
High Performance Computing
ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

September 16, 2019
Webinar

Understanding MPI Messages & Collectives

PRACTICAL LECTURE 3.1 @MorrisRiedel@MorrisRiedel@Morris Riedel

Review of Lecture 3 – Parallelization Fundamentals

 Parallelization & Domain Decomposition Halo/Ghost Layers/Cells & Load Imbalance

 Speed-Up & Strong/Weak Scalability Metrics

Practical Lecture 3.1 – Understanding MPI Messages & Collectives

[1] 2013 SMU HPC Summer Workshop [2] Parallel Computing Tutorial

(not always mapping 1
CPU/core to 1

decomposed domain tile)

(e.g. using MPI)

[3] Introduction to High Performance Computing for Scientists and Engineers

[5] M. Goetz & M. Riedel et al,
Proceedings IEEE SC 2015

[4] PEPC Webpage

2 / 30

Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

Practical Lecture 3.1 – Understanding MPI Messages & Collectives

11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
3 / 30

Outline

 Programming & Compiling C-based MPI Programs
 Distributed Memory & Parallel Programming – Revisited
 Step-Wise Walkthrough for Programming a Simple C & MPI Program
 Parallel Environment & Message Passing with MPI – Revisited
 Simple Application Example with MPI Send/Receive
 Fine-grained Job Script Request & Allocation of Compute Resources

 Understanding MPI Collectives & Message Exchange Options
 MPI Collective Functions – Revisited
 Simple Application Example with MPI Broadcast
 Differences between MPI Point-to-Point vs. Collective Operations
 Exploring the Walltime – What happens if a job runs against the wall?
 Simple Hellosleep.c Example to understand Walltime

 This lecture is not considered to be a
full introduction to MPI programming
and the overall MPI functions library
and rather focusses on selected
commands and concepts particularly
relevant for our assignments, e.g.
simple MPI send/receive and selected
MPI collective functions

 The goal of this practical lecture is to
make course participants aware of the
process of compiling simple C & MPI
programs and the use of MPI message
exchanges that enable many scientific
& engineering applications in data
sciences & simulation sciences today

Practical Lecture 3.1 – Understanding MPI Messages & Collectives 4 / 30

Selected Learning Outcomes – Revisited

 Students understand…
 Latest developments in parallel processing & high performance computing (HPC)
 How to create and use high-performance clusters
 What are scalable networks & data-intensive workloads
 The importance of domain decomposition
 Complex aspects of parallel programming e.g., scheduling(!)
 HPC environment tools that support programming

or analyze behaviour
 Different abstractions of parallel computing on various levels
 Foundations and approaches of scientific domain-

specific applications

 Students are able to …
 Programm and use HPC programming paradigms
 Take advantage of innovative scientific computing simulations & technology
 Work with technologies and tools to handle parallelism complexity

Practical Lecture 3.1 – Understanding MPI Messages & Collectives 5 / 30

Programming & Compiling C-based MPI Programs

Practical Lecture 3.1 – Understanding MPI Messages & Collectives 6 / 30

Distributed-Memory Computers – Revisited (cf. Lecture 1)

 Features
 Processors communicate via Network Interfaces (NI)
 NI mediates the connection to a Communication network
 This setup is rarely used a programming model view today

 A distributed-memory parallel computer establishes a ‘system view’
where no process can access another process’ memory directly

Practical Lecture 3.1 – Understanding MPI Messages & Collectives

dominant
programming model

Message Passing
Interface (MPI)

[8] Modified from
Caterham F1 team

[3] Introduction to High Performance Computing
for Scientists and Engineers

time t

time t

7 / 30

 MPI Parallel Programming Basics

#include <stdio.h>

#include <mpi.h>

int main(int argc, char** argv)

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello World, I am %d out of %d\n",
rank, size);

MPI_Finalize();

return 0;

}

Parallel Programming with MPI & Basic Building Blocks (cf. Lecture 2)

