl messages
are mostly abstracted away and only
communication elements remain

alloc_local = fftw mpi_local size 2d (NO, N1, MPI_COMM WORLD, &local n0, &local 0_start) ; [ = m= = = mm === === ==

Does not allocate the entire 2 dimensional array
on each process, instead function
fftw_mpi_local_size_2d finds out what portion of
the array resides on each processor and this is
used to know how much space to allocate

1d block distribution of the data (cf. Lecture 2),
distributed along the first dimension; e.g.

100 x 200 complex DFT, distributed over 4
processes: 25 x 200 slices / process of the data,
0:0-24,1:25-49,

2:50-74,3:75-99

Communicator MPI_COMM_WORLD indicates
here which processes will participate in the
transform

[16] FFTW Manual
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Collective Functions : Broadcast (one-to-many) — Parallel Algorithm Example

NEW: 17
/
_/ K_Iﬁ
DATA: 17 _ -8 DATA: 80 P1L P2 P3 P4 P5
. NEW: 17 =  Broadcast

SR distributes the

same data to many
P P or even all other

processors

DATA: 06 M M DATA: 19
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Computational Steering of (Iterative) Parallel Algorithms using MPI

= Particle Simulations using PEPC library (see above)
= E.g. research star cluster dynamics in astrophysics or particle acceleration simulations via laser pulses
= E.g. Iterations over time using nbody6++ parallel algorithm

= Steering: changing parameters during the run-time of simulation

call flvisitmbody2_steeringrecv(
& VISITDPARM1,VISITDPARM2,VISITDPARM3,
& VISITDPARM4,VISITIPARM1,VISITIPARM2,...)

if (LVISITACTIVE.eq.1l) Then
VDISTANCE=VISITDPARM4

write(+,+«) 'VISCON: VDISTANCE=',6VDISTANCE
endif

IF(VISITDPARM2 .gt.0) THEN
DTADJ = VISITDPARM2

END IF
IF(VISITDPARM3.gt.0) THEN
DELTAT = VISITDPARM3

END IF

CALL MPI_BCAST (DTADJ,1,MPI_DOUBLE_PRECISION,

0,& MPI_.COMMWORLD, ierr)
CALL MPI_BCAST (VISITDPARM3,1,

MPI_DOUBLE.PRECISION, 0, & MPI.COMM.WORLD, ...

Lecture 5 — Parallel Algorithms & Data Structures

[17] M. Riedel et al.,
computational steering, 2007

change
parameters o
interactively - s

visualize
status  zon o

XDOT2 |~
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Performance Analysis is a Key Field in HPC — Revisited

= Analysis is typically performed using (automated) software tools
= Measure and analyze the runtime behaviour of parallel programs
= |dentifies potential performance bottlenecks
= Offer performance optimization hints and views of the location in time
» Guides exploring causes of bottlenecks in communication/synchronization

Which performance
problem?

Where in the program? Where in the system?

[21] SCALASCA Performance Tool

» Lecture 9 will give details on how to measure performance in parallel programms & and related tools using various applications

Lecture 5 — Parallel Algorithms & Data Structures
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Data Parallelism: Formulas Across Domain Decomposition

®" From the problem to computational data structures
= Apply an ‘isotropic lattice’ technique 1
Lo ]
de k = 1,kmax t
do 1 = 1, imax
! four flops, one store, four loads
phi(i,k,tl) = ( phi(i+l,k,t0) + phi(i-1,k,t0)
+ phi(i,k+1,t0) + phi(i,k-1,t0) ) * 0.25 . . .
Moadified from [13] Introduction to High Performance
enddo C " Scientists and Enai
enddo omputing for Scientists and Engineers
i/ x b(b(xiz.‘r'f ) _ D(xiy1,yi ) + D (xi-1,yi ) — 2D (x; , Vi) [20] Wikipedia on ‘stencil code’
ot (6x)?

