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Review of Lecture 2 — Parallel Programming with MPI

= Message Passing Interface (MPI) Concepts
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= MPI Parallel Programming Basics

MPI_COMM_WORLD

using a Ccompller E @ (7]
C 3 ©
] C © 164
. . . < (¢] @
using a jOb script a C
hello.c ©
© © © o
#include <stdio.h> oo groupt arowr? oy oo
#include <mpi.h>
int main(int argc, char** argv) ©co ©c e
e © o ©
{ C o

int rank, size;

MPI Init(&argc, &argv);

oo

I am %d out of %d\n",

MPI Comm size(MPI COMM WORLD, &size);

MPI Comm rank (MPI COMM WORLD, &rank);

printf ("Hello World,
rank, size);

MPI Finalize();

return 0;

communications @

} [1] LLNL MPI Tutorial
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Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning
9.

Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

Lecture 3 — Parallelization Fundamentals

11.
12.
13.
14.
15.
16.

Scientific Visualization & Scalable Infrastructures
Terrestrial Systems & Climate

Systems Biology & Bioinformatics

Molecular Systems & Libraries

Computational Fluid Dynamics & Finite Elements

Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

= Practical Topics

» Theoretical / Conceptual Topics

3/50



Outline

= Common Strategies for Parallelization B e T e

" Lecture 1: Lecture 3 will give in-depth

= Simple Parallel Computing Examples Multi-core & Many-core details on parallelization fundamentals

= Parallelization Methods & Domain Decomposition s lacub e i Jule R T
theoretical considerations
= Halo / Ghost Layer in Simulation Sciences & Data Sciences = Lecture 2: Lecture 3 will provide more
. . . . details on MPI application examples
= Single Program Multiple Data vs. Multiple Program Multiple Data with a particular focus on

parallelization fundamentals

Data Parallelism & Functional Parallelism Methods

= Parallelization Terms & Theory
= Moore’s Law & Parallelization Reasons

Speedup & Load Imbalance Terminology
Role of Serial Elements

Scalability Metrics & Performance
Amdahl’s Law & Performance Analysis




Selected Learning Outcomes

» Students understand...

Latest developments in parallel processing & high performance computing (HPC)
How to create and use high-performance clusters
What are scalable networks & data-intensive workloads

use module_pepa_types
The importance of domain decomposition - el
Complex aspects of parallel programming R e el
HPC environment tools that support programming R e e SR
or analyze behaviour _""’Q""""‘i‘&?":‘fm N

Different abstractions of parallel computing on various levels

Foundations and approaches of scientific domain-
specific applications

= Students are able to ...

Programm and use HPC programming paradigms
Take advantage of innovative scientific computing simulations & technology
Work with technologies and tools to handle parallelism complexity
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Common Strategies for Parallelization

O
O 0
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Parallel Computing — Revisited (cf. Lecture 1)

= All modern supercomputers depend heavily on parallelism
= Parallelism can be achieved with many different approaches

We speak of parallel computing whenever a number of ‘compute

elements’ (e.g. cores) solve a problem in a cooperative way
[5] Introduction to High Performance Computing for Scientists and Engineers
= Often known as ‘parallel processing” of some problem space
= Tackle problems in parallel to enable the ‘best performance’ possible
» Includes not only parallel computing, but also parallel input/output (1/0)
* ‘The measure of speed’ in High Performance Computing matters P1 P2 P3 P4 PS5

= Common measure for parallel computers established by TOP500 list
= Based on benchmark for ranking the best 500 computers worldwide (2] TOP500 Supercomputing Sites
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Multi-core CPU Processors — Revisited (cf. Lecture 1)

= Significant advances in CPU (or microprocessor chips) Multicore processor
= Multi-core architecture with dual, Core1 | | Core2 | [ - Core n
quad, six, or n processing cores L1 cache | |L1 cinche - L1 cache
= Processing cores are all on one chip ‘> \\‘a ';” 4
L2 cache
| T one chip
|

* Multi-core CPU chip architecture
= Hierarchy of caches (on/off chip)

L3 cache/DRAM

= L1 cache is private to each core; on-chip

= |2 cache is shared; on-chip

= L3 cache or Dynamic random access memory (DRAM); off-chip

Clock-rate for single processors increased from 10 MHz (Intel 286) to 4 GHz (Pentium 4) in 30 years
Clock rate increase with higher 5 GHz unfortunately reached a limit due to power limitations / heat
Multi-core CPU chips have quad, six, or n processing cores on one chip and use cache hierarchies

