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Review of Lecture 4 – Advanced MPI Techniques
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 Parallel & Scalable I/O Methods Selected Options for MPI Communications
(blocking vs.
non-blocking

communication)

MPI_Comm_Split() 
to create sub-group

communicator

MPI_Cart_create() 
to create cartesian

communicator

(how MPI communication 
is affected by the 

hardware network 
impacts application

peformance)
Source: 
IBM

modified from [5] Parallel I/O[1] Metrics tour [2] LLNL MPI Tutorial [3] Introduction to Groups & Communicators [4] HPC Best Practices @ IO Workshop

[23] German MPI Lecture



Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns
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11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
3 / 50



Outline

 Selected Parallel Algorithms 
 Vector Addition in MPI using MPI Collectives 
 Matrix – Vector Multiplication in MPI using MPI Collectives
 Fast Fourier Transform (FFT) Library Tool using MPI Communicators
 Using Non-Blocking Communication in Simulation Sciences
 Advanced Parallel & Scalable Algorithm Examples in Context

 Selected Data Structures 
 Tree-based Data Structures & Particle Interaction Examples
 Basic MPI Datatypes and Arrays & Multi-dimensional Datasets
 Derived MPI Datatypes & Small Examples
 Relationships to Parallel IO & Hierarchical Data Format (HDF)
 Data Science example using Parallel I/O for ‘Big Data‘ Clustering
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 Promises from previous lecture(s):
 Lecture 4: Lecture 5 offers more details 

on using blocking & non-blocking MPI 
communication in simulations and data 
science applications

 Lecture 4: Lecture 5 offers more details 
on using Parallel I/O and portable data 
formats in various simulation sciences 
& data science applications



Selected Learning Outcomes

 Students understand…
 Latest developments in parallel processing & high performance computing (HPC)
 How to create and use high-performance clusters
 What are scalable networks & data-intensive workloads
 The importance of domain decomposition
 Complex aspects of parallel programming
 HPC environment tools that support programming 

or analyze behaviour
 Different abstractions of parallel computing on various levels
 Foundations and approaches of scientific domain-

specific applications 

 Students are able to …
 Programm and use HPC programming paradigms
 Take advantage of innovative scientific computing simulations & technology
 Work with technologies and tools to handle parallelism complexity
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Selected Parallel Algorithms
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Distributed-Memory Computers – Revisited (cf. Lecture 1)

 Features
 Processors communicate via Network Interfaces (NI)
 NI mediates the connection to a Communication network
 This setup is rarely used  a programming model view today

 A distributed-memory parallel computer establishes a ‘system view’ 
where no process can access another process’ memory directly

dominant
programming model

Message Passing 
Interface (MPI)

[12] Modified from 
Caterham F1 team

[13] Introduction to High Performance Computing 
for Scientists and Engineers

time t

time t
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 MPI Parallel Programming Basics

#include <stdio.h> 

#include <mpi.h>

int main(int argc, char** argv) 

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello World, I am %d out of %d\n",
rank, size);

MPI_Finalize();

return 0; 

} 

Parallel Programming with MPI & Basic Building Blocks (cf. Lecture 2)

 Message Passing Interface (MPI) Concepts

[2] LLNL MPI Tutorial

hello.c

C
using a C compiler

Sc
he

du
le

r

using a job script

MPI 
Point

to
Point

Communication

MPI 
Collective

Communication
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Formula Race Car Design & Room Heat Dissipation – Revisited (cf. Lecture 3)

 Pro: Network communication is relatively hidden and supported
 Contra: Programming with MPI still requires using ‘parallelization methods’
 Not easy: Write ‘technical code’ well integrated in ‘problem-domain code’

 Example: Race Car Simulation &
Heat dissipation in a Room 
 Apply a good parallelization method 

(e.g. domain decomposition)
 Write manually good MPI code for 

(technical) communication 
between processors
(e.g. across 1024 cores)

 Integrate well technical code
with problem-domain code
(e.g. computational fluid dynamics & airflow)

[8] Introduction to High Performance Computing 
for Scientists and Engineers

time t

time t

[6] Modified from 
Caterham F1 team
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Collective Functions:  Scatter (one-to-many) – Parallel Algorithm Example