‘ ‘ . ‘ ‘ ! / ; 7

o o _h L change over time
é é o o 4 D(x7,37-1) "‘(DE-';-..;—I} 2D (x;, 1) diffusion equation

.1.
@ e -
k/y T, @ — ‘ﬁd)

@ @ @ .0 Jt
C [ @ @ O So Sa00 S Seoo Saoo S1o000

» Lecture 10 on Hybrid Programming and Patterns will offer more details on stencil methods & patterns in simulation science applications
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Large-scale Computing Infrastructures & Course-Grained Parallel Algorithms

" Large computing systems are often embedded in infrastructures
= Grid computing for distributed data storage and processing via middleware
= The success of Grid computing was renowned when being mentioned by Prof. Rolf-Dieter Heuer, CERN
Director General, in the context of the Higgs Boson Discovery:
= Other large-scale distributed infrastructures exist
= Partnership for Advanced Computing in Europe (PRACE) - EU HPC
= Extreme Engineering and Discovery Environment (XSEDE) - US HPC

‘Results today only possible due to extraordinary performance of
Accelerators — Experiments — Grid computing’

[18] Grid Computing Video

» Lecture 11 will give in-depth details on scalable approaches in large-scale HPC infrastructures and how to use them with middleware
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Blocking vs. Non-blocking communication — Parallel Algorithms Example

& —————{MPI_Send} {MPI_Send
8 ~ N
-  MPIRecv | {MPT Trecv-|  MPI Wait | —
P prm— outbuf = rank;
me for (i=0; i<4;i++) {
8 MPI_Tsend—| MPI_Wait MPI_Isend—| MPI_Wait dest=nbrs[i];
g source=nbrs[i];
—  MPI_Recv |———MPI_Irecvl  MPIWait ——
- =
= MPI_Isend(&outbuf, 1, MPI_INT, dest, tag, MPI_COMM_WORLD, &reqs[il);
[1] Metrics tour MPI_Irecv(&inbuf[i], 1, MPI_INT, source, tag, MPI_COMM_WORLD, &reqs[i+4]);
JANYANAN
rank 0 1 2 3
wowsounpy | ) / o o o MPI_Waitall(8, reqs, stats);
source / dgst | | | |
‘uﬁc ‘c":m “122\ ' s printf(“ra ‘ v 1,1, , rank,
R la; 20| | inbuf[UP], inbuf[DOWN], inbuf[LEFT], inbuf[RIGHT] );
eo || enl| ea|| es MPI_Finalize():
Ir‘.‘. ‘v[W E’Z ?l
VAV e
[23] German MPI Lecture MPI Waitall
" Blocking vs. non-blocking: MPI_Send() blocks until data is received; MPI_Isend() continues Synopsis
" The use of these functions can cause different performance problems (e.g. here ‘late sender’) ’ | ‘
=  MPI_Wait() does wait for a given MPI request to complete before continuing - s o
=  MPI_Waitall() does wait for all given MPI requests (e.g. waiting for message) to complete before continuing T sttt
OQutput Parameters

array_of_statuses
array of status objects (array of Statuses). May be wez_sraruses_zavone

» Lecture 12 will provide more details on using blocking vs non-blocking communication in terrestrial systems & HPC climate simulations




Complex Climate Example — Numerical Weather Prediction (NWP) & Forecast

[ ] Apphcat'O N areas . Numerical Weather Prediction (NWP) uses mathematical models
of the atmosphere and oceans to predict the weather based on
= Global & regiona| short-term current weather observations (e.g. weather satellites) as inputs

. . " Performing complex calculations necessary for NWP requires
weather forecast models in Operatlons supercomputers (limit ~6 days) using HPC techniques

» Perform long-term climate prediction =  NWP belongs to the field of numerical methods that obtain

. approximate solutions to problems > certain uncertainty remains
research (e.g. climate change, polar research, etc.) i P Y

= NWP model characteristics

= Use ordinary/partial differential equations (PDEs)
(i.e. use laws of physics, fluids, motion, chemistry)

Horizontal Grid
(Latitude-Longitude) [~

= Domain decomposition example: 3D grid cells

= Computing/cell: winds, heat transfer, solar
radiation, relative humidity & surface hydrology

= |nteractions with neighboring cells: used
to calculate atmosopheric properties over time

modified from [19] Wikipedia on
‘Numerical Weather Prediction’

» Lecture 12 will provide more details on using different domain decompositions for terrestrial systems and climate simulations on HPC
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Climate — WRF Model Parallel Application — pNetCDF

= Need for Parallel |/O (Cf Lecture 4) *  Parallel Network Common Data Form (NETCDF) is designed to store & organize

array-oriented data

= WREF is Output—bou nd ('W rites costs m uch') = Portable data formats are needed to efficiently process data in heterogeneous
HPC environments