 Message Passing Interface (MPI) Concepts

Practical Lecture 3.1 – Understanding MPI Messages & Collectives

[6] LLNL MPI Tutorial

hello.c

C
using a C compiler

Sc
he

du
le

r

using a job script

MPI
Point

to
Point

Communication

MPI
Collective

Communication

8 / 30

Step 1: SSH Access to HPC System – Jötunn HPC System Example

Hekla System

Jötunn HPC System

Practical Lecture 3.1 – Understanding MPI Messages & Collectives 9 / 30

Step 2 & 3: Edit a Text File – (MPI) Basic Building Blocks: Variables & Output

#include <stdio.h>

int main(int argc, char** argv)

{

int rank, size;

printf("Hello World, I am %d out of %d\n",
rank, size);

return 0;

}

 The main function is ‘called‘ by the operating system when a user runs the C
program – but essentially a usual c function with optional parameters that we
added here to be used later in the initialization of the MPI environment

 Two integer variables that are later useful for working with specific data
obtained from the specific MPI library that we need to add in the next step too
in order to fill information into the integer variables about rank and sizes

 The printf() function sends formatted text as output to stdout and
is often used for simple debugging of C programs

 Thinking in parallel in parallel programming is to understand that
different processes have an identity and work on different
elements of the program

 In the example we want to give an output that shows the identity
of each MPI process by using the rank and size information

 Extended Simple C Program (still C only)
 Above file content is stored in file hello.c
 Selected changes to the basic c program structure to prepare for MPI
 hello.c is not executable as C programm it needs a compilation hello.c

C
using a C compiler

Practical Lecture 3.1 – Understanding MPI Messages & Collectives 10 / 30

Step 4: Edit a Text File – MPI Basic Building Blocks: Header & Init/Finalize

#include <stdio.h>

#include <mpi.h>

int main(int argc, char** argv)

{

int rank, size;

MPI_Init(&argc, &argv);

printf("Hello World, I am %d out of %d\n",
rank, size);

MPI_Finalize();

return 0;

}

 Libraries can be used by including C header files, here the library for MPI is
included in order to use several MPI functions in our extended C program

 The MPI_INIT() function initializes the MPI environment and can take inputs
via the main() function arguments

 MPI_Finalize() shuts down the MPI environment
 After MPI_Finalize() no parallel execution of the code can take place)

 Extended Simple C Program
 hello.c is not executable as C programm it needs a compilation

hello.c

C
using a C compiler

Practical Lecture 3.1 – Understanding MPI Messages & Collectives 11 / 30

Step 4: Edit a Text File – MPI Basic Building Blocks: Rank & Size Variables

#include <stdio.h>

#include <mpi.h>

int main(int argc, char** argv)

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello World, I am %d out of %d\n",
rank, size);

MPI_Finalize();

return 0;

}

 The MPI_Comm_size()
function determines the
overall number of n
processes in the parallel
program: stores it in
variable size

 The MPI_Comm_rank()
function determines the
unique identifier for each
processor:
stores it in variable rank
with valures (0 … n-1)

 MPI_COMM_WORLD
communicator constant
denotes the ‘region of
communication’, here all
processes

 Extended Simple C Program with MPI functionality
 hello.c is not executable as C programm it needs a compilation hello.c

C
using a C compiler

[8] LLNL MPI Tutorial

Practical Lecture 3.1 – Understanding MPI Messages & Collectives 12 / 30

New Steps Required: Start ‘Thinking’ Parallel – Revisited (cf. Lecture 2)

 Parallel Processing Approach
 Parallel MPI programs know about the existence of other processes of it

and what their own role is in the bigger picture
 MPI programs are written in a sequential

programming language, but executed in parallel
 Same MPI program runs on all processes (SPMD)

 Data exchange is key for design of applications
 Sending/receiving data at specific times in the program
 No shared memory for sharing variables with other remote processes
 Messages can be simple variables (e.g. a word) or complex structures

 Start with the basic building blocks using MPI
 Building up the ‘parallel computing environment’

P P

P P …

 SPMD stands
for Single
Program
Multiple Data

Practical Lecture 3.1 – Understanding MPI Messages & Collectives 13 / 30

Parallel Environment & Message Passing – PingPong Application Example

P
M

P
M

P
M

P
M

P
M

…
…

Practical Lecture 3.1 – Understanding MPI Messages & Collectives

modified from [6] LLNL MPI Tutorial

14 / 30

Add to Step 4: Edit a Text File – Defining Variables & Using Rank for Identity

#include <stdio.h>
#include <mpi.h>
int main(int argc, char** argv)
{

int numtasks, rank, dest, source, rc, count, tag=1;
char inmsg, outmsg='x';