P

M

P

M

P

M

P

M

DATA: 30
DATA: 20
DATA: 10

NEW: 10

DATA: 80

DATA: 19DATA: 06

NEW: 20
NEW: 30

 Scatter distributes 
different data to 
many or even all 
other processors

P1 P2 P3 P4 P5
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Z = X+Y



Collective Functions: Gather (many-to-one) – Parallel Algorithm Example

P

M

P

M

P

M

P

M

DATA: 17 DATA: 80

DATA: 19DATA: 06

NEW: 80
NEW: 19
NEW: 06

 Gather collects data 
from many or even 
all other processors
to one specific 
processor

P1 P2 P3 P4 P5
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Z = X+Y



Vector Addition in MPI using MPI Collectives

#include <mpi.h>

#define CHUNK = 1 /* simple example */

int main(int argc, char **argv) { 

int rank, size, n, i;

double x[3], y[3], z[3];

double xpart[CHUNK], ypart[CHUNK], zpart[CHUNK];

n = atoi(argv[1]); /* Get input size */

MPI_Init(&argc, &argv); 

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size); 

/* ...x,y,buff preparations with real values for vectors, e.g. via rank 0 ... */

MPI_Scatter(x,CHUNK,MPI_DOUBLE,xpart,CHUNK,MPI_DOUBLE,0,MPI_COMM_WORLD);

MPI_Scatter(y,CHUNK,MPI_DOUBLE,ypart,CHUNK,MPI_DOUBLE,0,MPI_COMM_WORLD);

for (i=0; i<CHUNK; i++) 

zpart[i] = xpart[i] + ypart[i];

/* Collect the result */

MPI_Gather(zpart,CHUNK,MPI_DOUBLE,z,CHUNK,MPI_DOUBLE,0,MPI_COMM_WORLD);

MPI_Finalize();

return 0;

}

Z = X+Y

‘simplified 
demo code’

 Scatter distributes 
different data (x,y) to 
many or even all 
other processors in 
the communicator

 Gather collects data 
from many or even all 
other processors to 
one specific 
processor in the 
communicator
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Collective Functions: Reduce (many-to-one) – Parallel Algorithm Example

 Reduce combines 
collection with 
computation  based on 
data from many or even 
all other processors

 Usage of reduce 
includes finding a 
global minimum or 
maximum, sum, or 
product of the different 
data located
at different processors

P1 P2 P3 P4 P5

P

M

P

M

P

M

P

M

DATA: 17 DATA: 80

DATA: 19DATA: 06

NEW: 122

+
+

+

+

global sum
as example+
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Matrix-Vector Multiplication in MPI using MPI Collectives – Required Variables

[14] Parallel Algorithms

#include <stdio.h>

#include <mpi.h>

#define NCOLS = 4 /* matrix columnwise domain decomposition */

int main(int argc, char **argv) { 

int i,j,k,l, rank, size;

float A[NCOLS];

float Apart[NCOLS];

float Bpart[NCOLS];

float C[NCOLS];

float A_exact[NCOLS];

float B[NCOLS][NCOLS];

float Cpart[1];

root = 0;

/* preparing MPI environment and initalization of matrix */

...
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‘simplified 
demo code’



Matrix-Vector Multiplication in MPI using MPI Collectives – MPI Setup

[14] Parallel Algorithms

#include <stdio.h>

#include <mpi.h>

#define NCOLS = 4 /* matrix columnwise domain decomposition */

int main(int argc, char **argv) { 

...

/* required variables are defined */

...

/* preparing MPI environment and initalization of matrix */

MPI_Init(&argc, &argv); 

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size); 

if (rank = 0) { /* initialize matrix B */

B[0][0] = 1; B[0][1] = 2; B[0][2] = 3; B[0][3] = 4; B[1][0] = 4; B[1][1] = -5; B[1][2] = 6;

B[1][3] = 4; B[2][0] = 7; B[2][1] = 8; B[2][2] = 9; B[2][3] = 2; B[3][0] = 3; B[3][1] = -1;

B[3][2] = 5; B[3][3] = 0;

/* initialize vector C */

C[0] = 1; C[1] = -4; C[2] = 7; C[3] = 3;

} /* Program continues with parallel calculations using collectives */

...
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‘simplified 
demo code’



Matrix-Vector Multiplication in MPI using MPI Collectives – Scatter Data

[14] Parallel Algorithms

#include <stdio.h>

#include <mpi.h>

#define NCOLS = 4 /* matrix columnwise domain decomposition */

int main(int argc, char **argv) { ...

