
High Performance Computing
ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

September 12, 2019
Room V02-258

Parallelization Fundamentals

LECTURE 3 @MorrisRiedel@MorrisRiedel@Morris Riedel



 MPI Parallel Programming Basics

#include <stdio.h> 

#include <mpi.h>

int main(int argc, char** argv) 

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello World, I am %d out of %d\n",
rank, size);

MPI_Finalize();

return 0; 

} 

Review of Lecture 2 – Parallel Programming with MPI

 Message Passing Interface (MPI) Concepts

Lecture 3 – Parallelization Fundamentals 2 / 50

[1] LLNL MPI Tutorial

hello.c

C
using a C compiler

Sc
he

du
le

r

using a job script

MPI 
Point

to
Point

Communication

MPI 
Collective

Communication



Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

Lecture 3 – Parallelization Fundamentals

11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
3 / 50



Outline

 Common Strategies for Parallelization
 Simple Parallel Computing Examples Multi-core & Many-core
 Parallelization Methods & Domain Decomposition
 Halo / Ghost Layer in Simulation Sciences & Data Sciences
 Single Program Multiple Data vs. Multiple Program Multiple Data
 Data Parallelism & Functional Parallelism Methods

 Parallelization Terms & Theory
 Moore’s Law & Parallelization Reasons
 Speedup & Load Imbalance Terminology
 Role of Serial Elements
 Scalability Metrics & Performance
 Amdahl’s Law & Performance Analysis

Lecture 3 – Parallelization Fundamentals 4 / 50

 Promises from previous lecture(s):
 Lecture 1: Lecture 3 will give in-depth 

details on parallelization fundamentals 
& performance term relationships & 
theoretical considerations

 Lecture 2: Lecture 3 will provide more 
details on MPI application examples 
with a particular focus on 
parallelization fundamentals



Selected Learning Outcomes

 Students understand…
 Latest developments in parallel processing & high performance computing (HPC)
 How to create and use high-performance clusters
 What are scalable networks & data-intensive workloads
 The importance of domain decomposition
 Complex aspects of parallel programming
 HPC environment tools that support programming 

or analyze behaviour
 Different abstractions of parallel computing on various levels
 Foundations and approaches of scientific domain-

specific applications 

 Students are able to …
 Programm and use HPC programming paradigms
 Take advantage of innovative scientific computing simulations & technology
 Work with technologies and tools to handle parallelism complexity

Lecture 3 – Parallelization Fundamentals 5 / 50



Common Strategies for Parallelization

Lecture 3 – Parallelization Fundamentals 6 / 50



Parallel Computing – Revisited (cf. Lecture 1)

 All modern supercomputers depend heavily on parallelism
 Parallelism can be achieved with many different approaches

 Often known as ‘parallel processing’ of some problem space
 Tackle problems in parallel to enable the ‘best performance’ possible
 Includes not only parallel computing, but also parallel input/output (I/O)

 ‘The measure of speed’ in High Performance Computing matters
 Common measure for parallel computers established by TOP500 list
 Based on benchmark for ranking the best 500 computers worldwide

 We speak of parallel computing whenever a number of ‘compute 
elements’ (e.g. cores) solve a problem in a cooperative way

[5] Introduction to High Performance Computing for Scientists and Engineers

[2] TOP500 Supercomputing Sites

P1 P2 P3 P4 P5

Lecture 3 – Parallelization Fundamentals 7 / 50



Multi-core CPU Processors – Revisited (cf. Lecture 1) 

 Significant advances in CPU (or microprocessor chips)
 Multi-core architecture with dual, 

quad, six, or n processing cores
 Processing cores are all on one chip

 Multi-core CPU chip architecture  
 Hierarchy of caches (on/off chip)
 L1 cache is private to each core; on-chip
 L2 cache is shared; on-chip
 L3 cache or Dynamic random access memory (DRAM); off-chip

one chip

[3] Distributed & Cloud Computing Book

 Clock-rate for single processors increased from 10 MHz (Intel 286) to 4 GHz (Pentium 4) in 30 years
 Clock rate increase with higher 5 GHz unfortunately reached a limit due to power limitations / heat
 Multi-core CPU chips have quad, six, or n processing cores on one chip and use cache hierarchies