MPI_Status Stat;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
dest = 1; source = 1;
rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

}
else if (rank ==1) {
dest = 0; source = 0;
rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

}

rc = MPI_Get_count(&Stat, MPI_CHAR, &count);

printf("Task %d: Received %d char(s) from task %d with tag %d \n",
rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG);

MPI_Finalize();
return 0;

}

 Defining variables: dest and source are required to identify the ranks between
the messages should be passed

 Defining variables: count indicates how many characters are transferred in a
message passing command

 Defining variables: tag indicates which message transfer we use
 Defining variables: inmsg & outmsg indicates what char we put as message

Practical Lecture 3.1 – Understanding MPI Messages & Collectives

 Our obtained unique rank can be used
to influence the execution of the
program depending on the unique
process identity

 We can use the rank information to
give processes specific roles like
master / workers (cf. our Lecture 3
and/or domain decompositions with
specific functions to execute)

 For our ping-pong example we want to
send a message ‘ping’ from one rank
to another and also want to receive a
‘pong’ back from another rank:
defining dest and source using rank
identities

[8] LLNL MPI Tutorial

 Lecture 4 will offer more insights about using different types of MPI communicators with different rank identities in MPI applications
15 / 30

Add to Step 4: Edit a Text File – MPI Send/Recv Functions

#include <stdio.h>
#include <mpi.h>
int main(int argc, char** argv)
{

int numtasks, rank, dest, source, rc, count, tag=1;
char inmsg, outmsg='x';

MPI_Status Stat;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
dest = 1; source = 1;
rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

}
else if (rank ==1) {
dest = 0; source = 0;
rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

}

rc = MPI_Get_count(&Stat, MPI_CHAR, &count);

printf("Task %d: Received %d char(s) from task %d with tag %d \n",
rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG);

MPI_Finalize();
return 0;

}

 MPI_Send() function is used to send a certain number of
elements of some datatype to another MPI rank; this routine
blocks until the message is received by the destination
process

 MPI_Recv() function is used to receive a certain number of
elements of some datatype from another MPI rank; this
routine blocks until the message is received and thus send
by the source process

 This form of MPI communication is called ‘blocking’ while
there are also possibilities to have ‘non-blocking’
communication in MPI applications

Practical Lecture 3.1 – Understanding MPI Messages & Collectives

[9] DEINO MPI & Examples

 Lecture 4 will offer more insights about using blocking communication vs. non-blocking communication functions when using MPI
16 / 30

Add to Step 4: Edit a Text File – MPI Status & MPI_Get_count

#include <stdio.h>
#include <mpi.h>
int main(int argc, char** argv)
{

int numtasks, rank, dest, source, rc, count, tag=1;
char inmsg, outmsg='x';

MPI_Status Stat;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
dest = 1; source = 1;
rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

}
else if (rank ==1) {
dest = 0; source = 0;
rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

}

rc = MPI_Get_count(&Stat, MPI_CHAR, &count);

printf("Task %d: Received %d char(s) from task %d with tag %d \n",
rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG);

MPI_Finalize();
return 0;

}

 MPI_Status is a variable that includes a lot of
information about the corresponding MPI
function call

 We use the MPI_Status in our example to
check how much chars we really transferred
by using the MPI_Get_count() function

 As a simple debug possibility we can check
whether the MPI_Status information about
source and tag of the messages are
corresponding to our idea of programming

Practical Lecture 3.1 – Understanding MPI Messages & Collectives

[9] DEINO MPI & Examples

 Lecture 4 will offer more insights about using the MPI status for different purposes and to obtain a better understanding what happens
17 / 30

Step 5: Load the right Modules for Compilers & Compile C & MPI Program

 Using modules to get the
right C compiler for
compiling pingpong.c
 ‘module load gnu openmpi‘
 Note: there are many C

compilers available, we
here pick one for our
particular HPC course that
works with the Message
Passing Interface (MPI)

 Note: If there are no errors,
the file pingpong is now a full
C program executable that
can be started by an OS

 New: C program with MPI message exchanges
(cf. Lecture 2 – Parallel Programming with MPI)

