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Review of Lecture 4 – Advanced MPI Techniques
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 Parallel & Scalable I/O Methods Selected Options for MPI Communications
(blocking vs.
non-blocking

communication)

MPI_Comm_Split() 
to create sub-group

communicator

MPI_Cart_create() 
to create cartesian

communicator

(how MPI communication 
is affected by the 

hardware network 
impacts application

peformance)
Source: 
IBM

modified from [5] Parallel I/O[1] Metrics tour [2] LLNL MPI Tutorial [3] Introduction to Groups & Communicators [4] HPC Best Practices @ IO Workshop

[23] German MPI Lecture



Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns
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11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
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Outline

 Selected Parallel Algorithms 
 Vector Addition in MPI using MPI Collectives 
 Matrix – Vector Multiplication in MPI using MPI Collectives
 Fast Fourier Transform (FFT) Library Tool using MPI Communicators
 Using Non-Blocking Communication in Simulation Sciences
 Advanced Parallel & Scalable Algorithm Examples in Context

 Selected Data Structures 
 Tree-based Data Structures & Particle Interaction Examples
 Basic MPI Datatypes and Arrays & Multi-dimensional Datasets
 Derived MPI Datatypes & Small Examples
 Relationships to Parallel IO & Hierarchical Data Format (HDF)
 Data Science example using Parallel I/O for ‘Big Data‘ Clustering
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 Promises from previous lecture(s):
 Lecture 4: Lecture 5 offers more details 

on using blocking & non-blocking MPI 
communication in simulations and data 
science applications

 Lecture 4: Lecture 5 offers more details 
on using Parallel I/O and portable data 
formats in various simulation sciences 
& data science applications



Selected Learning Outcomes

 Students understand…
 Latest developments in parallel processing & high performance computing (HPC)
 How to create and use high-performance clusters
 What are scalable networks & data-intensive workloads
 The importance of domain decomposition
 Complex aspects of parallel programming
 HPC environment tools that support programming 

or analyze behaviour
 Different abstractions of parallel computing on various levels
 Foundations and approaches of scientific domain-

specific applications 

 Students are able to …
 Programm and use HPC programming paradigms
 Take advantage of innovative scientific computing simulations & technology
 Work with technologies and tools to handle parallelism complexity
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Selected Parallel Algorithms
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Distributed-Memory Computers – Revisited (cf. Lecture 1)

 Features
 Processors communicate via Network Interfaces (NI)
 NI mediates the connection to a Communication network
 This setup is rarely used  a programming model view today

 A distributed-memory parallel computer establishes a ‘system view’ 
where no process can access another process’ memory directly

dominant
programming model

Message Passing 
Interface (MPI)

[12] Modified from 
Caterham F1 team

[13] Introduction to High Performance Computing 
for Scientists and Engineers

time t

time t
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 MPI Parallel Programming Basics

#include <stdio.h> 

#include <mpi.h>

int main(int argc, char** argv) 

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello World, I am %d out of %d\n",
rank, size);

MPI_Finalize();

return 0; 

} 

Parallel Programming with MPI & Basic Building Blocks (cf. Lecture 2)

 Message Passing Interface (MPI) Concepts

[2] LLNL MPI Tutorial

hello.c

C
using a C compiler

Sc
he

du
le

r

using a job script

MPI 
Point

to
Point

Communication

MPI 
Collective

Communication
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Formula Race Car Design & Room Heat Dissipation – Revisited (cf. Lecture 3)

 Pro: Network communication is relatively hidden and supported
 Contra: Programming with MPI still requires using ‘parallelization methods’
 Not easy: Write ‘technical code’ well integrated in ‘problem-domain code’

 Example: Race Car Simulation &
Heat dissipation in a Room 
 Apply a good parallelization method 

(e.g. domain decomposition)
 Write manually good MPI code for 

(technical) communication 
between processors
(e.g. across 1024 cores)

 Integrate well technical code
with problem-domain code
(e.g. computational fluid dynamics & airflow)

[8] Introduction to High Performance Computing 
for Scientists and Engineers

time t

time t

[6] Modified from 
Caterham F1 team
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Collective Functions:  Scatter (one-to-many) – Parallel Algorithm Example