Lecture 3 – Parallelization Fundamentals 8 / 50



Simple Visual Parallel Computing Example on Multi-Core CPUs

 Example: Find largest (maximum) element in array (e.g., 10^15 elements, here only 2^4)
 Think how the data elements can be divided onto CPUs/cores  ‘data domain decomposition‘
 Think what each CPUs/cores should do  ‘computational-intensive processes or calculations‘

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CPU/core 1 CPU/core 2 CPU/core 3 CPU/core 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Max-local A Max-local B Max-local C Max-local D

Max-global = Max (Max-local A,B,C,D)

Lecture 3 – Parallelization Fundamentals 9 / 50

[3] Distributed & Cloud Computing Book



Many-core GPGPUs – Revisited (cf. Lecture 1)

 Use of very many simple cores
 High throughput computing-oriented architecture 
 Use massive parallelism by executing a lot of 

concurrent threads slowly
 Handle an ever increasing amount of multiple 

instruction threads
 CPUs instead typically execute a single 

long thread as fast as possible

 Many-core GPUs are used in large 
clusters and within massively 
parallel supercomputers today
 Named General-Purpose Computing on GPUs (GPGPU)
 Different programming models emerge

 Graphics Processing Unit (GPU) is great for data parallelism and task parallelism 
 Compared to multi-core CPUs, GPUs consist of a many-core architecture with 

hundreds to even thousands of very simple cores executing threads rather slowly

[3] Distributed & Cloud Computing Book

Lecture 3 – Parallelization Fundamentals 10 / 50



Simple Visual Parallel Computing Example on Many-Core GPUs

 General Purpose Graphical Processing Unit (GPGPU)
 Designed to compute large numbers of floating point 

operations in parallel, but with moderate performance

Lecture 3 – Parallelization Fundamentals 11 / 50

[3] Distributed & Cloud Computing Book

(nice parallelization possible
via independent computing)

 Step one: each GPU core has a column of matrix B (named as Bpart)
 Step one: each GPU core has an element of column vector C (named Cpart)

 Step two: Each GPU core performs an independent vector-scalar 
multiplication (i.e., independently based on their Bpart and Cpart contents)

 Step three: Each GPU core has a part of the result vector A (named Apart) 
and is written in device memory; results go to the main memory of CPU

 Step ‘zero‘: Data is loaded via the main memory of the CPU (i.e., host CPU 
memory) to the device memory of the GPU accessed by the many cores



Complex Climate Example – Numerical Weather Prediction (NWP) & Forecast

 Application areas
 Global & regional short-term 

weather forecast models in operations
 Perform long-term climate prediction 

research (e.g. climate change, polar research, etc.)

 NWP model characteristics
 Use ordinary/partial differential equations (PDEs) 

(i.e. use laws of physics, fluids, motion, chemistry)
 Domain decomposition example: 3D grid cells
 Computing/cell: winds, heat transfer, solar 

radiation, relative humidity & surface hydrology
 Interactions with neighboring cells: used

to calculate atmosopheric properties over time

 Lecture 12 will provide more details on using different domain decompositions for terrestrial systems and climate simulations on HPC

 Numerical Weather Prediction (NWP) uses mathematical models 
of the atmosphere and oceans to predict the weather based on 
current weather observations (e.g. weather satellites) as inputs

 Performing complex calculations necessary for NWP requires 
supercomputers (limit ~6 days) using HPC techniques

 NWP belongs to the field of numerical methods that obtain 
approximate solutions to problems  certain uncertainty remains

modified from [7] Wikipedia on 
‘Numerical Weather Prediction’

Lecture 3 – Parallelization Fundamentals 12 / 50



Parallelization Methods & Domain Decomposition – Many Approaches

 Data Parallelism

 Functional Parallelism

(different forms of domain decomposition methods)
[4] 2013 SMU HPC Summer Workshop

