
High Performance Computing
ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

September 19, 2019
Room V02-258

Advanced MPI Techniques

LECTURE 4 @MorrisRiedel@MorrisRiedel@Morris Riedel

 MPI purpose: send data as messages to other processors

Review of Practical Lecture 3.1 – Understanding MPI Messages & Collectives

Lecture 4 – Advanced MPI Techniques 2 / 50

MPI
Point

to
Point

Communication

MPI
Collective

Communication

[1] LLNL MPI Tutorial

(e.g. using MPI
messages in

scientific
simulations)

(e.g. instead of using
a for loop &

MPI_Send/Recv
multiple times)

Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

Lecture 4 – Advanced MPI Techniques

11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
3 / 50

Outline

 Advanced MPI Communication Techniques
 Blocking vs. Non-Blocking Communication
 MPI Communicators & Creating Sub-Groups
 MPI Cartesian Communicator & Application Motivations
 Hardware & Communication Issues & Network Interconnects
 Task-Core Mappings & Heatmap Application Example

 MPI Parallel I/O Techniques
 I/O Terminologies & Challenges
 Parallel Filesystems & Striping Technique
 MPI I/O Techniques & Use of Parallel I/O
 Higher-Level I/O Libraries & Community Standards
 Portable File Formats & Data Science Application Example

Lecture 4 – Advanced MPI Techniques 4 / 50

 Promises from previous lecture(s):
 Lecture 1: Lecture 2 & 4 will give in-

depth details on the distributed-
memory programming model with the
Message Passing Interface (MPI)

 Lecture 2: Lecture 4 will provide more
details on advanced functions of the
Message Passing Interface (MPI)
standard & its use in applications

 Lecture 2: Lecture 4 on advanded MPI
techniques will provide details about
the often used MPI cartesian
communicator & its use in applications

 Practical Lecture 3.1: Lecture 4 will
offer more insights about using
different types of MPI communicators
with different rank identities in MPI
applications

 Practical Lecture 3.1: Lecture 4 will
offer more insights about using
blocking communication vs. non-
blocking communication functions
when using MPI

 Practical Lecture 3.1: Lecture 4 will
offer more insights about using the MPI
status for different purposes and to
obtain a better understanding what
happens

Selected Learning Outcomes

 Students understand…
 Latest developments in parallel processing & high performance computing (HPC)
 How to create and use high-performance clusters
 What are scalable networks & data-intensive workloads
 The importance of domain decomposition
 Complex aspects of parallel programming
 HPC environment tools that support programming

or analyze behaviour
 Different abstractions of parallel computing on various levels
 Foundations and approaches of scientific domain-

specific applications

 Students are able to …
 Programm and use HPC programming paradigms
 Take advantage of innovative scientific computing simulations & technology
 Work with technologies and tools to handle parallelism complexity

Lecture 4 – Advanced MPI Techniques 5 / 50

Advanced MPI Communication Techniques

Lecture 4 – Advanced MPI Techniques 6 / 50

Programming with Distributed Memory using MPI – Revisited (cf. Lecture 1)

 Features
 No remote memory access on distributed-memory systems
 Require to ‘send messages’ back and forth between processes PX
 Many free Message Passing Interface (MPI) libraries available
 Programming is tedious & complicated, but most flexible method

 Distributed-memory programming enables
explicit message passing as communication between processors

 Message Passing Interface (MPI) is dominant distributed-memory
programming standard today (available in many different version)

 MPI is a standard defined and developed by the MPI Forum

P1 P2 P3 P4 P5

[4] MPI Standard

Lecture 4 – Advanced MPI Techniques 7 / 50

Blocking vs. Non-blocking communication

 Lecture 5 offers more details on using blocking & non-blocking MPI communication in simulations and data science applications

P1 P2 P3 P4 P5
 Blocking vs. non-blocking: MPI_Send() blocks until data is received; MPI_Isend() continues
 The use of these functions can cause different performance problems (e.g. here ‘late sender’)
 MPI_Wait() does wait for a given MPI request to complete before continuing
 MPI_Waitall() does wait for all given MPI requests (e.g. waiting for message) to complete before continuing

[5] Metrics tour

Lecture 4 – Advanced MPI Techniques 8 / 50

Using MPI Ranks & Communicators – Revisited (cf. Lecture 2)

 Answers the following question:
 How do I know where to send/receive to/from?

