
High Performance Computing
ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

September 12, 2019
Room V02-258

Parallelization Fundamentals

LECTURE 3 @MorrisRiedel@MorrisRiedel@Morris Riedel

 MPI Parallel Programming Basics

#include <stdio.h>

#include <mpi.h>

int main(int argc, char** argv)

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello World, I am %d out of %d\n",
rank, size);

MPI_Finalize();

return 0;

}

Review of Lecture 2 – Parallel Programming with MPI

 Message Passing Interface (MPI) Concepts

Lecture 3 – Parallelization Fundamentals 2 / 50

[1] LLNL MPI Tutorial

hello.c

C
using a C compiler

Sc
he

du
le

r

using a job script

MPI
Point

to
Point

Communication

MPI
Collective

Communication

Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

Lecture 3 – Parallelization Fundamentals

11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
3 / 50

Outline

 Common Strategies for Parallelization
 Simple Parallel Computing Examples Multi-core & Many-core
 Parallelization Methods & Domain Decomposition
 Halo / Ghost Layer in Simulation Sciences & Data Sciences
 Single Program Multiple Data vs. Multiple Program Multiple Data
 Data Parallelism & Functional Parallelism Methods

 Parallelization Terms & Theory
 Moore’s Law & Parallelization Reasons
 Speedup & Load Imbalance Terminology
 Role of Serial Elements
 Scalability Metrics & Performance
 Amdahl’s Law & Performance Analysis

Lecture 3 – Parallelization Fundamentals 4 / 50

 Promises from previous lecture(s):
 Lecture 1: Lecture 3 will give in-depth

details on parallelization fundamentals
& performance term relationships &
theoretical considerations

 Lecture 2: Lecture 3 will provide more
details on MPI application examples
with a particular focus on
parallelization fundamentals

Selected Learning Outcomes

 Students understand…
 Latest developments in parallel processing & high performance computing (HPC)
 How to create and use high-performance clusters
 What are scalable networks & data-intensive workloads
 The importance of domain decomposition
 Complex aspects of parallel programming
 HPC environment tools that support programming

or analyze behaviour
 Different abstractions of parallel computing on various levels
 Foundations and approaches of scientific domain-

specific applications

 Students are able to …
 Programm and use HPC programming paradigms
 Take advantage of innovative scientific computing simulations & technology
 Work with technologies and tools to handle parallelism complexity

Lecture 3 – Parallelization Fundamentals 5 / 50

Common Strategies for Parallelization

Lecture 3 – Parallelization Fundamentals 6 / 50

Parallel Computing – Revisited (cf. Lecture 1)

 All modern supercomputers depend heavily on parallelism
 Parallelism can be achieved with many different approaches

 Often known as ‘parallel processing’ of some problem space
 Tackle problems in parallel to enable the ‘best performance’ possible
 Includes not only parallel computing, but also parallel input/output (I/O)

 ‘The measure of speed’ in High Performance Computing matters
 Common measure for parallel computers established by TOP500 list
 Based on benchmark for ranking the best 500 computers worldwide

 We speak of parallel computing whenever a number of ‘compute
elements’ (e.g. cores) solve a problem in a cooperative way

[5] Introduction to High Performance Computing for Scientists and Engineers

[2] TOP500 Supercomputing Sites

P1 P2 P3 P4 P5

Lecture 3 – Parallelization Fundamentals 7 / 50

Multi-core CPU Processors – Revisited (cf. Lecture 1)

 Significant advances in CPU (or microprocessor chips)
 Multi-core architecture with dual,

quad, six, or n processing cores
 Processing cores are all on one chip

 Multi-core CPU chip architecture
 Hierarchy of caches (on/off chip)
 L1 cache is private to each core; on-chip
 L2 cache is shared; on-chip
 L3 cache or Dynamic random access memory (DRAM); off-chip

one chip

[3] Distributed & Cloud Computing Book

 Clock-rate for single processors increased from 10 MHz (Intel 286) to 4 GHz (Pentium 4) in 30 years
 Clock rate increase with higher 5 GHz unfortunately reached a limit due to power limitations / heat
 Multi-core CPU chips have quad, six, or n processing cores on one chip and use cache hierarchies

