
High Performance Computing
ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

September 19, 2019
Room V02-258

Advanced MPI Techniques

LECTURE 4 @MorrisRiedel@MorrisRiedel@Morris Riedel

 MPI purpose: send data as messages to other processors

Review of Practical Lecture 3.1 – Understanding MPI Messages & Collectives

Lecture 4 – Advanced MPI Techniques 2 / 50

MPI
Point

to
Point

Communication

MPI
Collective

Communication

[1] LLNL MPI Tutorial

(e.g. using MPI
messages in

scientific
simulations)

(e.g. instead of using
a for loop &

MPI_Send/Recv
multiple times)

Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

Lecture 4 – Advanced MPI Techniques

11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
3 / 50

Outline

 Advanced MPI Communication Techniques
 Blocking vs. Non-Blocking Communication
 MPI Communicators & Creating Sub-Groups
 MPI Cartesian Communicator & Application Motivations
 Hardware & Communication Issues & Network Interconnects
 Task-Core Mappings & Heatmap Application Example

 MPI Parallel I/O Techniques
 I/O Terminologies & Challenges
 Parallel Filesystems & Striping Technique
 MPI I/O Techniques & Use of Parallel I/O
 Higher-Level I/O Libraries & Community Standards
 Portable File Formats & Data Science Application Example

Lecture 4 – Advanced MPI Techniques 4 / 50

 Promises from previous lecture(s):
 Lecture 1: Lecture 2 & 4 will give in-

depth details on the distributed-
memory programming model with the
Message Passing Interface (MPI)

 Lecture 2: Lecture 4 will provide more
details on advanced functions of the
Message Passing Interface (MPI)
standard & its use in applications

 Lecture 2: Lecture 4 on advanded MPI
techniques will provide details about
the often used MPI cartesian
communicator & its use in applications

 Practical Lecture 3.1: Lecture 4 will
offer more insights about using
different types of MPI communicators
with different rank identities in MPI
applications

 Practical Lecture 3.1: Lecture 4 will
offer more insights about using
blocking communication vs. non-
blocking communication functions
when using MPI

 Practical Lecture 3.1: Lecture 4 will
offer more insights about using the MPI
status for different purposes and to
obtain a better understanding what
happens

Selected Learning Outcomes

 Students understand…
 Latest developments in parallel processing & high performance computing (HPC)
 How to create and use high-performance clusters
 What are scalable networks & data-intensive workloads
 The importance of domain decomposition
 Complex aspects of parallel programming
 HPC environment tools that support programming

or analyze behaviour
 Different abstractions of parallel computing on various levels
 Foundations and approaches of scientific domain-

specific applications

 Students are able to …
 Programm and use HPC programming paradigms
 Take advantage of innovative scientific computing simulations & technology
 Work with technologies and tools to handle parallelism complexity

Lecture 4 – Advanced MPI Techniques 5 / 50

Advanced MPI Communication Techniques

Lecture 4 – Advanced MPI Techniques 6 / 50

Programming with Distributed Memory using MPI – Revisited (cf. Lecture 1)

 Features
 No remote memory access on distributed-memory systems
 Require to ‘send messages’ back and forth between processes PX
 Many free Message Passing Interface (MPI) libraries available
 Programming is tedious & complicated, but most flexible method

 Distributed-memory programming enables
explicit message passing as communication between processors

 Message Passing Interface (MPI) is dominant distributed-memory
programming standard today (available in many different version)

 MPI is a standard defined and developed by the MPI Forum

P1 P2 P3 P4 P5

[4] MPI Standard

Lecture 4 – Advanced MPI Techniques 7 / 50

Blocking vs. Non-blocking communication

 Lecture 5 offers more details on using blocking & non-blocking MPI communication in simulations and data science applications

P1 P2 P3 P4 P5
 Blocking vs. non-blocking: MPI_Send() blocks until data is received; MPI_Isend() continues
 The use of these functions can cause different performance problems (e.g. here ‘late sender’)
 MPI_Wait() does wait for a given MPI request to complete before continuing
 MPI_Waitall() does wait for all given MPI requests (e.g. waiting for message) to complete before continuing

[5] Metrics tour

Lecture 4 – Advanced MPI Techniques 8 / 50

Using MPI Ranks & Communicators – Revisited (cf. Lecture 2)

 Answers the following question:
 How do I know where to send/receive to/from?

