High Performance Computing

ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. — Ing. Morris Riedel

Adjunct Associated Professor

School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland

Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

I @Morris Riedel (O} @Morriskiedel N
in orris Riede Qi @MorrisRiede

LECTURE 4

Advanced MPI Techniques

September 19, 2019
Room V02-258

JULICH
SUPERCOMPUTING WEEP H E L M H 0 LTZ H cu Et%%’:ﬁ"ﬁ%.‘f“ﬁ

CENTRE Projects

5 e o0
SE = UNIVERSITY OF ICELAND ‘ LICH
59)) § SCHOOL OF ENGINEERING AND NATURAL SCIENCES J U

(/.

Forschungszentrum

FACULTY OF INDUSTRIAL ENGINEERING,
MECHANICAL ENGINEERING AND COMPUTER SCIENCE

Review of Practical Lecture 3.1 — Understanding MPI Messages & Collectives

= MPI purpose: send data as messages to other processors

el W
f /
=

MPI point-to-point
communicatons (R P
V.|

P/l P
/

m DATA: 80

NEW: 17

DATA: 17

DATA: 06 DATA: 19

DATA: 10
DATA: 20
SATEn DATA: 80

Lecture 4 — Advanced MPI Techniques

MPI
Point
to
Point

Communication
f

MPI
Collective

Communication WW\ Jsomtsum
+ as example
+ S
T’
imm@\

P
[1] LLNL MPI Tutorial

Processor 1

process A

application SEND network application RECV

Processor 2

process B

[N
DATA: 80

2/

DATA: 06

DATA: 19

E}v

=

&)
/4

ATA: 80

E/

DATA: 19

PI_Init(&arge, &azgv); LR X
MPI_Comm_size (MPI_COMM WORLD, &numtasks); . i] v 1]
MPI_Comm_rank (MPI_COMM WORLD, &rank); ‘ i ‘ ‘

oL — _ - (e.g. using MPI
MPI Recv (&inmsg messages in
else if (zank ==1) { _ scientific
PL_Recy (iinmag, . R simulations)

rc = MPI_Get count(&Stat, MPI_CHAR, &count);

P P

MPI_Init(&argc, &argv) ;

MPI_Comm size (MPI_COMM WORLD, &numprocs) ;
MPI_Comm_rank (MPI_COMM WORLD, &rank) ;

source=0;
count=4;

if (rank == source) {
for (i=0;i<count;i++)
buffer[i]=i;

}

MPI_Bcast (buffer,count,MPI_INT,source,MPI_COMM WORLD) ; I (e . g . | nstea d Of us | n g

for (i=0;i<count;i++) a for |OOp &
printf ("%d \n" ,buffer[i]);
MPI_Send/Recv
multiple times)

MPI_Finalize();

2/50

Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning
9.

Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

Lecture 4 — Advanced MPI Techniques

11.
12.
13.
14.
15.
16.

Scientific Visualization & Scalable Infrastructures
Terrestrial Systems & Climate

Systems Biology & Bioinformatics

Molecular Systems & Libraries

Computational Fluid Dynamics & Finite Elements

Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

= Practical Topics

= Theoretical / Conceptual Topics

3/50

Outline

= Advanced MPI Communication Techniques

Blocking vs. Non-Blocking Communication

MPI Communicators & Creating Sub-Groups

MPI Cartesian Communicator & Application Motivations
Hardware & Communication Issues & Network Interconnects
Task-Core Mappings & Heatmap Application Example

= MPI Parallel I/0 Techniques

I/O Terminologies & Challenges

Parallel Filesystems & Striping Technique

MPI 1/O Techniques & Use of Parallel I/0

Higher-Level /O Libraries & Community Standards
Portable File Formats & Data Science Application Example

Promises from previous lecture(s):

Lecture 1: Lecture 2 & 4 will give in-
depth details on the distributed-
memory programming model with the
Message Passing Interface (MPI)

Lecture 2: Lecture 4 will provide more
details on advanced functions of the
Message Passing Interface (MPI)
standard & its use in applications

Lecture 2: Lecture 4 on advanded MPI
techniques will provide details about
the often used MPI cartesian
communicator & its use in applications

Practical Lecture 3.1: Lecture 4 will
offer more insights about using
different types of MPI communicators
with different rank identities in MPI
applications

Practical Lecture 3.1: Lecture 4 will
offer more insights about using
blocking communication vs. non-
blocking communication functions
when using MPI

Practical Lecture 3.1: Lecture 4 will
offer more insights about using the MPI
status for different purposes and to
obtain a better understanding what
happens

Selected Learning Outcomes

» Students understand...

Latest developments in parallel processing & high performance computing (HPC)
How to create and use high-performance clusters

What are scalable networks & data-intensive workloads
The importance of domain decomposition

wie module pepa_types
use Lreevars
inplieit none

inelude ‘wpif N’

Complex aspects of parallel programming ﬁ?‘&".‘.‘:ﬁ::"“_.:ﬁ_._l;"r‘m"“ b
environment tools that support programming =5 L >
or analyze behaviour .f‘“"‘fﬁ“ ::fr'.. i B PBT 02 R

Different abstractions of parallel computing on various levels

Foundations and approaches of scientific domain-
specific applications

= Students are able to ...