 Each MPI activity specifies the context in
which a corresponding function is performed
 MPI_COMM_WORLD

(region/context of all processes)
 Create (sub-)groups of the processes / virtual

groups of processes
 Peform communications only within these sub-

groups easily with well-defined processes

Lecture 4 – Advanced MPI Techniques 9 / 50

[1] LLNL MPI Tutorial

(numbers reflect
unique identity

of processor
named ‘MPI rank)

 Using communicators wisely in collective functions
can reduce the number of affected processors

 MPI rank is a unique number for each processor

MPI Communicators – MPI Create Sub-Group Communicators

[1] LLNL MPI Tutorial

(numbers reflect
unique identity

of processor
named ‘MPI rank)

 Create (sub-)groups of the processes &
virtual groups of processes
 Simple to complex communicator setups
 E.g. split existing communicator using

MPI_Comm_split()

 Free new communictors: MPI_Comm_free()

[2] Introduction to Groups & Communicators

Lecture 4 – Advanced MPI Techniques 10 / 50

 MPI_Comm_split() creates a new
smaller communicator out of a
larger communicator by splitting
its current ranks (e.g., rows)

 New rank identities are created in
the newly created communicator

 MPI ranks in different
communicators represent
different unique identifiers

Using MPI_Comm_split() & MPI_Comm_free() – Row Communicator Example

#include <stdio.h>

#include <mpi.h>

int main (int argc, char** argv) {

int world_rank, world_size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &world_size);

MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

int color = world_rank / 4;

MPI_Comm row_comm;

MPI_Comm_split(MPI_COMM_WORLD, color, world_rank, &row_comm);

int row_rank, row_size;

MPI_Comm_size(row_comm, &row_size);

MPI_Comm_rank(row_comm, &row_rank);

printf("WORLD RANK/SIZE: %d/%d \t ROW RANK/SIZE: %d/%d\n",

world_rank, world_size, row_rank, row_size);

MPI_Comm_free(&row_comm);

MPI_Finalize();

return 0;

}

Lecture 4 – Advanced MPI Techniques 11 / 50

[2] Introduction to Groups & Communicators

 MPI_COMM_WORLD with all processors (cf. Lecture 2)
 Splitting scheme according to illustration matching colors / rows

 Definition of a new communicator and a split of the existing
MPI_COMM_WORLD communicator using the defined row scheme
via the function MPI_Comm_split()

 Different ranks and sizes for the newly created row communicator
 Print different identities in both communicators shows differences

 Free
communicator

MPI Communicators – Create MPI Cartesian Communicators

[1] LLNL MPI Tutorial

(numbers reflect
unique identity

of processor
named ‘MPI rank)

 Create (sub-)groups of the processes &
virtual groups of processes
 E.g. optimized for cartesian topology

MPI_Cart_create()

 Creates a new communicator
out of MPI_COMM_WORLD

 Dims: array with length for each dimension
 Periods: logical array specifying whether the grid

is periodic or not
 Reorder: Allow reordering of ranks in output

communicator

Lecture 4 – Advanced MPI Techniques 12 / 50

 Assignment #3 will make use of the cartesian communicator in a simple application example that includes the moving of boats & fish

(e.g. using MPI messages in
scientific simulations and/or

engineering applications)

Cartesian Communicator Example – Conceptual View

modified from [3] German MPI Lecture

dim[0] = 3

dim[1] = 4

(‘cartesian structure‘)

Lecture 4 – Advanced MPI Techniques 13 / 50

(e.g. using MPI messages in
scientific simulations and/or

engineering applications)

Cartesian Communicator Example – Source-code View

#include <stdio.h>

#include <mpi.h>

int main (int argc, char** argv) {

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

dims[0]=3; dims[1] = 4;

periods[0]=true; periods[1]=true;

reorder = false;

MPI_Cart_create(MPI_COMM_WORLD, 2, dims,
periods, reorder, &comm_2d);

