High Performance Computing

ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. — Ing. Morris Riedel

Adjunct Associated Professor

School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland

Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

I @Morris Riedel (O} @Morriskiedel N
in orris Riede Qi @MorrisRiede

LECTURE 2

Parallel Programming with MPI

September 9, 2019
Room V02-156

éLLJ,llI_:’E:COM PUTING WEEP HELMHOLTZ H c u AL TELLIGENGE

CENTRE Projects COOPERATION UNIT

Forschungszentrum

5 e X
Ea . = UNIVERSITY OF ICELAND J U L I c H
2 § SCHOOL OF ENGINEERING AND NATURAL SCIENCES
7
FACULTY OF INDUSTRIAL ENGINEERING,
MECHANICAL ENGINEERING AND COMPUTER SCIENCE

Review of Lecture 1 — High Performance Computing (HPC)

= HPC Basics T = HPC Ecosystem Technologies

GPU

Multicore processor .
multi-core processors

Core 1 Core 2 Coren ith high single-th q Multiprocessor 1 Multiprocessor N ey many-core processors

L1 cache| [L1 cache L1 cache WI | Sin e- rea ! | . .
N & | CPU | with moderate single

performance
L2 cache . . thread performance
— . used in parallel computing . .
one chip used in parallel computing
L5 cachaiorAM P1 P2 P3 P4 P5
not only used in physical

modeling and simulation
sciences today, but also for
machine & deep learning

the Message Passing ARars

distributed memory (

" {MJ [MJ " {MJ architectures using NYIDIA.

[N []

; ; ; ; Interface (MPI) ' E\
Communication network P1 P2 P3 P4 PS5

Orlgmal Compressed W Reconstructed
represenvauon Ou |p it
xiE[Ré"*““ ¢, ERM X, ER"wss
o [o uo [vio L1D up |
z [2 ez [=] v [el el
L3 ' L3 ' <
<

| coherent

Input Mapping Bottleneck Demapping Output
Layer Layer

<
Layer Layer Layer

T1 72 T3 T4 T5

Shared Memory

Memory
- M [3] J. Haut, G. Cavallaro [4] F. Berman: Maximising the
[1] Distributed & Cloud Computing Book [2] Introduction to High Performance Computing for Scientists and Engineers and M. Riedel et al. Potential of Research Data
2/50

Lecture 2 — Parallel Programming with MPI

Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning
9.

Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

Lecture 2 — Parallel Programming with MPI

11.
12.
13.
14.
15.
16.

Scientific Visualization & Scalable Infrastructures
Terrestrial Systems & Climate

Systems Biology & Bioinformatics

Molecular Systems & Libraries

Computational Fluid Dynamics & Finite Elements

Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

= Practical Topics

= Theoretical / Conceptual Topics

3/50

Outline

= Message Passing Interface (MPI) Concepts

Modular Supercomputing Architecture & Application Examples
Distributed Memory Computers & MPI Standard for Portability
Point-to-Point Message Passing Functions

Understanding MPI Collectives

Using MPI Ranks & Communicators

= MPI Parallel Programming Basics

Jotunn HPC Environment with Libraries & Modules

Thinking Parallel & Step-wise Walkthrough for Parallel Programming
Basic Building Blocks of a Parallel Program

Code Compilation & Parallel Executions

Simple PingPong Application Example

Promises from previous lecture(s):

Practical Lecture 0.2: Lecture 2 will
provide a full introduction and many
more examples of the Message Passing
Interface (MPI) for parallel
programming

Lecture 1: Lecture 2 & 4 will give in-
depth details on the distributed-
memory programming model with the
Message Passing Interface (MPI)

Lecture 1: Lecture 2 will provide a full
introduction and many more examples
of the Message Passing Interface (MPI)
for parallel programming

Selected Learning Outcomes

» Students understand...

Latest developments in parallel processing & high performance computing (HPC)
How to create and use high-performance clusters
What are scalable networks & data-intensive workloads

e a
The importance of domain decomposition - el
Complex aspects of parallel programming R e el
HPC environment tools that support programming ST T SR
or analyze behaviour _""’Q""""‘i‘&?":‘fm N

Different abstractions of parallel computing on various levels

Foundations and approaches of scientific domain-
specific applications

= Students are able to ...

Programm and use HPC programming paradigms
Take advantage of innovative scientific computing simulations & technology
Work with technologies and tools to handle parallelism complexity

Lecture 2 — Parallel Programming with MPI 5/50

Message Passing Interface (MPI) Concepts

O
O

Lecture 2 — Parallel Programming with MPI 6/50

Parallel Programming with MPI — Physics & Engineering Applications for HPC

" Parallel programming
with MPI in physics
and engineering
applications typically
simulate or model a
specific area (i.e., a
model space) over a
specific time (i.e.,
simulation time)

. Parallel programming
with MPI in physics
and engineering
applications are often
based on known
physical laws using
iterative numerical
methods and are often
called simulation
sciences or

ccionces ical calculatic

" wiMPicanbe simulation over ti
considered as one sub
area of scientific

programming and/or
scientific computing

» Lecture 12 — 15 will offer more insights into a wide variety of physics & engineering applications that take advantage of HPC with MPI