Lecture 3 – Parallelization Fundamentals 8 / 50

Simple Visual Parallel Computing Example on Multi-Core CPUs

 Example: Find largest (maximum) element in array (e.g., 10^15 elements, here only 2^4)
 Think how the data elements can be divided onto CPUs/cores ‘data domain decomposition‘
 Think what each CPUs/cores should do ‘computational-intensive processes or calculations‘

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CPU/core 1 CPU/core 2 CPU/core 3 CPU/core 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Max-local A Max-local B Max-local C Max-local D

Max-global = Max (Max-local A,B,C,D)

Lecture 3 – Parallelization Fundamentals 9 / 50

[3] Distributed & Cloud Computing Book

Many-core GPGPUs – Revisited (cf. Lecture 1)

 Use of very many simple cores
 High throughput computing-oriented architecture
 Use massive parallelism by executing a lot of

concurrent threads slowly
 Handle an ever increasing amount of multiple

instruction threads
 CPUs instead typically execute a single

long thread as fast as possible

 Many-core GPUs are used in large
clusters and within massively
parallel supercomputers today
 Named General-Purpose Computing on GPUs (GPGPU)
 Different programming models emerge

 Graphics Processing Unit (GPU) is great for data parallelism and task parallelism
 Compared to multi-core CPUs, GPUs consist of a many-core architecture with

hundreds to even thousands of very simple cores executing threads rather slowly

[3] Distributed & Cloud Computing Book

Lecture 3 – Parallelization Fundamentals 10 / 50

Simple Visual Parallel Computing Example on Many-Core GPUs

 General Purpose Graphical Processing Unit (GPGPU)
 Designed to compute large numbers of floating point

operations in parallel, but with moderate performance

Lecture 3 – Parallelization Fundamentals 11 / 50

[3] Distributed & Cloud Computing Book

(nice parallelization possible
via independent computing)

 Step one: each GPU core has a column of matrix B (named as Bpart)
 Step one: each GPU core has an element of column vector C (named Cpart)

 Step two: Each GPU core performs an independent vector-scalar
multiplication (i.e., independently based on their Bpart and Cpart contents)

 Step three: Each GPU core has a part of the result vector A (named Apart)
and is written in device memory; results go to the main memory of CPU

 Step ‘zero‘: Data is loaded via the main memory of the CPU (i.e., host CPU
memory) to the device memory of the GPU accessed by the many cores

Complex Climate Example – Numerical Weather Prediction (NWP) & Forecast

 Application areas
 Global & regional short-term

weather forecast models in operations
 Perform long-term climate prediction

research (e.g. climate change, polar research, etc.)

 NWP model characteristics
 Use ordinary/partial differential equations (PDEs)

(i.e. use laws of physics, fluids, motion, chemistry)
 Domain decomposition example: 3D grid cells
 Computing/cell: winds, heat transfer, solar

radiation, relative humidity & surface hydrology
 Interactions with neighboring cells: used

to calculate atmosopheric properties over time

 Lecture 12 will provide more details on using different domain decompositions for terrestrial systems and climate simulations on HPC

 Numerical Weather Prediction (NWP) uses mathematical models
of the atmosphere and oceans to predict the weather based on
current weather observations (e.g. weather satellites) as inputs

 Performing complex calculations necessary for NWP requires
supercomputers (limit ~6 days) using HPC techniques

 NWP belongs to the field of numerical methods that obtain
approximate solutions to problems certain uncertainty remains

modified from [7] Wikipedia on
‘Numerical Weather Prediction’