 Each MPI activity specifies the context in
which a corresponding function is performed
 MPI_COMM_WORLD

(region/context of all processes)
 Create (sub-)groups of the processes / virtual

groups of processes
 Peform communications only within these sub-

groups easily with well-defined processes

Lecture 4 – Advanced MPI Techniques 9 / 50

[1] LLNL MPI Tutorial

(numbers reflect
unique identity

of processor
named ‘MPI rank)

 Using communicators wisely in collective functions
can reduce the number of affected processors

 MPI rank is a unique number for each processor

MPI Communicators – MPI Create Sub-Group Communicators

[1] LLNL MPI Tutorial

(numbers reflect
unique identity

of processor
named ‘MPI rank)

 Create (sub-)groups of the processes &
virtual groups of processes
 Simple to complex communicator setups
 E.g. split existing communicator using

MPI_Comm_split()

 Free new communictors: MPI_Comm_free()

[2] Introduction to Groups & Communicators

Lecture 4 – Advanced MPI Techniques 10 / 50

 MPI_Comm_split() creates a new
smaller communicator out of a
larger communicator by splitting
its current ranks (e.g., rows)

 New rank identities are created in
the newly created communicator

 MPI ranks in different
communicators represent
different unique identifiers

Using MPI_Comm_split() & MPI_Comm_free() – Row Communicator Example

#include <stdio.h>

#include <mpi.h>

int main (int argc, char** argv) {

int world_rank, world_size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &world_size);

MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

int color = world_rank / 4;

MPI_Comm row_comm;

MPI_Comm_split(MPI_COMM_WORLD, color, world_rank, &row_comm);

int row_rank, row_size;

MPI_Comm_size(row_comm, &row_size);

MPI_Comm_rank(row_comm, &row_rank);

printf("WORLD RANK/SIZE: %d/%d \t ROW RANK/SIZE: %d/%d\n",

world_rank, world_size, row_rank, row_size);

MPI_Comm_free(&row_comm);

MPI_Finalize();

return 0;

}

Lecture 4 – Advanced MPI Techniques 11 / 50

[2] Introduction to Groups & Communicators

 MPI_COMM_WORLD with all processors (cf. Lecture 2)
 Splitting scheme according to illustration matching colors / rows

 Definition of a new communicator and a split of the existing
MPI_COMM_WORLD communicator using the defined row scheme
via the function MPI_Comm_split()

 Different ranks and sizes for the newly created row communicator
 Print different identities in both communicators shows differences

 Free
communicator

MPI Communicators – Create MPI Cartesian Communicators

[1] LLNL MPI Tutorial

(numbers reflect
unique identity

of processor
named ‘MPI rank)

 Create (sub-)groups of the processes &
virtual groups of processes
 E.g. optimized for cartesian topology

MPI_Cart_create()

 Creates a new communicator
out of MPI_COMM_WORLD

 Dims: array with length for each dimension
 Periods: logical array specifying whether the grid

is periodic or not
 Reorder: Allow reordering of ranks in output

communicator

Lecture 4 – Advanced MPI Techniques 12 / 50

 Assignment #3 will make use of the cartesian communicator in a simple application example that includes the moving of boats & fish

(e.g. using MPI messages in
scientific simulations and/or

engineering applications)

Cartesian Communicator Example – Conceptual View

modified from [3] German MPI Lecture

dim[0] = 3

dim[1] = 4

(‘cartesian structure‘)

Lecture 4 – Advanced MPI Techniques 13 / 50

(e.g. using MPI messages in
scientific simulations and/or

engineering applications)

Cartesian Communicator Example – Source-code View

#include <stdio.h>

#include <mpi.h>

int main (int argc, char** argv) {

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

dims[0]=3; dims[1] = 4;

periods[0]=true; periods[1]=true;

reorder = false;

MPI_Cart_create(MPI_COMM_WORLD, 2, dims,
periods, reorder, &comm_2d);