[5] Parallel Computing Tutorial

Lecture 3 – Parallelization Fundamentals 13 / 50



Parallelization Methods in Detail

 Data Parallelism (aka SPMD)
 N processors/cores work on 

‘different parts of the data’
 E.g. Medium-grained loop parellelization
 E.g. Domain decomposition

 Functional Parallelism (aka MPMD)
 N processors/cores work on on 

‘different sub-tasks’ of the problem
 Processors/cores work jointly together by 

exchanging data and do synchronization
 E.g. Master-worker scheme
 E.g. Functional decomposition

 Lecture 12-15 will provide details on applied parallelization methods within parallel applications & domain/functional decomposition

 In the Single Program Multiple Data (SPMD) paradigm each 
processor executes the same ‘code’ but with different data

 In the Multiple Program Multiple Data (MPMD) paradigm each 
processor executes different ‘code’ with different data

[6] Modified from Caterham F1 team

Lecture 3 – Parallelization Fundamentals 14 / 50

modified from [7] Wikipedia on 
‘Numerical Weather Prediction’



Data Parallelism: Medium-grained Loop Parallelization

 Idea: Computations performed on individual array 
elements are independent of each other  
 Good for parallel execution by N processors 

(e.g., using shared memory parallel programming)

c is a constant!
a, b are different arrays

t1

t2 < t1
Modified from [8] Introduction to High Performance 
Computing for Scientists and Engineers

Lecture 3 – Parallelization Fundamentals 15 / 50

 Lecture 6 will offer more elaborate shared memory parallel programming examples in context of different HPC application domains

Sh
ar

ed
 M

em
or

y

T1 T2 T3 T4 T5



Data Parallelism: Domain Decomposition

 Approach
 Simplified picture of reality with a 

‘computational domain’ represented as a 
‘grid’ (rather course-grained) or a ‘mesh’

 Grids define discrete positions for the 
physical quantities of the complete domain

 Grids are not always Cartesian and often adapted to 
the numerical constraints of a certain algorithm in question

 The supercomputer then simulates the reality 
with observables (e.g. certain physical variables) 
on this grid using N processors in parallel

modified from [7] Wikipedia on 
‘Numerical Weather Prediction’

 Work distribution: Assign N parts of the grid to N processors
 In parallel computing a Grid distribution can be related to solving 

variables in linear equations (or find best estimates of values)

Lecture 3 – Parallelization Fundamentals 16 / 50



Domain Decomposition Examples: Grid vs. Lattice Approach

modified from [7] Wikipedia on 
‘Numerical Weather Prediction’

[9] Map Analysis - Understanding Spatial Patterns and Relationships, Book

Lecture 3 – Parallelization Fundamentals 17 / 50



(introduce more and more physical parameters over time…)

(compute more physical laws…)

 Scientific computing with HPC simulates ‘ ~realistic behaviour ‘
 Apply common patterns over time & simulate based on numerical methods
 Increasing granularity (e.g. domain decomposition) needs more computing

(add scientific domain studies: 
e.g. rainfall, ocean waves, wind, oil, storms… )

(add objects to study: boats, fish, birds, people, oil platform, …)

Terrestrial Systems Example – Towards Realistic Simulations – Granularity

 Lecture 12 will provide more details on using different domain decompositions for terrestrial system and climate simulations on HPC

(message passing of
status in each cell)

Lecture 3 – Parallelization Fundamentals 18 / 50



Application Example: Formula Race Car Design & Room Heat Dissipation Revisited

 Pro: Network communication is relatively hidden and supported
 Contra: Programming with MPI still requires using ‘parallelization methods’
 Not easy: Write ‘technical code’ well integrated in ‘problem-domain code’

 Example: Race Car Simulation &
Heat dissipation in a Room 
 Apply a good parallelization method 

(e.g. domain decomposition)
 Write manually good MPI code for 

(technical) communication 
between processors
(e.g. across 1024 cores)