Lecture 2 - Parallel Programming with MPI 7/50

Parallel Programming with MPI — Data Science Applications for HPC

= Machine Learning Algorithms
= Example: Highly Parallel Density-based spatial clustering of applications with noise (DBSCAN)
= Selected Applications: Clustering different cortical layers in brain tissue & point cloud data analysis

Ne
Clusterin
J 512 | —=— Hybrid DS1
o .DR 256 + —=— Hybrid DS2
108 | ME’IDS1
inear
a 64
3
E 32
a 16
processor 1 processor 2 ® 8
O'H 25 2‘!0 L3 2
026 o b 4
o0 [¢] 2
i OQOO 30 ERs 1
s 2 8 32 128 512
36/ 406 | Om 1 O 2 number of cores
jS47e)
AT (K —— L] MO e S 18T

[11] M. Goetz and M. Riedel et al,
Proceedings IEEE Supercomputing Conference, 2015

» Lecture 8 will provide more details on MPI application examples with a particular focus on parallel and scalable machine learning

Lecture 2 - Parallel Programming with MPI 8/50

Example: Modular Supercomputing Architecture — MPI Usage in Cluster Module

" The Cluster Module (CM) offers a
Cluster Nodes (CNs) with high
single-thread performance and a
universal Infiniband interconnect

we focus in this
lecture only on
this module

" Given the CM architecture setup N
it works very well for applications S
that take advantage of MPI AN

>

network

CLUSTER

MODULE

interconnection
important

SCALABLE

STORAGE

SERVICE Ll
MODULE

o

O,

A

[7] DEEP Projects Web Page MEfﬁ
Projacts

The modular supercomputing architecture (MSA)
enables a flexible HPC system design co-designed
by the need of different application workloads

Lecture 2 - Parallel Programming with MPI

High Energy Physics Earth Science Space Weather

N3

Molecular Dynamics Neuroscience Radio Astronomy

9/50

Application Example: Formula Race Car Desigh & Room Heat Dissipation

® Pro: Network communication is relativel hidden and supported

= Contra: Programming with MPI still requires using ‘parallelization methods’
= Not easy: Write ‘technical code’ well integrated in ‘problem-domain code’

= Example: Race Car Simulation &
Heat dissipation in a Room

= Apply a good parallelization method WY IR '

(e.g. domain decomposition)

= Write manually good MPI code for
(technical) communication
between processors
(e.g. across 1024 cores)

= |ntegrate well technical code
with problem— domain code [10] Modified from [2] Introduction to High Performance Computing

Caterham F1 team for Scientists and Engineers
(e.g. computational fluid dynamics & airflow)

(a) Initial heatmap. (b) After 50 round ds. (c) After 200 rounds.

> Lecture 3 will provide more details on MPI application examples with a particular focus on parallelization fundamentals

Lecture 2 — Parallel Programming with MPI 10/50

Distributed-Memory Computers — Revisited (cf. Lecture 1)

= Adistributed-memory parallel computer establishes a ‘system view’
where no process can access another process’ memory directly

[2] Introduction to High Performance Computing for Scientists and Engineers

P |P P#P P
c (|2 C (i‘. C
M

dominant
programming model
Message Passing

Interface (MPI) Coammunication network

(a) Initial heatmap. (b) After 50 rounds. (c) After 200 rounds.

" Features
= Processors communicate via Network Interfaces (NI) [10] Modfied from){g Introduction to :;?:eif:formance Computing
aternam eam

= NI mediates the connection to a Communication network
» This setup is rarely used = a programming model view today

Lecture 2 — Parallel Programming with MPI 11/50

Programming with Distributed Memory using MPI — Revisited (cf. Lecture 1)

" Distributed-memory programming enables
explicit message passing as communication between processors

. Message Passing Interface (MPI) is dominant distributed-memory
programming standard today (available in many different version)

" MPI is a standard defined and developed by the MPI Forum

[5] MPI Standard

= Features
= No remote memory access on distributed-memory systems
= Require to ‘send messages’ back and forth between processes PX
= Many free Message Passing Interface (MPI) libraries available
= Programming is tedious & complicated, but most flexible method P1 P2 P3 P4 PS5

» Lecture 4 will provide more details on advanced functions of the Message Passing Interface (MPI) standard and its use in applications

Lecture 2 — Parallel Programming with MPI 12 /50

GNU OpenMPI Implementation

= Message Passing Interface (MPI)

= A standardized and portable message-passing standard
. . . MPI Forum
= Designed to support different HPC architectures
= A wide variety of MPIl implementations exist

= Standard defines the syntax and semantics

. . . P1 P2 P3 P4 P5
of a core of library routines used in C, C++ & Fortran

[5] MPI Forum

= OpenMP! Implementation
= Open source license based on the BSD license

Full MPI (version 3) standards conformance -::—jj'

Developed & maintained by a consortium of
academic, research, & industry partners

Typically available as modules on HPC systems and used with mpicc compiler
Often built with the GNU compiler set and/or Intel compilers

[6] OpenMPI Web page

» Lecture 2 will provide a full introduction and many more examples of the Message Passing Interface (MPI) for parallel programming

Lecture 2 - Parallel Programming with MPI 13 /50

What is MPI from a Technical Perspective?