Lecture 3 – Parallelization Fundamentals 12 / 50

Parallelization Methods & Domain Decomposition – Many Approaches

 Data Parallelism

 Functional Parallelism

(different forms of domain decomposition methods)
[4] 2013 SMU HPC Summer Workshop

[5] Parallel Computing Tutorial

Lecture 3 – Parallelization Fundamentals 13 / 50

Parallelization Methods in Detail

 Data Parallelism (aka SPMD)
 N processors/cores work on

‘different parts of the data’
 E.g. Medium-grained loop parellelization
 E.g. Domain decomposition

 Functional Parallelism (aka MPMD)
 N processors/cores work on on

‘different sub-tasks’ of the problem
 Processors/cores work jointly together by

exchanging data and do synchronization
 E.g. Master-worker scheme
 E.g. Functional decomposition

 Lecture 12-15 will provide details on applied parallelization methods within parallel applications & domain/functional decomposition

 In the Single Program Multiple Data (SPMD) paradigm each
processor executes the same ‘code’ but with different data

 In the Multiple Program Multiple Data (MPMD) paradigm each
processor executes different ‘code’ with different data

[6] Modified from Caterham F1 team

Lecture 3 – Parallelization Fundamentals 14 / 50

modified from [7] Wikipedia on
‘Numerical Weather Prediction’

Data Parallelism: Medium-grained Loop Parallelization

 Idea: Computations performed on individual array
elements are independent of each other
 Good for parallel execution by N processors

(e.g., using shared memory parallel programming)

c is a constant!
a, b are different arrays

t1

t2 < t1
Modified from [8] Introduction to High Performance
Computing for Scientists and Engineers

Lecture 3 – Parallelization Fundamentals 15 / 50

 Lecture 6 will offer more elaborate shared memory parallel programming examples in context of different HPC application domains

Sh
ar

ed
 M

em
or

y

T1 T2 T3 T4 T5

Data Parallelism: Domain Decomposition

 Approach
 Simplified picture of reality with a

‘computational domain’ represented as a
‘grid’ (rather course-grained) or a ‘mesh’

 Grids define discrete positions for the
physical quantities of the complete domain

 Grids are not always Cartesian and often adapted to
the numerical constraints of a certain algorithm in question

 The supercomputer then simulates the reality
with observables (e.g. certain physical variables)
on this grid using N processors in parallel

modified from [7] Wikipedia on
‘Numerical Weather Prediction’

 Work distribution: Assign N parts of the grid to N processors
 In parallel computing a Grid distribution can be related to solving

variables in linear equations (or find best estimates of values)

Lecture 3 – Parallelization Fundamentals 16 / 50

Domain Decomposition Examples: Grid vs. Lattice Approach

modified from [7] Wikipedia on
‘Numerical Weather Prediction’

[9] Map Analysis - Understanding Spatial Patterns and Relationships, Book

Lecture 3 – Parallelization Fundamentals 17 / 50

(introduce more and more physical parameters over time…)

(compute more physical laws…)

 Scientific computing with HPC simulates ‘ ~realistic behaviour ‘
 Apply common patterns over time & simulate based on numerical methods
 Increasing granularity (e.g. domain decomposition) needs more computing

(add scientific domain studies:
e.g. rainfall, ocean waves, wind, oil, storms…)

(add objects to study: boats, fish, birds, people, oil platform, …)

Terrestrial Systems Example – Towards Realistic Simulations – Granularity

 Lecture 12 will provide more details on using different domain decompositions for terrestrial system and climate simulations on HPC

(message passing of
status in each cell)

Lecture 3 – Parallelization Fundamentals 18 / 50

Application Example: Formula Race Car Design & Room Heat Dissipation Revisited

 Pro: Network communication is relatively hidden and supported
 Contra: Programming with MPI still requires using ‘parallelization methods’
 Not easy: Write ‘technical code’ well integrated in ‘problem-domain code’