Lecture 3 — Parallelization Fundamentals

[3] Distributed & Cloud Computing Book
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Simple Visual Parallel Computing Example on Multi-Core CPUs

= Example: Find largest (maximum) element in array (e.g., 10715 elements, here only 2/4)
= Think how the data elements can be divided onto CPUs/cores > ‘data domain decomposition’
= Think what each CPUs/cores should do = ‘computational-intensive processes or calculations’

0 111213 ]a |5 67 |8 |9 [10/11/12]13 14 15
Multicore processor

0 |1 (2 (3 |4 |5 |6 |7 |8 [9 [10]11(12]13]14 15 o o 2 e
CPU/core 1 CPU/core 2 CPU/core 3 CPU/core 4 \ \ / /

‘ L2 cache ‘

T
0 111203 4 |5 6 |7 18 19 110111 12[13]14 15 ]

Max-local A Max-local B Max-local C Max-local D

[3] Distributed & Cloud Computing Book
Max-global = Max (Max-local A,B,C,D)
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Many-core GPGPUs — Revisited (cf. Lecture 1)

= Use of very many simple cores &PU

Multiprocessor 1 Multiprocessor N || |  ________

= High throughput computing-oriented architecture ' opU |

= Use massive parallelism by executing a lot of
andle an ever increasing e —
= Handle an ever increasing amount of multiple & :

instruction threads

= CPUs instead typically execute a single
long thread as fast as possible

[3] Distributed & Cloud Computing Book

= Ma ny-core GPUs are used in la rge *  Graphics Processing Unit (GPU) is great for data parallelism and task parallelism
: : : . Compared to multi-core CPUs, GPUs consist of a many-core architecture with
Cl usters a nd Wlth IN Massive Iy hundreds to even thousands of very simple cores executing threads rather slowly

parallel supercomputers today
= Named General-Purpose Computing on GPUs (GPGPU)
= Different programming models emerge
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Simple Visual Parallel Computing Example on Many-Core GPUs

= General Purpose Graphical Processing Unit (GPGPU)

= Designed to compute large numbers of floating point
operations in parallel, but with moderate performance

Multiprocessor 1

Step ‘zero‘: Data is loaded via the main memory of the CPU (i.e., host CPU
memory) to the device memory of the GPU accessed by the many cores

Multiprocessor N

" Step one: each GPU core has a column of matrix B (named as Bpart)
=  Step one: each GPU core has an element of column vector C (hamed Cpart)

. Step two: Each GPU core performs an independent vector-scalar
multiplication (i.e., independently based on their Bpart and Cpart contents)

" Step three: Each GPU core has a part of the result vector A (named Apart)
and is written in device memory; results go to the main memory of CPU

g —
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A=R*C
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(nice parallelization possible
via independent computing)
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Complex Climate Example — Numerical Weather Prediction (NWP) & Forecast

[ ] Apphcat'O N areas . Numerical Weather Prediction (NWP) uses mathematical models
of the atmosphere and oceans to predict the weather based on
= Global & regiona| short-term current weather observations (e.g. weather satellites) as inputs

. . " Performing complex calculations necessary for NWP requires
weather forecast models in Operatlons supercomputers (limit ~6 days) using HPC techniques

» Perform long-term climate prediction =  NWP belongs to the field of numerical methods that obtain

. approximate solutions to problems > certain uncertainty remains
research (e.g. climate change, polar research, etc.) i P Y

= NWP model characteristics

= Use ordinary/partial differential equations (PDEs)
(i.e. use laws of physics, fluids, motion, chemistry)

Horizontal Grid
(Latitude-Longitude) [~

= Domain decomposition example: 3D grid cells

= Computing/cell: winds, heat transfer, solar
radiation, relative humidity & surface hydrology

= |nteractions with neighboring cells: used
to calculate atmosopheric properties over time

modified from [7] Wikipedia on
‘Numerical Weather Prediction’

» Lecture 12 will provide more details on using different domain decompositions for terrestrial systems and climate simulations on HPC
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Parallelization Methods & Domain Decomposition — Many Approaches