® Use Serial & para llel NetCDF . ‘I;'va;';l:ll::acl’gl:stCDF can be used to significantly improve 1/0 output performance of
= Provides an I/O layer implemented

with parallel NetCDF (pNetCDF ETITRIRIE L L e

P ~ (phercby - ——EAIEN

|/O performance gain is considerable against using not pNetCDF Beea— mm| | SEEE | EEEE R

amEm ‘%.. computeprossssss ]
Serial NetCDF collected and written by gangs of MPI tasks (quilting) (different options that do not scale)
C Parallel NetCDF written to single files by all MPI tasks in a gang

Lmmm
CTT LIS
LLLLEN

COT‘I‘IPLItE processes

aEEE \oéises : ’: [: E \ocesses = I

[22] Opportunities for WRF Model
Acceleration
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Monte Carlo Parallel Algorithms

= Scientific case:

= Understanding protein folding in computational
biophysics for an increased understanding of human body

= Proteins perform functions within
living organisms (e.g. respond to stimuli)

= Proteins differ in their sequence of amino acids,
results in different foldings

= Correct and unique 3D structure is essential to the functions of proteins
= Process of protein folding as a parallel computing application

= Using Mlonte Carlo simulations
= Simulations that use stochastic methods to generate new configurations of a system
= |nitial conditions of particles, then Monte Carlo ‘moves’ that changes configuration of particles

» Lecture 13 will provide more details on using different & scalable parallel algorithms for systems biology & bioinformatics applications
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= Scientific case:
= Understanding physical movements of atoms and molecules in the context of n-body simulations

= Molecular dynamics algorithms for interacting ‘particles’
= Determine trajectories of atoms and molecules
= Numerically solving the Newton’s equations of motion

= Forces between particles and potential
energy is parallel computed according
to molecular mechanics force field methods

= Using a library
= E.g. MP2C code: particle-based hydrodynamics (fluid simulations)

Flow field in a gas diffusion membrane

> Lecture 14 will give in-depth details on parallel and scalable molecular systems algorithms, tools, methods, and the use of libraries
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[Video] Finite Element Simulation Example in Product Engineering

[15] Finite element simulation of full scale car crash
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Selected Data Structures

O
O 0
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Tree-Code Parallel Algorithms — Example N-body & Particle Simulations

" Tree codes — ‘another form of smart domain decomposition’ —
= E.g.to speed up ‘N-body simulations” with long range interactions ~ »

e | .
= Enable realistic simulations of n-body systems with increasing particles 4._,/

= Offers the understanding why data structures & domain decomposition
are important to be jointly considered in parallel algorithms

1 [6] PEPC Web page
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Tree-Code Parallel Algorithms — Reduce Number of Required Particle Interactions

= Pretty Efficient Parallel Coulomb (PEPC) Solver

= Implementation of classical ‘Barnes-Hut Tree Code’ for N-body problems
= Divides ‘simulation space’ into cubic cells as ‘octree’ to reduce computing
= Particles in nearby cells are treated individually

= Particles in distant cells are treated as a single large particle

Frontend Tree-Code Interaction-
Applications Algorithm Specific Modules
™\ ™y /—W ™
pepc-mini o6
Demo Application )'/ L]

pepcb

Laser-Plasma Int.

pepc-s

ScaFaCoS-Library

pepe-v

Vortex Dynamics

pepc-g

Stellar Disc Evol.

Tree Data Structures
Parallel Tree Buildup
Parallel Tree Traversal

Load Balancing

reg. Coulomb |
!
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Utils:
VTK-10, Diagnostics,
Benchmarking, ...

[6] PEPC Web page

In physics-based
simulation science
applications a tree-code
parallel algorithm can
significantly reduce the
number of particle pair
interactions that must be
computed

Particles in nearby cells
are treated individually in
complex computations

Particles in distant cells
are treated as a single
large particle to reduce
interactions

level 0

levell 4o .~

P
> Y

get_child {
L]

W 102 -

<100
level 2 < 101 =<

.
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Tree-Code Parallel Algorithms — Particle Space & Domain Decomposition Example

= Example: Parallel Tree Buildup & Tree Data Structures
" |nteraction between particles based on ‘known physical laws’