 Example: Race Car Simulation &
Heat dissipation in a Room
 Apply a good parallelization method

(e.g. domain decomposition)
 Write manually good MPI code for

(technical) communication
between processors
(e.g. across 1024 cores)

 Integrate well technical code
with problem-domain code
(e.g. computational fluid dynamics & airflow)

[8] Introduction to High Performance Computing
for Scientists and Engineers

time t

time t

[6] Modified from
Caterham F1 team

Lecture 3 – Parallelization Fundamentals 19 / 50

Data Parallelism: Domain Decomposition & Simple Application Example

 Parallelizing a two-dimensional Jacobi solver Heat in a room application example
 Jacobi method is a known ‘iterative method’ in numerical simulations

(iterative: step by step closer to the solution with approximations)
 Application example: heat dissipation & heatmap, e.g., in a lecture room

Lecture 3 – Parallelization Fundamentals 20 / 50

[10] Templates for the solution
of linear systems

[11] YouTube Video, heat
dissipation Jacobi Method

Data Parallelism: Formulas Across Domain Decomposition

 From the problem to computational data structures
 Apply an ‘isotropic lattice‘ technique

‘change over time’
diffusion equation

k / y

i / x

Lecture 3 – Parallelization Fundamentals 21 / 50

 Lecture 10 on Hybrid Programming and Patterns will offer more details on stencil methods & patterns in simulation science applications

[10] Wikipedia on ‘stencil code’

Modified from [8] Introduction to High Performance
Computing for Scientists and Engineers

Data Parallelism: Domain Decomposition & Equations

 Example: Parallelizing a two-dimensional Jacobi solver
 Jacobi method is a known ‘iterative method’ in numerical simulations

(iterative: step by step closer to the solution with approximations)
 Solving n linear equations with n unknown variables, diagonal dominance

 Picking start values and iterate towards a ~final solutions (reducing errors/step)
 Goal: Update physical variables on a ‘N x N grid’ until approximations

good enough (maybe only solution to 97%, but enough & shorter time)
 Domain decomposition for N

processors subdivides the
computational domain
in N subdomains

Find (approximate) values
for K and I update arrays

In each time step (e.g. T1) re-using
values from previous iteration (e.g. T0)

[8] Introduction to High Performance
Computing for Scientists and Engineers

Lecture 3 – Parallelization Fundamentals 22 / 50

Data Parallelism: Domain Decomposition & Halo/Ghost Layers/Cells

 Two-dimensional Jacobi solver in context of parallel systems:
 Shared-memory and complete domain fits into memory
 Relatively easy: all grid sites in all domains can be updated before the processors have to synchronize at

the end of the sweep (i.e. time step)

 Distributed-memory with no access to ‘neighbours memory’
 Complex: updating the boundary sites of

one domain requires data from
adjacent domain(s)

 Idea: before a domain update (next step),
all boundary values needed for the
upcoming sweep must be communicated
to the relevant neighboring domains

 We need to store this data somewhere,
so extra grid points introduced
(halo/ghost layers/cells)

Lecture 3 – Parallelization Fundamentals 23 / 50

(boundary)

(halo / ghost)

[8] Introduction to High Performance
Computing for Scientists and Engineers

Data Parallelism: Domain Decomposition & Communication

 Two-dimensional Jacobi solver in context of communication cost:
 Often choosing the optimal domain decomposition is application-specific
 Next neighbour interactions needed and can vary (more/less shaded cells)
 Simple: Cutting in four stripes domains (left) incurs more communication
 Optimal decomposition: four domains (right) incurs less communication

3 * 16 = 48 4 * 8 = 32

Lecture 3 – Parallelization Fundamentals 24 / 50

[8] Introduction to High Performance
Computing for Scientists and Engineers

Data Parallelism Example: Smart Domain Decomposition in Data Sciences

[13] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Lecture 3 – Parallelization Fundamentals 25 / 50

Clustering

 Lecture 8 will provide more details on MPI application examples with a particular focus on parallel and scalable machine learning

cluster merge across
halo regions/layers

Functional Parallelism: Master-Worker Scheme

 Idea:
 One processor performs administrative tasks while others solve a particular problem jointly together

 Master
 Distributes work and collects

results from workers
 Could be single bottleneck

 N Workers (old: slaves)
 Whenever a worker has finished

a package it stops or requests a
new task from the master
depending on the application

 Example: Find largest element in array
 Which CPU/core does the global max?