= ‘Communication library” abstracting from low-level network view
= Offers 500+ available functions to communicate between computing nodes
= Practice reveals: parallel applications often require just ~12 (!) functions
» Includes routines for efficient ‘parallel |/O” (using underlying hardware)

= Supports ‘different ways of communication’
= ‘Point-to-point communication” between two computing nodes (P <—>P)

= Collective functions involve ‘N computing nodes in useful communiction’ = Computing nodes

are independent
computing
processors (that

= Deployment on Supercomputers supporting Applications Portability may also have N

cores each) and
= |nstalled on (almost) all parallel computers that are all part of

. _ one big parallel
= Different languages: C, Fortran, Python, R, etc. . . computer (e.g.
. . . . hybrid architecture,
= Careful: Different versions might be installed of. Lecture 1)

Lecture 2 — Parallel Programming with MPI 14 /50

P1 P2 P3 P4 P5

MPI Standard enables Portability of Applications

= Key reasons for requiring a standard programming library
= Technical advancement in supercomputers is extremely fast
= Parallel computing experts switch organizations and face another system

= Applications using proprietary libraries where not portable
= Create whole applications from scratch or time-consuming code updates

= MPI changed this & is dominant parallel programming model

= Works for different
MPI standard
implementations

= E.g., MPICH
= E.g., Parastation MPI - orting a paralle .
- Eg, OpenMP| MPI lerary MPI application MPI lerary

Etc.

Lecture 2 — Parallel Programming with MPI

P1 P2 P3 P4 P5

L] MPI is an open
standard that
significantly supports
the portability
of parallel
applications across a
wide variety of
different HPC systems
and supercomputer
architectures

15 /50

Is MPI yet another Network Library?

= TCP/IP and socket programming libraries are plentiful available
= Do we need a dedicated communication & network protocols library?

= Goal: simplify programming in parallel programming
= Focus on scientific and engineering applications with mathematical calculations
= Enable parallel and scalable machine and deep learning algorithms

= Selected reasons

Designed for performance within large parallel computers (e.g. no security)
Supports various interconnects between ‘computing nodes’ (hardware)
Offers various benefits like ‘reliable messages’ or ‘in-order arrivals’

P1 P2 P3 P4 P5

. MPI is not designed to handle any communication in computer networks and is thus very special
" MPI is not good for clients that constantly establishing/closing connections again and again (e.g. would have very slow performance in MPI)

" MPI is notgood for internet chat clients or Web service servers in the Internet (e.g. no security beyond firewalls, no message encryption
directly available, etc.)

Lecture 2 — Parallel Programming with MPI 16 /50

Message Passing: Exchanging Data with MPI Send/Receive

i..:*‘fbmpute
Node

=

DATA: 17 DATA: 80

P1 P2 P3 P4 PS5

Each processor has
its own data in its
memory that

can not be
seen/accessed by
other processors

MPI point-to-point
communications

M DATA: 19T

DATA: 06

Lecture 2 — Parallel Programming with MPI 17 /50

Collective Functions : Broadcast (one-to-many)

NEW: 17
/
| / I
DATA: 17 _ -8 DATA: 80 P1L P2 P3 P4 P5
. NEW: 17 = Broadcast

SR distributes the

same data to many
P P or even all other

processors

DATA: 06 M M DATA: 19

Lecture 2 - Parallel Programming with MPI 18 /50

Collective Functions: Scatter (one-to-many)

T DATA: 10 _
T

J DATA: 20
" DATA: 30 la\laT P1 P2 P3 P4 P5

Scatter distributes
different data to
many or even all
other processors

DATA: 06 DATA: 19

Lecture 2 - Parallel Programming with MPI 19/50

Collective Functions: Gather (many-to-one)

Gather collects data
from many or even
all other processors
to one specific
processor

N
DAT“ 17 mDATA <0 PL P2 P3 P4 PS5
[]

P

N\ o

DATA: 06 M M DATA: 19

Lecture 2 - Parallel Programming with MPI 20/50

Collective Functions: Reduce (many-to-one)

NEW: 122 global sum
as example

+
N\ '
DATA: 80T

DATA: 06 DATA: 19

Lecture 2 - Parallel Programming with MPI

P1 P2 P3 P4 PS5

Reduce combines
collection with
computation based on
data from many or even
all other processors

Usage of reduce
includes finding a
global minimum or
maximum, sum, or
product of the different
data located

at different processors

21/50

Using MPI Ranks & Communicators

MPI_COMM_WORLD

= Answers the following question:

© o o (numbers reflect = How do | know where to send/receive to/from?
s © unique identity o . .
= o © P of processor = Each MPI activity specifies the context in
d named MPLranio which a corresponding function is performed
00° ... L * MPI_COMM_WORLD
C © o (region/context of all processes)

o
= Create (sub-)groups of the processes / virtual

06 groups of processes
Q‘_’/ = Peform communications only within these sub-

C
e ©
b/
groups easily with well-defined processes
=2 e
@ communications /8

©

C } = Using communicators wisely in collective functions
(4] can reduce the number of affected processors

[8] LLNL MPI Tutorial . MPI rank is a unique number for each processor

» Lecture 4 on advanded MPI techniques will provide details about the often used MPI cartesian communicator & its use in applications

Lecture 2 — Parallel Programming with MPI 22 /50

[Video] Introducing MPI — Summary

E e

Reduce (one-to-many)

High Performance Computing Introducing r\.ﬂPI'

[9] Introducting MPI, YouTube Video

Lecture 2 — Parallel Programming with MPI 23 /50

MPI Parallel Programming Basics

O
O 0

Lecture 2 — Parallel Programming with MPI 24 /50

Starting Parallel Programming — What do we need?