MPI_Cart_coords(comm_2d, rank, 2, &coords);

MPI_Cart_shift(comm_2d, 0, 1, &source, &dest);

a = rank; b = 1;

MPI_Sendrecv(a, 1, MPI_REAL, dest, 13, b, 1,
MPI_REAL, source, 13, comm_2d, &status);

MPI_Finalize();

return 0;

}

 Preparing parameter dims as array with length for each dimension (here 3 x 4)
 Preparing parameter periods as logical array specifying whether the cartesian

grid is period
 Preparing parameter reorder as not reordering of ranks in output communicator

 MPI_Cart_create() creates a new communicator (cartesian structure) according to
specified dimensions in variables

 MPI_Cart_coords() obtains process coordinates in cartesian topology – note that
this JUST obtaines the current process coordinates – no actual shift is done yet

 MPI_Cart_shift() obtains ‘ranks’ for shifting data in cartesian topology – note that
this JUST prepares for a shift understanding which ranks are affected by shift

 A real shift is done
using a typical MPI
message exchange
with the obtained
ranks and in the space
of the Cartesian
communicator

modified from [3] German MPI Lecture

Lecture 4 – Advanced MPI Techniques 14 / 50

Hardware & Communication Issues

 Parallel Programming can cause communication issues
 E.g. need for synchronisation in applications, e.g use of MPI_Barriers()

 Wide varieties of networks in HPC systems are available
 Different network topologies of different types of networks used in HPC

 Gigabit Ethernet
 Simple/cheep and good for high throughput computing (HTC)
 Often too slow for parallel programs that require fast interconnects

 Infiniband
 Fast, thus dominant distributed-memory computing interconnect today
 Other interconnects exist but still less used: Intel Omnipath, Extoll, etc.

 Communication overhead can have significant impact on application performance
 Characteristics of interconnects of compute nodes/cpus affect parallel performance ‘shift the view’

Lecture 4 – Advanced MPI Techniques 15 / 50

[5] Metrics tour

Communication Issues – Synchronisation with MPI Barrier Example

#include <stdio.h>

#include <mpi.h>

#include <unistd.h>

int main (int argc, char** argv) {

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
sleep(10);

}

if (rank == 1) {

storeResultsToFile();

}

MPI_Barrier(MPI_COMM_WORLD);

MPI_Finalize();

return 0;

}

 One reason to require a synchronisation across processors is that one rank is
performing some extraordinary long work, not others (e.g., master/worker
parallelization technique, cf. Lecture 2)

 Sleep() is a function that puts a processor to sleep and thus doing basically nothing.
Still a parallel computing resource is not usable for other users since it is typically
exclusively allocated to one user by a scheduling system

 Another reason to require a synchronisation across processors is that one rank
performs I/O operations of some kind (e.g., later in this lecture w/o using parallel I/O)

 MPI_Barrier() blocks the caller until all processes in the communicator have called it
for synchronisation

[5] Metrics tour

 Lecture 9 on debugging, profiling & performance toolsets offers insights into performance analysis tools to understand MPI code better
Lecture 4 – Advanced MPI Techniques 16 / 50

Optimization & Dependencies on Hardware & I/O

 Optimizations in terms of software & hardware are important
 Optimization can be interpreted as using ‘dedicated‘ hardware features (if available)
 E.g. network interconnections enable different used ‘network topologies‘ (varies in different systems)
 E.g. parallel codes are tuned applying parallel I/O with parallel filesystems (if parallel filesystem exists)

[6] Introduction to High Performance
Computing for Scientists and Engineers

‘shift the view’

[5] Metrics tour

 Lecture 9 on debugging, profiling & performance toolsets offers insights into performance analysis tools to understand MPI code better
Lecture 4 – Advanced MPI Techniques 17 / 50

Complex Network Topologies & Challenges

 Large-scale HPC Systems have special network setups
 Dedicated I/O nodes, fast interconnects, e.g. Infiniband (IB), Extoll, etc.
 Different network topologies, e.g. tree, 5D Torus network, mesh, etc.