/* Program continues with parallel calculations using collectives */

/* Put up a barrier until I/O is complete */

MPI_Barrier(MPI_COMM_WORLD);

/* Scatter matrix B */

MPI_Scatter(B,NCOLS,MPI_FLOAT,Bpart,NCOLS,MPI_FLOAT,0,MPI_COMM_WORLD);

/* Scatter vector C */

MPI_Scatter(C,1,MPI_FLOAT,Cpart,1,MPI_FLOAT, 0,MPI_COMM_WORLD);

/* Do the vector-scalar multiplication */

for(j=0; j < NCOLS; j++)

Apart[j] = Cpart[0] * Bpart[j];

/* Reduce to matrix A */

MPI_Reduce(Apart,A,NCOLS,MPI_FLOAT,MPI_SUM, 0,MPI_COMM_WORLD);

MPI_Finalize();

return 0;

}
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 Scatter distributes different data (x,y) to many or 
even all other processors in the communicator

 Each processor has a column of matrix B (named 
as Bpart)

 Each processor has an element of column vector 
C (named Cpart)‘simplified 

demo code’

 Barrier enables a synchronization among all 
processors and blocks until all processors reach 
this line of code



Matrix-Vector Multiplication in MPI using MPI Collectives – Reduce Results

[14] Parallel Algorithms

#include <stdio.h>

#include <mpi.h>

#define NCOLS = 4 /* matrix columnwise domain decomposition */

int main(int argc, char **argv) { ...

/* Program continues with parallel calculations using collectives */

/* Put up a barrier until I/O is complete */

MPI_Barrier(MPI_COMM_WORLD);

/* Scatter matrix B */

MPI_Scatter(B,NCOLS,MPI_FLOAT,Bpart,NCOLS,MPI_FLOAT,0,MPI_COMM_WORLD);

/* Scatter vector C */

MPI_Scatter(C,1,MPI_FLOAT,Cpart,1,MPI_FLOAT, 0,MPI_COMM_WORLD);

/* Do the vector-scalar multiplication */

for(j=0; j < NCOLS; j++)

Apart[j] = Cpart[0] * Bpart[j];

/* Reduce to matrix A */

MPI_Reduce(Apart,A,NCOLS,MPI_FLOAT,MPI_SUM, 0,MPI_COMM_WORLD);

MPI_Finalize();

return 0;

}
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 Reduce combines collection with computation  based on 
data from many or even all other processors

 Usage of reduce includes finding a global minimum or 
maximum, sum, or product of the different data located
at different processors

 Each processor has a part of the result vector A (named 
Apart) and is reduced on rank 0 as sum‘simplified 

demo code’

 Each processor performs an independent vector-scalar 
multipplication (based on their Bpart and Cpart contents)



Fast Fourier Transform (FFT) – Algorithm & Parallel Library Applications

 Example Applications
 Digital signal processing and solving Partial Differential Equations (PDE)
 Algorithms for quick multiplication of large integers
 Fourier series  study of periodic phenomena…

 Discrete Fourier Transform (DFT) – O (N²) 
 Obtained by decomposing a sequence of values into components 

of different frequencies (… analysis of non-periodic phenomena…)
 Computing it directly from the mathematical

definition is often too slow to be practical

 Fast Fourier Transform (FFT) – O (N log N) 
 FFT is a way to compute the DFT and its inverse, but more quickly

 Tool Fast Fourier Transform in the West (FFTW)
 Multi-threaded C subroutine library with fortran interface (free software) 
 FFTW versions include parallel transforms (shared & distributed memory)
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[16] FFTW Manual



FFTW Library Tool  – Parallel Algorithm with MPI Example

#include <fftw3-mpi.h> 

int main(int argc, char **argv) { 

const ptrdiff_t N0 = ..., N1 = ...; 

fftw_plan plan; 

fftw_complex *data; 

ptrdiff_t alloc_local, local_n0, local_0_start, i, j;

MPI_Init(&argc, &argv); 

fftw_mpi_init(); 