Programm and use HPC programming paradigms
Take advantage of innovative scientific computing simulations & technology
Work with technologies and tools to handle parallelism complexity

Lecture 4 — Advanced MPI Techniques 5/50

Advanced MPI Communication Techniques

O
O

Lecture 4 — Advanced MPI Techniques 6/50

Programming with Distributed Memory using MPI — Revisited (cf. Lecture 1)

. Distributed-memory programming enables
explicit message passing as communication between processors

. Message Passing Interface (MPI) is dominant distributed-memory
programming standard today (available in many different version)

= MPI is a standard defined and developed by the MPI Forum

[4] MPI Standard

= Features
= No remote memory access on distributed-memory systems
= Require to ‘send messages’ back and forth between processes PX
= Many free Message Passing Interface (MPI) libraries available
= Programming is tedious & complicated, but most flexible method P1 P2 P3 P4 PS5

Lecture 4 — Advanced MPI Techniques 7/50

Blocking vs. Non-blocking communication

S MPI_Send MPI_Send
M

Q

ke] ;

- MPI_Recv - MPI_Irecvl MPI_Wait | —

=)

. time
S MPI_Isend — MPI_Wait | MPI_Isend — MPI_Wait |
3 N\

— MPI_Recv | IMPI_IrecvH MPI_Wait —

== =

time

= Blocking vs. non-blocking: MPI_Send() blocks until data is received; MPI_Isend() continues

" The use of these functions can cause different performance problems (e.g. here ‘late sender’)

" MPI_Wait() does wait for a given MPI request to complete before continuing

" MPI_Waitall() does wait for all given MPI requests (e.g. waiting for message) to complete before continuing

[5] Metrics tour

-
Tl

N
W’

Pl P2 P3 P4 P5

> Lecture 5 offers more details on using blocking & non-blocking MPI communication in simulations and data science applications

Lecture 4 — Advanced MPI Techniques

8/50

Using MPI Ranks & Communicators — Revisited (cf. Lecture 2)

MPI_COMM_WORLD

= Answers the following question:

© o o (numbers reflect = How do | know where to send/receive to/from?
O unique identity o . .
R o °© C " of processor = Each MPI activity specifies the context in
d named MPLranio which a corresponding function is performed
009 © 9 = MPI_COMM_WORLD
group group o o ; f ”
o © C (region/context of all processes)
= Create (sub-)groups of the processes / virtual

o groups of processes

= Peform communications only within these sub-
groups easily with well-defined processes

U
O\OK
communications
1 i -0 C . Using communicators wisely in collective functions
(4] can reduce the number of affected processors

[1] LLNL MPI Tutorial = MPI rank is a unique number for each processor

Lecture 4 — Advanced MPI Techniques 9/50

MPI Communicators — MPI Create Sub-Group Communicators

MPI_COMM_WORLD

" Create (sub-)groups of the processes &

© 0, (numbers reflect virtual groups of processes
C C o o © “'Z,'fq;i'ii?f,'fy = Simple to complex communicator setups
© P named ‘MPI rank) = E.g. split existing communicator using
MPI Comm split ()
C ooo groupt aroup2 000 O = Free new communictors: MPT Comm free ()

¢ C " MPI_Comm_split() creates a new
b smaller communicator out of a
4 larger communicator by splitting
its current ranks (e.g., rows)

= New rank identities are created in

Q_ﬁ
o\o . the newly created communicator
communications u MPI ranks in different
0 0 o communicators represent

OJONONO,

different unique identifiers

@oYoXoxo)
OO0 50

[1] LLNL MPI Tutorial
[2] Introduction to Groups & Communicators

Lecture 4 — Advanced MPI Techniques 10/50

Using MPI_Comm_split() & MPI_Comm_free() — Row Communicator Example

#include <stdio.h>

#include <mpi.h>

int main (int argc, char** argv) {
int world rank, world size;

MPI Init(&argc, &argv); -

MPI_Comm size (MPI_COMM WORLD, &world size); i

MPI Comm rank (MPI_ COMM WORLD, &world rank); §

int color = world rank / 4;

MPI Comm row_ comm;

MPI Comm split(MPI_COMM WORLD, color, world rank, &row comm) ;

int row rank, row size;

MPI Comm size(row comm, &row size);

MPI Comm rank(row comm, &row rank) ;

printf ("WORLD RANK/SIZE: %d/%d \t ROW RANK/SIZE: %d/%d\n",

world rank, world size, row rank, row size);

" MPI_COMM_WORLD with all processors (cf. Lecture 2)
Splitting scheme according to illustration matching colors / rows

MPI_ Comm free(&row_comm) ;

e
e
/,’ . Definition of a new communicator and a split of the existing
p MPI_COMM_WORLD communicator using the defined row scheme
/”’ via the function MPI_Comm_split()
’
S/ " Different ranks and sizes for the newly created row communicator
/” S Print different identities in both communicators shows differences
,/ /
’
y
/
/
/
/ ONONONO) {cXoXoXoe)
/
/
/) O 0OC OXOXOXO,
1" Free @ @ @ [@ O @ @]

MPI Finalize();

return 0;

Lecture 4 — Advanced MPI Techniques

\ _/

communicator

[2] Introduction to Groups & Communicators

11/50

MPI Communicators — Create MPI Cartesian Communicators

MPI_COMM_WORLD

= Create (sub-)groups of the processes &

© ° © (numbers reflect virtual groups of processes
o 8 C e ” ur;:‘q:glcii:grty = E.g. optimized for cartesian topology
(3] o named ‘MPI rank) MPI Cart create()

= Creates a new communicator
009 ... © o out of MPI_COMM_WORLD
@

= Dims: array with length for each dimension
= Periods: logical array specifying whether the grid