L ]
o [} L] [ ]
] L J
L ] [ ]
Level 0 Level 1
® [ ]
[ ) [ ]
. o (oot
» S 6 B o »
L ]
3 @ 06 ()
o
Level 2
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[6] PEPC Web page
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Basic MPI Datatypes & Multi-Dimensional Datasets

= Basic MPI Datatypes (aka ‘intrinsic or primitive‘ data types) - Some applications require
. . . . . data structures that are
= Simple, used in many applications and work towards ‘code portability’ more sophisticated data
types and formats
= MPI_INT; MPI_CHAR; MPI_LONG; MPI_FLOAT; MPI_DOUBLE; ... . Several applications
. , : i ther simpl
E.g. need to match MPI_Datatype in MPI_Send and MPI_Recv operations o anrem for TPl
| i - i exchanging common data
E.g. value described by a data-type, a count and memory location than et bio MPY
= Challenge: the data must be contiguous in memory (here void* buf) datatypes or simple multi-

dimensional datasets

Int MPI Send( void* buf, int count, MPI Datatype datatype,
int dest, int tag, MPI Comm comm)

Int MPI Recv( void* buf, int count, MPI Datatype datatype,
int source, int tag, MPI Comm comm, MPI Status* status)

= Arrays for multi-dimensional datasets

= Typically used in conjunction with one and only one basic data type
= Flexible and used in a wide variety of applications (e.g. matrices, etc.)

]
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Derived MPI Datatypes — Principles

= Motivation: convenient & efficient & suited for application needs
1. Construct a new datatype using dedicated MPI routines (see below)
2.  Commit the new datatype —MPI Type Commit ()
3. Take advantage of the new datatype, e.g. in send/receive operations

= MPI derived datatype (e.g. when you need it often)
= Represents a ‘map for understanding’ and interpreting message data
= Transforms an ‘old datatype’ and building contraints to a ‘new datatype’
= Note: although the old datatype will remain, easier to use the new datatype

Derived MPI datatypes are
constructed from existing

other datatypes (e.g. basic
data types)

Used to avoid repeated
sends of varied basic
types (i.e. slow, clumsy,
and error prone)

Enable a suitable memory
layout for complex data
structures that consist of
several different types

= MPI construction routines ]

" Enable a wide variety of possible (how do we send a

self-developed data structures used in MPlI communication
* MPI Type contiguous(), MPI Type vector (), MPI Type indexed()

* MPI Type struct(), MPI Type hvector(), MPI Type hindexed()

Lecture 5 — Parallel Algorithms & Data Structures
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Derived MPI Datatypes — MPI_Type_contiguous()

= Allocations of a datatype into contiguous locations

MPI Type contiguous( 3, oldtype, newtype );

< o
« »

(simple example, but as this works we can go more sophisticated) ) )
int MPT Type contiguous |

int count,
MPT Datatype old type,
int buffer[100]; MPI Datatype *nev type p

MPI T i 1 , MPI CHAR, i ;
_Type contiguous (100 e &stringtype) int MPL Send(

MPI Type commit (&stringtype) ; void *buf,
int count,
MPI Datatype datatype,

/* sending and receiving party int dest,
understand the data structure type*/ int tag,
MPT Comm comm
):
if (rank==0) { int MPI Recv(
MPI Send(buffer,l,stringtype,l, 123, MPI COMM WORLD) ; ‘_’”id *L‘”f*
- - - in countc,
} else { MPI Datatype datatype,
MPI Recv(buffer,l,stringtype, 0,123, MPI COMM WORLD, &status); E:E ig;mﬂ*
} MPT Comm comm,

MPT Statm= *status
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Derived MPI Datatypes — MPI_Type_vector()

Allocations of a datatype into block-wise locations

= Locations consist of equally spaced blocks
= Stride: number of elements between start of each block (integer)

MPI Type vector( 5, 2, 3, oldtype, newtype );

——

data
‘—’
‘blocklength . int MPI Type vector(
< - » ) int count,

stride (Example: Combine new datatypes = less complex) int blocklength,

int stride,
MPT Datatype old type,
MPT Datatype *nevtype p

MPI Type contiguous (3, MPI INT, &goodnumber) ; )
MPI Type commit (&goodnumber) ; int MPT Send(