P

M

P

M

P

M

P

M

DATA: 30
DATA: 20
DATA: 10

NEW: 10

DATA: 80

DATA: 19DATA: 06

NEW: 20
NEW: 30

 Scatter distributes 
different data to 
many or even all 
other processors

P1 P2 P3 P4 P5
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Z = X+Y



Collective Functions: Gather (many-to-one) – Parallel Algorithm Example

P

M

P

M

P

M

P

M

DATA: 17 DATA: 80

DATA: 19DATA: 06

NEW: 80
NEW: 19
NEW: 06

 Gather collects data 
from many or even 
all other processors
to one specific 
processor

P1 P2 P3 P4 P5

Lecture 5 – Parallel Algorithms & Data Structures 11 / 50
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Vector Addition in MPI using MPI Collectives

#include <mpi.h>

#define CHUNK = 1 /* simple example */

int main(int argc, char **argv) { 

int rank, size, n, i;

double x[3], y[3], z[3];

double xpart[CHUNK], ypart[CHUNK], zpart[CHUNK];

n = atoi(argv[1]); /* Get input size */

MPI_Init(&argc, &argv); 

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size); 

/* ...x,y,buff preparations with real values for vectors, e.g. via rank 0 ... */

MPI_Scatter(x,CHUNK,MPI_DOUBLE,xpart,CHUNK,MPI_DOUBLE,0,MPI_COMM_WORLD);

MPI_Scatter(y,CHUNK,MPI_DOUBLE,ypart,CHUNK,MPI_DOUBLE,0,MPI_COMM_WORLD);

for (i=0; i<CHUNK; i++) 

zpart[i] = xpart[i] + ypart[i];

/* Collect the result */

MPI_Gather(zpart,CHUNK,MPI_DOUBLE,z,CHUNK,MPI_DOUBLE,0,MPI_COMM_WORLD);

MPI_Finalize();

return 0;

}

Z = X+Y

‘simplified 
demo code’

 Scatter distributes 
different data (x,y) to 
many or even all 
other processors in 
the communicator

 Gather collects data 
from many or even all 
other processors to 
one specific 
processor in the 
communicator
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Collective Functions: Reduce (many-to-one) – Parallel Algorithm Example

 Reduce combines 
collection with 
computation  based on 
data from many or even 
all other processors

 Usage of reduce 
includes finding a 
global minimum or 
maximum, sum, or 
product of the different 
data located
at different processors

P1 P2 P3 P4 P5

P

M

P

M

P

M

P

M

DATA: 17 DATA: 80

DATA: 19DATA: 06

NEW: 122

+
+

+

+

global sum
as example+
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Matrix-Vector Multiplication in MPI using MPI Collectives – Required Variables

[14] Parallel Algorithms

#include <stdio.h>

#include <mpi.h>

#define NCOLS = 4 /* matrix columnwise domain decomposition */

int main(int argc, char **argv) { 

int i,j,k,l, rank, size;

float A[NCOLS];

float Apart[NCOLS];

float Bpart[NCOLS];

float C[NCOLS];

float A_exact[NCOLS];

float B[NCOLS][NCOLS];

float Cpart[1];

root = 0;

/* preparing MPI environment and initalization of matrix */

...

Lecture 5 – Parallel Algorithms & Data Structures 14 / 50

‘simplified 
demo code’



Matrix-Vector Multiplication in MPI using MPI Collectives – MPI Setup

[14] Parallel Algorithms

#include <stdio.h>

#include <mpi.h>

#define NCOLS = 4 /* matrix columnwise domain decomposition */

int main(int argc, char **argv) { 

...

/* required variables are defined */

...

/* preparing MPI environment and initalization of matrix */

MPI_Init(&argc, &argv); 

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size); 

if (rank = 0) { /* initialize matrix B */

B[0][0] = 1; B[0][1] = 2; B[0][2] = 3; B[0][3] = 4; B[1][0] = 4; B[1][1] = -5; B[1][2] = 6;

B[1][3] = 4; B[2][0] = 7; B[2][1] = 8; B[2][2] = 9; B[2][3] = 2; B[3][0] = 3; B[3][1] = -1;

B[3][2] = 5; B[3][3] = 0;

/* initialize vector C */

C[0] = 1; C[1] = -4; C[2] = 7; C[3] = 3;

} /* Program continues with parallel calculations using collectives */

...
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‘simplified 
demo code’



Matrix-Vector Multiplication in MPI using MPI Collectives – Scatter Data

[14] Parallel Algorithms

#include <stdio.h>

#include <mpi.h>

#define NCOLS = 4 /* matrix columnwise domain decomposition */

int main(int argc, char **argv) { ...