= Check access to the cluster machine
= Check MPI standard implementation and its version
= Often SSH is used to remotely access clusters

= OpenMPI

= ‘Open Source High Performance Computing’

= Using the module environment
(cf. Practical Lecture 0.2)

= Other Implementations exists [6] OpenMPI Web page
= E.g., MPICH implementation
= E.g., Parastation MPIl implementation
= (we don‘t use those in this course)

[12] Icelandic HPC Machines & Community

Lecture 2 — Parallel Programming with MPI 25/50

HPC System — Jotunn Cluster — Revisited (cf. Practical Lecture 0.1)

= 4 Nodes
= Cpu: 2x Intel Xeon CPU E5-2690 v3 @ 2.60GHz
(2.6 GHz, 12 core)

Ly

= Memory
= 128GB DDR4 Jotunn
= 10 Gb/s Ethernet o ;
= Ganglia monitoring :
service E

= Shows usage of CPUs
[12] Icelandic HPC Machines & Community

26 /50

» We will have a visit to computing room of J6tunn to ‘touch metal’ and will meet our HPC System expert Hjorleifur Sveinbjornsson

Lecture 2 - Parallel Programming with MPI

SSH Access to HPC System — Jotunn HPC System Example — Revisited

= Example: first login via Hekla (if you are not in Uni network)

[morris@hekla ~]% ssh morris@hekla.rhi.hi.is

he authenticity of host la.rhi.hi.is (2a00:c88:4000:1650::165:2)"' can't be established.
RSA key fingerprint is 03:d4:9c:06:7e:0e:56:f4:aa:e3:f0:fe:57:bb:e7:12.

Thu ert ad tengjast Heklu (hekla.rhi.hi.is) fjolnotendavel RHT.
Fyrir alla nemendur og starfsmenn Haskola Tslands.
Leidbeiningar: http://rhi.hi.is/fjolnotendatolvur

You are connecting Hekla (hekla.rhi.hi.is) for all students and

staff of the University of Iceland.
Instructions: http://rhi.hi.is/multi_user_computers

017 from

Styrikerfi: GNU/Linux
Cent0S release 6.8 (Final)

Fjoldi tengdra notenda: 3
[morris@hekla ~1% [

word:
ast login: Tue Sep 5 04:10:01 2017 from hekla.rhi.hi.is
Welcome to J&tunn

See the jotunn sections at http://ihpc.is

Each user has 100G quota so be tidy and
back up your files

[12] Icelandic HPC Machines & Community

[morris@jotunn ~1%

Lecture 2 - Parallel Programming with MPI 27 /50

Step 1: SSH Access to HPC System — Jotunn HPC System Example

B hekla.rhi.hi.is (morris) - u}

B % % A& @

- 4 h & O

MultiExec Tunneling Packages Settings

X

X ©

%

Session Servers Tools Sessions View Split Help X server Exit
Quick connect... AN (<13 hekla.rhihiis (morris)
L * ' ° AL ¢ MobaXterm 11.0 -
o /heima/morris/ (SSH client, X-server and networking tools)
2+ Name Size A .) R
S ma. > SSH session to morris@hekla.rhi.hi.is
@ .ssh ¢ SSH compression : v
= .public_html * SSH-browser v
g [small_cnn_in_9x9_random_0.1_... 36(¢ X11-forwarding : v (remote display is forwarded through SSH)
= [run_3Dcnn.py 12 « DISPLAY : v (automatically set on remote server)
! 2]RS_data.py 20
8 [llarge_cnn_in_9x9_random_0.1_1... 11 > For more info, ctrl+click on help or visit our website
S jotunn.txt 1
=)L Callbacks.py 3
;] hpdbscan.tar PGBl st login: Sun Sep 1 21:26:06 2019 from 2a02:a03f:48d5:fa00:e5ca:e7e5:945:bcO6
& LlbremenSmallhs ICR/ usr/bin/xauth: error in locking authority file /heima/morris/.Xauthority
|_|bremen.h5 12 b o o o o e e e e e
i Xauthority-c 0 ‘
fud 'Xau_thm'ty ! | Thu ert ad tengjast Heklu (hekla.rhi.hi.is) fjolnotendavel RHI.
9 'V‘m;,rl'fo 1 | Fyrir alla nemendur og starfsmenn Haskola Islands.
'2En'e 1 | Leidbeiningar: http://rhi.hi.is/fjolnotendatolvur
] \
:EZ;:K i | You are connecting Hekla (hekla.rhi.hi.is) for all students and
Jnewsrc 1 | staff of the University of Iceland.
Jinputre 1 | Instructions: http://rhi.hi.is/multi_user_computers
.cshre 1 |
.bashrc 1 ittt ntutiediediediediediediediediediediediededieiddedied ittt ittt ittt
.bash_profile 1
<Dl > Styrikerfi: GNU/Linux

Cent0S release 6.10 (Final)
&% Remote monitoring
Fjoldi tengdra notenda: 9

[Follow terminal folder [morris@hekla ~1$ ssh morris@jotunn.rhi.hi.isf]

Hekla System

B hekla.rhihi.is (morris)

&)

Session

iy !
. 4

Servers Tools Sessions

Quick connect...