(raise challenges in task mappings and communication patterns)

[6] Introduction to High Performance Computing for Scientists and Engineers

Source:
IBM

Contention and cross traffic
caused by multiple I/O streams

[7] HPC Best Practices @ IO Workshop

Lecture 4 – Advanced MPI Techniques 18 / 50

Network Building Block ‘Switch’ inside a HPC system

 Single fully non-blocking switch
 All pairs of ports can use their full bandwidth concurrently
 E.g. 2D cross-bar switch and each circle represents

possible connections between two involved IN/OUT devices
 Aka ‘2x2 switching element’
 Aka ‘four-port non-blocking switch’

 Alternative
 [partly/completely] single switch with

bus design with limited bandwidth [6] Introduction to High Performance Computing for Scientists and Engineers

 A switch is an important network building block inside a HPC system that affects performance
 Think about workers processing data and interacting with each other switch matters!
 Advanced programming techniques need to take the hardware interconnect into account

Lecture 4 – Advanced MPI Techniques 19 / 50

Combining Network Building Blocks as FatTree (1)

 Fully non-blocking full-bandwidth fat-tree network
 Having two switch layers (leaf and spine)
 Keeps the ‘non-blocking’ feature across the whole system via two layers

[6] Introduction to High Performance Computing for Scientists and Engineers

 Here a group of workers processing data ‘enjoy’ full non-blocking communication
 Location of the workers here is not very crucial to the application performance

Lecture 4 – Advanced MPI Techniques 20 / 50

Combining Network Building Blocks as FatTree (2)

 Fat-tree network with bottleneck (when # CPUs high)
 Bottleneck is ‘1:3 oversubscription’ of communication link to spine
 Only four nonblocking pairs of connections are possible
 Common in very large systems safe costs (cable & switch hardware)

[6] Introduction to High Performance Computing for Scientists and Engineers

Lecture 4 – Advanced MPI Techniques 21 / 50

2

6

 The location of the workers processing data is crucial for application performance here

Mesh Networks

 Selected Facts
 Often in the form of multi-dimensional hypercubes
 Computing entity is located at each Cartesian grid intersection
 Idea: connections are wrapped around the boundaries of the hypercube to form a certain torus topology
 No direct connections between entities that

are not next neighbours (but ok!)

 Example: A 2D torus network
 Bisection bandwidth scales with √N

[6] Introduction to High Performance Computing for Scientists and Engineers

Lecture 4 – Advanced MPI Techniques 22 / 50

 Fat-Tree switches have limited scalability in very large systems (price vs. performance)
 Bisection bandwidth with scaling in large systems often via mesh networks (e.g. 2D torus)

Example of Large-scale HPC Machine & I/O Setup

 Example: JUQUEEN
 IBM BlueGene/Q

 Compute Nodes
 28 racks (7 rows à 4 racks)

28,672 nodes (458,752 cores)
 Rack: 2 midplanes à

16 nodeboards (16,384 cores)
 Nodeboard: 32 compute nodes
 Node: 16 cores

 Dedicated I/O Nodes
 248 (27x8 + 1x32) connected to 2 CISCO Switches

[9] R. Thakur, PRACE Training, Parallel I/O and MPI I/O

 The I/O node cabling connects the computing nodes via dedicated I/O nodes to storages

Lecture 4 – Advanced MPI Techniques 23 / 50

[10] JUQUEEN HPC System

Communication Optimization by Task-Core Mappings (1)

 Approach:
 Place often-communicating processes on neighboring nodes
 Requires known communication behavior
 Measurements via MPI profiling interface

 Identification of applicable ‘task-core mapping’ approach
 E.g. graph model describes task communication & hardware characteritics
 Obtain communication characteristics via sourcecode or profiling
 Obtain hardware characteristics via vendor information (e.g. IBM redbooks)

 Optimal placement of execution units to processing elements is an NP-hard-problem
 n! possibilities to map n execution units to the same number of n processing elements
 Topology aware task mapping for I/O patterns exists

Lecture 4 – Advanced MPI Techniques 24 / 50

Communication Optimization by Task-Core Mappings (2)