/* Program continues with parallel calculations using collectives */

/* Put up a barrier until I/O is complete */

MPI_Barrier(MPI_COMM_WORLD);

/* Scatter matrix B */

MPI_Scatter(B,NCOLS,MPI_FLOAT,Bpart,NCOLS,MPI_FLOAT,0,MPI_COMM_WORLD);

/* Scatter vector C */

MPI_Scatter(C,1,MPI_FLOAT,Cpart,1,MPI_FLOAT, 0,MPI_COMM_WORLD);

/* Do the vector-scalar multiplication */

for(j=0; j < NCOLS; j++)

Apart[j] = Cpart[0] * Bpart[j];

/* Reduce to matrix A */

MPI_Reduce(Apart,A,NCOLS,MPI_FLOAT,MPI_SUM, 0,MPI_COMM_WORLD);

MPI_Finalize();

return 0;

}
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 Scatter distributes different data (x,y) to many or 
even all other processors in the communicator

 Each processor has a column of matrix B (named 
as Bpart)

 Each processor has an element of column vector 
C (named Cpart)‘simplified 

demo code’

 Barrier enables a synchronization among all 
processors and blocks until all processors reach 
this line of code



Matrix-Vector Multiplication in MPI using MPI Collectives – Reduce Results

[14] Parallel Algorithms

#include <stdio.h>

#include <mpi.h>

#define NCOLS = 4 /* matrix columnwise domain decomposition */

int main(int argc, char **argv) { ...

/* Program continues with parallel calculations using collectives */

/* Put up a barrier until I/O is complete */

MPI_Barrier(MPI_COMM_WORLD);

/* Scatter matrix B */

MPI_Scatter(B,NCOLS,MPI_FLOAT,Bpart,NCOLS,MPI_FLOAT,0,MPI_COMM_WORLD);

/* Scatter vector C */

MPI_Scatter(C,1,MPI_FLOAT,Cpart,1,MPI_FLOAT, 0,MPI_COMM_WORLD);

/* Do the vector-scalar multiplication */

for(j=0; j < NCOLS; j++)

Apart[j] = Cpart[0] * Bpart[j];

/* Reduce to matrix A */

MPI_Reduce(Apart,A,NCOLS,MPI_FLOAT,MPI_SUM, 0,MPI_COMM_WORLD);

MPI_Finalize();

return 0;

}
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 Reduce combines collection with computation  based on 
data from many or even all other processors

 Usage of reduce includes finding a global minimum or 
maximum, sum, or product of the different data located
at different processors

 Each processor has a part of the result vector A (named 
Apart) and is reduced on rank 0 as sum‘simplified 

demo code’

 Each processor performs an independent vector-scalar 
multipplication (based on their Bpart and Cpart contents)



Fast Fourier Transform (FFT) – Algorithm & Parallel Library Applications

 Example Applications
 Digital signal processing and solving Partial Differential Equations (PDE)
 Algorithms for quick multiplication of large integers
 Fourier series  study of periodic phenomena…

 Discrete Fourier Transform (DFT) – O (N²) 
 Obtained by decomposing a sequence of values into components 

of different frequencies (… analysis of non-periodic phenomena…)
 Computing it directly from the mathematical

definition is often too slow to be practical

 Fast Fourier Transform (FFT) – O (N log N) 
 FFT is a way to compute the DFT and its inverse, but more quickly

 Tool Fast Fourier Transform in the West (FFTW)
 Multi-threaded C subroutine library with fortran interface (free software) 
 FFTW versions include parallel transforms (shared & distributed memory)
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[16] FFTW Manual



FFTW Library Tool  – Parallel Algorithm with MPI Example

#include <fftw3-mpi.h> 

int main(int argc, char **argv) { 

const ptrdiff_t N0 = ..., N1 = ...; 

fftw_plan plan; 

fftw_complex *data; 

ptrdiff_t alloc_local, local_n0, local_0_start, i, j;