/* get local data size and allocate */ 

alloc_local = fftw_mpi_local_size_2d (N0, N1, MPI_COMM_WORLD, &local_n0, &local_0_start); 

data = fftw_alloc_complex(alloc_local);

/* create plan for in-place forward DFT */ 

plan = fftw_mpi_plan_dft_2d(N0, N1, data, data, MPI_COMM_WORLD, FFTW_FORWARD, FFTW_ESTIMATE);

/* initialize data to some function my_function(x,y) */ 

for (i = 0; i < local_n0; ++i) 

for (j = 0; j < N1; ++j) 

data[i*N1 + j] = my_function(local_0_start + i, j); 

/* compute transforms, in-place, as many times as desired */ 

fftw_execute(plan); 

fftw_destroy_plan(plan); 

MPI_Finalize();

return 0; }
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 Does not allocate the entire 2 dimensional array 
on each process, instead function 
fftw_mpi_local_size_2d finds out what portion of 
the array resides on each processor and this is 
used to know how much space to allocate

 1d block distribution of the data (cf. Lecture 2), 
distributed along the first dimension; e.g. 
100 × 200 complex DFT, distributed over 4 
processes: 25 × 200 slices / process of the data, 
0 : 0 - 24, 1: 25 – 49 ,
2 : 50 – 74, 3 : 75 – 99

 Communicator MPI_COMM_WORLD indicates 
here which processes will participate in the 
transform 

 Using a library tool like here for the Fast Fourier 
Transform (FFT) could mean that MPI messages 
are mostly abstracted away and only 
communication elements remain

‘simplified 
demo code’

[16] FFTW Manual



Collective Functions : Broadcast (one-to-many) – Parallel Algorithm Example

P

M

P

M

P

M

P

M

DATA: 17

DATA: 06 DATA: 19

DATA: 80

NEW: 17

NEW: 17NEW: 17  Broadcast 
distributes the 
same data to many 
or even all other 
processors

P1 P2 P3 P4 P5
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Computational Steering of (Iterative) Parallel Algorithms using MPI

 Particle Simulations using PEPC library (see above)
 E.g. research star cluster dynamics in astrophysics or particle acceleration simulations via laser pulses
 E.g. Iterations over time using nbody6++ parallel algorithm
 Steering: changing parameters during the run-time of simulation [17] M. Riedel et al., 

computational steering, 2007

change
parameters
interactively

visualize
status
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Performance Analysis is a Key Field in HPC – Revisited 

 Analysis is typically performed using (automated) software tools
 Measure and analyze the runtime behaviour of parallel programs
 Identifies potential performance bottlenecks
 Offer performance optimization hints and views of the location in time
 Guides exploring causes of bottlenecks in communication/synchronization

[21] SCALASCA Performance Tool

 Lecture 9 will give details on how to measure performance in parallel programms & and related tools using various applications
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Data Parallelism: Formulas Across Domain Decomposition

 From the problem to computational data structures
 Apply an ‘isotropic lattice‘ technique

‘change over time’
diffusion equation

k / y

i / x

 Lecture 10 on Hybrid Programming and Patterns will offer more details on stencil methods & patterns in simulation science applications

[20] Wikipedia on ‘stencil code’

Modified from [13] Introduction to High Performance 
Computing for Scientists and Engineers
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Large-scale Computing Infrastructures & Course-Grained Parallel Algorithms

 Large computing systems are often embedded in infrastructures
 Grid computing for distributed data storage and processing via middleware
 The success of Grid computing was renowned when being mentioned by Prof. Rolf-Dieter Heuer, CERN 

Director General, in the context of the Higgs Boson Discovery: 

 Other large-scale distributed infrastructures exist
 Partnership for Advanced Computing in Europe (PRACE)  EU HPC 
 Extreme Engineering and Discovery Environment (XSEDE)  US HPC

 ‘Results today only possible due to extraordinary performance of 
Accelerators – Experiments – Grid computing’

[18] Grid Computing Video

 Lecture 11 will give in-depth details on scalable approaches in large-scale HPC infrastructures and how to use them with middleware
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Blocking vs. Non-blocking communication – Parallel Algorithms Example

 Blocking vs. non-blocking:  MPI_Send() blocks until data is received; MPI_Isend() continues
 The use of these functions can cause different performance problems (e.g. here ‘late sender’)
 MPI_Wait() does wait for a given MPI request to complete before continuing
 MPI_Waitall() does wait for all given MPI requests (e.g. waiting for message) to complete before continuing

[1] Metrics tour
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 Lecture 12 will provide more details on using blocking vs non-blocking communication in terrestrial systems & HPC climate simulations

[23] German MPI Lecture



Complex Climate Example – Numerical Weather Prediction (NWP) & Forecast

 Application areas
 Global & regional short-term 

weather forecast models in operations
 Perform long-term climate prediction 

research (e.g. climate change, polar research, etc.)