Lecture 3 – Parallelization Fundamentals 26 / 50

P1

P2

P3

P4Master

N Workers

[6] Modified from Caterham F1 team

 Lecture 15 will offer more details on HPC applications that perform computational fluid dynamics (CFD)

Functional Parallelism: Functional Decomposition

 Approach
 Couple different running codes to compute functions that jointly are used to solve a higher-level problem

 Example: Multi-physics simulation of a race car to be coupled with communication layer
 (Multi-physics problems gaining popularity since they reflect better reality)
 Air flow around race car with Computational Fluid Dynamics (CFD) code
 Parallel finite element simulation could describe the reaction of the flexible structures of the car body to

the computed air flow (involves accurate geometry and material properties in context)

Processors compute whole airflow

Processors compute reaction of car structures
(eventually trying different materials out)

Both coupled (do it efficiently is not so easy)

[6] Modified from Caterham F1 team

Lecture 3 – Parallelization Fundamentals 27 / 50

 Lecture 15 will offer more details on HPC applications that perform computational fluid dynamics (CFD) on domain decompositions

[Video] PEPC – Particle Acceleration Application

[14] PEPC Video Application Example

Lecture 3 – Parallelization Fundamentals 28 / 50

Parallelization Terms & Theory

Lecture 3 – Parallelization Fundamentals 29 / 50

Parallelization in High Performance Computing

 Parallelization in HPC is essential due to the following capabilities
 Perform calculations, visualizations, and data processing…
 … at an incredible, ever-increasing speed
 … at an unprecedented granularity and / or accuracy

Lecture 3 – Parallelization Fundamentals 30 / 50

 HPC uses parallel computing in
order to tackle problems &
increase insights

 HPC can perform virtual
experiments that are too
dangerous or too expensive

 HPC enables simulation of real-
world phenomena not possible
otherwise

 HPC automates re-occuring
processing of large quantities of
data or many equations

Moore’s Law

[15] Wikipedia ‘Moore’s Law’

(seven last dots are actually
many-core GPGPUs,

cf. Lecture 1)

Lecture 3 – Parallelization Fundamentals 31 / 50

 Moore’s Laws says that the number
of transistors on integrated circuits
doubles approximately every two
years (exponential growth)

Reasons for Parallelization

 The concept of ‘parallelization’ getting more mainstream today
 Supercomputers (that are massively parallel computers today)
 Multi-core PCs and Laptops (with increasing amount of cores, 2x, 4x, etc.)
 Many-core GPUs not only used for graphics but also for general processing

 Two major reasons to engage in parallelization

 The reason influences the choosen ‘parallelization method(s)’
 Example: SPMD or MPMD

Lecture 3 – Parallelization Fundamentals 32 / 50

 A single core is too slow to perform the required task(s)
in a certain constrained amount of time

 The available memory on a single system is not sufficient
to tackle a problem in a required granularity or precision.