= Data Parallelism

. e e Dp

D1 |D2

= Functional Parallelism

N

data
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—»

P1

Crwerall Domain R

(different forms of domain decomposition methods)

Atmospheric Model

P3 P4

Land/Surface Model

time

BLOCK cycLIC

BLOCK, * *, BLOCK BLOCK, BLOCK

CYCLIC, * * CYCLIC CYCLIC, CYCLIC

[4] 2013 SMU HPC Summer Workshop

[5] Parallel Computing Tutorial

13 /50



Parallelization Methods in Detail

n Data Pa ra ”ellsm (a ka SP M D) . In the Single Program Multiple Data (SPMD) paradigm each

processor executes the same ‘code’ but with different data

= N processors/cores work on
‘different parts of the data’

= E.g. Medium-grained loop parellelization
= E.g. Domain decomposition

madified from [7] Wikipedia on
‘Numerical Weather Prediction’

- FU nCtiOnaI Pa ra ”ellsm (a ka M P M D) . In the Multiple Program Multiple Data (MPMD) paradigm each

processor executes different ‘code’ with different data

* N processors/cores work on on
‘different sub-tasks” of the problem

= Processors/cores work jointly together by

exchanging data and do synchronization [6] Modified from Caterham F1 team

= E.g. Master-worker scheme
= E.g. Functional decomposition

» Lecture 12-15 will provide details on applied parallelization methods within parallel applications & domain/functional decomposition
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Data Parallelism: Medium-grained Loop Parallelization

= |dea: Computations performed on individual array
elements are independent of each other

= Good for parallel execution by N processors
(e.g., using shared memory parallel programming)

c is a constant! doli=1,500
: : , PE e >
a, b are different arrays a(i)=c*b (i) 1
do|i=1,1000 enddo . . 7 g
e
a(i)=c*b (i) —y S
sl ‘ do |1i=501,1000 . . HE B g
______ N a(i)=c*b (1) ...
t N o
1 enddo v
T1 T2 T3 T4 T5
Moadified from [8] Introduction to High Performance @~ === == == == == == == == >
Computing for Scientists and Engineers t2 < 't1

» Lecture 6 will offer more elaborate shared memory parallel programming examples in context of different HPC application domains
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Data Parallelism: Domain Decomposition

= Approach

= Grids are not always Cartesian and often adapted to
the numerical constraints of a certain algorithm in question

Simplified picture of reality with a
‘computational domain’ represented as a
‘erid’ (rather course-grained) or a ‘mesh’

Grids define discrete positions for the
physical quantities of the complete domain

The supercomputer then simulates the reality
with observables (e.g. certain physical variables)
on this grid using N processors in parallel

Work distribution: Assign N parts of the grid to N processors

In parallel computing a Grid distribution can be related to solving
variables in linear equations (or find best estimates of values)

Lecture 3 — Parallelization Fundamentals

20 Grid display 3D Grid display

Horizontal Grid
(Latitude-Longitude) [~
Vertical Grid
(Height or Pressure)

Physical Processes in a M

modified from [7] Wikipedia on
‘Numerical Weather Prediction’
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Domain Decomposition Examples: Grid vs. Lattice Approach

... 2D Grid display pushes
each cell up to the level of
the stored value

Horizontal Grid
(Latitude-Longitude) |
Vertical Grid
(Height or Pressure)

modified from [7] Wikipedia on
‘Numerical Weather Prediction’

((Block"_,))

[9] Map Analysis - Understanding Spatial Patterns and Relationships, Book

Lecture 3 - Parallelization Fundamentals

...3D Lattice display
pusiies the nodes of the
wirefirane up to the valie

3D Lattice

“Smooth”

17 /50



Terrestrial Systems Example — Towards Realistic Simulations — Granularity

= Scientific computing with HPC simulates ‘ ~realistic behaviour
= Apply common patterns over time & simulate based on numerical methods
" Increasing granularity (e.g. domain decomposition) needs more computing

(introduce more and more physical parameters over time...)

(compute more physical laws...) e \/ ~ X 4
T - b
¥y \-H (message passing of

status in each cell)

(add scientific domain studies:
e.g. rainfall, ocean waves, wind, oil, storms... )

(add objects to study: boats, fish, birds, people, oil platform, ...)