A

Sessions

Sftp N\ Macros &® Too...

NTa

t

T

o]

~

View

/heima/morris/

~ Name

t

.ssh
.public_html

ﬂ small_cnn_in_9x9_random_0.1_...
B run_3Dcnn.py
E} RS_data.py

U large_cnn_in_9x9_random_0.1_1...

[=)jotunn.txt
[#)JLCallbacks.py
[[)hpdbscan.tar

D bremenSmall.h5
D bremen.h5

Xauthority-c
Xauthority
.viminfo

.logout
.login
jnewsrc
.inputrc
.cshrc
.bashrc
.bash_profile

=% Remote monitoring

[] Follow terminal folder

Size A

Jotunn HPC System

- [m] X
X O
X server Exit

A []3. hekla.rhi.hi.is (morris) : V/

2 ¥ h O

Split MultiExec Tunneling Packages Settings Help

Last login: Sun Sep 1 21:26:06 2019 from 2a02:a03f:48d5:fab0:e5ca:e7e5:945:bc0O6
/usr/bin/xauth: error in locking authority file /heima/morris/.Xauthority

Thu ert ad tengjast Heklu (hekla.rhi.hi.is) fjolnotendavel RHI.
Fyrir alla nemendur og starfsmenn Haskola Islands.
Leidbeiningar: http://rhi.hi.is/fjolnotendatolvur

You are connecting Hekla (hekla.rhi.hi.is) for all students and
staff of the University of
Instructions: http: i.h

1ti_user_computers

Styrikerfi: GNU/Linux
Cent0S release 6.10 (Final)

Cainlds
[morris@hekla ~1$ ssh morris@jotunn.rhi.hi.is
norris@jotunn.rhi.hi.is's password:

Last login: Sun Sep 1 19:19:54 2019 from hekla.rhi.hi.is
Welcome to Jotunn

+nnndea natanda. 0

See the jotunn sections at http://ihpc.is

Each user has 100G quota so be
back up your files

tidy and

[morris@jotunn ~]$ hostname -A
jotunn-login2.rhi.hi.is jotunn
[morris@jotunn ~]$

jotunn.rhi.hi.is

Step 2: Edit a Text File — Simple Hello World C Programm — Revisited

= #include is used for C header files that is a file that contains function
declarations for C in-built library functions; stdio.h is the standard input and
output library for C

#include <stdio. h> e _____

int main()

---__--------_________ . The main function is ‘called‘ by the operating system when a user runs the C
{ T ——— program — but essentially a usual c function with optional parameters that we
will explore during the course of the lecture series

printf ("Hello, World!"); p=====ecamme o _] . The printf() function sends formatted text as output to stdout and is often
used for simple debugging of C programs

return O;

L] Return provides return values to the calling function; in the case of the main
function this can be considered as an exit status code for the OS. Mostly, 0

} exit code signifies a normal run (no errors) and a non 0 exit code (e.g., 1)

usually means there was a problem and the program had to exit abnormally.

= Simple C Program
= Above file content is stored in file hello.c c using a C compiler

R

= Although .c file extension it remains a normal text file

= hello.cis not executable as C programm = it needs a compilation hello.c

Lecture 2 — Parallel Programming with MPI 29 /50

New Steps Required: Start ‘Thinking’ Parallel

= Parallel Processing Approach * SPMDstands
= Parallel MPI programs know about the existence of other processes of it “Pnrcﬁra:mD t
and what their own role is in the bigger picture ultiple Data

= MPI programs are written in a sequential
programming language, but executed in parallel

= Same MPI program runs on all processes (SPIVID)

pro-ip

= Data exchange is key for design of applications
» Sending/receiving data at specific times in the program
= No shared memory for sharing variables with other remote processes
= Messages can be simple variables (e.g. a word) or complex structures

= Start with the basic building blocks using MPI PP

= Building up the ‘parallel computing environment’ '

Lecture 2 — Parallel Programming with MPI 30/50

Step 3: Edit a Text File — (MPI) Basic Building Blocks: Variables & Output

. . . The main function is ‘called‘ by the operating system when a user runs the C
#include <stdio.h> P program — but essentially a usual c function with optional parameters that we
’,f' added here to be used later in the initialization of the MPI environment
. . . f”
int main(int argc, char** argv) [* Two integer variables that are later useful for working with specific data
{ =" obtained from the specific MPI library that we need to add in the next step too
T in order to fill information into the integer variables about rank and sizes

int rank, size;

. The printf() function sends formatted text as output to stdout and

printf("Hello World, I am %d out of %d\n", . is often used for simple debugging of C programs
rank, size); “~<_ | = Thinking in parallel in parallel programming is to understand that
s different processes have an identity and work on different
elements of the program
return 0; = In the example we want to give an output that shows the identity
) of each MPI process by using the rank and size information
= Extended Simple C Program (still C only)
= Above file content is stored in file hello.c c using a C compiler
= Selected changes to the basic c program structure to prepare for MPI] —
= hello.c is not executable as C programm = it needs a compilation hello.c