Derived from [8] Introduction to High Performance Computing for Scientists and Engineers

[3] Distributed & Cloud Computing Book

Parallelization Goal: Speedup Term

 Consider simple situation: All processing units execute their assigned work in exactly the
same amount of time
 Solving a problem would take Time T sequentially (1 Worker essentially)
 Having N workers solve the problem now ideally only in T/N
 This is a speedup of N

Modified from [8] Introduction to High Performance
Computing for Scientists and Engineers

T = ‘timesteps’, here 12
N = # workers, here 3

Speedup:
T/N = 12/3 = 4 ‘timesteps’

N = 3
Workers

W=12
‘timesteps’

Lecture 3 – Parallelization Fundamentals 33 / 50

Parallelization Challenge: Load Imbalance Term

 Consider a more realistic situation: Not all workers might execute their tasks in the same
amount of time
 Reason: The problem simply can not be properly partitioned

into pieces with equal complexity
 Nearly worst case: All but a few have nothing to do but wait

for the latecomers to arrive (because of different execution times)

Modified from [8] Introduction to High Performance
Computing for Scientists and Engineers

unused
resources

 Load imbalance hampers
performance, because some
resources are underutilized

Lecture 3 – Parallelization Fundamentals 34 / 50

Load Imbalance Example

 Parallel Programming Problems
 Wrong assumptions in

distributed-memory programming
 Cost and side effects of

the programmed communications

Lecture 3 – Parallelization Fundamentals 35 / 50

 General Problems
 Serial execution limits
 Load Imbalance
 Unnecessary synchronizations

‘parallel
performance
issues’

t = 38
seconds
overall

MPI
program
runtime

‘idle resources’

[8] Introduction to High
Performance Computing
for Scientists and Engineers

Parallelization Challenges: Optimal Domain Decompositions

 Tree codes – ‘another form of smart domain decomposition‘
 E.g. to speed up N-body simulations with long range interactions

Lecture 3 – Parallelization Fundamentals 36 / 50

[15] PEPC Webpage

 Fast and/or high performance means
many n floating point operations (FLOP)
per one second

Towards Fast & Scalable Applications

 Many factors influence the scalablility of an application
 Benefits of smart domain decomposition methods is just one factor
 E.g. PEPC Tree-code on whole BlueGene/Q

 Raises several questions and challenges
 What means faster? How we get to an application that is scalable?

Lecture 3 – Parallelization Fundamentals 37 / 50

[15] PEPC Webpage

 Scalability is the ability of a system, network, or process
to handle a growing amount of work in a capable manner
or its ability to be enlarged to accommodate that growth

 Measure the execution time T of a parallel programm for
speed-up & scaling

 Scaling a parallel program means how the performance
of it changes as the number of processors increases
using two metrics: Strong/Weak Scaling

[17] Wikipedia on ‘scalability’

Terminologies: Speed-Up & Scaling

 Achieving speed-up
 Increasing cores, e.g. 2 instead of 1: 50% improve?
 Reality: No! ‘Tail off‘ loose of parallel efficiency
 Q: How many cores we can use in our code?

A: Scaling: change number of processors – goals?
 Different types of scaling for different parallization goals

 Scalability Metric: Strong Scaling
 Total problem size stays the same – increases number of processors
 More difficult to achieve, but (often) more useful than weak scaling

 Scalability Metric: Weak Scaling
 Total problem size increases with the rate of processors – keeping work per processor the same Getting

to the limits, what is possible to do?
 Think about is to get towards reality getting better simulations

Lecture 3 – Parallelization Fundamentals 38 / 50

(obvious/intuitive way what parallelization benefits?)

(room for improvement what is possible to do?)

[13] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

Scalability Metrics: Strong Scaling

 Tf
S = single worker serial runtime for a fixed problem size:

 Tf
P = time to tackle the fixed problem size with N parallel workers:

 Tf
P means then: Strong scaling (‘very good’!)
 The amount of work stays constant…
 … with increasing number of workers N
 Goal of parallelization:

Minimization of time to solution for a problem

Lecture 3 – Parallelization Fundamentals 39 / 50

Tf
S = s + p

Tf
P = s + p/N

 Scalability metrics quantify how well a task can be parallelized
for different goals

 Two major quantities in HPC are named as ‘Strong Scaling‘ and
‘Weak Scaling‘

 Tail off in parallel efficiency in strong scaling: parallel overhead
gets visible as processors do less and less (of fixed problem
size) when increasing numbers of processors more