MPI_Cart_coords(comm_2d, rank, 2, &coords);

MPI_Cart_shift(comm_2d, 0, 1, &source, &dest);

a = rank; b = 1;

MPI_Sendrecv(a, 1, MPI_REAL, dest, 13, b, 1,
MPI_REAL, source, 13, comm_2d, &status);

MPI_Finalize();

return 0;

}

 Preparing parameter dims as array with length for each dimension (here 3 x 4)
 Preparing parameter periods as logical array specifying whether the cartesian

grid is period
 Preparing parameter reorder as not reordering of ranks in output communicator

 MPI_Cart_create() creates a new communicator (cartesian structure) according to
specified dimensions in variables

 MPI_Cart_coords() obtains process coordinates in cartesian topology – note that
this JUST obtaines the current process coordinates – no actual shift is done yet

 MPI_Cart_shift() obtains ‘ranks’ for shifting data in cartesian topology – note that
this JUST prepares for a shift understanding which ranks are affected by shift

 A real shift is done
using a typical MPI
message exchange
with the obtained
ranks and in the space
of the Cartesian
communicator

modified from [3] German MPI Lecture

Lecture 4 – Advanced MPI Techniques 14 / 50

Hardware & Communication Issues

 Parallel Programming can cause communication issues
 E.g. need for synchronisation in applications, e.g use of MPI_Barriers()

 Wide varieties of networks in HPC systems are available
 Different network topologies of different types of networks used in HPC

 Gigabit Ethernet
 Simple/cheep and good for high throughput computing (HTC)
 Often too slow for parallel programs that require fast interconnects

 Infiniband
 Fast, thus dominant distributed-memory computing interconnect today
 Other interconnects exist but still less used: Intel Omnipath, Extoll, etc.

 Communication overhead can have significant impact on application performance
 Characteristics of interconnects of compute nodes/cpus affect parallel performance ‘shift the view’

Lecture 4 – Advanced MPI Techniques 15 / 50

[5] Metrics tour

Communication Issues – Synchronisation with MPI Barrier Example

#include <stdio.h>

#include <mpi.h>

#include <unistd.h>

int main (int argc, char** argv) {

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
sleep(10);

}

if (rank == 1) {

storeResultsToFile();

}

MPI_Barrier(MPI_COMM_WORLD);

MPI_Finalize();

return 0;

}

 One reason to require a synchronisation across processors is that one rank is
performing some extraordinary long work, not others (e.g., master/worker
parallelization technique, cf. Lecture 2)

 Sleep() is a function that puts a processor to sleep and thus doing basically nothing.
Still a parallel computing resource is not usable for other users since it is typically
exclusively allocated to one user by a scheduling system

 Another reason to require a synchronisation across processors is that one rank
performs I/O operations of some kind (e.g., later in this lecture w/o using parallel I/O)

 MPI_Barrier() blocks the caller until all processes in the communicator have called it
for synchronisation

[5] Metrics tour

 Lecture 9 on debugging, profiling & performance toolsets offers insights into performance analysis tools to understand MPI code better
Lecture 4 – Advanced MPI Techniques 16 / 50

Optimization & Dependencies on Hardware & I/O

 Optimizations in terms of software & hardware are important
 Optimization can be interpreted as using ‘dedicated‘ hardware features (if available)
 E.g. network interconnections enable different used ‘network topologies‘ (varies in different systems)
 E.g. parallel codes are tuned applying parallel I/O with parallel filesystems (if parallel filesystem exists)

[6] Introduction to High Performance
Computing for Scientists and Engineers

‘shift the view’

[5] Metrics tour

 Lecture 9 on debugging, profiling & performance toolsets offers insights into performance analysis tools to understand MPI code better
Lecture 4 – Advanced MPI Techniques 17 / 50

Complex Network Topologies & Challenges

 Large-scale HPC Systems have special network setups
 Dedicated I/O nodes, fast interconnects, e.g. Infiniband (IB), Extoll, etc.
 Different network topologies, e.g. tree, 5D Torus network, mesh, etc.