 Application of calculated mappings
 For regular graphs (tori): Mapping of regular shapes
 E.g. experiments run on Bluegene/Q JUQUEEN

 Scientific application (cf. Lecture 2)
 Heatmap as three-dimensional simulation for heat expansion
 Values of boundary cells are exchanges with neighboring placed ranks
 Heatmap is divided into equally sized cubes
 Heat expansion per cube is calculated by a single rank
 Two different expansion algorithms
 Using e.g. ‘heuristics‘ for task/core placements

 Optimized task core mappings enable performance
gains between 1-3% (e.g., heatmap application example)

Lecture 4 – Advanced MPI Techniques 25 / 50

[Video] PEPC – Particle Acceleration Application

[8] Mellanox YouTube Video

Lecture 4 – Advanced MPI Techniques 26 / 50

MPI Parallel I/O Techniques

Lecture 4 – Advanced MPI Techniques 27 / 50

Parallel I/O Techniques – Motivation

 (Parallel) applications that emphasize on the importance of data
 Not all data-intensive or data-driven applications are ‘big data’ (volume)
 HPC simulations of the real world that generates very large volumes of data

 Synthesize new information from data that is maintained
in distributed (partly unique) repositories and archives
 Distributed across different organizations and computers/storages

 Data analysis applications that are ‘I/O bound’
 I/O dominates the overall execution time
 I/O performance crucial for overall performance

‘shift the view again’
Data

I/O

 The complementary course Cloud Computing & Big Data – Parallel & Scalable Machine & Deep Learning offers much more techniques
Lecture 4 – Advanced MPI Techniques 28 / 50

What means I/O?

 Important (time-sensitive) factors within HPC environments
 Characteristics of the computational system (e.g. dedicated I/O nodes)
 Characteristics of the underlying filesystem (e.g. parallel file systems, etc.)

Data

Data
Memory

Memory
Disks

modified from [6] Introduction to High Performance Computing for Scientists and Engineers
 Input/Output (I/O) stands for data transfer/migration from

memory to disk (or vice versa) within a MPI application

Lecture 4 – Advanced MPI Techniques 29 / 50

 The course Cloud Computing & Big Data – Parallel & Scalable Machine & Deep Learning offers distributed file system techniques

I/O Challenges in MPI Applications

 I/O performance bottlenecks in many ‘locations in applications’
 Understanding depends on network & I/O patterns

 During an HPC application run
 Consider the number of processes performing I/O
 The number of files read or written by processes
 Take into account how the files are accessed:

(a) serial access via one process
(b) shared access via multiple processes

 Before/After HPC application run
 How can necessary files be made

available/archived (e.g. tertiary storage)
 E.g. retrieving a high number of small files

from tapes takes very long time

Data

I/O

 An I/O pattern reflects the way of how a MPI application makes
use of I/O (files, processes, etc.) in context of computations

Lecture 4 – Advanced MPI Techniques 30 / 50

Parallel Filesystems Concept

 File Blocks
 Distributed across multiple filesystem nodes
 A single file is thus fully distributed across a ‘disk array’

 Advantages
 High reading and writing speeds for a single file
 Reason: ‘Combined bandwidth’ of the many physical drives is high

 Disadvantages:
 Filesystem is vulnerable to disk failures

(e.g. one disk fails lose file data)
 Prevent data loss with ‘RAID controllers’ as

part of the filesystem nodes
 Redundant Array of Inexpensive Disks (RAID)

levels trade-off vs. data loss

 A parallel file system is optimized to specifically
support concurrent file access

 One file that is written to a parallel filesystem is
broken up into ‘blocks’ of a configured size (e.g.
typically less than 1MB each)

 Prevent data loss with Redundant Array of
Inexpensive Disks (RAID) levels

Lecture 4 – Advanced MPI Techniques 31 / 50

 The course Cloud Computing & Big Data – Parallel & Scalable Machine & Deep Learning offers data storage details (e.g. RAID levels)

Examples of Parallel File Systems

 General Parallel File System (GPFS) / IBM Spectrum Scale
 Developed by IBM
 Available for AIX and Linux
 Quite expensive solution (but powerful)
 Moved from HPC-centric computing to ‘Big Data’ solution (in sales & marketing division)