MPI Type vector(3,2,3, goodnumber, &lotsofgoodnumbers); void *buf,
int count,

MPI Type commit (&lotsofgoodnumbers) ; MPI Datatype datatype
.. int dest,

int tag,
MPI Send(buffer, 1, lotsofgoodnumbers, 1, 123, MPI COMM World); MPT Comm somm
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Derived MPI Datatypes — MPI_Type_indexed()

= Allocations of a datatype into a (non uniform) sequence of blocks
= Each blocks can contain a different number of copies
= Each block can have a different displacement

array of blocklengths[] = {2,3,1,2,2,2} /* below BL */
array of displacements[] = {3,9,12,15,18} /* below DIS */

MPI Type indexed ( 6, array of blocklengths, array of displacements, oldtype, newtype);

BL[0] BL[1] BL[2] BL[3] BL[4] BL[5]
< > < > > < > - > < —
© pisjo]
. DIS[1] g
) DIS[2]
) DIS[3]
- DIS[4]
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int MPI Type indexed (

int count,

int blocklens|[],

int indicesl[],

MPI Datatype old type,

MPI Datatype *newtype
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MPI 1/0O & Parallel Filesystems — Revisited (cf. Lecture 4)

= Understanding and tuning parallel I/O is needed with ‘big data’
= |Leverage aggregate communication and I/O bandwidth of client machines

= Support: Add additional software components/libraries layers
= Coordination of file access & mapping of application model to I/0 model
= Components and libraries get increasingly specialized / layer
= High-Level I/O libraries like NetCDF or Hierarchical Data Format (HDF) are standards in the community

Application
High-level I/O Library

Application
I/O Middleware (MPI-10)
Parallel File System

I/O Hardware

[8] R. Thakur, PRACE Training,
Parallel I/0 and MPI I/0

Parallel File System -

I/O Hardware

Parallel Filesystems are just one part
out of three in the whole I/0 process
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Data Science Example: DBSCAN Clustering Algorithm

= DBSCAN Algorithm T Mineoints =4
-—0) i ! i
: : : Py /(DR = Density Reachabl
" |Introduced 1996 and most cited clustering algorithm ( ensity Reachable)
= Groups number of similar points into clusters of data

= Similarity is defined by a distance measure (e.g. euclidean distance)

(DDR = Directly Density
Reachable)

(DC = Density Connected)

= Distinct Algorithm Features

= Clusters a variable number of clusters [11] Ester et al. #SBATCH -o” HPDBSCAN-1
H H : -e -%j.err
(cf. K-Means Clustering with K clusters) #SBATCH - -nodes=2

#SBATCH - -ntasks=4
#SBATCH --ntasks-per-node=4

» Forms arbitrarily shaped clusters (except ‘bow ties’) #SBATCH - tine-00:20,00
--cpus-per-task=
= |dentifies inherently also outliers/noise

#!/bin/bash
#SBATCH - -job-name=HPDBSCAN
#SBATCH -0 HPDBSCAN-%j .out

#SBATCH --reservation=ml-hpc-1

OMP_NUM_THREADS=4

# location executable

. Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering HPDBSCAN=/homea/hpclab/train001/tools/hpdbscan/dbscan
algorithm that requires only two parameters and has no requirement to specify number of clusters # your own copy of bremen small
= Parameter Epsilon: Algorithm looks for a similar point within a given search radius Epsilon BREMENSMALLDATA=/homea/hpclab/train01/bremenSmall. h5

=  Parameter minPoints: Algorithm checks that cluster consist of a given minimum number of points # your own copy of bremen big

BREMENBIGDATA=/homea/hpclab/train00l/bremen.h5
|srun $HPDBSCAN -m 100 -e 300 -t 12 $BREMENSMALLDATA

» Lecture 8 provides more details about using MPI and OpenMP for data science algorithms used in clustering and classification of data
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‘Big Data‘ Science Example — Parallel & Scalable Clustering Algorithm — Revisited