© o
¢ © © 0 : L
o © o © is periodic or not
C © = Reorder: Allow reordering of ranks in output

communicator

C . _
- (e.g. using MPI messages in
communications /
() C ST ‘ scientific simulations and/or
C) ' ‘__‘ engineering applications)

[1] LLNL MPI Tutorial

» Assignment #3 will make use of the cartesian communicator in a simple application example that includes the moving of boats & fish

Lecture 4 — Advanced MPI Techniques 12 /50

Cartesian Communicator Example — Conceptual View

rank
(row,column)

source / dgst

dim[0] = 3

Lecture 4 — Advanced MPI Techniques

[\

A\

dim[1] =4

A

0 1 2 3
(0,0) (0.1) (0.2) (0.3)
8/4 9/5 10/6 11/7
| | | |
V. ¥ - T
(1,0) (1.1) (1.2) (1,3)
0/8 1/9 2/10 3/11
} ! ! }
8 9 10 11
(2,0) (2.1) (2.2) (2,3)
4/0 \ 5/1 \ 6/2\ 713
/ / I /

(‘cartesian structure’)

\V

moadified from [3] German MPI Lecture

(e.g. using MPI messages in
scientific simulations and/or
engineering applications)

S
N\

13 /50

Cartesian Communicator Example — Source-code View

#include <stdio.h>
#include <mpi.h>
int main (int argc, char** argv) {
int rank, size;
MPI Init(&argc, &argv);
MPI Comm size (MPI COMM WORLD, &size);

MPI Comm rank (MPI COMM WORLD, &rank);

. Preparing parameter dims as array with length for each dimension (here 3 x 4)
" Preparing parameter periods as logical array specifying whether the cartesian

grid is period

. Preparing parameter reorder as not reordering of ranks in output communicator

. MPI_Cart_create() creates a new communicator (cartesian structure) according to
specified dimensions in variables

dims [0]=3; dims[1l] = 4;
periods[0] =true; periods[l]=true;

reorder = false;

= MPI_Cart_coords() obtains process coordinates in cartesian topology — note that
this JUST obtaines the current process coordinates — no actual shift is done yet

" MPI_Cart_shift() obtains ‘ranks’ for shifting data in cartesian topology — note that
this JUST prepares for a shift understanding which ranks are affected by shift

MPI Cart create (MPI_COMM WORLD, 2, dims,
periods, reorder, &comm 2d);

MPI Cart coords(comm 2d, rank, 2, &coords);

MPI Cart shift(comm 2d, 0, 1, &source, &dest);

a = rank; b = 1;

MPI Sendrecv(a, 1, MPI REAL, dest, 13, b, 1,
MPI REAL, source, 13, comm 2d, &status);

= A real shift is done
using a typical MPI
message exchange
with the obtained
ranks and in the space
of the Cartesian
communicator

MPI Finalize();

return 0;

Lecture 4 — Advanced MPI Techniques

modified from [3] German MPI Lecture

rank
(row,colungn)

source / dpst

ANYA WA

0 . 2 3
(0,0 01 0,2) (0,3
8/4 9/5 10/6 1117
| | | |
Vv V5 v s v
(1,0) (1,1 (1,2) (1,3)
10/8 179 2710 3711
i T 9 T 10 EE
(2.0) 21 (2,2) (2,3)
410 571 6/2 7/3
/

—

7

\

14 /50

Hardware & Communication Issues

= Characteristics of interconnects of compute nodes/cpus affect parallel performance

" Communication overhead can have significant impact on application performance ::::: ‘

‘shift the view’

= Parallel Programming can cause communication issues
= E.g. need for synchronisation in applications, e.g use of MpI Barriers ()

= \Wide varieties of networks in HPC systems are available
= Different network topologies of different types of networks used in HPC

" Gigabit Ethernet

= Simple/cheep and good for high throughput computing (HTC)

= Often too slow for parallel programs that require fast interconnects
[5] Metrics tour

" Infiniband
= Fast, thus dominant distributed-memory computing interconnect today
= Other interconnects exist but still less used: Intel Omnipath, Extoll, etc.

Lecture 4 — Advanced MPI Techniques

o

MPI

Communication
Collective

Point-to-point

Synchronization
Collective

_
—-{ MPI /O

15 /50

#include
#include
#include

int main

Communication Issues — Synchronisation with MPI Barrier Example

<stdio.h>
<mpi.h>
<unistd.h>

(int argc, char** argv) {

int rank, size;
MPI Init(&argc, &argv);
MPI Comm size (MPI COMM WORLD, &size);

MPI Comm rank (MPI COMM WORLD, &rank);

One reason to require a synchronisation across processors is that one rank is
performing some extraordinary long work, not others (e.g., master/worker
parallelization technique, cf. Lecture 2)

Sleep() is a function that puts a processor to sleep and thus doing basically nothing.
Still a parallel computing resource is not usable for other users since it is typically
exclusively allocated to one user by a scheduling system

Another reason to require a synchronisation across processors is that one rank
performs I/O operations of some kind (e.g., later in this lecture w/o using parallel 1/0)

if (rank == 0) {
sleep(10);

}

MPI_Barrier() blocks the caller until all processes in the communicator have called it
for synchronisation

if (rank == 1) {
storeResultsToFile() ;

}

PI Barrier (MPI COMM WORLD) ;

MPI Finalize();

return 0;

}

Time

i Execution
MPI

[Communication |
Collective

. Point-to-point

[5] Metrics tour

—+ Synchronization
Collective

e
— MPI I/O
— Init/Exit

Overhead

» Lecture 9 on debugging, profiling & performance toolsets offers insights into performance analysis tools to understand MPI code better