 NWP model characteristics
 Use ordinary/partial differential equations (PDEs) 

(i.e. use laws of physics, fluids, motion, chemistry)
 Domain decomposition example: 3D grid cells
 Computing/cell: winds, heat transfer, solar 

radiation, relative humidity & surface hydrology
 Interactions with neighboring cells: used

to calculate atmosopheric properties over time

 Lecture 12 will provide more details on using different domain decompositions for terrestrial systems and climate simulations on HPC

 Numerical Weather Prediction (NWP) uses mathematical models 
of the atmosphere and oceans to predict the weather based on 
current weather observations (e.g. weather satellites) as inputs

 Performing complex calculations necessary for NWP requires 
supercomputers (limit ~6 days) using HPC techniques

 NWP belongs to the field of numerical methods that obtain 
approximate solutions to problems  certain uncertainty remains

modified from [19] Wikipedia on 
‘Numerical Weather Prediction’
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Climate – WRF Model Parallel Application – pNetCDF

 Need for Parallel I/O (cf. Lecture 4)
 WRF is output-bound (‘writes costs much’)

 Use Serial & parallel NetCDF
 Provides an I/O layer implemented 

with parallel NetCDF (pNetCDF)
 I/O performance gain is considerable against  using not pNetCDF 

 Parallel Network Common Data Form (NETCDF) is designed to store & organize 
array-oriented data

 Portable data formats are needed to efficiently process data in heterogeneous 
HPC environments

 Parallel NetCDF can be used to significantly improve I/O output performance of 
WRF codes

[22] Opportunities for WRF Model 
Acceleration

(different options that do not scale)
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Monte Carlo Parallel Algorithms

 Scientific case:
 Understanding protein folding in computational 

biophysics for an increased understanding of human body
 Proteins perform functions within 

living organisms (e.g. respond to stimuli)
 Proteins differ in their sequence of amino acids, 

results in different foldings
 Correct and unique 3D structure is essential to the functions of proteins
 Process of protein folding as a parallel computing application

 Using Monte Carlo simulations
 Simulations that use stochastic methods to generate new configurations of a system
 Initial conditions of particles, then Monte Carlo ‘moves’ that changes configuration of particles

 Lecture 13 will provide more details on using different & scalable parallel algorithms for systems biology & bioinformatics applications
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 Scientific case: 
 Understanding physical movements of atoms and molecules in the context of n-body simulations

 Molecular dynamics algorithms for interacting ‘particles‘
 Determine trajectories of atoms and molecules
 Numerically solving the Newton‘s equations of motion 
 Forces between particles and potential 

energy is parallel computed according
to molecular mechanics force field methods

 Using a library
 E.g. MP2C code: particle-based hydrodynamics (fluid simulations)

 Lecture 14 will give in-depth details on parallel and scalable molecular systems algorithms, tools, methods, and the use of libraries
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Flow field in a gas diffusion membrane



[Video] Finite Element Simulation Example in Product Engineering

[15] Finite element simulation of full scale car crash
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Selected Data Structures
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Tree-Code Parallel Algorithms – Example N-body & Particle Simulations

 Tree codes – ‘another form of smart domain decomposition‘
 E.g. to speed up ’N-body simulations’ with long range interactions
 Enable realistic simulations of n-body systems with increasing particles
 Offers the understanding why data structures & domain decomposition 

are important to be jointly considered in parallel algorithms

[6] PEPC Web page
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Tree-Code Parallel Algorithms – Reduce Number of Required Particle Interactions

 Pretty Efficient Parallel Coulomb (PEPC) Solver
 Implementation of classical ‘Barnes-Hut Tree Code‘ for N-body problems
 Divides ‘simulation space‘ into cubic cells as ‘octree‘ to reduce computing
 Particles in nearby cells are treated individually
 Particles in distant cells are treated as a single large particle 