(raise challenges in task mappings and communication patterns)

[6] Introduction to High Performance Computing for Scientists and Engineers

Source:
IBM

Contention and cross traffic
caused by multiple I/O streams

[7] HPC Best Practices @ IO Workshop

Lecture 4 – Advanced MPI Techniques 18 / 50

Network Building Block ‘Switch’ inside a HPC system

 Single fully non-blocking switch
 All pairs of ports can use their full bandwidth concurrently
 E.g. 2D cross-bar switch and each circle represents

possible connections between two involved IN/OUT devices
 Aka ‘2x2 switching element’
 Aka ‘four-port non-blocking switch’

 Alternative
 [partly/completely] single switch with

bus design with limited bandwidth [6] Introduction to High Performance Computing for Scientists and Engineers

 A switch is an important network building block inside a HPC system that affects performance
 Think about workers processing data and interacting with each other  switch matters!
 Advanced programming techniques need to take the hardware interconnect into account

Lecture 4 – Advanced MPI Techniques 19 / 50

Combining Network Building Blocks as FatTree (1)

 Fully non-blocking full-bandwidth fat-tree network
 Having two switch layers (leaf and spine)
 Keeps the ‘non-blocking’ feature across the whole system via two layers

[6] Introduction to High Performance Computing for Scientists and Engineers

 Here a group of workers processing data ‘enjoy’ full non-blocking communication
 Location of the workers here is not very crucial to the application performance

Lecture 4 – Advanced MPI Techniques 20 / 50

Combining Network Building Blocks as FatTree (2)

 Fat-tree network with bottleneck (when # CPUs high)
 Bottleneck is ‘1:3 oversubscription’ of communication link to spine
 Only four nonblocking pairs of connections are possible
 Common in very large systems  safe costs (cable & switch hardware)

[6] Introduction to High Performance Computing for Scientists and Engineers

Lecture 4 – Advanced MPI Techniques 21 / 50

2

6

 The location of the workers processing data is crucial for application performance here

Mesh Networks

 Selected Facts
 Often in the form of multi-dimensional hypercubes
 Computing entity is located at each Cartesian grid intersection
 Idea: connections are wrapped around the boundaries of the hypercube to form a certain torus topology
 No direct connections between entities that

are not next neighbours (but ok!)

 Example: A 2D torus network
 Bisection bandwidth scales with √N

[6] Introduction to High Performance Computing for Scientists and Engineers

Lecture 4 – Advanced MPI Techniques 22 / 50

 Fat-Tree switches have limited scalability in very large systems (price vs. performance)
 Bisection bandwidth with scaling in large systems often via mesh networks (e.g. 2D torus)

Example of Large-scale HPC Machine & I/O Setup

 Example: JUQUEEN
 IBM BlueGene/Q

 Compute Nodes
 28 racks (7 rows à 4 racks)

28,672 nodes (458,752 cores)
 Rack: 2 midplanes à

16 nodeboards (16,384 cores)
 Nodeboard: 32 compute nodes
 Node: 16 cores

 Dedicated I/O Nodes
 248 (27x8 + 1x32) connected to 2 CISCO Switches

[9] R. Thakur, PRACE Training, Parallel I/O and MPI I/O

 The I/O node cabling connects the computing nodes via dedicated I/O nodes to storages

Lecture 4 – Advanced MPI Techniques 23 / 50

[10] JUQUEEN HPC System

Communication Optimization by Task-Core Mappings (1)

 Approach:
 Place often-communicating processes on neighboring nodes
 Requires known communication behavior
 Measurements via MPI profiling interface

 Identification of applicable ‘task-core mapping’ approach
 E.g. graph model describes task communication & hardware characteritics
 Obtain communication characteristics via sourcecode or profiling
 Obtain hardware characteristics via vendor information (e.g. IBM redbooks)

 Optimal placement of execution units to processing elements is an NP-hard-problem
 n! possibilities to map n execution units to the same number of n processing elements
 Topology aware task mapping for I/O patterns exists

Lecture 4 – Advanced MPI Techniques 24 / 50

Communication Optimization by Task-Core Mappings (2)