Optimization & Dependencies on Hardware & 1/0

= Optimizations in terms of software & hardware are important
= Optimization can be interpreted as using ‘dedicated’ hardware features (if available)
= E.g. network interconnections enable different used ‘network topologies’ (varies in different systems)
= E.g. parallel codes are tuned applying parallel |/O with parallel filesystems (if parallel filesystem exists)

> [Tme |
—»{ Execution ‘
‘shift the view’ L wer]

Communication |

E Collective |
Point-to-point |

—'{ Synchronization |

\—'{ Collective |
SwW Sw ! SwW S
osmsnmpoesRhseertnsneel —L_ Mo |
[nitExit |
[6] Introduction to High Performance =~ | [.
% Overhead ‘ [5] Metrics tour

Computing for Scientists and Engineers

> Lecture 9 on debugging, profiling & performance toolsets offers insights into performance analysis tools to understand MPI code better

Lecture 4 — Advanced MPI Techniques 17 /50

Complex Network Topologies & Challenges

= Large-scale HPC Systems have special network setups
= Dedicated I/O nodes, fast interconnects, e.g. Infiniband (1B), Extoll, etc.

= Different network topologies, e.g. tree, 5D Torus network, mesh, etc.
(raise challenges in task mappings and communication patterns)

Contention and cross traffic
caused by multiple 1/0 streams

pooood

Source:
IBM

[6] Introduction to High Performance Computing for Scientists and Engineers [7] HPC Best Practices @ 10 Workshop

Lecture 4 — Advanced MPI Techniques 18 /50

Network Building Block ‘Switch’ inside a HPC system

= Aswitch is an important network building block inside a HPC system that affects performance
" Think about workers processing data and interacting with each other &> switch matters!
= Advanced programming techniques need to take the hardware interconnect into account

= Single fully non-blocking switch
= All pairs of ports can use their full bandwidth concurrently

= E.g. 2D cross-bar switch and each circle represents
possible connections between two involved IN/OUT devices

0

o))) o

g
| N

= Aka ‘2x2 switching element’

Y
i

'
p

Y
S

e
\

Y
4

= Aka ‘four-port non-blocking switch’ I

£

<

)
N

)

A

' N
T

£
py

= Alternative

Q

)
N

Q@

)
hy

Q

’
;
)
Sy
’
;

O

= [partly/completely] single switch with
bus design with limited bandwidth

Lecture 4 — Advanced MPI Techniques

[6] Introduction to High Performance Computing for Scientists and Engineers

19 /50

Combining Network Building Blocks as FatTree (1)

= Fully non-blocking full-bandwidth fat-tree network E:E:E

= Having two switch layers (leaf and spine)
= Keeps the ‘non-blocking’ feature across the whole system via two layers

SW 1 SW 2

SW 3

SW 4

0oee GoOs

0b0e GOLo

spine switches

[6] Introduction to High Performance Computing for Scientists and Engineers

leaf switches

Here a group of workers processing data ‘enjoy’ full non-blocking communication
Location of the workers here is not very crucial to the application performance

Combining Network Building Blocks as FatTree (2)

= Fat-tree network with bottleneck (when # CPUs high) E:E:E

= Bottleneck is ‘1:3 oversubscription” of communication link to spine

= Only four nonblocking pairs of connections are possible
= Common in very large systems > safe costs (cable & switch hardware)

SW

=

-~
=

SW

SW

[6] Introduction to High Performance Computing for Scientists and Engineers

OOLOOLGEELLD

The location of the workers processing data is crucial for application performance here

Lecture 4 — Advanced MPI Techniques

21/50

Mesh Networks

= Selected Facts
Often in the form of multi-dimensional hypercubes

Computing entity is located at each Cartesian grid intersection
Idea: connections are wrapped around the boundaries of the hypercube to form a certain torus topology
No direct connections between entities that

are not next neighbours (but ok!)

= Example: A 2D torus network
= Bisection bandwidth scales with VN

[6] Introduction to High Performance Computing for Scientists and Engineers

" Fat-Tree switches have limited scalability in very large systems (price vs. performance)
" Bisection bandwidth with scaling in large systems often via mesh networks (e.g. 2D torus)

CAUAU Sy 4

1
.
pulilx

CErr.rs

Lecture 4 — Advanced MPI Techniques 22 /50

Example of Large-scale HPC Machine & 1/0 Setup

" Example: JUQUEEN
= |BM BlueGene/Q

Compute Nodes

= Compute Nodes

= 28 racks (7 rows a 4 racks) I Tterconnect
28,672 nodes (458,752 cores)

= Rack: 2 midplanes a : = E : /O nodes

16 nodeboards (16,384 cores)
= Nodeboard: 32 compute nodes
= Node: 16 cores

= Dedicated I/O Nodes
= 248 (27x8 + 1x32) connected to 2 CISCO Switches

[9] R. Thakur, PRACE Training, Parallel I/0 and MPI I/O [10] JUQUEEN HPC System

The 1/O node cabling connects the computing nodes via dedicated I/O nodes to storages

Lecture 4 — Advanced MPI Techniques 23 /50

Communication Optimization by Task-Core Mappings (1)

= Approach:
= Place often-communicating processes on neighboring nodes
= Requires known communication behavior
= Measurements via MPI profiling interface Execution units :>

i.e. processes

processing elements
i.e. CPUs

= |dentification of applicable ‘task-core mapping’ approach
= E.g. graph model describes task communication & hardware characteritics
= Obtain communication characteristics via sourcecode or profiling
= Obtain hardware characteristics via vendor information (e.g. IBM redbooks)