Lecture 5 – Parallel Algorithms & Data Structures 33 / 50

[6] PEPC Web page

 In physics-based 
simulation science 
applications a tree-code 
parallel algorithm can 
significantly reduce the 
number of particle pair 
interactions that must be 
computed

 Particles in nearby cells 
are treated individually in 
complex computations

 Particles in distant cells 
are treated as a single 
large particle to reduce 
interactions



Tree-Code Parallel Algorithms – Particle Space & Domain Decomposition Example 

 Example: Parallel Tree Buildup & Tree Data Structures 
 Interaction between particles based on ‘known physical laws‘

Level 0 Level 1

Level 2 Level 3
[6] PEPC Web page
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Basic MPI Datatypes & Multi-Dimensional Datasets

 Basic MPI Datatypes (aka ‘intrinsic or primitive‘ data types)
 Simple, used in many applications and work towards ‘code portability‘
 MPI_INT; MPI_CHAR; MPI_LONG; MPI_FLOAT; MPI_DOUBLE; …
 E.g. need to match MPI_Datatype in MPI_Send and MPI_Recv operations
 E.g. value described by a data-type, a count and memory location
 Challenge: the data must be contiguous in memory (here void* buf)

 Arrays for multi-dimensional datasets
 Typically used in conjunction with one and only one basic data type 
 Flexible and used in a wide variety of applications (e.g. matrices, etc.)

Int MPI_Send( void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Int MPI_Recv( void* buf, int count, MPI_Datatype datatype, 
int source, int tag, MPI_Comm comm, MPI_Status* status)

Lecture 5 – Parallel Algorithms & Data Structures 35 / 50

 Some applications require 
data structures that are 
more sophisticated data 
types and formats

 Several applications 
require another simple 
mechanism for 
exchanging common data 
than just basic MPI 
datatypes or simple multi-
dimensional datasets



Derived MPI Datatypes – Principles

 Motivation: convenient & efficient & suited for application needs
1. Construct a new datatype using dedicated MPI routines (see below)
2. Commit the new datatype – MPI_Type_Commit()

3. Take advantage of the new datatype, e.g. in send/receive operations

 MPI derived datatype (e.g. when you need it often)
 Represents a ‘map for understanding‘ and interpreting message data
 Transforms an ‘old datatype‘ and building contraints to a ‘new datatype‘
 Note: although the old datatype will remain, easier to use the new datatype

 MPI construction routines
 Enable a wide variety of possible 

self-developed data structures used in MPI communication
 MPI_Type_contiguous(), MPI_Type_vector(), MPI_Type_indexed() 

 MPI_Type_struct(), MPI_Type_hvector(), MPI_Type_hindexed()
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 Derived MPI datatypes are 
constructed from existing 
other datatypes (e.g. basic 
data types)

 Used to avoid repeated 
sends of varied basic 
types (i.e. slow, clumsy, 
and error prone)

 Enable a suitable memory 
layout for complex data 
structures that consist of 
several different types

(how do we send a 
string with 3 chars?)



Derived MPI Datatypes – MPI_Type_contiguous()

 Allocations of a datatype into contiguous locations
MPI_Type_contiguous( 3, oldtype, newtype );

... 

int buffer[100];

MPI_Type_contiguous(100, MPI_CHAR, &stringtype);

MPI_Type_commit(&stringtype);

/* sending and receiving party 
understand the data structure type*/

if (rank==0) {

MPI_Send(buffer,1,stringtype,1, 123, MPI_COMM_WORLD);

} else {

MPI_Recv(buffer,1,stringtype,0,123, MPI_COMM_WORLD, &status);

}

...
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(simple example, but as this works we can go more sophisticated)



 Allocations of a datatype into block-wise locations 
 Locations consist of equally spaced blocks
 Stride: number of elements between start of each block (integer)

Derived MPI Datatypes – MPI_Type_vector()

MPI_Type_vector( 5, 2, 3, oldtype, newtype );

data

blocklength

stride

... 

MPI_Type_contiguous(3, MPI_INT, &goodnumber);

MPI_Type_commit(&goodnumber);

MPI_Type_vector(3,2,3, goodnumber, &lotsofgoodnumbers);

MPI_Type_commit(&lotsofgoodnumbers);

...