Strong Scaling Example
 Tree-code PEPC

 Execution system: BlueGene/P (JUGENE@Juelich)
 Homogenous particle distribution (top, different use cases)
 Inhomogenous particle distribution (bottom, different use cases)
 Different test particle setups used

 Y: Total particle numbers N
 Note change of N in plots

 X: Total compute core number C

 Strong Scaling: How the time to solution varies with the
number of processors for a fixed total problem size

[15] PEPC Webpage

Lecture 3 – Parallelization Fundamentals 40 / 50

Scalability Metrics: Weak Scaling

 Goal of parallelization: tackle problem too big for single machine
 E.g. available memory is a limiting factor
 Idea: scale the problem size at least with some power of N; α positive

 Tv
S = serial runtime for a scaled (variably-sized) problem:

 Tv
P = parallel runtime for a scaled (variably-sized) problem:

 Tv
P means then: Weak scaling (‘not very good’!)
 If special case α = 1 N0 = 1 you did not parallelize something really

Tv
S = s + p * Nα

Tv
P = s + p * Nα - 1

 Tail off in weak scaling:
Reasons can be
communication overheads
by adding more and more
processors and problems
sizes that in turn increases
the runtime

Lecture 3 – Parallelization Fundamentals 41 / 50

Weak Scaling Example – Gustafson‘s Law

 Tree-code PEPC
 Execution system: BlueGene/Q

(JUQUEEN@Juelich)

 Weak scaling plot (top)
 Two numbers of particles kept

constant; test particle setups constant

 Parallel efficiency (below)

Lecture 3 – Parallelization Fundamentals 42 / 50

[15] PEPC Webpage

(work that each processor needs to
do stays fixed by increasing cores)

 Gustafson’s law: ‘We need larger problems for larger numbers of CPUs’
 Assumption is that the parallel part is proportional to our problem size
 Result: Bigger problems ‘just‘ scale better, since serial parts get more insignificant

 For comparison: Strong Scaling: How the time to solution varies with the number of
processors for a fixed total problem size

 Weak Scaling: How the time to solution varies with the number of processors for a
fixed problem size/processor

Application Speedup – Amdahl’s Law

 Scalability is dependend from the serial application parts
 More related to the ‘strong scaling‘ of a parallel program

 1 - s is the ‘parallizable part’ of the problem
 When unlimited workers in place we have N →∞
 Amdahl’s law limits application speedup thus to 1/s

Sf = 𝑷𝒇𝑷𝑷𝒇𝑺 = 𝟏𝑺 𝟏 𝒔𝑵
[18] G. Amdahl, Validity of the single processor approach to achieving
large scale computing capabilities, 1967

0 for
N →∞

 Amdahl’s laws says that scaling of massively
parallel applications is hindered by the domination
of its serial parts (strong scaling)

 For comparison: Gustafson’s law says
we ‘just’ need larger problems thus no limits
by serial parts (weak scaling)

Lecture 3 – Parallelization Fundamentals 43 / 50

Performance Analysis is a Key Field in HPC

 Analysis is typically performed using (automated) software tools
 Measure and analyze the runtime behaviour of parallel programs
 Identifies potential performance bottlenecks
 Offer performance optimization hints and views of the location in time
 Guides exploring causes of bottlenecks in communication/synchronization

Lecture 3 – Parallelization Fundamentals 44 / 50

[20] SCALASCA Performance Tool

 Lecture 9 will give details on how to measure performance in parallel programms & and related tools using various applications

Performance Analysis in Distributed-Memory Programming

 Lecture 9 will give details on how to measure performance in parallel programms & and related tools using various applications