» Lecture 12 will provide more details on using different domain decompositions for terrestrial system and climate simulations on HPC
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Application Example: Formula Race Car Desigh & Room Heat Dissipation Revisited

® Pro: Network communication is relatively hidden and supported

= Contra: Programming with MPI still requires using ‘parallelization methods’
= Not easy: Write ‘technical code’ well integrated in ‘problem-domain code’

= Example: Race Car Simulation &
Heat dissipation in a Room

e T2 PP 2
= Apply a good parallelization method o : '

(e.g. domain decomposition)

= Write manually good MPI code for
(technical) communication
between processors
(e.g. across 1024 cores)

= |ntegrate well technical code .y . ,
. . 6] Modifi 8] Int tion to High P C ti
with problem—domaln code [6] Modified from  [8] Introduction to High Performance Computing

Caterham F1 team  for Scientists and Engineers
(e.g. computational fluid dynamics & airflow)

(a) Initial heatmap. (b) After 50 rounds. (c) After 200 rounds.

Lecture 3 — Parallelization Fundamentals 19 /50



Data Parallelism: Domain Decomposition & Simple Application Example

» Parallelizing a two-dimensional Jacobi solver = Heat in a room application example

= Jacobi method is a known ‘iterative method” in numerical simulations
(iterative: step by step closer to the solution with approximations)

= Application example: heat dissipation & heatmap, e.g., in a lecture room

ST 7
(a) Simulation one, including (b) Simulation two, including (a) Initial heatmap. (b) After 50 rounds. (c) After 200 rounds.
6 neighbor cell. 26 neighbor cells.

Time:0 Time:200 Time:400

- - - [10] Templates for the solution
' B ™ e e ‘ ol f linear systems
: B " <— - 0

- . 250 ! 250 ! -

[11] YouTube Video, heat
dissipation Jacobi Method
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Data Parallelism: Formulas Across Domain Decomposition

®" From the problem to computational data structures
= Apply an ‘isotropic lattice’ technique 1
L i
do k = 1,kmax t
do 1 = 1,imax
! four flops, one store, four loads
phi(i,k,t1) = ( phi(i+l,k,t0) + phi(i-1,k,t0)
+ phi(i,k+1,t£0) + phi(i,k-1,t0) ) * 0.25

Modified from [8] Introduction to High Performance

enddo Computing for Scientists and Engineers
enddo )
i / X b‘b(l‘h} 'E) _ d)(-Tf+1:.1r 'f) + cb(xi—l 3} '5) - 2(1)(-1(57.1'1'} [10] Wikipedia on ‘stencil code’
® & &P ot (6x)*
o o o ) ‘change over time’

d){“f’-1 ‘f_l) + (D{“f"j’ ‘f_l} - “q)(xi’-‘ f} diffusion equation

@ ¢ @ O + IRV q
(6y)

@ —o O ;
@ @ @ .0 It 7
. . . . . SD SZO’D 8400 Ssgo SBOD SIODD

» Lecture 10 on Hybrid Programming and Patterns will offer more details on stencil methods & patterns in simulation science applications
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Data Parallelism: Domain Decomposition & Equations

= Example: Parallelizing a two-dimensional Jacobi solver

= Jacobi method is a known ‘iterative method’ in numerical simulations 1
(iterative: step by step closer to the solution with approximations) t

= Solving n linear equations with n unknown variables, diagonal dominance
= Picking start values and iterate towards a ~final solutions (reducing errors/step)

= Goal: Update physical variables on a ‘N x N grid” until approximations
good enough (maybe only solution to 97%, but enough & shorter time)

= Domain decomposition for N !
processors subdivides the o & & ¢ ¢
computational domain

in N subdomains ¢ o T ® o

! [8] Introduction to High Performance

K . ‘-‘a . Computing for Scientists and Engineers
Find (approximate) values T,
for Kand | 2 update arrays ® @ @ .0

L]

In each time step (e.g. T,) re-using
values from previous iteration (e.g. T,) @ @ @ @ )
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Data Parallelism: Domain Decomposition & Halo/Ghost Layers/Cells

= Two-dimensional Jacobi solver in context of parallel systems:

= Shared-memory and complete domain fits into memory

= Relatively easy: all grid sites in all domains can be updated before the processors have to synchronize at

the end of the sweep (i.e. time step)