/7 Gt = (T: EI f)
@ T= {to: ty, G, t3}

= Optimal placement of execution units to processing elements is an NP-hard-problem E = {{t, t,}, {t, &}, {t,, ts}, {t, ts}, {t:}}
" n! possibilities to map n execution units to the same number of n processing elements ' f: eer | A
. Topology aware task mapping for I/O patterns exists , s S gﬂ'ﬁ

v 112

{t ta}
{ta 13}

{ts}

[

Lecture 4 — Advanced MPI Techniques 24 /50

Communication Optimization by Task-Core Mappings (2)

= Application of calculated mappings
= For regular graphs (tori): Mapping of regular shapes
= E.g. experiments run on Bluegene/Q JUQUEEN

= Scientific application (cf. Lecture 2)

= Heatmap as three-dimensional simulation for heat expansion
Values of boundary cells are exchanges with neighboring placed ranks
= Heatmap is divided into equally sized cubes
Heat expansion per cube is calculated by a single rank
= Two different expansion algorithms
= Using e.g. ‘heuristics’ for task/core placements

—— Z ; z <= size; z+ {
for (y = 1; y <= size; y++) {
for (x = 1; x <= size; x++) |
H. H 1 p[x][yllz] = (old o [x] [yl [z-1]
= Optimized task core mappings enable performance old AR R B AR e e
|_map [x] [y-1][z] _map [1lvllz]
0 [x] [y
1Ly

gains between 1-3% (e.g., heatmap application example) N f;iﬂaii?ﬂ ﬂ ST

Expansion 1 Expansion 2

Lecture 4 — Advanced MPI Techniques 25 /50

Lecture 4 — Advanced MPI Techniques

[Video] PEPC — Particle Acceleration Application

World’s First Scalable Pay as You Grow
40 Gigabit Ethernet Solution

Third Party
L3 Switch

=5

- t -
48x 40GbE o —.. ==
Storage Servers E E"—‘-—*

48x 40GbE
Storage Clients

Non Blocking 100x40GbE Storage Client/Server Application
o

o @ ¥ ;]

[8] Mellanox YouTube Video

26 /50

MPI Parallel 1/0 Techniques

O
O 0

Lecture 4 — Advanced MPI Techniques 27 /50

Parallel 1/0 Techniques — Motivation

= (Parallel) applications that emphasize on the importance of data
» Not all data-intensive or data-driven applications are ‘big data’ (volume)
= HPC simulations of the real world that generates very large volumes of data

= Synthesize new information from data that is maintained
in distributed (partly unigue) repositories and archives
= Distributed across different organizations and computers/storages

= Data analysis applications that are ‘1/O bound’
= |/O dominates the overall execution time
= |/O performance crucial for overall performance

m shlft the view again’

» The complementary course Cloud Computing & Big Data — Parallel & Scalable Machine & Deep Learning offers much more techniques

Lecture 4 — Advanced MPI Techniques 28 /50

What means 1/0?

" Important (time-sensitive) factors within HPC environments
= Characteristics of the computational system (e.g. dedicated I/O nodes)
» Characteristics of the underlying filesystem (e.g. parallel file systems, etc.)

‘M & ‘ Lo !

Communlcatlon network

" Input/Output (I1/0) stands for data transfer/migration from
memory to disk (or vice versa) within a MPI application

modified from [6] Introduction to High Performance Computing for Scientists and Engineers

» The course Cloud Computing & Big Data — Parallel & Scalable Machine & Deep Learning offers distributed file system techniques

Lecture 4 — Advanced MPI Techniques

29 /50

1/0O Challenges in MPI Applications

= |/O performance bottlenecks in many ‘locations in applications’

» Understanding depends on network & |/O patterns

= During an HPC application run
= Consider the number of processes performing I/O
= The number of files read or written by processes

= Take into account how the files are accessed:
(a) serial access via one process
(b) shared access via multiple processes

= Before/After HPC application run

= How can necessary files be made
available/archived (e.g. tertiary storage)

= E.g. retrieving a high number of small files
from tapes takes very long time

Lecture 4 — Advanced MPI Techniques

An I/O pattern reflects the way of how a MPI application makes
use of 1/O (files, processes, etc.) in context of computations

30/50

Parallel Filesystems Concept

s Fi
F | I e B | oC kS = A parallel file system is optimized to specifically
= Distributed across multiple filesystem nodes support concurrent file access _
) o)) . = One file that is written to a parallel filesystem is
= Asingle file is thus fully distributed across a ‘disk array’ broken up into ‘blocks’ of a configured size (e.g.
typically less than 1MB each)
u Adva ntages * Prevent data loss with Redundant Array of
Inexpensive Disks (RAID) levels

= High reading and writing speeds for a single file
= Reason: ‘Combined bandwidth” of the many physical drives is high

= Disadvantages:

= Filesystem is vulnerable to disk failures
(e.g. one disk fails = lose file data)

= Prevent data loss with ‘RAID controllers’ as
part of the filesystem nodes

= Redundant Array of Inexpensive Disks (RAID)
levels trade-off vs. data loss

» The course Cloud Computing & Big Data — Parallel & Scalable Machine & Deep Learning offers data storage details (e.g. RAID levels)

Lecture 4 — Advanced MPI Techniques 31/50

Examples of Parallel File Systems

= General Parallel File System (GPFS) / IBM Spectrum Scale
= Developed by IBM
= Available for AIX and Linux
» Quite expensive solution (but powerful)
* Moved from HPC-centric computing to ‘Big Data’ solution (in sales & marketing division)