[7] Icelandic HPC Machines & Community

pingpong.c

C
using a C compiler

mpicc

pingpong
executable

C

Practical Lecture 3.1 – Understanding MPI Messages & Collectives 18 / 30

Step 6: Parallel Processing – Executing an MPI Program with MPIRun & Script

 Submission using the Scheduler – Update(!)
 Example: SLURM on Jötunn HPC system
 Scheduler allocated 2 nodes as requested
 MPIRun & scheduler distribute the

executable on the right nodes
 Output consists of the

combined output of 2
requested nodes with
messages ‘ping‘ / ‘pong‘

 Note –n vs. –N in
our job script

Jötunn compute nodes

Jötunn login node

Sc
he

du
le

r

output file

Practical Lecture 3.1 – Understanding MPI Messages & Collectives

 The job script parameter #SBATCH –N X indicates the NUMBER X OF
NODES; allocation by scheduler then depends on HPC system setup

 The job script parameter #SBATCH –n X indicates the NUMBER X OF
CORES; allocation by scheduler then depends on HPC system setup

 Both parameters #SBATCH –n X and #SBATCH –N X can be
combined in the job script if needed to fine-tune the requirements for
how much cores are needed on how many nodes

19 / 30

Step 6: SLURM – Scontrol & Job Script Parameters Fine Tuning

Practical Lecture 3.1 – Understanding MPI Messages & Collectives

Scheduler

(enables a more fine-grained
request & allocation of required

cores/nodes)
20 / 30

Understanding MPI Collectives & Message Exchange Options

Practical Lecture 3.1 – Understanding MPI Messages & Collectives 21 / 30

 MPI Parallel Programming Basics

#include <stdio.h>

#include <mpi.h>

int main(int argc, char** argv)

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello World, I am %d out of %d\n",
rank, size);

MPI_Finalize();

return 0;

}

Parallel Programming with MPI & MPI Collective Functions (cf. Lecture 2)

 Message Passing Interface (MPI) Concepts

Practical Lecture 3.1 – Understanding MPI Messages & Collectives

[6] LLNL MPI Tutorial

hello.c

C
using a C compiler

Sc
he

du
le

r

using a job script

MPI
Point

to
Point

Communication

MPI
Collective

Communication

22 / 30

 Defining variables: source
indicates who initiates the
broadcast MPI collective function;
no receiving identity is required
because we will broadcast to all
processes (i.e., here in the same
communicator space
MPI_COMM_WORLD)

 Defining variables: We will send
four integers in the broadcast and
need to define a buffer for sending
and a buffer for receiving four
integers (!)

 Here we use the different unique
job identity rank to fill the buffer
with four integer values

 All processes should print out
their buffer, also for those ranks
that did not initialize the buffer

Add to Step 4: Edit a Text File – Defining Variables & Using Rank for Identity

#include <stdio.h>
#include <mpi.h>
int main(int argc, char** argv)
{

int i,rank, numprocs;
int source,count;
int buffer[4];

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);

source=0;
count=4;

if(rank == source){
for(i=0;i<count;i++)

buffer[i]=i;
}

MPI_Bcast(buffer,count,MPI_INT,source,MPI_COMM_WORLD);

for(i=0;i<count;i++)
printf("%d \n",buffer[i]);

MPI_Finalize();
return 0;

}

Practical Lecture 3.1 – Understanding MPI Messages & Collectives

[8] LLNL MPI Tutorial

 Assignment #1 includes the use of MPI collective functions and will enable you to explore different type of MPI collective operations
23 / 30

#include <stdio.h>
#include <mpi.h>
int main(int argc, char** argv)
{

int i,rank, numprocs;
int source,count;
int buffer[4];

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);

source=0;
count=4;

if(rank == source){
for(i=0;i<count;i++)

buffer[i]=i;
}

MPI_Bcast(buffer,count,MPI_INT,source,MPI_COMM_WORLD);

for(i=0;i<count;i++)
printf("%d \n",buffer[i]);

MPI_Finalize();
return 0;

}

 The MPI_Bcast() function
broadcasts a message from the
process with rank root to all
processes of the group, itself
included (!)