= Distributed-memory with no access to ‘neighbours memory’

= Complex: updating the boundary sites of
one domain requires data from
adjacent domain(s)

» |dea: before a domain update (next step),
all boundary values needed for the
upcoming sweep must be communicated
to the relevant neighboring domains

= We need to store this data somewhere,
so extra grid points introduced
(halo/ghost layers/cells)

[8] Introduction to High Performance
Computing for Scientists and Engineers

Lecture 3 — Parallelization Fundamentals

Domain 1

00D

QOs
O =
OO0
CO0O
OO
QOﬁ

(boundary)

OO0
PO000

OO0
OOO0000O0

©
o
O

Domain 2

(halo / ghost)
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Data Parallelism: Domain Decomposition & Communication

* Two-dimensional Jacobi solver in context of communication cost:
= Often choosing the optimal domain decomposition is application-specific
= Next neighbour interactions needed and can vary (more/less shaded cells)
= Simple: Cutting in four stripes domains (left) incurs more communication

= Optimal decomposition: four domains (right) incurs less communication

[8] Introduction to High Performance
Computing for Scientists and Engineers

3*%¥16=48 4*%8=32
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Data Parallelism Example: Smart Domain Decomposition in Data Sciences

0] letelgr el e 7] 512 —e— Hybrid DS1
9 |10 ;?0.93.,:3: 14| 15 ‘: 17 256 + = Hl\%lt');:dDgfz ’/—“3
. 13 | 15| | H0|we® 22 | 0 ety 128 | e
Clusterin Ll da Yol ey ae L
g 7 |8 .;‘: ¥y .3‘: 2 {& 3_‘ 035 o 64 Linear /1,/
PRI ] i." o e | 5 =
P 4" T 32
OHHEIRRI o 16
AR 8
63 .s: Se¥ .:‘...:u: e ':...' 4
S 72 gt ae el 1|21 >
Overlayed spatial grid 1 > 8 32 128 512
—— number of cores
T (T 1 e
I—K Cells )_L L ! cluster merge across
Overlay || Estimate Merge i .
hypergrid |7 =" [ siis ||~_ halos | § halo regions/layers
|' aia 'l \ I 1 l i.|_ _______ =
Sort and — | el PN progessor 1 | procassor
distribute [ {,n,iéfr‘ | pBscan _H_@gggw) @] ; O
L | L} ! I O 13 E 2 L] 2
H Pre| 55l Chuster i o O O O
[13] M. Goetz and M. Riedel et al, e 20 | WiEs = o O
Proceedings IEEE Supercomputing Conference, 2015 B 1 1677}y iy # G 3 d
I—| Cluster relabeling | S O I _ﬁ H ®) o)
st A6 Que 1 Q3
YT S T

» Lecture 8 will provide more details on MPI application examples with a particular focus on parallel and scalable machine learning
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Functional Parallelism: Master-Worker Scheme

" |dea:
= One processor performs administrative tasks while others solve a particular problem jointly together

= Master

= Distributes work and collects
results from workers

= Could be single bottleneck

= N Workers (old: slaves) P1 > p3a
= Whenever a worker has finished
a package it stops or requests a [6] Modified from Caterham F1 team Master
new task from the master P4

depending on the application

= Example: Find largest element in array N Workers
= Which CPU/core does the global max?

» Lecture 15 will offer more details on HPC applications that perform computational fluid dynamics (CFD)
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Functional Parallelism: Functional Decomposition

= Approach

= Couple different running codes to compute functions that jointly are used to solve a higher-level problem

= Example: Multi-physics simulation of a race car to be coupled with communication layer
= (Multi-physics problems gaining popularity since they reflect better reality)
= Air flow around race car with Computational Fluid Dynamics (CFD) code

= Parallel finite element simulation could describe the reaction of the flexible structures of the car body to
the computed air flow (involves accurate geometry and material properties in context)

Processors compute whole airflow

Both coupled (do it efficiently is not so easy)

Processors compute reaction of car structures
[6] Modified from Caterham F1 team (eventually trying different materials out)

» Lecture 15 will offer more details on HPC applications that perform computational fluid dynamics (CFD) on domain decompositions
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[Video] PEPC — Particle Acceleration Application

N

40 box: 40.0 X 30.0 X300,

0 - T o
+ I'_ 3

[14] PEPC Video Application Example



Parallelization Terms & Theory

O
O 0
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Parallelization in High Performance Computing

= Parallelization in HPC is essential due to the following capabilities
= Perform calculations, visualizations, and data processing...