 Integrate well technical code
with problem-domain code
(e.g. computational fluid dynamics & airflow)

[8] Introduction to High Performance Computing 
for Scientists and Engineers

time t

time t

[6] Modified from 
Caterham F1 team

Lecture 3 – Parallelization Fundamentals 19 / 50



Data Parallelism: Domain Decomposition & Simple Application Example

 Parallelizing a two-dimensional Jacobi solver  Heat in a room application example
 Jacobi method is a known ‘iterative method’ in numerical simulations

(iterative: step by step closer to the solution with approximations)
 Application example: heat dissipation & heatmap, e.g., in a lecture room

Lecture 3 – Parallelization Fundamentals 20 / 50

[10] Templates for the solution
of linear systems

[11] YouTube Video, heat 
dissipation Jacobi Method



Data Parallelism: Formulas Across Domain Decomposition

 From the problem to computational data structures
 Apply an ‘isotropic lattice‘ technique

‘change over time’
diffusion equation

k / y

i / x

Lecture 3 – Parallelization Fundamentals 21 / 50

 Lecture 10 on Hybrid Programming and Patterns will offer more details on stencil methods & patterns in simulation science applications

[10] Wikipedia on ‘stencil code’

Modified from [8] Introduction to High Performance 
Computing for Scientists and Engineers



Data Parallelism: Domain Decomposition & Equations

 Example: Parallelizing a two-dimensional Jacobi solver
 Jacobi method is a known ‘iterative method’ in numerical simulations

(iterative: step by step closer to the solution with approximations)
 Solving n linear equations with n unknown variables, diagonal dominance

 Picking start values and iterate towards a ~final solutions (reducing errors/step)
 Goal: Update physical variables on a ‘N x N grid’ until approximations 

good enough (maybe only solution to 97%, but enough & shorter time)
 Domain decomposition for N 

processors subdivides the 
computational domain 
in N subdomains

Find (approximate) values 
for K and I  update arrays

In each time step (e.g. T1) re-using
values from previous iteration (e.g. T0)

[8] Introduction to High Performance 
Computing for Scientists and Engineers

Lecture 3 – Parallelization Fundamentals 22 / 50



Data Parallelism: Domain Decomposition & Halo/Ghost Layers/Cells 

 Two-dimensional Jacobi solver in context of parallel systems:
 Shared-memory and complete domain fits into memory
 Relatively easy: all grid sites in all domains can be updated before the processors have to synchronize at 

the end of the sweep (i.e. time step)

 Distributed-memory with no access to ‘neighbours memory’
 Complex: updating the boundary sites of 

one domain requires data from 
adjacent domain(s)

 Idea: before a domain update (next step), 
all boundary values needed for the 
upcoming sweep must be communicated
to the relevant neighboring domains

 We need to store this data somewhere,
so extra grid points introduced 
(halo/ghost layers/cells)

Lecture 3 – Parallelization Fundamentals 23 / 50

(boundary)

(halo / ghost)

[8] Introduction to High Performance 
Computing for Scientists and Engineers



Data Parallelism: Domain Decomposition & Communication

 Two-dimensional Jacobi solver in context of communication cost:
 Often choosing the optimal domain decomposition is application-specific
 Next neighbour interactions needed and can vary (more/less shaded cells)
 Simple: Cutting in four stripes domains (left) incurs more communication
 Optimal decomposition: four domains (right) incurs less communication

3 * 16 = 48 4 * 8 = 32

Lecture 3 – Parallelization Fundamentals 24 / 50

[8] Introduction to High Performance 
Computing for Scientists and Engineers



Data Parallelism Example: Smart Domain Decomposition in Data Sciences

[13] M. Goetz and M. Riedel et al, 
Proceedings IEEE Supercomputing Conference, 2015

Lecture 3 – Parallelization Fundamentals 25 / 50

Clustering

 Lecture 8 will provide more details on MPI application examples with a particular focus on parallel and scalable machine learning

cluster merge across 
halo regions/layers



Functional Parallelism: Master-Worker Scheme

 Idea: 
 One processor performs administrative tasks while others solve a particular problem jointly together

 Master 
 Distributes work and collects 

results from workers
 Could be single bottleneck

 N Workers (old: slaves)
 Whenever a worker has finished 

a package it stops or requests a 
new task from the master 
depending on the application

 Example:  Find largest element in array
 Which CPU/core does the global max?