leielgt |56 |7 512 | —o— Hybrid DS1
- AP —+ Hybrid DS2
U s R 2
I rin e A R LY LS i o
Clustering BRSENE {& 3e o 64 Linear %
)y 33. l.f‘, g |42 |42 | E 32
7 1% =9: 50 | @2 3 2 16
A '%‘:t ? g
IR PR AR 4
S 72 0'.:";. L3 CEJ NN R >
Overlayed spatial grid 1 5 8 32 128 512
O HPDBSCAN number of cores
I P "
A |‘ [T Overlay || Estimate J_ Merge i
ﬁ | | hypergrid | splits |"|: halos E
|' Data 1 l \ I 1 l i-|- ....... ——
Sort and — i Locl E PN procossor ! | procassor J
distribute [ {,n,iéfr‘ | pBscan _H_@gggw) @] ; O
L | L} ! I OZH E 24 L] 2
Preprocessing Clustering i O O o O O
L e U o J fo! C O
e | e oLV SRIRe 3
I—| Cluster relabeling | O : _ﬁ i O O
st A6 Que 1 Q3
[9] M. Goetz and M. Riedel et al, PO =110 T I T

Proceedings IEEE Supercomputing Conference, 2015
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Using High-Level I/0O Hierarchical Data Format (HDF) for Data Structures

H { {
= Simple ‘compound type’ example: - The Hierarchical Data
. L . . . . Format (HDF) is a
= Array of data records with some descriptive information (5x3 dimension) technology suite that
. . enables the work with
= HDF5 data structure type with int(8); extremely large and
int(4); int(16); 2x3x2 array (float32) (application example parallel & complex data collections
scalable clustering with HPDBSCAN S HDE e f||_e IS a
. . container to organize data
using Bremen data in HDF5) objects — it looks like a
5 filesystem within a file
J [train0el@jrl07 bremenl$ pwd
/homea/hpclab/train@0l/data/bremen
[traineel@jr107 bremenl$ 1s -al “Groups”
total 1342208
drwxr-xr-x 2 train00l hpclab 512 Jan 14 09:58 .
drwxr-xr-x 4 train00l1 hpclab 512 Jan 14 08:38 ..

-rw-r--r-- 1 train@@l hpclab 1302382632 Jan 14 09:56 bremen.h5
-rw-r--r-- 1 train@@l hpclab 72002416 Jan 14 08:25 bremensmall.h5

Datatype:
atype 3-D array

Record % | lon | temp
_..|_ e
12| 23| 31
15| 24| 4.2
17| 21| 36

Application

High-level 1/O Library
I/O Middleware (MPI-IO)

Parallel File System
I/O Hardware
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Raster image 2-D array

Parallel File System
I/O Hardware

“Datasets”

[8] R. Thakur, PRACE Training,

Parallel /O and MPI I/O [10] HDF@ 1/0 workshop



‘Big Data‘ Science Example: Using High-Level I/O Hierarchical Data Format (HDF)

= Parallelization Strategy ]

Chunk data space equally | ‘ls

L procoessor 2
0l a o 8 24 O @ 2
o] Ql O P
o) o] Q
in O'MOD e aQ
o)
Qo o O,U O
.150 nﬂn d A 1 0]
P SO =8

Overlay with hypergrid S
Apply cost heuristic

Redistribute points (data locality)
Execute DBSCAN locally

Merge clusters at chunk edges
Restore initial order

= Data organization

Use of HDF5
(cf. Lecture 5)

Cluster Id stored
in HDFS5 file

#1/bin/bash
#SBATCH - -job-name=HPDBSCAN
#SBATCH -o HPDBSCAN-%j.out

#SBATCH -e HPDBSCAN-%j.err
#SBATCH - -nodes=2

#SBATCH - -ntasks=4

#SBATCH - -ntasks-per-node=4
#SBATCH --time=00:20:00
#SBATCH - -cpus-per-task=4
#SBATCH --reservation=ml-hpc-1

OMP_NUM_THREADS=4

# location executable
HPDBSCAN=/homea/hpclab/train001l/tools/hpdbscan/dbscan

# your own copy of bremen small
BREMENSMALLDATA=/homea/hpclab/train@@l/bremenSmall.h5

# your own copy of bremen big
BREMENBIGDATA=/homea/hpclab/train001/bremen.h5

srun $HPDBSCAN -m 100 -e 300 -t 12 $BREMENSMALLDATA

512 | o Hybrid DS1
256 + —— Hybrid DS2 -
o =
o 64
=]
§ 32
o 16
8
4
2
1
2 8 32 128 512

number of cores

[9] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

» Lecture 8 provides more details about using MPl and OpenMP for data science algorithms used in clustering and classification of data
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[Video] Aerospace Engineering Industry Simulations

[7] ANSYS, Aerospace Industry demands
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