= [ustre
- = Widely used parallel file systems are General
= Developed by Cluster File Systems, Inc. (bought by Sun) Parallel File System (GPFS) that is a
, , commercial solution from IBM and Lustre
= Movement towards ‘Openlustre that is open source
. (: ’ In 2015 IBM rebranded GPFS as IBM
= Name is amalgam of ‘Linux and clusters Spectrum Scale due to ‘Big Data‘ customers
= As it is free software it becomes more and more used today ?n“t:n'f’s";\f:“S‘Ei:ncc‘:“s";':;fi'ffé;:{‘i:‘t’;lﬁgf';ce

= Parallel Virtual File System (PVFS)

= Platform for I/O research and production file system for cluster of workstations (‘Beowulfs’)
= Developed by Clemson University and Argonne National Laboratory

Lecture 4 — Advanced MPI Techniques 32/50

Concurrent File Access & Two Level Mapping

2 mappings
T1 T2 T3 T4

File Single logical file
l l Multiple 1/0 nodes
and storage
I/O node I/O node devices

Blocks from compute nodes -
= Concurrent file access means that

multiple processes can access the same

file at the same time
. Parallel file systems handle concurrent
file access via ‘single logical files’ over
Logical fi multiple 1/O nodes
ogical file

= Atwo Level Mapping means to distribute
blocks from compute nodes via logical
files (1st level) using underlying multiple
1/0 nodes (2nd level)

I/O node 1 1/O node 2

Lecture 4 — Advanced MPI Techniques 33/50

General Striping Technique

= Striping technique transforms view from a file to flexible ‘blocks’

Striping refers to a technique where one file is split into fixed-sized blocks
that are written to separate disks in order to facilitate parallel access

= Striping is a general technique that appears in different contexts
= Many fields in computer science make use of striping (e.g., data transfer too)

= Two major important factors (to be configured)

= (e.g. used in MPI I/O ‘hints’ also = later in this lecture) -
= ‘Striping factor’: number of disks W

= ‘Striping unit’: block size

: _ Disk Disk
= Bit-level vs. block-level striping ® o

Lecture 4 — Advanced MPI Techniques 34 /50

Parallel File Access

= Comparison with ‘sequential file system’ increases understanding
= File system translates ‘file name’ into a File Control Block (FCB)

= Parallel File Systems
= Every ‘I/O node’ manages a subset of the blocks
= Consequence: Every file has (better: needs) an FCB on every I/O node

= File Access: Two ways to locate FCBs for a file
= Every I/O node maintains directory structure
= Central name server: Avoids replication of directory data

= File Creation
= Filesystem chooses ‘the first” I/O node (varies)
= This particular I/O node (‘base node’) will store the first block of the file
= Specific block is located when first I/O node and ‘striping pattern’ is known

" Question: What about ‘sequential consistency” when writing?

Lecture 4 — Advanced MPI Techniques 35/50

Sequential Consistency

= Two processes on different compute nodes
= Assumption: Both write to the ‘same range of locations in a file’

= ‘Sequential consistency’
= Requires that all I/O nodes write

their portions in the same order Compute nodes | | L |
= Write request should appear to \
occur in well-defined sequence onodes [2 | [2 |

= But hard to enforce — 1/0O nodes
may act independently

= Selected Possible Solutions
= Locking entire files - Prevents parallel access (not an option)

= Relaxed consistency semantics — application developer is responsible
= Locking file partitions — prevents access to certain file partitions

Lecture 4 — Advanced MPI Techniques 36 /50

File Pointers

= MPI Applications

= Need to be aware of ‘which processes use which parts of the file’
= May require processes to skip file sections ‘owned by others’

= Shared File Pointers
= Common in shared-memory programs

= |nefficient — serializes requests
(update file pointer before completing
request, ‘eager update’)

= |nconsistencies if seek and write operations are separated

= Improvements of Usage
= Better use ‘separate file pointers’ or

atomic seek & write Thread 1: Thread 2:
. seek(location = 100); seek(location = 200);
" InUNIXpread () and pwrite () write(..., length = 50); write(...., length = 150);
allow specification of ‘explicit offset’

Lecture 4 — Advanced MPI Techniques 37/50

Optimization & Dependencies on Hardware & 1/0 — Revisited

= Optimizations in terms of software & hardware are important
= Optimization can be interpreted as using ‘dedicated’ hardware features (if available)
= E.g. network interconnections enable different used ‘network topologies’ (varies in different systems)
= E.g. parallel codes are tuned applying parallel |/O with parallel filesystems (if parallel filesystem exists)

> [Tme |
I O e
‘shift the view’ L we]

Communication |

E Collective |
_ Point-to-point |
m —>{ Synchronization |

\—'{ Collective |

—'{ Init/Exit

[6] Introduction to High Performance

h o TE DT e *{ Overhead ‘
Computing for Scientists and Engineers

[5] Metrics tour

> Lecture 9 on debugging, profiling & performance toolsets offers insights into performance analysis tools to understand MPI code better

Lecture 4 — Advanced MPI Techniques 38 /50

MPI I/O

= Different operation modes

= ‘Blocking mode’ to finish data
operations, then continue computations

= ‘Non-blocking mode’ (aka asynchronously)
to perform computations while a file is
being read or written in the background
(typically more difficult to use)

’

= Supports the concept of ‘collective operations P1 P2 P3 P4 P5

® Processes can access files each on its own or
all together at the same time

. " MPI I/O provides ‘parallel /0’ support for
= Provides advanced concepts parallel MPI applications
. . = Writing/Receiving files is similar to
= E.g., file views & data types/structures send/receive MPI messages, but to disk