 Application of calculated mappings
 For regular graphs (tori): Mapping of regular shapes
 E.g. experiments run on Bluegene/Q JUQUEEN

 Scientific application (cf. Lecture 2)
 Heatmap as three-dimensional simulation for heat expansion
 Values of boundary cells are exchanges with neighboring placed ranks
 Heatmap is divided into equally sized cubes
 Heat expansion per cube is calculated by a single rank
 Two different expansion algorithms
 Using e.g. ‘heuristics‘ for task/core placements

 Optimized task core mappings enable performance
gains between 1-3% (e.g., heatmap application example)

Lecture 4 – Advanced MPI Techniques 25 / 50

[Video] PEPC – Particle Acceleration Application

[8] Mellanox YouTube Video

Lecture 4 – Advanced MPI Techniques 26 / 50

MPI Parallel I/O Techniques

Lecture 4 – Advanced MPI Techniques 27 / 50

Parallel I/O Techniques – Motivation

 (Parallel) applications that emphasize on the importance of data
 Not all data-intensive or data-driven applications are ‘big data’ (volume)
 HPC simulations of the real world that generates very large volumes of data

 Synthesize new information from data that is maintained
in distributed (partly unique) repositories and archives
 Distributed across different organizations and computers/storages

 Data analysis applications that are ‘I/O bound’
 I/O dominates the overall execution time
 I/O performance crucial for overall performance

‘shift the view again’
Data

I/O

 The complementary course Cloud Computing & Big Data – Parallel & Scalable Machine & Deep Learning offers much more techniques
Lecture 4 – Advanced MPI Techniques 28 / 50

What means I/O?

 Important (time-sensitive) factors within HPC environments
 Characteristics of the computational system (e.g. dedicated I/O nodes)
 Characteristics of the underlying filesystem (e.g. parallel file systems, etc.)

Data

Data
Memory

Memory
Disks

modified from [6] Introduction to High Performance Computing for Scientists and Engineers
 Input/Output (I/O) stands for data transfer/migration from

memory to disk (or vice versa) within a MPI application

Lecture 4 – Advanced MPI Techniques 29 / 50

 The course Cloud Computing & Big Data – Parallel & Scalable Machine & Deep Learning offers distributed file system techniques

I/O Challenges in MPI Applications

 I/O performance bottlenecks in many ‘locations in applications’
 Understanding depends on network & I/O patterns

 During an HPC application run
 Consider the number of processes performing I/O
 The number of files read or written by processes
 Take into account how the files are accessed:

(a) serial access via one process
(b) shared access via multiple processes

 Before/After HPC application run
 How can necessary files be made

available/archived (e.g. tertiary storage)
 E.g. retrieving a high number of small files

from tapes takes very long time

Data

I/O

 An I/O pattern reflects the way of how a MPI application makes
use of I/O (files, processes, etc.) in context of computations

Lecture 4 – Advanced MPI Techniques 30 / 50

Parallel Filesystems Concept

 File Blocks
 Distributed across multiple filesystem nodes
 A single file is thus fully distributed across a ‘disk array’

 Advantages
 High reading and writing speeds for a single file
 Reason: ‘Combined bandwidth’ of the many physical drives is high

 Disadvantages:
 Filesystem is vulnerable to disk failures

(e.g. one disk fails  lose file data)
 Prevent data loss with ‘RAID controllers’ as

part of the filesystem nodes
 Redundant Array of Inexpensive Disks (RAID)

levels trade-off vs. data loss

 A parallel file system is optimized to specifically
support concurrent file access

 One file that is written to a parallel filesystem is
broken up into ‘blocks’ of a configured size (e.g.
typically less than 1MB each)

 Prevent data loss with Redundant Array of
Inexpensive Disks (RAID) levels

Lecture 4 – Advanced MPI Techniques 31 / 50

 The course Cloud Computing & Big Data – Parallel & Scalable Machine & Deep Learning offers data storage details (e.g. RAID levels)

Examples of Parallel File Systems

 General Parallel File System (GPFS) / IBM Spectrum Scale
 Developed by IBM
 Available for AIX and Linux
 Quite expensive solution (but powerful)
 Moved from HPC-centric computing to ‘Big Data’ solution (in sales & marketing division)