Lecture 2 — Parallel Programming with MPI 31/50

Step 4: Edit a Text File — MPI Basic Building Blocks: Header & Init/Finalize

. . . Libraries can be used by including C header files, here the library for MPI is
#include <stdio.h> T included in order to use several MPI functions in our extended C program

#include <mpi.h> |-

int main(int argc, char** argv)

{ = The MPLINIT() function initializes the MPI environment and can take inputs
via the main() function arguments

int rank, size;

MPI Init(&argc, &argv);

printf ("Hello World, I am %d out of %d\n",
rank, size); " MPI_Finalize() shuts down the MPI environment

____________________________ = After MPI_Finalize() no parallel execution of the code can take place)

MPI Finalize();

return O;

} using a C compiler
C | m——

= Extended Simple C Program -
ello.c
= hello.cis not executable as C programm > it needs a compilation

Lecture 2 — Parallel Programming with MPI 32/50

Step 4: Edit a Text File — MPI Basic Building Blocks: Rank & Size Variables

#include <stdio.h>

#include <mpi.h>

int main(int argc, char** argv)
{
int rank, size;

MPI Init(&argc, &argv);

MPI Comm size (MPI_COMM WORLD, &size) ;| 7

MPI Comm rank (MPI_COMM WORLD, é&rank);

printf ("Hello World, I am %d out of %d\n",
rank, size);

MPI Finalize();
return O;

}
= Extended Simple C Program

The MPI_Comm_size()
function determines the
overall number of n
processes in the parallel
program: stores it in
variable size

The MPI_Comm_rank()
function determines the
unique identifier for each
processor:

stores it in variable rank
with valures (0 ... n-1)

MPI_COMM_WORLD
communicator constant
denotes the ‘region of
communication’, here all
processes

= hello.c is not executable as C programm > it needs a compilation

Lecture 2 — Parallel Programming with MPI

MPI_COMM_WORLD

© ©

©
(0] ‘:3‘3 g ©
@
©
oo.,‘; srous o o' o :
© © © ©

hello.c

(0
2] 0
S — (@

[8] LLNL MPI Tutorial

using a C compiler

R

33/50

Step 5: Load the right Modules for Compilers & Compile C Program (1)

[morris@jotunn hello-mpil]$ hostname -a
jotunn.rhi.hi.is

[morris@jotunn hello-mpil$ pwd
/home/morris/2019-HPC-Course/hello-mpi
[morris@jotunn hello-mpil]$ more hello.c
#include <stdio.h>

#include <mpi.h>

int main(int argc, char** argv) {
int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size); using a C compiler
MPI_Comm_rank (MPI_COMM_WORLD, &rank); C —

printf("Hello World, I am %d out of %d\n", rank, size);

hello.c

MPI_Finalize();

return 0;

[12] Icelandic HPC Machines & Community

Lecture 2 - Parallel Programming with MPI 34 /50

HPC System Module Environment — Revisited (cf. Practical Lecture 0.1)

= Knowledge of installed compilers essential (e.g. C, Fortran90, etc.) s
= Different versions and types of compilers exist (Intel, GNU, MPI, etc.) |
= E.g. mpicc pingpong.c —0 pingpong

* Module environment tool
= Avoids to manually setup environment information for every application
= Simplifies shell initialization and lets users easily modify their environment |
* Modules can be loaded and unloaded
= Enable the installation of software in different versions

= Module avail
= Lists all available modules on the HPC system (e.g. compilers, MPI, etc.)

= Module load

= Loads particular modules into the current work environment [12] Icelandic HPC Machines & Community
= E.g. module load gnu openmpi

Lecture 2 — Parallel Programming with MPI 35/50

GNU OpenMPI Implementation — Revisited

= Message Passing Interface (MPI)
= A standardized and portable message-passing standard
= Designed to support different HPC architectures
= A wide variety of MPIl implementations exist

= Standard defines the syntax and semantics
of a core of library routines used in C, C++ & Fortran

nnnnnnnnnnnnnnnnnnnnnnn

MPI Forum

P1 P2 P3 P4 PS5 [7] MPI Forum

= OpenMP! Implementation
= Open source license based on the BSD license

Full MPI (version 3) standards conformance -::'—jj’

Developed & maintained by a consortium of
academic, research, & industry partners

[6] OpenMPI Web page

Typically available as modules on HPC systems and used with mpicc compiler

Often built with the GNU compiler set and/or Intel compilers

Lecture 2 - Parallel Programming with MPI 36 /50

Step 5: Load the right Modules for Compilers & Compile C Program (2)

[morris@jotunn hello-mpil$ module load gnhu openmpi

u US“’]g mOdUIeS to get the [morris@jotunn hello-mpil$ mpicc hello.c -o hello

[morris@jotunn hello-mpi]$ 1s -al

1 1 total 20
rlght C Compller for drwx rwxr - morris morris 54 sep 8 23:16
HH drwx rwxr - morris morris 34 sep 8 23:07
Complllng heno-c |-rwxrwxr- morris morris 8647 sep 8 23:16 hello

-rw-rw-r- - morris morris 291 sep 8 23:16 hello.c

| (module |Oad gnu openmpi’ - rWXr-Xr- morris morris 173 sep 8 23:08 submit-hello.sh