 Lustre
 Developed by Cluster File Systems, Inc. (bought by Sun)
 Movement towards ‘OpenLustre’
 Name is amalgam of ‘Linux and clusters’
 As it is free software it becomes more and more used today

 Parallel Virtual File System (PVFS)
 Platform for I/O research and production file system for cluster of workstations (‘Beowulfs’)
 Developed by Clemson University and Argonne National Laboratory

Data

I/O

 Widely used parallel file systems are General
Parallel File System (GPFS) that is a
commercial solution from IBM and Lustre
that is open source

 In 2015 IBM rebranded GPFS as IBM
Spectrum Scale due to ‘Big Data‘ customers
and became a central solution for data-
intensive sciences & artificial intelligence

Lecture 4 – Advanced MPI Techniques 32 / 50

Concurrent File Access & Two Level Mapping

 Concurrent file access means that
multiple processes can access the same
file at the same time

 Parallel file systems handle concurrent
file access via ‘single logical files’ over
multiple I/O nodes

 A two Level Mapping means to distribute
blocks from compute nodes via logical
files (1st level) using underlying multiple
I/O nodes (2nd level)

Lecture 4 – Advanced MPI Techniques 33 / 50

General Striping Technique

 Striping technique transforms view from a file to flexible ‘blocks‘

 Striping is a general technique that appears in different contexts
 Many fields in computer science make use of striping (e.g., data transfer too)

 Two major important factors (to be configured)
 (e.g. used in MPI I/O ‘hints’ also later in this lecture)
 ‘Striping factor’: number of disks
 ‘Striping unit’: block size
 Bit-level vs. block-level striping

 Striping refers to a technique where one file is split into fixed-sized blocks
that are written to separate disks in order to facilitate parallel access

Lecture 4 – Advanced MPI Techniques 34 / 50

Parallel File Access

 Comparison with ‘sequential file system’ increases understanding
 File system translates ‘file name’ into a File Control Block (FCB)

 Parallel File Systems
 Every ‘I/O node’ manages a subset of the blocks
 Consequence: Every file has (better: needs) an FCB on every I/O node

 File Access: Two ways to locate FCBs for a file
 Every I/O node maintains directory structure
 Central name server: Avoids replication of directory data

 File Creation
 Filesystem chooses ‘the first’ I/O node (varies)
 This particular I/O node (‘base node’) will store the first block of the file
 Specific block is located when first I/O node and ‘striping pattern’ is known

 Question: What about ‘sequential consistency’ when writing?

Data

I/O

Lecture 4 – Advanced MPI Techniques 35 / 50

Sequential Consistency

 Two processes on different compute nodes
 Assumption: Both write to the ‘same range of locations in a file’

 ‘Sequential consistency’
 Requires that all I/O nodes write

their portions in the same order
 Write request should appear to

occur in well-defined sequence
 But hard to enforce – I/O nodes

may act independently

 Selected Possible Solutions
 Locking entire files - Prevents parallel access (not an option)
 Relaxed consistency semantics – application developer is responsible
 Locking file partitions – prevents access to certain file partitions

Data

I/O

Lecture 4 – Advanced MPI Techniques 36 / 50

File Pointers

 MPI Applications
 Need to be aware of ‘which processes use which parts of the file’
 May require processes to skip file sections ‘owned by others’

 Shared File Pointers
 Common in shared-memory programs
 Inefficient – serializes requests

(update file pointer before completing
request, ‘eager update’)

 Inconsistencies if seek and write operations are separated

 Improvements of Usage
 Better use ‘separate file pointers’ or

atomic seek & write
 In UNIX pread()and pwrite()

allow specification of ‘explicit offset’

Data

I/O

Lecture 4 – Advanced MPI Techniques 37 / 50

Optimization & Dependencies on Hardware & I/O – Revisited

 Optimizations in terms of software & hardware are important
 Optimization can be interpreted as using ‘dedicated‘ hardware features (if available)
 E.g. network interconnections enable different used ‘network topologies‘ (varies in different systems)
 E.g. parallel codes are tuned applying parallel I/O with parallel filesystems (if parallel filesystem exists)