= ... atanincredible, ever-increasing speed

= ... atan unprecedented granularity and / or accuracy

Lecture 3 - Parallelization Fundamentals

HPC uses parallel computing in
order to tackle problems &
increase insights

HPC can perform virtual
experiments that are too
dangerous or too expensive

HPC enables simulation of real-
world phenomena not possible
otherwise

HPC automates re-occuring
processing of large quantities of
data or many equations
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Moore’s Law

VACUUM
TUBE

MECHANICAL TRANSISTOR INTEGRATED CIRCUIT

(seven last dots are actually
many-core GPGPUs,
cf. Lecture 1)

1834 350

—
L,
[=]
©
i
c
T
=z
7]
c
e}
(5]
—_
@
a
=
=
[e)
O
O
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| =
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[15] Wikipedia ‘Moore’s Law’

" Moore’s Laws says that the number

Yo P T T T Fine BB e Vo Ta Feime Tk Hoas T . s g e Eel s wm o e s w of transistors on integrated circuits

So0 Pos F1g9 O1s 929 925 39 935 999 Sa5 95p 955 J6p V65 rp 25 %s 990 995 <O0p <Oos <019 <015 <029 doubles approximately every two
Year Source: Ray Kurzweil, DFJ years (exponential growth)
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Reasons for Parallelization

= The concept of ‘parallelization” getting more mainstream today
= Supercomputers (that are massively parallel computers today)
= Multi-core PCs and Laptops (with increasing amount of cores, 2x, 4x, etc.)
= Many-core GPUs not only used for graphics but also for general processing

= Two major reasons to engage in parallelization

= Asingle core is too slow to perform the required task(s)
in a certain constrained amount of time

" The available memory on a single system is not sufficient
to tackle a problem in a required granularity or precision.

Derived from [8] Introduction to High Performance Computing for Scientists and Engineers

= The reason influences the choosen ‘parallelization method(s)’
= Example: SPMD or MPMD

Lecture 3 — Parallelization Fundamentals

[Multicore processor

Core 1 Core 2

Core n

L1 cache| [L1 cache

L1 cache

* F
\
\ \\ ,ff
¥

| L2 cache

S

| L3 cache/DRAM

GPU

Multiprocessor 1

Multiprocessor N

‘ Device memory

[3] Distributed & Cloud Computing Book
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Parallelization Goal: Speedup Term

= Consider simple situation: All processing units execute their assigned work in exactly the
same amount of time
= Solving a problem would take Time T sequentially (1 Worker essentially)
= Having V workers solve the problem now ideally only in 7/N
= Thisis a speedup of N

W=12
‘timesteps’

(1 2 H3 {4 Hs H{e {7 Hs Ho Hoj{1}H12)

time
) ( T="ti teps’, here 12
I L I
Workers | 2|9 He H7 Hs) Speedup:
will 9 H 10 }[ 11 H 12 ] T/N = 12/3 = 4 ‘timesteps’

time

Modified from [8] Introduction to High Performance
Computing for Scientists and Engineers
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Parallelization Challenge: Load Imbalance Term

= Consider a more realistic situation: Not all workers might execute their tasks in the same
amount of time

= Reason: The problem simply can not be properly partitioned
into pieces with equal complexity

= Nearly worst case: All but a few have nothing to do but wait
for the latecomers to arrive (because of different execution times)

Ty v 1
w1 {02 H 3 H 4
. . P I * Load imbalance hampers
gy performance, because some
WZ[ ) _J—I-% 6 H 7 J—L 8 y 2 unused resources are underutilized
Y [ r Y| | resources
w8 H 10 1 12 )
time Modified from [8] Introduction to High Performance

Computing for Scientists and Engineers
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Load Imbalance Example