MPI_Init(&argc, &argv); 

fftw_mpi_init(); 

/* get local data size and allocate */ 

alloc_local = fftw_mpi_local_size_2d (N0, N1, MPI_COMM_WORLD, &local_n0, &local_0_start); 

data = fftw_alloc_complex(alloc_local);

/* create plan for in-place forward DFT */ 

plan = fftw_mpi_plan_dft_2d(N0, N1, data, data, MPI_COMM_WORLD, FFTW_FORWARD, FFTW_ESTIMATE);

/* initialize data to some function my_function(x,y) */ 

for (i = 0; i < local_n0; ++i) 

for (j = 0; j < N1; ++j) 

data[i*N1 + j] = my_function(local_0_start + i, j); 

/* compute transforms, in-place, as many times as desired */ 

fftw_execute(plan); 

fftw_destroy_plan(plan); 

MPI_Finalize();

return 0; }
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 Does not allocate the entire 2 dimensional array 
on each process, instead function 
fftw_mpi_local_size_2d finds out what portion of 
the array resides on each processor and this is 
used to know how much space to allocate

 1d block distribution of the data (cf. Lecture 2), 
distributed along the first dimension; e.g. 
100 × 200 complex DFT, distributed over 4 
processes: 25 × 200 slices / process of the data, 
0 : 0 - 24, 1: 25 – 49 ,
2 : 50 – 74, 3 : 75 – 99

 Communicator MPI_COMM_WORLD indicates 
here which processes will participate in the 
transform 

 Using a library tool like here for the Fast Fourier 
Transform (FFT) could mean that MPI messages 
are mostly abstracted away and only 
communication elements remain

‘simplified 
demo code’

[16] FFTW Manual



Collective Functions : Broadcast (one-to-many) – Parallel Algorithm Example

P

M

P

M

P

M

P

M

DATA: 17

DATA: 06 DATA: 19

DATA: 80

NEW: 17

NEW: 17NEW: 17  Broadcast 
distributes the 
same data to many 
or even all other 
processors

P1 P2 P3 P4 P5
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Computational Steering of (Iterative) Parallel Algorithms using MPI

 Particle Simulations using PEPC library (see above)
 E.g. research star cluster dynamics in astrophysics or particle acceleration simulations via laser pulses
 E.g. Iterations over time using nbody6++ parallel algorithm
 Steering: changing parameters during the run-time of simulation [17] M. Riedel et al., 

computational steering, 2007

change
parameters
interactively

visualize
status
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Performance Analysis is a Key Field in HPC – Revisited 

 Analysis is typically performed using (automated) software tools
 Measure and analyze the runtime behaviour of parallel programs
 Identifies potential performance bottlenecks
 Offer performance optimization hints and views of the location in time
 Guides exploring causes of bottlenecks in communication/synchronization

[21] SCALASCA Performance Tool

 Lecture 9 will give details on how to measure performance in parallel programms & and related tools using various applications
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Data Parallelism: Formulas Across Domain Decomposition

 From the problem to computational data structures
 Apply an ‘isotropic lattice‘ technique

‘change over time’
diffusion equation

k / y

i / x

 Lecture 10 on Hybrid Programming and Patterns will offer more details on stencil methods & patterns in simulation science applications

[20] Wikipedia on ‘stencil code’

Modified from [13] Introduction to High Performance 
Computing for Scientists and Engineers
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Large-scale Computing Infrastructures & Course-Grained Parallel Algorithms

 Large computing systems are often embedded in infrastructures
 Grid computing for distributed data storage and processing via middleware
 The success of Grid computing was renowned when being mentioned by Prof. Rolf-Dieter Heuer, CERN 

Director General, in the context of the Higgs Boson Discovery: 

 Other large-scale distributed infrastructures exist
 Partnership for Advanced Computing in Europe (PRACE)  EU HPC 
 Extreme Engineering and Discovery Environment (XSEDE)  US HPC

 ‘Results today only possible due to extraordinary performance of 
Accelerators – Experiments – Grid computing’

[18] Grid Computing Video

 Lecture 11 will give in-depth details on scalable approaches in large-scale HPC infrastructures and how to use them with middleware
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Blocking vs. Non-blocking communication – Parallel Algorithms Example