 Lustre
 Developed by Cluster File Systems, Inc. (bought by Sun)
 Movement towards ‘OpenLustre’
 Name is amalgam of ‘Linux and clusters’
 As it is free software it becomes more and more used today

 Parallel Virtual File System (PVFS)
 Platform for I/O research and production file system for cluster of workstations (‘Beowulfs’)
 Developed by Clemson University and Argonne National Laboratory

Data

I/O

 Widely used parallel file systems are General
Parallel File System (GPFS) that is a
commercial solution from IBM and Lustre
that is open source

 In 2015 IBM rebranded GPFS as IBM
Spectrum Scale due to ‘Big Data‘ customers
and became a central solution for data-
intensive sciences & artificial intelligence

Lecture 4 – Advanced MPI Techniques 32 / 50

Concurrent File Access & Two Level Mapping

 Concurrent file access means that
multiple processes can access the same
file at the same time

 Parallel file systems handle concurrent
file access via ‘single logical files’ over
multiple I/O nodes

 A two Level Mapping means to distribute
blocks from compute nodes via logical
files (1st level) using underlying multiple
I/O nodes (2nd level)

Lecture 4 – Advanced MPI Techniques 33 / 50

General Striping Technique

 Striping technique transforms view from a file to flexible ‘blocks‘

 Striping is a general technique that appears in different contexts
 Many fields in computer science make use of striping (e.g., data transfer too)

 Two major important factors (to be configured)
 (e.g. used in MPI I/O ‘hints’ also  later in this lecture)
 ‘Striping factor’: number of disks
 ‘Striping unit’: block size
 Bit-level vs. block-level striping

 Striping refers to a technique where one file is split into fixed-sized blocks
that are written to separate disks in order to facilitate parallel access

Lecture 4 – Advanced MPI Techniques 34 / 50

Parallel File Access

 Comparison with ‘sequential file system’ increases understanding
 File system translates ‘file name’ into a File Control Block (FCB)

 Parallel File Systems
 Every ‘I/O node’ manages a subset of the blocks
 Consequence: Every file has (better: needs) an FCB on every I/O node

 File Access: Two ways to locate FCBs for a file
 Every I/O node maintains directory structure
 Central name server: Avoids replication of directory data

 File Creation
 Filesystem chooses ‘the first’ I/O node (varies)
 This particular I/O node (‘base node’) will store the first block of the file
 Specific block is located when first I/O node and ‘striping pattern’ is known

 Question: What about ‘sequential consistency’ when writing?

Data

I/O

Lecture 4 – Advanced MPI Techniques 35 / 50

Sequential Consistency

 Two processes on different compute nodes
 Assumption: Both write to the ‘same range of locations in a file’

 ‘Sequential consistency’
 Requires that all I/O nodes write

their portions in the same order
 Write request should appear to

occur in well-defined sequence
 But hard to enforce – I/O nodes

may act independently

 Selected Possible Solutions
 Locking entire files - Prevents parallel access (not an option)
 Relaxed consistency semantics – application developer is responsible
 Locking file partitions – prevents access to certain file partitions

Data

I/O

Lecture 4 – Advanced MPI Techniques 36 / 50

File Pointers

 MPI Applications
 Need to be aware of ‘which processes use which parts of the file’
 May require processes to skip file sections ‘owned by others’

 Shared File Pointers
 Common in shared-memory programs
 Inefficient – serializes requests

(update file pointer before completing
request, ‘eager update’)

 Inconsistencies if seek and write operations are separated

 Improvements of Usage
 Better use ‘separate file pointers’ or

atomic seek & write
 In UNIX pread()and pwrite()

allow specification of ‘explicit offset’

Data

I/O

Lecture 4 – Advanced MPI Techniques 37 / 50

Optimization & Dependencies on Hardware & I/O – Revisited

 Optimizations in terms of software & hardware are important
 Optimization can be interpreted as using ‘dedicated‘ hardware features (if available)
 E.g. network interconnections enable different used ‘network topologies‘ (varies in different systems)
 E.g. parallel codes are tuned applying parallel I/O with parallel filesystems (if parallel filesystem exists)