Lecture 3 – Parallelization Fundamentals 26 / 50

P1

P2

P3

P4Master

N Workers

[6] Modified from Caterham F1 team

 Lecture 15 will offer more details on HPC applications that perform computational fluid dynamics (CFD) 



Functional Parallelism: Functional Decomposition

 Approach
 Couple different running codes to compute functions that jointly are used to solve a higher-level problem

 Example: Multi-physics simulation of a race car to be coupled with communication layer
 (Multi-physics problems gaining popularity since they reflect better reality)
 Air flow around race car with Computational Fluid Dynamics (CFD) code
 Parallel finite element simulation could describe the reaction of the flexible structures of the car body to 

the computed air flow (involves accurate geometry and material properties in context)

Processors compute whole airflow

Processors compute reaction of car structures
(eventually trying different materials out)

Both coupled (do it efficiently is not so easy)

[6] Modified from Caterham F1 team

Lecture 3 – Parallelization Fundamentals 27 / 50

 Lecture 15 will offer more details on HPC applications that perform computational fluid dynamics (CFD) on domain decompositions



[Video] PEPC – Particle Acceleration Application

[14] PEPC Video Application Example

Lecture 3 – Parallelization Fundamentals 28 / 50



Parallelization Terms & Theory

Lecture 3 – Parallelization Fundamentals 29 / 50



Parallelization in High Performance Computing

 Parallelization in HPC is essential due to the following capabilities
 Perform calculations, visualizations, and data processing…
 … at an incredible, ever-increasing speed
 … at an unprecedented granularity and / or accuracy

Lecture 3 – Parallelization Fundamentals 30 / 50

 HPC uses parallel computing in 
order to tackle problems & 
increase insights

 HPC can perform virtual 
experiments that are too 
dangerous or too expensive

 HPC enables simulation of real-
world phenomena not possible 
otherwise

 HPC automates re-occuring 
processing of large quantities of 
data or many equations



Moore’s Law

[15] Wikipedia ‘Moore’s Law’

(seven last dots are actually 
many-core GPGPUs,

cf. Lecture 1)

Lecture 3 – Parallelization Fundamentals 31 / 50

 Moore’s Laws says that the number 
of transistors on integrated circuits 
doubles approximately every two 
years (exponential growth)



Reasons for Parallelization

 The concept of ‘parallelization’ getting more mainstream today
 Supercomputers (that are massively parallel computers today)
 Multi-core PCs and Laptops (with increasing amount of cores, 2x, 4x, etc.)
 Many-core GPUs not only used for graphics but also for general processing

 Two major reasons to engage in parallelization

 The reason influences the choosen ‘parallelization method(s)’
 Example: SPMD or MPMD

Lecture 3 – Parallelization Fundamentals 32 / 50

 A single core is too slow to perform the required task(s)
in a certain constrained amount of time 

 The available memory on a single system is not sufficient
to tackle a problem in a required granularity or precision.

Derived from [8] Introduction to High Performance Computing for Scientists and Engineers

[3] Distributed & Cloud Computing Book



Parallelization Goal: Speedup Term

 Consider simple situation:  All processing units execute their assigned work in exactly the 
same amount of time
 Solving a problem would take Time T sequentially (1 Worker essentially)
 Having N workers solve the problem now ideally only in T/N
 This is a speedup of N

Modified from [8] Introduction to High Performance 
Computing for Scientists and Engineers

T = ‘timesteps’, here 12
N = # workers, here 3

Speedup:
T/N = 12/3 = 4 ‘timesteps’