[6] Introduction to High Performance
Computing for Scientists and Engineers

‘shift the view’

[5] Metrics tour

 Lecture 9 on debugging, profiling & performance toolsets offers insights into performance analysis tools to understand MPI code better
Lecture 4 – Advanced MPI Techniques 38 / 50

MPI I/O

 Different operation modes
 ‘Blocking mode’ to finish data

operations, then continue computations
 ‘Non-blocking mode’ (aka asynchronously)

to perform computations while a file is
being read or written in the background
(typically more difficult to use)

 Supports the concept of ‘collective operations’
 Processes can access files each on its own or

all together at the same time

 Provides advanced concepts
 E.g., file views & data types/structures

P1 P2 P3 P4 P5

I/O

I/O

I/O

 MPI I/O provides ‘parallel I/O’ support for
parallel MPI applications

 Writing/Receiving files is similar to
send/receive MPI messages, but to disk

Lecture 4 – Advanced MPI Techniques 39 / 50

Serial I/O: One Process on behalf of Many Processes

 Only one process performs I/O on behalf of all other processors
 Data aggregation or duplication
 Limited by single I/O process (e.g. determined by rank as writer role)

 No scalability for (big) data-intensive computing
 Time increases linearly with amount of (big) data
 Time increases with number of processes of the parallel application

modified from [11] Parallel I/OP1 P2 P3 P4 P5

Disk
I/O

Data Serial I/O: One process on behalf of many means
that one process takes care of all I/O tasks

 Serial I/O increases communication and is slow
as well as including load imbalance risks

Data

I/O

Lecture 4 – Advanced MPI Techniques 40 / 50

Parallel I/O: One file per Process

 All processors perform I/O to individual files
 Limited by file system capabilities

 No scalability for large number of processors
 Number of files creates bottleneck with metadata operations
 Number of simultaneous disk accesses creates ‘contention’ for file system resources
 E.g., the disk cannot keep up with file I/O requests

P1 P2 P3 P4 P5

Disk
DataI/O I/O I/O I/O I/O Parallel I/O: One file per process means that each

process takes care of local I/O tasks alone
 Parallel I/O is good for scratch but not for output

files in applications despite I/O balance

Data

I/O

modified from [11] Parallel I/O

Lecture 4 – Advanced MPI Techniques 41 / 50

Parallel I/O: Shared File

 Each process performs I/O to a single file
 The file access is ‘shared’ across all processors involved
 E.g. MPI/IO functions represent ‘collective operations‘

 Scalability and Performance
 ‘Data layout’ within the shared file is crucial to the performance
 High number of processors can still create ‘contention’ for file systems

P1 P2 P3 P4 P5

Disk
DataI/O I/O I/O I/O I/O

Data

I/O

modified from [11] Parallel I/O

 Parallel I/O: shared file means that processes can
access their ‘own portion’ of a single file

 Parallel I/O with a shared file like MPI/IO is a
scalable and even standardized solution

Lecture 4 – Advanced MPI Techniques 42 / 50

Collective MPI-I/O: Writing integers to a file example

#include <stdio.h>
#include <mpi.h>

int main (int argc, char** argv) {
int rank, size;

MPI_File fh;
MPI_Info info;

char *file_name = “outputfile”;

int buf[10];

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf(“Hello World, I am %d of %d\n“, rank, size);

MPI_Info_create(&info);

int rc = MPI_File_open(MPI_COMM_WORLD, file_name,
MPI_MODE_CREATE | MPI_MODE_RDWR,
info, &fh);

buf[0] = rank;

// MPI_File_write_ordered(fh, buf, 1, MPI_INT, &status);
MPI_File_write(fh, buf, 1, MPI_INT, &status);

rc = MPI_File_close(&fh);

MPI_Finalize();
return 0;

}

 A MPI_File represents a file handler that reprents the file and process group of a communicator
 A MPI_Info represents a list of key/value pairs used for providing information to MPI-I/O

Lecture 4 – Advanced MPI Techniques 43 / 50

 MPI_Info_create creates an MPI_Info object to be used to provide information to MPI-I/O