= Parallel Programming Problems = General Problems

"= Wrong assumptions in = Serial execution limits

distributed-memory programming

= |oad Imbalance

= Cost and side effects of
the programmed communications

= Unnecessary synchronizations

t=38
seconds
overall
MPI
program
runtime

Lecture 3 — Parallelization Fundamentals

tine in seconds

[ | MPI_Barrier
e B 1PI_Recy
B rPI_Send
MPI_Ssend

‘idle resources’ M rPI_Comn_size

MPI_Comm_rank

30

25

20

15 ‘parallel
‘ performance
i issues’
| H | ‘ ’ | | ‘ | | ‘ | | ‘ [8] Introduction to High
| | ’ | | | ‘ | | | | | ‘ Performance Computing

|

for Scientists and Engineers

HPI rank
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Parallelization Challenges: Optimal Domain Decompositions

" Tree codes — ‘another form of smart domain decomposition’
= E.g.to speed up N-body simulations with long range interactions

Lecture 3 — Parallelization Fundamentals

[15] PEPC Webpage

Fast and/or high performance means
many n floating point operations (FLOP)
per one second
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Towards Fast & Scalable Applications

= Many factors influence the scalablility of an application

= Benefits of smart domain decomposition methods is just one factor
= E.g. PEPC Tree-code on whole BlueGene/Q

[17] Wikipedia on ‘scalability’

[15] PEPC Webpage

OO®
309:19:02 nextin[ 175 Source| W ﬂelpl

e TEores | epuh [Vall [ Tend

" Scalability is the ability of a system, network, or process
to handle a growing amount of work in a capable manner
or its ability to be enlarged to accommodate that growth

= Measure the execution time T of a parallel programm for
speed-up & scaling

" Scaling a parallel program means how the performance
of it changes as the number of processors increases
using two metrics: Strong/Weak Scaling

= Raises several questions and challenges
= What means faster? How we get to an application that is scalable?
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Terminologies: Speed-Up & Scaling

= Achieving speed-up 256 | = roon Doz
* |ncreasing cores, e.g. 2 instead of 1: 50% improve? fi 177 Mhenr, B
S 1 4
= Reality: No! ‘Tail off” = loose of parallel efficiency B 32 ’
a1

Q: How many cores we can use in our code?
A: Scaling: change number of processors — goals?

Different types of scaling for different parallization goals

- NN A~ 0O,

2 8 32 128 512
number of cores

= Scala blllty Metric: Strong Scaling (obvious/intuitive way = what parallelization benefits?)
= Total problem size stays the same — increases number of processors _
[13] M. Goetz and M. Riedel et al,
= More difficult to achieve, but (often) more useful than weak scaling Proceedings IEEE Supercomputing Conference, 2015

= Scala b|||ty Metric: Weak Sca“ng (room for improvement = what is possible to do?)

= Total problem size increases with the rate of processors — keeping work per processor the same = Getting
to the limits, what is possible to do?

= Think about is to get towards reality = getting better simulations
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Scalability Metrics: Strong Scaling

» T = single worker serial runtime for a fixed problem size:

Te=s+p

= T.P = time to tackle the fixed problem size with N parallel workers:

T, =s+p/N

» T, means then: Strong scaling (‘very good’!)
* The amount of work stays constant...
= ... with increasing number of workers N

= Goal of parallelization:
Minimization of time to solution for a problem

Scalability metrics quantify how well a task can be parallelized
for different goals

Two major quantities in HPC are named as ‘Strong Scaling‘ and
‘Weak Scaling*

Tail off in parallel efficiency in strong scaling: parallel overhead

gets visible as processors do less and less (of fixed problem
size) when increasing numbers of processors more




Strong Scaling Example

250k ideal scaling
| mmom " Tree-code PEPC
o ) Bt = Execution system: BlueGene/P (JUGENE@Juelich)
=] —— N =1280x%10°
e /- * Homogenous particle distribution (top, different use cases)
w | 1k <
£ b 7 " Inhomogenous particle distribution (bottom, different use cases)
= Jo _ = Different test particle setups used
16 -
| TS = Y: Total particle numbers N
4 16 64 256 1k 1k 16k 64k 256k .
number of cores ¢ = Note change of N in plots
250 = = X: Total compute core number C
o] =y
T
% e i\ = 1;8 0% 100
"8 dkH—— N = 5120 x 10°
ol - =  Strong Scaling: How the time to solution varies with the
% 56 p ° ’. ’&‘. o number of processors for a fixed total problem size
2 e | .. ﬂa §
LS U
| ol = [15] PEPC Webpage

| 16 64 256 1k 1k 16k 64k 256k
number of cores C'
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Scalability Metrics: Weak Scaling