= Note: there are many C
compilers available, we

) _ |
here pick one for our c using a C compiler
particular HPC course that J —

works with the Message hello.c mpicc
Passing Interface (MPI)

= Note: If there are no errors,

the file hello is now a full C

C program executable that

can be started by an OS hello
executable

[12] Icelandic HPC Machines & Community

= New: C program with MPI statements
(cf. Practical Lecture 0.2 w/o MPI statements)

Lecture 2 - Parallel Programming with MPI 37 /50

Step 6: Parallel Processing — Executing an MPI Program with MPIRun & Script (1)

= Compilation done In Step 5

= Compilers and linkers need various information where include files and libraries can be found
= E.g. C header files like ‘mpi.h’

= Compiling is different for each programming language -
= Example to understand distribution of program 3 ..P

= E.g., executing the MPI program on 4 processors

—
= Normally batch system allocations mpirun K S
(cf. Practical Lecture 0.2)

= Understanding role

M

T

of mpirun is important create 4 processes that produce .'
output in parallel .
= Qutput of the program s . P
= Order of outputs ;% R |

Hello World, I am 3p5f%4 -~ ~

can vary because /0 ’ Helle World T om o

screen ‘serial resource Hello World, I am 2 of, &° M
Hello World, I am 14 4 N J " J

Lecture 2 — Parallel Programming with MPI 38 /50

Step 6: Parallel Processing — Executing an MPI Program with MPIRun & Script (2)

= Need of Job script
= Example using mpirun

module load gnu openmpi

mpirun /home/morris/2019-HPC-Course/hello-mpi/hello . ‘
mpirun -
~

create 4 processes that produce .'
output in parallel

= Step-Wise Walkthrough
= All performed steps should be done R
. . L 4
in same manner for all MPI jobs felloperids Loam ;&’i :
Hello World, I am 2 of“ﬁlﬂ‘
Hello World, I am 145F 4

Lecture 2 — Parallel Programming with MPI 39/50

Step 6: Parallel Processing — Executing an MPI Program with MPIRun & Script (3)

= Submission using the Scheduler
= Example: SLURM on Jotunn HPC system
= Scheduler allocated 4 nodes as requested
= MPIRun and scheduler distribute the executable on right nodes

= Qutput consists of
the combined
output of all 4
requested nodes

module load gnu openmpi

[mo rris@j Otunn he-L.LO - mpi] $ SbatCh Smeit - he-L.LO . Sh mpirun /home/morris/2019-HPC-Course/hello-mpi/hello
Submitted batch job 198760

Jotunn login node [:}

[morris@jotunn hello-mpil$ qstat
ob id Name Username Time Use S Queue

Scheduler

hello-mpi-exampl morris 00:00:00 C normal B
Jotunn Compute nodes

[morris@jotunn hello-mpil$ more slurm-198760.out)
Hello World, I am 0 out of 4 | T Ll output file
of 4 SRl

drwxrwxr-x 4 morris morris 34 sep 8 23:07 PHello World, am 3 out

[morris@jotunn hello-mpil$ 1s -al
otal 24
drwXxrwxr-x 2 morris morris 77 sep 8 23:34 .

s I
- rwxrwxr-x 1 morris morris 8647 sep 8 23:16 hello ,/ Hello World, I am 2 out of 4
I am 1 out of 4

-rw-rw-r-- 1 morris morris 291 sep 8 23:16 hello.c Pa
-rw-rw-r-- 1 morris morris 116 sep 8 23:34 slurm-198760.out Hello WOI‘ld,
-rwxr-xr-x 1 morris morris 188 sep 8 23:34 submit-hello.sh

40 / 50

Lecture 2 — Parallel Programming with MPI

Message Passing: Exchanging Data with MPI Send/Receive — Revisited

i..:*‘fbmpute
Node

=

DATA: 17 DATA: 80

P1 P2 P3 P4 PS5

Each processor has
its own data in its
memory that

can not be
seen/accessed by
other processors

MPI point-to-point
communications

M DATA: 19T

DATA: 06

Lecture 2 — Parallel Programming with MPI 41 /50

Message Passing: Exchanging Data with MPI Send/Receive — Example
= Example:

int main(argc,argv)
int argc; char *argv[]; {
int numtasks, rank, dest, source, rc, count, tag=1;
char inmsg, outmsg="x";

MPI Status Stat;
MPI Init(&argc,&argv);

MPI Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

1 urce = 1;

dest = 1, e
rc MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM _WORLD);

rc MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM WORLD, &Stat);
e if (rank ==1) {
= 0; source = 0;
MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM WORLD, &Stat);
MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM _WORLD);
MPI_Get count(&Stat, MPI_CHAR, &count);
printf (" char(s) with tag \n", rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG);

MPI Finalize();

Collective Functions : Broadcast (one-to-many) — Revisited

P

f DATA: 17_ NG

NEW: 17

P

DATA: 06 M

/|

Lecture 2 - Parallel Programming with MPI

NEW: 17

P

——
M J

DATA: 80

NEW: 17

P

M DATA: 19

P1 P2 P3 P4 PS5

Broadcast
distributes the
same data to many
or even all other
processors

43 /50

Collective Functions : Broadcast (one-to-many) — Example

= Example:

int main(argc,argv)

int argc;

char *argvl[];

{
int i,rank, numprocs;
int source,count;
int buffer[4];

MPI Status status;
MPI_Request request;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI Comm_rank(MPI_COMM_WORLD,&rank);

source=0;
count=4;
if(rank == source){
for(i=0;i<count;i++)
buffer[i]=i;
1
I

MPI Bcast(buffer,count,MPI_INT,source,MPI_COMM _WORLD);

for(i=0;i<count;i++)
printf("s \n",buffer[i]);

EPI Finalize();

Summary of the Parallel Environment & Message Passing

l MPI include file

Declarations, prototypes, etc.