Lecture 4 — Advanced MPI Techniques 39/50

Serial 1/0O: One Process on behalf of Many Processes

= Only one process performs |/O on behalf of all other processors
= Data aggregation or duplication
» Limited by single 1/O process (e.g. determined by rank as writer role)

= No scalability for (big) data-intensive computing
= Time increases linearly with amount of (big) data
= Time increases with number of processes of the parallel application

Serial I/0: One process on behalf of many means
that one process takes care of all I/O tasks

Serial I/O increases communication and is slow
as well as including load imbalance risks

P1 P 2 P 3 P4 P5 modified from [11] Parallel I/0

Lecture 4 — Advanced MPI Techniques 40 /50

Parallel 1/0: One file per Process

= All processors perform |/0O to individual files
= Limited by file system capabilities

= No scalability for large number of processors
= Number of files creates bottleneck with metadata operations
= Number of simultaneous disk accesses creates ‘contention’ for file system resources
= E.g., the disk cannot keep up with file I/O requests

" Parallel I/0: One file per process means that each
process takes care of local I/O tasks alone

. Parallel I/0 is good for scratch but not for output
files in applications despite I/0O balance

P1 P2 P 3 P4 P 5 modified from [11] Parallel I/0

Lecture 4 — Advanced MPI Techniques 41 /50

Parallel 1/0O: Shared File

= Each process performs |/O to a single file
= The file access is ‘shared’ across all processors involved
= E.g. MPI/IO functions represent ‘collective operations’

= Scalability and Performance
= ‘Data layout” within the shared file is crucial to the performance
= High number of processors can still create ‘contention’ for file systems

" Parallel I/O: shared file means that processes can
access their ‘own portion’ of a single file

. Parallel I/0 with a shared file like MPI/IO is a
scalable and even standardized solution

modified from [11] Parallel I/0

Pl P2 P3 P4 PS5

Lecture 4 — Advanced MPI Techniques 42 /50

Collective MPI-I/O: Writing integers to a file example

xizziﬁgz ::l;giﬁ;b = A MPL_File represents a file handler that reprents the file and process group of a communicator
) -~ = A MPI_Info represents a list of key/value pairs used for providing information to MPI-I/O

int main (int argc, char** argz),{"

int rank, size; ’¢*
- . M
. ’,ff . Specifying a file_name that should be opened (or even be created) — but attention: The format is highly
MPI Info info; | ,/ implementation dependent
——— ’
e
L' e
char *file name = “outputfile”; |
A" MPI_Info_create creates an MPI_Info object to be used to provide information to MPI-I/O
int buf[10]; 7
’
’
MPI Init(&argc, &argv); ,” . igr g . " .
R] MPI_File_open opens a specific file collectively across all specified processes being part of
MPI_Comm size (MPI_COMM WORLD, &size); »7 o the used communicator and sets a file handle
MPI_Comm rank (MPI_COMM WORLD, &rank); . PR
s -
-, -
printf (“*Hello World, I am %d,af %d\n“,’ar’snk, size);
' d ” . . 0 0
e
IMPI_Info_create (8info) ; l, /,» " Requires a buffer (here integer array) of a certain size (e.g. buf[10])
= . Requires values for the buffer: here the rank of each MPI process that
int rc = MPI File open(MPI COMM WORLD, file name, : : s : : :
MPT MODE CREATE | MPI MODE RDWR, might be used as |dent|f_|cat|_on_for further values following in the next
info. &fh); -7 parts of the corresponding file is used
. ’ - - - - - -
buf [0] = rank; = = MPIL_File_write or related versions write the binary output to the file
-
- - . . . - -
// MPI File write ordered(fh, buf, 1, MPI INT, &status);|.-=" . Different between MPI_File_write() and MPI_File_write_ordered() is

MPI File write(fh, buf, 1, MPI_INT, &status);

that the out is not ordered according to ranks or ordered by ranks

rc = MPI_File_close(&fh)lr-----——-------------------------- . MPI_File_close closes a specific file identified via a certain file handle

MPI Finalize();
return 0;

}

Lecture 4 — Advanced MPI Techniques 43 /50

MPI 1/O & Parallel Filesystems

= Understanding and tuning parallel I/O is needed with ‘big data’
= |Leverage aggregate communication and I/O bandwidth of client machines

= Support: Add additional software components/libraries layers
= Coordination of file access & mapping of application model to I/0 model
= Components and libraries get increasingly specialized / layer
= High-Level I/O libraries like NetCDF or Hierarchical Data Format (HDF) are standards in the community

Application
High-level I/O Library

Application

Parallel File System

I/O Hardware

‘ 1/0 Middleware (MPL-IO)

Parallel File System
I/O Hardware

Parallel Filesystems are just one part

out of three in the whole 1/0 process [S1R. Thakur, PRACE Training,

Parallel I/0 and MPI I/0

> Lecture 5 offers more details on using Parallel 1/0 and portable data formats in various simulation sciences & data science applications