 Blocking vs. non-blocking:  MPI_Send() blocks until data is received; MPI_Isend() continues
 The use of these functions can cause different performance problems (e.g. here ‘late sender’)
 MPI_Wait() does wait for a given MPI request to complete before continuing
 MPI_Waitall() does wait for all given MPI requests (e.g. waiting for message) to complete before continuing

[1] Metrics tour
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 Lecture 12 will provide more details on using blocking vs non-blocking communication in terrestrial systems & HPC climate simulations

[23] German MPI Lecture



Complex Climate Example – Numerical Weather Prediction (NWP) & Forecast

 Application areas
 Global & regional short-term 

weather forecast models in operations
 Perform long-term climate prediction 

research (e.g. climate change, polar research, etc.)

 NWP model characteristics
 Use ordinary/partial differential equations (PDEs) 

(i.e. use laws of physics, fluids, motion, chemistry)
 Domain decomposition example: 3D grid cells
 Computing/cell: winds, heat transfer, solar 

radiation, relative humidity & surface hydrology
 Interactions with neighboring cells: used

to calculate atmosopheric properties over time

 Lecture 12 will provide more details on using different domain decompositions for terrestrial systems and climate simulations on HPC

 Numerical Weather Prediction (NWP) uses mathematical models 
of the atmosphere and oceans to predict the weather based on 
current weather observations (e.g. weather satellites) as inputs

 Performing complex calculations necessary for NWP requires 
supercomputers (limit ~6 days) using HPC techniques

 NWP belongs to the field of numerical methods that obtain 
approximate solutions to problems  certain uncertainty remains

modified from [19] Wikipedia on 
‘Numerical Weather Prediction’
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Climate – WRF Model Parallel Application – pNetCDF

 Need for Parallel I/O (cf. Lecture 4)
 WRF is output-bound (‘writes costs much’)

 Use Serial & parallel NetCDF
 Provides an I/O layer implemented 

with parallel NetCDF (pNetCDF)
 I/O performance gain is considerable against  using not pNetCDF 

 Parallel Network Common Data Form (NETCDF) is designed to store & organize 
array-oriented data

 Portable data formats are needed to efficiently process data in heterogeneous 
HPC environments

 Parallel NetCDF can be used to significantly improve I/O output performance of 
WRF codes

[22] Opportunities for WRF Model 
Acceleration

(different options that do not scale)
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Monte Carlo Parallel Algorithms

 Scientific case:
 Understanding protein folding in computational 

biophysics for an increased understanding of human body
 Proteins perform functions within 

living organisms (e.g. respond to stimuli)
 Proteins differ in their sequence of amino acids, 

results in different foldings
 Correct and unique 3D structure is essential to the functions of proteins
 Process of protein folding as a parallel computing application

 Using Monte Carlo simulations
 Simulations that use stochastic methods to generate new configurations of a system
 Initial conditions of particles, then Monte Carlo ‘moves’ that changes configuration of particles

 Lecture 13 will provide more details on using different & scalable parallel algorithms for systems biology & bioinformatics applications
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 Scientific case: 
 Understanding physical movements of atoms and molecules in the context of n-body simulations

 Molecular dynamics algorithms for interacting ‘particles‘
 Determine trajectories of atoms and molecules
 Numerically solving the Newton‘s equations of motion 
 Forces between particles and potential 

energy is parallel computed according
to molecular mechanics force field methods

 Using a library
 E.g. MP2C code: particle-based hydrodynamics (fluid simulations)

 Lecture 14 will give in-depth details on parallel and scalable molecular systems algorithms, tools, methods, and the use of libraries
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Flow field in a gas diffusion membrane



[Video] Finite Element Simulation Example in Product Engineering

[15] Finite element simulation of full scale car crash
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Selected Data Structures
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Tree-Code Parallel Algorithms – Example N-body & Particle Simulations

 Tree codes – ‘another form of smart domain decomposition‘
 E.g. to speed up ’N-body simulations’ with long range interactions
 Enable realistic simulations of n-body systems with increasing particles
 Offers the understanding why data structures & domain decomposition 

are important to be jointly considered in parallel algorithms

[6] PEPC Web page
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Tree-Code Parallel Algorithms – Reduce Number of Required Particle Interactions