 Specifying a file_name that should be opened (or even be created) – but attention: The format is highly
implementation dependent

 MPI_File_open opens a specific file collectively across all specified processes being part of
the used communicator and sets a file handle

 MPI_File_close closes a specific file identified via a certain file handle

 Requires a buffer (here integer array) of a certain size (e.g. buf[10])
 Requires values for the buffer: here the rank of each MPI process that

might be used as identification for further values following in the next
parts of the corresponding file is used

 MPI_File_write or related versions write the binary output to the file
 Different between MPI_File_write() and MPI_File_write_ordered() is

that the out is not ordered according to ranks or ordered by ranks

 Understanding and tuning parallel I/O is needed with ‘big data’
 Leverage aggregate communication and I/O bandwidth of client machines

 Support: Add additional software components/libraries layers
 Coordination of file access & mapping of application model to I/O model
 Components and libraries get increasingly specialized / layer
 High-Level I/O libraries like NetCDF or Hierarchical Data Format (HDF) are standards in the community

[9] R. Thakur, PRACE Training,
Parallel I/O and MPI I/O

Parallel Filesystems are just one part
out of three in the whole I/O process

MPI I/O & Parallel Filesystems

Data

I/O

Lecture 4 – Advanced MPI Techniques 44 / 50

 Lecture 5 offers more details on using Parallel I/O and portable data formats in various simulation sciences & data science applications

Data Science Example: Using High-Level I/O Hierarchical Data Format (HDF)

[13] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Clustering

 Lecture 5 offers more details on using Parallel I/O and portable data formats in various simulation sciences & data science applications
Lecture 4 – Advanced MPI Techniques 45 / 50

[Video] Parallel I/O with I/O Nodes

[12] YouTube Video, ‘Simplifying HPC Architectures’

Lecture 4 – Advanced MPI Techniques 46 / 50

Lecture Bibliography

Lecture 4 – Advanced MPI Techniques 47 / 50

Lecture Bibliography (1)

 [1] LLNL MPI Tutorial, Online:
https://computing.llnl.gov/tutorials/mpi/

 [2] Introduction to Groups and Communicators, Online:
http://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/

 [3] German Lecture ‘Umfang von MPI 1.2 und MPI 2.0‘
 [4] The MPI Standard, Online:

http://www.mpi-forum.org/docs/
 [5] M. Geimer et al., ‘SCALASCA performance properties: The metrics tour’
 [6] Introduction to High Performance Computing for Scientists and Engineers, Georg Hager & Gerhard Wellein, Chapman & Hall/CRC Computational Science
 [7] Wolfgang Frings, ‘HPC I/O Best Practices at JSC‘, Online:

http://www.fz-juelich.de/ias/jsc/DE/Leistungen/Dienstleistungen/Dokumentation/Praesentationen/folien-parallelio-2014_table.html?nn=469624
 [8] YouTube Video, ‘Mellanox 10 and 40 Gigabit Ethernet Switch Family’, Online:

http://www.youtube.com/watch?v=o9BLItx2vDg
 [9] Rajeev Thakur, Parallel I/O and MPI-IO, Online:

http://www.training.prace-ri.eu/uploads/tx_pracetmo/pio1.pdf
 [10] JUQUEEN, Online:

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
 [11] Parallel I/O, YouTube Video, Online:

http://www.youtube.com/watch?v=cXbEVsExU9c
 [12] Big Ideas: Simplifying High Performance Computing Architectures, Online:

https://www.youtube.com/watch?v=ISS_OGVamBk

Lecture 4 – Advanced MPI Techniques 48 / 50

Lecture Bibliography (2)

 [13] M. Goetz, C. Bodenstein, M. Riedel, ‘HPDBSCAN – Highly Parallel DBSCAN’, in proceedings of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC2015), Machine Learning in HPC Environments (MLHPC) Workshop, 2015, Online:
https://www.researchgate.net/publication/301463871_HPDBSCAN_highly_parallel_DBSCAN

Lecture 4 – Advanced MPI Techniques 49 / 50

Lecture 4 – Advanced MPI Techniques 50 / 50