 The function if called by all
members of the selected
communicator group (i.e., here
MPI_COMM_WORLD) using all
the same arguments)

 Note: only for rank 0 is the buffer
properly initialized in this example

Add to Step 4: Edit a Text File – Defining Variables & Using Rank for Identity

Practical Lecture 3.1 – Understanding MPI Messages & Collectives

[8] LLNL MPI Tutorial

 Assignment #1 includes the use of MPI collective functions and will enable you to explore different type of MPI collective operations

[9] DEINO MPI & Examples

24 / 30

Step 5: Load the right Modules for Compilers & Compile C & MPI Program

 Using modules to get the
right C compiler for
compiling broadcast.c
 ‘module load gnu openmpi‘
 Note: there are many C

compilers available, we
here pick one for our
particular HPC course that
works with the Message
Passing Interface (MPI)

 Note: If there are no errors,
the file broadcast is now a full
C program executable that
can be started by an OS

 New: C program with MPI message exchanges
(cf. Lecture 2 – Parallel Programming with MPI)

[7] Icelandic HPC Machines & Community

broadcast.c

C
using a C compiler

mpicc

Broadcast
executable

C

Practical Lecture 3.1 – Understanding MPI Messages & Collectives 25 / 30

Step 6: Parallel Processing – Executing an MPI Program with MPIRun & Script

 Submission using the Scheduler – Update(!)
 Example: SLURM on Jötunn HPC system
 Scheduler allocated 4 nodes as requested
 MPIRun & scheduler distribute the

executable on the right nodes
 Output consists of the

buffer from all the
involved processes
that was filled by
rank 0 with content

 Note –n vs. –N in
our job script

Jötunn compute nodes

Jötunn login node

Sc
he

du
le

r

output file

Practical Lecture 3.1 – Understanding MPI Messages & Collectives

 The job script parameter #SBATCH –N X indicates the NUMBER X OF
NODES; allocation by scheduler then depends on HPC system setup

 The job script parameter #SBATCH –n X indicates the NUMBER X OF
CORES; allocation by scheduler then depends on HPC system setup

 Both parameters #SBATCH –n X and #SBATCH –N X can be
combined in the job script if needed to fine-tune the requirements for
how much cores are needed on how many nodes

26 / 30

Exploring the Walltime – What happens when the job runs against the wall?

 Assignment #1 includes the use of the sleep command and the use of walltime with the SLURM scheduler using the –time option
Practical Lecture 3.1 – Understanding MPI Messages & Collectives 27 / 30

Lecture Bibliography

Practical Lecture 3.1 – Understanding MPI Messages & Collectives 28 / 30

Lecture Bibliography

 [1] 2013 SMU HPC Summer Workshop, Session 8: Introduction to Parallel Computing, Online:
http://dreynolds.math.smu.edu/SMUHPC_workshop/session_8.html

 [2] Introduction to Parallel Computing Tutorial, Online:
https://computing.llnl.gov/tutorials/parallel_comp/

 [3] Introduction to High Performance Computing for Scientists and Engineers,
Georg Hager & Gerhard Wellein, Chapman & Hall/CRC Computational Science, ISBN 143981192X

 [4] PEPC Webpage, FZ Juelich, Online:
http://www.fz-juelich.de/ias/jsc/EN/AboutUs/Organisation/ComputationalScience/Simlabs/slpp/SoftwarePEPC/_node.html

 [5] M. Goetz, C. Bodenstein, M. Riedel, ‘HPDBSCAN – Highly Parallel DBSCAN’, in proceedings of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC2015), Machine Learning in HPC Environments (MLHPC) Workshop, 2015, Online:
https://www.researchgate.net/publication/301463871_HPDBSCAN_highly_parallel_DBSCAN

 [6] LLNL MPI Tutorial, Online:
https://computing.llnl.gov/tutorials/mpi/

 [7] Icelandic HPC Machines & Community, Online:
http://ihpc.is

 [8] Caterham F1 Team Races Past Competition with HPC, Online:
http://insidehpc.com/2013/08/15/caterham-f1-team-races-past-competition-with-hpc

 [9] DEINO MPI & Examples, Online:
https://mpi.deino.net/

Practical Lecture 3.1 – Understanding MPI Messages & Collectives 29 / 30

Practical Lecture 3.1 – Understanding MPI Messages & Collectives 30 / 30