[6] Introduction to High Performance
Computing for Scientists and Engineers

‘shift the view’

[5] Metrics tour

 Lecture 9 on debugging, profiling & performance toolsets offers insights into performance analysis tools to understand MPI code better
Lecture 4 – Advanced MPI Techniques 38 / 50

MPI I/O

 Different operation modes
 ‘Blocking mode’ to finish data

operations, then continue computations
 ‘Non-blocking mode’ (aka asynchronously)

to perform computations while a file is
being read or written in the background
(typically more difficult to use)

 Supports the concept of ‘collective operations’
 Processes can access files each on its own or

all together at the same time

 Provides advanced concepts
 E.g., file views & data types/structures

P1 P2 P3 P4 P5

I/O

I/O

I/O

 MPI I/O provides ‘parallel I/O’ support for
parallel MPI applications

 Writing/Receiving files is similar to
send/receive MPI messages, but to disk

Lecture 4 – Advanced MPI Techniques 39 / 50

Serial I/O: One Process on behalf of Many Processes

 Only one process performs I/O on behalf of all other processors
 Data aggregation or duplication
 Limited by single I/O process (e.g. determined by rank as writer role)

 No scalability for (big) data-intensive computing
 Time increases linearly with amount of (big) data
 Time increases with number of processes of the parallel application

modified from [11] Parallel I/OP1 P2 P3 P4 P5

Disk
I/O

Data  Serial I/O: One process on behalf of many means
that one process takes care of all I/O tasks

 Serial I/O increases communication and is slow
as well as including load imbalance risks

Data

I/O

Lecture 4 – Advanced MPI Techniques 40 / 50

Parallel I/O: One file per Process

 All processors perform I/O to individual files
 Limited by file system capabilities

 No scalability for large number of processors
 Number of files creates bottleneck with metadata operations
 Number of simultaneous disk accesses creates ‘contention’ for file system resources
 E.g., the disk cannot keep up with file I/O requests

P1 P2 P3 P4 P5

Disk
DataI/O I/O I/O I/O I/O  Parallel I/O: One file per process means that each

process takes care of local I/O tasks alone
 Parallel I/O is good for scratch but not for output

files in applications despite I/O balance

Data

I/O

modified from [11] Parallel I/O

Lecture 4 – Advanced MPI Techniques 41 / 50

Parallel I/O: Shared File

 Each process performs I/O to a single file
 The file access is ‘shared’ across all processors involved
 E.g. MPI/IO functions represent ‘collective operations‘

 Scalability and Performance
 ‘Data layout’ within the shared file is crucial to the performance
 High number of processors can still create ‘contention’ for file systems

P1 P2 P3 P4 P5

Disk
DataI/O I/O I/O I/O I/O

Data

I/O

modified from [11] Parallel I/O

 Parallel I/O: shared file means that processes can
access their ‘own portion’ of a single file

 Parallel I/O with a shared file like MPI/IO is a
scalable and even standardized solution

Lecture 4 – Advanced MPI Techniques 42 / 50

Collective MPI-I/O: Writing integers to a file example

#include <stdio.h>
#include <mpi.h>

int main (int argc, char** argv) {
int rank, size;

MPI_File fh;
MPI_Info info;

char *file_name = “outputfile”;

int buf[10];

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf(“Hello World, I am %d of %d\n“, rank, size);

MPI_Info_create(&info);

int rc = MPI_File_open(MPI_COMM_WORLD, file_name,
MPI_MODE_CREATE | MPI_MODE_RDWR,
info, &fh);

buf[0] = rank;

// MPI_File_write_ordered(fh, buf, 1, MPI_INT, &status);
MPI_File_write(fh, buf, 1, MPI_INT, &status);

rc = MPI_File_close(&fh);

MPI_Finalize();
return 0;

}

 A MPI_File represents a file handler that reprents the file and process group of a communicator
 A MPI_Info represents a list of key/value pairs used for providing information to MPI-I/O

Lecture 4 – Advanced MPI Techniques 43 / 50

 MPI_Info_create creates an MPI_Info object to be used to provide information to MPI-I/O