Program Begins i
' M

Serial code

llnitialize MPI environment Parallel code begins Processor 1 Processor 2

~ ~,
a
K4 N

P P P process A process B

. [X N]

| network—
Do work & make message passing calls ~r T = T T _data |

(XX] system buffer system buffer
\ |\ J |\ J |\ _J |\ J / |
\\ " -
' Terminate MPI environment parallel code ends

P Path of a message buffered at the receiving process

Serial code

Program Ends () modified from [8] LLNL MPI Tutorial

M

Lecture 2 — Parallel Programming with MPI 45 /50

[Video] OpenMPI

MPI High-Level View

User application

| |

b »l o) 33372008

[13] What is OpenMPI, YouTube Video

Lecture 2 — Parallel Programming with MPI 46 / 50

Lecture Bibliography

O
O 0

Lecture 2 — Parallel Programming with MPI 47 / 50

Lecture Bibliography (1)

= [1] K. Hwang, G. C. Fox, J.). Dongarra, ‘Distributed and Cloud Computing’, Book, Online:
http://store.elsevier.com/product.jsp?locale=en EU&isbn=9780128002049

= [2] Introduction to High Performance Computing for Scientists and Engineers, Georg Hager & Gerhard Wellein, Chapman & Hall/CRC Computational Science,
ISBN 143981192X, English, ~330 pages, 2010, Online:
http://www.amazon.de/Introduction-Performance-Computing-Scientists-Computational/dp/143981192X

= [3]J. Haut, G. Cavallaro and M. Riedel et al., IEEE Transactions on Geoscience and Remote Sensing, 2019, Online:
https://www.researchgate.net/publication/335181248 Cloud Deep Networks for Hyperspectral Image Analysis

= [4] Fran Berman, ‘Maximising the Potential of Research Data’

= [5] The MPI Standard, Online:
http://www.mpi-forum.org/docs/

= [6] OpenMPI Web page, Online:
https://www.open-mpi.org/

= [7] DEEP Projects Web page, Online:
http://www.deep-projects.eu/

= [8] LLNL MPI Tutorial, Online:
https://computing.linl.gov/tutorials/mpi/

= [9] HPC — Introducting MPI, YouTube Video, Online:
http://www.youtube.com/watch?v=kHV6wmG35po

= [10] Caterham F1 Team Races Past Competition with HPC, Online:
http://insidehpc.com/2013/08/15/caterham-f1-team-races-past-competition-with-hpc

= [11] M. Goetz, C. Bodenstein, M. Riedel, ‘HPDBSCAN — Highly Parallel DBSCAN’, in proceedings of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC2015), Machine Learning in HPC Environments (MLHPC) Workshop, 2015, Online:
https://www.researchgate.net/publication/301463871 HPDBSCAN highly parallel DBSCAN

Lecture 2 — Parallel Programming with MPI 48 / 50

Lecture Bibliography (2)

= [12] Icelandic HPC Machines & Community, Online:
http://ihpc.is

= [13] YouTube Video, What is OpenMPI, Online:
http://www.youtube.com/watch?v=D0-xSWBGNAw

Lecture 2 — Parallel Programming with MPI 49 /50

Lecture 2 — Parallel Programming with MPI

measurement % '§ pe:iw
unding
Services Policy-based = concepts device analysis
forms cross-disciplinary resources E Cent cllmate Computer expertise

yearllk ComPUtatlonal CUmPUtmg o e I = disciplines ggyts :5_ Enable E

Cross-Disciplinary =
nodes A- ‘E Environment < °Modelling

EU d methOds 5 bl 5 =S Key scientific important £

oaches
unstruction
Fusion

Iﬂ

centers E basis IMTTASLrUCtUre =
C|ence simulations Esétﬁrzasgete'rfhantofé sies

k=

; hms. brain increasing

Jatabase:sm . a
ySis

a n al DLCL stored Resources analyze h E”

diff

SMAQ international
References

[
=1
o
@
e
=

MapReduce

msupercomputlng Work |mages
: 2 2 Scientific sofen

i RJJ external

=% performance

& computational ,’ esearc 5
research °¢ GCI@MCEHPC § Juslich T mm%a‘egaset%

S}'S em Cllmate mOdelllng AR5 Hardware é’ﬂg access m: hundreds Mutshel S:;::f:rskg
DLCLs Understandmg structures ech”;!“ﬁ‘es Earth = © Structure &
any Simulation £ directory = & project General 2

Provlde NASA Energy systems day o Health

use

alt

Summar
GI'IS
ervlc

=

ta-in
en

distrlhute
manag

Proce:

via EUDATprOEeSSIHg&ﬁgmn TB
computing using Euro ean

50 /50