MPI_Send(buffer, 1, lotsofgoodnumbers, 1, 123, MPI_COMM_World);

...

(Example: Combine new datatypes  less complex)

Lecture 5 – Parallel Algorithms & Data Structures 38 / 50



Derived MPI Datatypes – MPI_Type_indexed()

 Allocations of a datatype into a (non uniform) sequence of blocks
 Each blocks can contain a different number of copies
 Each block can have a different displacement
array_of_blocklengths[] = {2,3,1,2,2,2} /* below BL */

array_of_displacements[] = {3,9,12,15,18} /* below DIS */

MPI_Type_indexed ( 6, array_of_blocklengths, array_of_displacements, oldtype, newtype);

BL[0] BL[1] BL[2] BL[3] BL[4] BL[5]

DIS[0]

DIS[1]

DIS[2]

DIS[3]

DIS[4]
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 Understanding and tuning parallel I/O is needed with ‘big data’
 Leverage aggregate communication and I/O bandwidth of client machines

 Support: Add additional software components/libraries layers
 Coordination of file access & mapping of application model to I/O model
 Components and libraries get increasingly specialized / layer
 High-Level I/O libraries like NetCDF or Hierarchical Data Format (HDF) are standards in the community

[8] R. Thakur, PRACE Training, 
Parallel I/O and MPI I/O

Parallel Filesystems are just one part
out of three in the whole I/O process

MPI I/O & Parallel Filesystems – Revisited (cf. Lecture 4)

Data

I/O
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Data Science Example: DBSCAN Clustering Algorithm

 DBSCAN Algorithm
 Introduced 1996 and most cited clustering algorithm
 Groups number of similar points into clusters of data
 Similarity is defined by a distance measure (e.g. euclidean distance)

 Distinct Algorithm Features
 Clusters a variable number of clusters 

(cf. K-Means Clustering with K clusters)
 Forms arbitrarily shaped clusters (except ‘bow ties‘)
 Identifies inherently also outliers/noise

(MinPoints = 4)

(DR = Density Reachable)

(DDR = Directly Density 
Reachable)
(DC = Density Connected)

 Lecture 8 provides more details about using MPI and OpenMP for data science algorithms used in clustering and classification of data

[11] Ester et al.

 Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering 
algorithm that requires only two parameters and has no requirement to specify number of clusters

 Parameter Epsilon: Algorithm looks for a similar point within a given search radius Epsilon
 Parameter minPoints: Algorithm checks that cluster consist of a given minimum number of points
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‘Big Data‘ Science Example – Parallel & Scalable Clustering Algorithm – Revisited 

[9] M. Goetz and M. Riedel et al, 
Proceedings IEEE Supercomputing Conference, 2015

Clustering
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Using High-Level I/O Hierarchical Data Format (HDF) for Data Structures

 Simple ‘compound type‘ example: 
 Array of data records with some descriptive information (5x3 dimension)
 HDF5 data structure type with int(8); 

int(4); int(16); 2x3x2 array (float32)

[8] R. Thakur, PRACE Training, 
Parallel I/O and MPI I/O
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 The Hierarchical Data 
Format (HDF) is a 
technology suite that 
enables the work with 
extremely large and 
complex data collections

 A HDF version 5 file is a 
container to organize data 
objects – it looks like a 
filesystem within a file

(application example parallel & 
scalable clustering with HPDBSCAN

using Bremen data in HDF5)

[10] HDF@ I/O workshop



‘Big Data‘ Science Example: Using High-Level I/O Hierarchical Data Format (HDF)

 Parallelization Strategy
 Chunk data space equally
 Overlay with hypergrid
 Apply cost heuristic
 Redistribute points (data locality)
 Execute DBSCAN locally 
 Merge clusters at chunk edges
 Restore initial order

 Data organization
 Use of HDF5

(cf. Lecture 5)
 Cluster Id stored

in HDF5 file

 Lecture 8 provides more details about using MPI and OpenMP for data science algorithms used in clustering and classification of data

[9] M. Goetz and M. Riedel et al, 
Proceedings IEEE Supercomputing Conference, 2015
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[Video] Aerospace Engineering Industry Simulations

[7] ANSYS, Aerospace Industry demands
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