N = 3
Workers

W=12
‘timesteps’

Lecture 3 – Parallelization Fundamentals 33 / 50



Parallelization Challenge: Load Imbalance Term

 Consider a more realistic situation: Not all workers might execute their tasks in the same 
amount of time
 Reason: The problem simply can not be properly partitioned 

into pieces with equal complexity 
 Nearly worst case: All but a few have nothing to do but wait

for the latecomers to arrive (because of different execution times)

Modified from [8] Introduction to High Performance 
Computing for Scientists and Engineers

unused
resources

 Load imbalance hampers 
performance, because some
resources are underutilized

Lecture 3 – Parallelization Fundamentals 34 / 50



Load Imbalance Example

 Parallel Programming Problems
 Wrong assumptions in 

distributed-memory programming
 Cost and side effects of 

the programmed communications

Lecture 3 – Parallelization Fundamentals 35 / 50

 General Problems
 Serial execution limits
 Load Imbalance
 Unnecessary synchronizations

‘parallel
performance
issues’

t = 38
seconds
overall

MPI 
program
runtime

‘idle resources’

[8] Introduction to High 
Performance Computing 
for Scientists and Engineers



Parallelization Challenges: Optimal Domain Decompositions

 Tree codes – ‘another form of smart domain decomposition‘
 E.g. to speed up N-body simulations with long range interactions

Lecture 3 – Parallelization Fundamentals 36 / 50

[15] PEPC Webpage

 Fast and/or high performance means 
many n floating point operations (FLOP) 
per one second



Towards Fast & Scalable Applications

 Many factors influence the scalablility of an application
 Benefits of smart domain decomposition methods is just one factor 
 E.g. PEPC Tree-code on whole BlueGene/Q

 Raises several questions and challenges
 What means faster? How we get to an application that is scalable?

Lecture 3 – Parallelization Fundamentals 37 / 50

[15] PEPC Webpage

 Scalability is the ability of a system, network, or process 
to handle a growing amount of work in a capable manner 
or its ability to be enlarged to accommodate that growth

 Measure the execution time T of a parallel programm for 
speed-up & scaling

 Scaling a parallel program means how the performance 
of it changes as the number of processors increases 
using two metrics: Strong/Weak Scaling

[17] Wikipedia on ‘scalability’



Terminologies: Speed-Up & Scaling

 Achieving speed-up
 Increasing cores, e.g. 2 instead of 1: 50% improve?
 Reality: No! ‘Tail off‘  loose of parallel efficiency
 Q: How many cores we can use in our code? 

A: Scaling: change number of processors – goals?
 Different types of scaling for different parallization goals

 Scalability Metric: Strong Scaling
 Total problem size stays the same – increases number of processors
 More difficult to achieve, but (often) more useful than weak scaling

 Scalability Metric: Weak Scaling
 Total problem size increases with the rate of processors – keeping work per processor the same  Getting 

to the limits, what is possible to do?
 Think about is to get towards reality  getting better simulations

Lecture 3 – Parallelization Fundamentals 38 / 50

(obvious/intuitive way  what parallelization benefits?)

(room for improvement  what is possible to do?)

[13] M. Goetz and M. Riedel et al, 
Proceedings IEEE Supercomputing Conference, 2015



Scalability Metrics: Strong Scaling

 Tf
S  = single worker serial runtime for a fixed problem size:  

 Tf
P  = time to tackle the fixed problem size with N parallel workers:

 Tf
P means then: Strong scaling (‘very good’!)
 The amount of work stays constant… 
 … with increasing number of workers N
 Goal of parallelization: 

Minimization of time to solution  for a problem

Lecture 3 – Parallelization Fundamentals 39 / 50

Tf
S = s + p

Tf
P = s + p/N

 Scalability metrics quantify how well a task can be parallelized 
for different goals

 Two major quantities in HPC are named as ‘Strong Scaling‘ and 
‘Weak Scaling‘

 Tail off in parallel efficiency in strong scaling: parallel overhead 
gets visible as processors do less and less (of fixed problem 
size) when increasing numbers of processors more