Lecture 4 — Advanced MPI Techniques 44 / 50

Data Science Example: Using High-Level 1/0O Hierarchical Data Format (HDF)

t pleelgr |57 512 —e— Hybrid DS1
10 ;’1;:"..;3: I EIFJE 256 + = Hn);ll;::dDgfz ’/"‘9
. 195|®2 | 8 :w.‘ 21 | 20 et gl 128 | e
Clusterin SR AR Sl 2P v B 7
9 By 0;;: a®) .a.: a2 {ﬁ 2 0"5 g 64 Linear /
o | #PaY] e,g. |.“’ a || - 32
. .‘. :9. &0 | &1 3 § 16
- \'m - L] L L w
o R HAT] ot Lo 42
" ‘%‘ T le%e o.;.:.; 8
o 63| 64 LES g gf @i .:.1‘ T raee 4
3 ’f P-4 T L DY I R I
? ._ ,K; S 72 .O b IS il 7 79 2
‘?‘; overlayed spatial grid 1 > 8 20 128 512
.7:-. .;:v O [meomscan number of cores
? J’ | minpaine: | { ——— b N - 1 [1 ‘I
A L I—K Cells)—L L !
[T Overlay | | || Estimate Merge]
ﬁ | hypergrid | splits |"|: hales =
i Ve Y T { rdered) | : §-|- _______ —
Sort and — i Locl o procossor ! | procassor 1
dist;'a'bute K Lnriﬂtf,{ 1N DI;SCAN _H_@J:;EW O i O
— — 1 / I8 O 2 E 2 L] 2
. i Q: O
[13] M. Goetz and M. Riedel et al, i s OO () O e C
Proceedings IEEE Supercomputing Conference, 2015 I 1 I (95 Y 0 a 3
I—| Cluster relabeling | (@ :
S ® ©
st A6 Que 1 Q3
A COS,0 e =110 T I T

» Lecture 5 offers more details on using Parallel 1/0O and portable data formats in various simulation sciences & data science applications

Lecture 4 — Advanced MPI Techniques 45 /50

[Video] Parallel 1/0 with I/O Nodes

K,{/D /L/OofEH-Sr

i

T

[12] YouTube Video, ‘Simplifying HPC Architectures’

Lecture 4 — Advanced MPI Techniques 46 / 50

Lecture Bibliography

O
O 0

Lecture 4 — Advanced MPI Techniques 47 / 50

Lecture Bibliography (1)

= [1] LLNL MPI Tutorial, Online:
https://computing.linl.gov/tutorials/mpi/

= [2] Introduction to Groups and Communicators, Online:
http://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/

= [3] German Lecture ‘Umfang von MPI 1.2 und MPI 2.0’

= [4] The MPI Standard, Online:
http://www.mpi-forum.org/docs/

= [5] M. Geimer et al., ‘SCALASCA performance properties: The metrics tour’

= [6] Introduction to High Performance Computing for Scientists and Engineers, Georg Hager & Gerhard Wellein, Chapman & Hall/CRC Computational Science

= [7] Wolfgang Frings, ‘HPC I/O Best Practices at JSC’, Online:
http://www.fz-juelich.de/ias/jsc/DE/Leistungen/Dienstleistungen/Dokumentation/Praesentationen/folien-parallelio-2014 table.html|?nn=469624

= [8] YouTube Video, ‘Mellanox 10 and 40 Gigabit Ethernet Switch Family’, Online:
http://www.youtube.com/watch?v=09BLItx2vDg

= [9] Rajeev Thakur, Parallel /O and MPI-IO, Online:
http://www.training.prace-ri.eu/uploads/tx pracetmo/piol.pdf

= [10] JUQUEEN, Online:
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN node.html

= [11] Parallel I/0O, YouTube Video, Online:
http://www.youtube.com/watch?v=cXbEVsExU9c

= [12] Big Ideas: Simplifying High Performance Computing Architectures, Online:
https://www.youtube.com/watch?v=ISS OGVamBk

Lecture 4 — Advanced MPI Techniques 48 / 50

Lecture Bibliography (2)

= [13] M. Goetz, C. Bodenstein, M. Riedel, ‘HPDBSCAN — Highly Parallel DBSCAN’, in proceedings of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC2015), Machine Learning in HPC Environments (MLHPC) Workshop, 2015, Online:
https://www.researchgate.net/publication/301463871 HPDBSCAN highly parallel DBSCAN

Lecture 4 — Advanced MPI Techniques 49 /50

Lecture 4 — Advanced MPI Techniques

measurement % '§ pe:iw
unding
Services Policy-based = concepts device analysis
forms cross-disciplinary resources E Cent cllmate Computer expertise

yearllk ComPUtatlonal CUmPUtmg o e I = disciplines ggyts :5_ Enable E

Cross-Disciplinary =
nodes A- ‘E Environment < °Modelling

EU d methOds 5 bl 5 =S Key scientific important £

oaches
unstruction
Fusion

Iﬂ

centers E basis IMTTASLrUCtUre =
C|ence simulations Esétﬁrzasgete'rfhantofé sies

k=

; hms. brain increasing

Jatabase:sm . a
ySis

a n al DLCL stored Resources analyze h E”

diff

SMAQ international
References

[
=1
o
@
e
=

MapReduce

msupercomputlng Work |mages
: 2 2 Scientific sofen

i RJJ external

=% performance

& computational ,’ esearc 5
research °¢ GCI@MCEHPC § Juslich T mm%a‘egaset%

S}'S em Cllmate mOdelllng AR5 Hardware é’ﬂg access m: hundreds Mutshel S:;::f:rskg
DLCLs Understandmg structures ech”;!“ﬁ‘es Earth = © Structure &
any Simulation £ directory = & project General 2

Provlde NASA Energy systems day o Health

use

alt

Summar
GI'IS
ervlc

=

ta-in
en

distrlhute
manag

Proce:

via EUDATprOEeSSIHg&ﬁgmn TB
computing using Euro ean

50 /50