 Pretty Efficient Parallel Coulomb (PEPC) Solver
 Implementation of classical ‘Barnes-Hut Tree Code‘ for N-body problems
 Divides ‘simulation space‘ into cubic cells as ‘octree‘ to reduce computing
 Particles in nearby cells are treated individually
 Particles in distant cells are treated as a single large particle 
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[6] PEPC Web page

 In physics-based 
simulation science 
applications a tree-code 
parallel algorithm can 
significantly reduce the 
number of particle pair 
interactions that must be 
computed

 Particles in nearby cells 
are treated individually in 
complex computations

 Particles in distant cells 
are treated as a single 
large particle to reduce 
interactions



Tree-Code Parallel Algorithms – Particle Space & Domain Decomposition Example 

 Example: Parallel Tree Buildup & Tree Data Structures 
 Interaction between particles based on ‘known physical laws‘

Level 0 Level 1

Level 2 Level 3
[6] PEPC Web page
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Basic MPI Datatypes & Multi-Dimensional Datasets

 Basic MPI Datatypes (aka ‘intrinsic or primitive‘ data types)
 Simple, used in many applications and work towards ‘code portability‘
 MPI_INT; MPI_CHAR; MPI_LONG; MPI_FLOAT; MPI_DOUBLE; …
 E.g. need to match MPI_Datatype in MPI_Send and MPI_Recv operations
 E.g. value described by a data-type, a count and memory location
 Challenge: the data must be contiguous in memory (here void* buf)

 Arrays for multi-dimensional datasets
 Typically used in conjunction with one and only one basic data type 
 Flexible and used in a wide variety of applications (e.g. matrices, etc.)

Int MPI_Send( void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Int MPI_Recv( void* buf, int count, MPI_Datatype datatype, 
int source, int tag, MPI_Comm comm, MPI_Status* status)
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 Some applications require 
data structures that are 
more sophisticated data 
types and formats

 Several applications 
require another simple 
mechanism for 
exchanging common data 
than just basic MPI 
datatypes or simple multi-
dimensional datasets



Derived MPI Datatypes – Principles

 Motivation: convenient & efficient & suited for application needs
1. Construct a new datatype using dedicated MPI routines (see below)
2. Commit the new datatype – MPI_Type_Commit()

3. Take advantage of the new datatype, e.g. in send/receive operations

 MPI derived datatype (e.g. when you need it often)
 Represents a ‘map for understanding‘ and interpreting message data
 Transforms an ‘old datatype‘ and building contraints to a ‘new datatype‘
 Note: although the old datatype will remain, easier to use the new datatype

 MPI construction routines
 Enable a wide variety of possible 

self-developed data structures used in MPI communication
 MPI_Type_contiguous(), MPI_Type_vector(), MPI_Type_indexed() 

 MPI_Type_struct(), MPI_Type_hvector(), MPI_Type_hindexed()
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 Derived MPI datatypes are 
constructed from existing 
other datatypes (e.g. basic 
data types)

 Used to avoid repeated 
sends of varied basic 
types (i.e. slow, clumsy, 
and error prone)

 Enable a suitable memory 
layout for complex data 
structures that consist of 
several different types

(how do we send a 
string with 3 chars?)



Derived MPI Datatypes – MPI_Type_contiguous()

 Allocations of a datatype into contiguous locations
MPI_Type_contiguous( 3, oldtype, newtype );

... 

int buffer[100];

MPI_Type_contiguous(100, MPI_CHAR, &stringtype);

MPI_Type_commit(&stringtype);

/* sending and receiving party 
understand the data structure type*/

if (rank==0) {

MPI_Send(buffer,1,stringtype,1, 123, MPI_COMM_WORLD);

} else {

MPI_Recv(buffer,1,stringtype,0,123, MPI_COMM_WORLD, &status);

}

...
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(simple example, but as this works we can go more sophisticated)



 Allocations of a datatype into block-wise locations 
 Locations consist of equally spaced blocks
 Stride: number of elements between start of each block (integer)

Derived MPI Datatypes – MPI_Type_vector()

MPI_Type_vector( 5, 2, 3, oldtype, newtype );

data

blocklength

stride

... 

MPI_Type_contiguous(3, MPI_INT, &goodnumber);

MPI_Type_commit(&goodnumber);

MPI_Type_vector(3,2,3, goodnumber, &lotsofgoodnumbers);

MPI_Type_commit(&lotsofgoodnumbers);

...