Strong Scaling Example
 Tree-code PEPC 

 Execution system: BlueGene/P (JUGENE@Juelich)
 Homogenous particle distribution (top, different use cases) 
 Inhomogenous particle distribution (bottom, different use cases)
 Different test particle setups used

 Y: Total particle numbers N
 Note change of N in plots

 X: Total compute core number C

 Strong Scaling: How the time to solution varies with the 
number of processors for a fixed total problem size

[15] PEPC Webpage

Lecture 3 – Parallelization Fundamentals 40 / 50



Scalability Metrics: Weak Scaling

 Goal of parallelization: tackle problem too big for single machine
 E.g. available memory is a limiting factor
 Idea: scale the problem size at least with some power of N; α positive

 Tv
S  = serial runtime for a scaled (variably-sized) problem:

 Tv
P  = parallel runtime for a scaled (variably-sized) problem:

 Tv
P means then: Weak scaling (‘not very good’!)
 If special case α = 1  N0 = 1  you did not parallelize something really

Tv
S = s + p * Nα

Tv
P = s + p * Nα - 1

 Tail off in weak scaling: 
Reasons can be 
communication overheads 
by adding more and more 
processors and problems 
sizes that in turn increases 
the runtime

Lecture 3 – Parallelization Fundamentals 41 / 50



Weak Scaling Example – Gustafson‘s Law

 Tree-code PEPC
 Execution system: BlueGene/Q 

(JUQUEEN@Juelich)

 Weak scaling plot (top)
 Two numbers of particles kept 

constant; test particle setups constant

 Parallel efficiency (below)

Lecture 3 – Parallelization Fundamentals 42 / 50

[15] PEPC Webpage

(work that each processor needs to 
do stays fixed by increasing cores)

 Gustafson’s law: ‘We need larger problems  for larger numbers of CPUs’
 Assumption is that the parallel part is proportional to our problem size
 Result: Bigger problems ‘just‘ scale better, since serial parts get more insignificant

 For comparison: Strong Scaling: How the time to solution varies with the number of 
processors for a fixed total problem size

 Weak Scaling: How the time to solution varies with the number of processors for a 
fixed problem size/processor



Application Speedup – Amdahl’s  Law

 Scalability is dependend from the serial application parts
 More related to the ‘strong scaling‘ of a parallel program

 1 - s is the ‘parallizable part’ of the problem
 When unlimited workers in place we have N →∞ 
 Amdahl’s law limits application speedup thus to 1/s

Sf = 𝑷𝒇𝑷𝑷𝒇𝑺 = 𝟏𝑺ା 𝟏ష𝒔𝑵  
[18] G. Amdahl, Validity of the single processor approach to achieving 
large scale computing capabilities, 1967

0 for
N →∞

 Amdahl’s laws says that scaling of massively 
parallel applications is hindered by the domination 
of its serial parts (strong scaling)

 For comparison: Gustafson’s law says
we ‘just’ need larger problems thus no limits 
by serial parts (weak scaling)

Lecture 3 – Parallelization Fundamentals 43 / 50



Performance Analysis is a Key Field in HPC

 Analysis is typically performed using (automated) software tools
 Measure and analyze the runtime behaviour of parallel programs
 Identifies potential performance bottlenecks
 Offer performance optimization hints and views of the location in time
 Guides exploring causes of bottlenecks in communication/synchronization

Lecture 3 – Parallelization Fundamentals 44 / 50

[20] SCALASCA Performance Tool

 Lecture 9 will give details on how to measure performance in parallel programms & and related tools using various applications



Performance Analysis in Distributed-Memory Programming

 Lecture 9 will give details on how to measure performance in parallel programms & and related tools using various applications

[21] Vampir Performance Tool

Lecture 3 – Parallelization Fundamentals 45 / 50



[Video] Parallelization From Theory to Practice

[19] Power! Youtube Video

Lecture 3 – Parallelization Fundamentals 46 / 50



Lecture Bibliography

Lecture 3 – Parallelization Fundamentals 47 / 50



Lecture Bibliography (1)