= Goal of parallelization: tackle problem too big for single machine
= E.g. available memory is a limiting factor
= |dea: scale the problem size at least with some power of N; o positive

= T, = serial runtime for a scaled (variably-sized) problem:

Tv5=s+p*N°‘

= TP = parallel runtime for a scaled (variably-sized) problem:

TVP=s+p*Noc-1

= T,” means then: Weak scaling (‘not very good’!)
= |f special case =1 2> N°=1 - you did not parallelize something really

Lecture 3 — Parallelization Fundamentals

Tail off in weak scaling:
Reasons can be
communication overheads
by adding more and more
processors and problems
sizes that in turn increases
the runtime
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Weak Scaling Example — Gustafson‘s Law

] Tree-COde P E PC = Gustafson’s law: ‘We need larger problems for larger numbers of CPUs’
= Assumption is that the parallel part is proportional to our problem size
= Execution system: BIueGene/Q = Result: Bigger problems ‘just‘ scale better, since serial parts get more insignificant

(JUQUEEN@Juelich)
= Weak scaling plot (top)

= Two numbers of particles kept (work that each processor needs to

constant; test particle setups constant do stays fixed by increasing cores)
= Parallel efficie Nncy (bQIOW) =  For comparison: Strong Scaling: How the time to solution varies with the number of
: : : : : : : | : | processors for a fixed total problem size
— 102 3 - - - -—z.——.—/’—‘.'. E
qé 10 L ] =  Weak Scaling: How the time to solution varies with the number of processors for a
= 5 e oo oo a0 ] fixed problem size/processor
=] o ]
" e —t—————
10F —p—p— 8§ 5 _ |
> 0s | -\’ﬁ? ]
=}
{'.é gi [ =—= 140000 particles per core ] [15] PEPC Webpage
i articles per core JuqQu N
“o2f 11((1):3100& f;glN)p 158752 core _l 1
0.0 | | | | | 1 | 1 | 1

29 21() 211 212 213 214 215 216 217 218

number of cores
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Application Speedup — Amdahl’s Law

= Scalability is dependend from the serial application parts
= More related to the ‘strong scaling’ of a parallel program

P
S, = —f—P —
f PfS

1

1-s
- 0 for
S+ [ 0"

[18] G. Amdahl, Validity of the single processor approach to achieving
large scale computing capabilities, 1967

= 1-sisthe ‘parallizable part’ of the problem

= When unlimited workers in place we have N oo

= Amdahl’s law limits application speedup thus to 1/s

Amdahl’s laws says that scaling of massively
parallel applications is hindered by the domination
of its serial parts (strong scaling)

For comparison: Gustafson’s law says
we ‘just’ need larger problems thus no limits
by serial parts (weak scaling)
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Performance Analysis is a Key Field in HPC

= Analysis is typically performed using (automated) software tools
= Measure and analyze the runtime behaviour of parallel programs
= |dentifies potential performance bottlenecks
= Offer performance optimization hints and views of the location in time
» Guides exploring causes of bottlenecks in communication/synchronization

Which performance
problem?

Where in the program? Where in the system?

[20] SCALASCA Performance Tool

» Lecture 9 will give details on how to measure performance in parallel programms & and related tools using various applications

Lecture 3 — Parallelization Fundamentals
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Performance Analysis in Distributed-Memory Programming

8 @ ® Vampir - Trace View - /Vampir/Large/wrf.otf

W File Edit Chart Filter Window Help BEEE)

ErwBeIERLS & 2 ¢ [ERNNENREENNEE

Timeline

0s 23 s 30s 73 s 100 s 125 s 150 s 175 s 200 s

Process 0 ; Find: [MPI_Bcast l »
Process 1
Process 2
Process 3
Process 4
Process 5
Process 6
Process 7
Process 8
Process 9
Process 10
Process 11
Process 12
Process 13
Process 14
Process 15

[21] Vampir Performance Tool

» Lecture 9 will give details on how to measure performance in parallel programms & and related tools using various applications
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[Video] Parallelization From Theory to Practice

Morfeo Software (c) Copyright Cenaero 2010 Tirmer: &, 125000

[19] Power! Youtube Video
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