MPI_Send(buffer, 1, lotsofgoodnumbers, 1, 123, MPI_COMM_World);

...

(Example: Combine new datatypes  less complex)
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Derived MPI Datatypes – MPI_Type_indexed()

 Allocations of a datatype into a (non uniform) sequence of blocks
 Each blocks can contain a different number of copies
 Each block can have a different displacement
array_of_blocklengths[] = {2,3,1,2,2,2} /* below BL */

array_of_displacements[] = {3,9,12,15,18} /* below DIS */

MPI_Type_indexed ( 6, array_of_blocklengths, array_of_displacements, oldtype, newtype);

BL[0] BL[1] BL[2] BL[3] BL[4] BL[5]

DIS[0]

DIS[1]

DIS[2]

DIS[3]

DIS[4]
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 Understanding and tuning parallel I/O is needed with ‘big data’
 Leverage aggregate communication and I/O bandwidth of client machines

 Support: Add additional software components/libraries layers
 Coordination of file access & mapping of application model to I/O model
 Components and libraries get increasingly specialized / layer
 High-Level I/O libraries like NetCDF or Hierarchical Data Format (HDF) are standards in the community

[8] R. Thakur, PRACE Training, 
Parallel I/O and MPI I/O

Parallel Filesystems are just one part
out of three in the whole I/O process

MPI I/O & Parallel Filesystems – Revisited (cf. Lecture 4)

Data

I/O
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Data Science Example: DBSCAN Clustering Algorithm

 DBSCAN Algorithm
 Introduced 1996 and most cited clustering algorithm
 Groups number of similar points into clusters of data
 Similarity is defined by a distance measure (e.g. euclidean distance)

 Distinct Algorithm Features
 Clusters a variable number of clusters 

(cf. K-Means Clustering with K clusters)
 Forms arbitrarily shaped clusters (except ‘bow ties‘)
 Identifies inherently also outliers/noise

(MinPoints = 4)

(DR = Density Reachable)

(DDR = Directly Density 
Reachable)
(DC = Density Connected)

 Lecture 8 provides more details about using MPI and OpenMP for data science algorithms used in clustering and classification of data

[11] Ester et al.

 Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering 
algorithm that requires only two parameters and has no requirement to specify number of clusters

 Parameter Epsilon: Algorithm looks for a similar point within a given search radius Epsilon
 Parameter minPoints: Algorithm checks that cluster consist of a given minimum number of points
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‘Big Data‘ Science Example – Parallel & Scalable Clustering Algorithm – Revisited 

[9] M. Goetz and M. Riedel et al, 
Proceedings IEEE Supercomputing Conference, 2015

Clustering
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Using High-Level I/O Hierarchical Data Format (HDF) for Data Structures

 Simple ‘compound type‘ example: 
 Array of data records with some descriptive information (5x3 dimension)
 HDF5 data structure type with int(8); 

int(4); int(16); 2x3x2 array (float32)

[8] R. Thakur, PRACE Training, 
Parallel I/O and MPI I/O
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 The Hierarchical Data 
Format (HDF) is a 
technology suite that 
enables the work with 
extremely large and 
complex data collections

 A HDF version 5 file is a 
container to organize data 
objects – it looks like a 
filesystem within a file

(application example parallel & 
scalable clustering with HPDBSCAN

using Bremen data in HDF5)

[10] HDF@ I/O workshop



‘Big Data‘ Science Example: Using High-Level I/O Hierarchical Data Format (HDF)

 Parallelization Strategy
 Chunk data space equally
 Overlay with hypergrid
 Apply cost heuristic
 Redistribute points (data locality)
 Execute DBSCAN locally 
 Merge clusters at chunk edges
 Restore initial order

 Data organization
 Use of HDF5

(cf. Lecture 5)
 Cluster Id stored

in HDF5 file

 Lecture 8 provides more details about using MPI and OpenMP for data science algorithms used in clustering and classification of data

[9] M. Goetz and M. Riedel et al, 
Proceedings IEEE Supercomputing Conference, 2015
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[Video] Aerospace Engineering Industry Simulations

[7] ANSYS, Aerospace Industry demands
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