 [1] LLNL MPI Tutorial, Online: 
https://computing.llnl.gov/tutorials/mpi/

 [2] TOP500 Supercomputing Sites, Online: 
http://www.top500.org/

 [3]  K. Hwang, G. C. Fox, J. J. Dongarra, ‘Distributed and Cloud Computing’, Book, Online: 
http://store.elsevier.com/product.jsp?locale=en_EU&isbn=9780128002049

 [4] 2013 SMU HPC Summer Workshop, Session 8: Introduction to Parallel Computing, Online:  
http://dreynolds.math.smu.edu/SMUHPC_workshop/session_8.html

 [5] Introduction to Parallel Computing Tutorial, Online: 
https://computing.llnl.gov/tutorials/parallel_comp/

 [6] Caterham F1 Team Races Past Competition with HPC, Online: 
http://insidehpc.com/2013/08/15/caterham-f1-team-races-past-competition-with-hpc

 [7] Wikipedia on ‘Numerical Weather Prediction’, Online: 
http://en.wikipedia.org/wiki/Numerical_weather_prediction

 [8] Introduction to High Performance Computing for Scientists and Engineers, 
Georg Hager & Gerhard Wellein, Chapman & Hall/CRC Computational Science, ISBN 143981192X 

 [9] Map Analysis, Understanding Spatial Patterns and Relationships, Joseph K. Berry, Online: 
http://www.innovativegis.com/basis/Books/MapAnalysis/Default.htm

 [10] Templates for the solution fo linear systems, building blocks for iterative methods, book, Online: 
http://www.netlib.org/linalg/html_templates/Templates.html

 [11] Jacobi Heat Dissipation, Online: 
https://www.youtube.com/watch?v=jBbanIGoIhE

Lecture 3 – Parallelization Fundamentals 48 / 50



Lecture Bibliography (2)

 [12] Wikipedia on ‘stencil code‘, Online: 
http://en.wikipedia.org/wiki/Stencil_code

 [13] M. Goetz, C. Bodenstein, M. Riedel, ‘HPDBSCAN – Highly Parallel DBSCAN’, in proceedings of the ACM/IEEE International Conference for High Performance 
Computing, Networking, Storage, and Analysis (SC2015), Machine Learning in HPC Environments (MLHPC) Workshop, 2015, Online:
https://www.researchgate.net/publication/301463871_HPDBSCAN_highly_parallel_DBSCAN

 [14] PEPC Video Application Example, FZ Juelich, Online: 
http://www.fz-juelich.de/ias/jsc/EN/AboutUs/Organisation/ComputationalScience/Simlabs/slpp/SoftwarePEPC/_node.html

 [15] Wikipedia ‘Moore’s Law’, Online: 
http://en.wikipedia.org/wiki/Moore's_law

 [16] PEPC Webpage, FZ Juelich, Online: 
http://www.fz-juelich.de/ias/jsc/EN/AboutUs/Organisation/ComputationalScience/Simlabs/slpp/SoftwarePEPC/_node.html

 [17] Wikipedia Scalability, Online: 
http://en.wikipedia.org/wiki/Scalability

 [18] G. M. Amdahl. Validity of the single processor approach to achieving large scale computing capabilities. In: AFIPS ’67 (Spring): Proceedings of the April 18-
20, 1967, Spring Joint Computer Conference (ACM, New York, NY, USA), 483–485.

 [19] Power! | Copyright GeonX 2013, Geon Technologies, Online: 
http://www.youtube.com/watch?v=nEDOSGC3wFs

 [20] Scalasca Performance Analysis Tool, Online: 
http://www.scalasca.org/

 [21] VAMPIR Performance Analysis Tool, Online: 
http://www.vampir.eu/

Lecture 3 – Parallelization Fundamentals 49 / 50



Lecture 3 – Parallelization Fundamentals 50 / 50