 Specifying a file_name that should be opened (or even be created) – but attention: The format is highly
implementation dependent

 MPI_File_open opens a specific file collectively across all specified processes being part of
the used communicator and sets a file handle

 MPI_File_close closes a specific file identified via a certain file handle

 Requires a buffer (here integer array) of a certain size (e.g. buf[10])
 Requires values for the buffer: here the rank of each MPI process that

might be used as identification for further values following in the next
parts of the corresponding file is used

 MPI_File_write or related versions write the binary output to the file
 Different between MPI_File_write() and MPI_File_write_ordered() is

that the out is not ordered according to ranks or ordered by ranks

 Understanding and tuning parallel I/O is needed with ‘big data’
 Leverage aggregate communication and I/O bandwidth of client machines

 Support: Add additional software components/libraries layers
 Coordination of file access & mapping of application model to I/O model
 Components and libraries get increasingly specialized / layer
 High-Level I/O libraries like NetCDF or Hierarchical Data Format (HDF) are standards in the community

[9] R. Thakur, PRACE Training,
Parallel I/O and MPI I/O

Parallel Filesystems are just one part
out of three in the whole I/O process

MPI I/O & Parallel Filesystems

Data

I/O

Lecture 4 – Advanced MPI Techniques 44 / 50

 Lecture 5 offers more details on using Parallel I/O and portable data formats in various simulation sciences & data science applications

Data Science Example: Using High-Level I/O Hierarchical Data Format (HDF)

[13] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Clustering

 Lecture 5 offers more details on using Parallel I/O and portable data formats in various simulation sciences & data science applications
Lecture 4 – Advanced MPI Techniques 45 / 50

[Video] Parallel I/O with I/O Nodes

[12] YouTube Video, ‘Simplifying HPC Architectures’

Lecture 4 – Advanced MPI Techniques 46 / 50

Lecture Bibliography

Lecture 4 – Advanced MPI Techniques 47 / 50

Lecture Bibliography (1)

 [1] LLNL MPI Tutorial, Online:
https://computing.llnl.gov/tutorials/mpi/

 [2] Introduction to Groups and Communicators, Online:
http://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/

 [3] German Lecture ‘Umfang von MPI 1.2 und MPI 2.0‘
 [4] The MPI Standard, Online:

http://www.mpi-forum.org/docs/
 [5] M. Geimer et al., ‘SCALASCA performance properties: The metrics tour’
 [6] Introduction to High Performance Computing for Scientists and Engineers, Georg Hager & Gerhard Wellein, Chapman & Hall/CRC Computational Science
 [7] Wolfgang Frings, ‘HPC I/O Best Practices at JSC‘, Online:

http://www.fz-juelich.de/ias/jsc/DE/Leistungen/Dienstleistungen/Dokumentation/Praesentationen/folien-parallelio-2014_table.html?nn=469624
 [8] YouTube Video, ‘Mellanox 10 and 40 Gigabit Ethernet Switch Family’, Online:

http://www.youtube.com/watch?v=o9BLItx2vDg
 [9] Rajeev Thakur, Parallel I/O and MPI-IO, Online:

http://www.training.prace-ri.eu/uploads/tx_pracetmo/pio1.pdf
 [10] JUQUEEN, Online:

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
 [11] Parallel I/O, YouTube Video, Online:

http://www.youtube.com/watch?v=cXbEVsExU9c
 [12] Big Ideas: Simplifying High Performance Computing Architectures, Online:

https://www.youtube.com/watch?v=ISS_OGVamBk

Lecture 4 – Advanced MPI Techniques 48 / 50

Lecture Bibliography (2)

 [13] M. Goetz, C. Bodenstein, M. Riedel, ‘HPDBSCAN – Highly Parallel DBSCAN’, in proceedings of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC2015), Machine Learning in HPC Environments (MLHPC) Workshop, 2015, Online:
https://www.researchgate.net/publication/301463871_HPDBSCAN_highly_parallel_DBSCAN

Lecture 4 – Advanced MPI Techniques 49 / 50

Lecture 4 – Advanced MPI Techniques 50 / 50