[21] Vampir Performance Tool

Lecture 3 – Parallelization Fundamentals 45 / 50

[Video] Parallelization From Theory to Practice

[19] Power! Youtube Video

Lecture 3 – Parallelization Fundamentals 46 / 50

Lecture Bibliography

Lecture 3 – Parallelization Fundamentals 47 / 50

Lecture Bibliography (1)

 [1] LLNL MPI Tutorial, Online:
https://computing.llnl.gov/tutorials/mpi/

 [2] TOP500 Supercomputing Sites, Online:
http://www.top500.org/

 [3] K. Hwang, G. C. Fox, J. J. Dongarra, ‘Distributed and Cloud Computing’, Book, Online:
http://store.elsevier.com/product.jsp?locale=en_EU&isbn=9780128002049

 [4] 2013 SMU HPC Summer Workshop, Session 8: Introduction to Parallel Computing, Online:
http://dreynolds.math.smu.edu/SMUHPC_workshop/session_8.html

 [5] Introduction to Parallel Computing Tutorial, Online:
https://computing.llnl.gov/tutorials/parallel_comp/

 [6] Caterham F1 Team Races Past Competition with HPC, Online:
http://insidehpc.com/2013/08/15/caterham-f1-team-races-past-competition-with-hpc

 [7] Wikipedia on ‘Numerical Weather Prediction’, Online:
http://en.wikipedia.org/wiki/Numerical_weather_prediction

 [8] Introduction to High Performance Computing for Scientists and Engineers,
Georg Hager & Gerhard Wellein, Chapman & Hall/CRC Computational Science, ISBN 143981192X

 [9] Map Analysis, Understanding Spatial Patterns and Relationships, Joseph K. Berry, Online:
http://www.innovativegis.com/basis/Books/MapAnalysis/Default.htm

 [10] Templates for the solution fo linear systems, building blocks for iterative methods, book, Online:
http://www.netlib.org/linalg/html_templates/Templates.html

 [11] Jacobi Heat Dissipation, Online:
https://www.youtube.com/watch?v=jBbanIGoIhE

Lecture 3 – Parallelization Fundamentals 48 / 50

Lecture Bibliography (2)

 [12] Wikipedia on ‘stencil code‘, Online:
http://en.wikipedia.org/wiki/Stencil_code

 [13] M. Goetz, C. Bodenstein, M. Riedel, ‘HPDBSCAN – Highly Parallel DBSCAN’, in proceedings of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC2015), Machine Learning in HPC Environments (MLHPC) Workshop, 2015, Online:
https://www.researchgate.net/publication/301463871_HPDBSCAN_highly_parallel_DBSCAN

 [14] PEPC Video Application Example, FZ Juelich, Online:
http://www.fz-juelich.de/ias/jsc/EN/AboutUs/Organisation/ComputationalScience/Simlabs/slpp/SoftwarePEPC/_node.html

 [15] Wikipedia ‘Moore’s Law’, Online:
http://en.wikipedia.org/wiki/Moore's_law

 [16] PEPC Webpage, FZ Juelich, Online:
http://www.fz-juelich.de/ias/jsc/EN/AboutUs/Organisation/ComputationalScience/Simlabs/slpp/SoftwarePEPC/_node.html

 [17] Wikipedia Scalability, Online:
http://en.wikipedia.org/wiki/Scalability

 [18] G. M. Amdahl. Validity of the single processor approach to achieving large scale computing capabilities. In: AFIPS ’67 (Spring): Proceedings of the April 18-
20, 1967, Spring Joint Computer Conference (ACM, New York, NY, USA), 483–485.

 [19] Power! | Copyright GeonX 2013, Geon Technologies, Online:
http://www.youtube.com/watch?v=nEDOSGC3wFs

 [20] Scalasca Performance Analysis Tool, Online:
http://www.scalasca.org/

 [21] VAMPIR Performance Analysis Tool, Online:
http://www.vampir.eu/

Lecture 3 – Parallelization Fundamentals 49 / 50

Lecture 3 – Parallelization Fundamentals 50 / 50

