
High Performance Computing
ADVANCED SCIENTIFIC COMPUTING

Prof. Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

September 2, 2019
Webinar

Short Introduction to C Programming & Scheduling

PRACTICAL LECTURE 0.2 @MorrisRiedel@MorrisRiedel@Morris Riedel



Review of Practical Lecture 0.1 – Short Introduction to UNIX & SSH

 UNIX Operating System on HPC Systems

 Selected important UNIX commands
 E.g. ‘hostname –a‘ & ‘whoami‘ & ‘clear‘
 E.g. ‘cp SOURCE DESTINATION‘
 E.g. ‘ls -al‘ & ‘pwd‘ & ‘mkdir DIR‘ & ‘cd DIR‘

 Module environment
 E.g. ‘module load XYZ‘ & ‘module spider XYZ‘

 SSH Protocol to Connect to HPC Systems

 Different levels of security mechanisms
 E.g., public/private key pairs

(for DEEP Test cluster, often used world-wide)
 E.g., username/password

(for Jötunn teaching cluster, secure enough)

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 2 / 30 

[1] Icelandic HPC Machines & Community

[2] DEEP Test Cluster

[3] MobaXterm 
SSH Client

SSH protocol



Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Graphical Processing Units (GPUs)

8. Parallel & Scalable Machine & Deep Learning

9. Debugging & Profiling & Performance Toolsets

10. Hybrid Programming & Patterns

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling

11. Scientific Visualization & Scalable Infrastructures

12. Terrestrial Systems & Climate

13. Systems Biology & Bioinformatics

14. Molecular Systems & Libraries

15. Computational Fluid Dynamics & Finite Elements

16. Epilogue

+ additional practical lectures & Webinars for our
hands-on assignments in context

 Practical Topics

 Theoretical / Conceptual Topics
3 / 30 



Outline

 Programming & Compiling C Programs
 Common HPC Applications & Motivations for C Programming
 Step-Wise Walkthrough for Programming a Simple C Program
 HPC Systems Module Environment Revisited 
 Role of Compilers & Compiling C Programs
 Executing C Programs on HPC System Login Node (not good!)

 Working with Schedulers on HPC Systems
 Modular Supercomputer Examples as Multi-User Systems
 HPC System Software Environments
 Scheduling Principles
 HPC System Jötunn – Scheduler SLURM Examples
 Executing C Programs on HPC System Compute Nodes (right way!)

 This lecture is not considered to be a 
full introduction to C programming and 
scheduling techniques and rather 
focusses on selected commands and 
concepts particularly relevant for our 
assignments, e.g. module environment 
and C compilers that leverage the 
Message Passing Interface (MPI)

 The goal of this lecture is to make 
course participants aware of the 
process of compiling simple C 
programs and the use of scheduling 
tools existing on world-wide HPC 
systems

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 4 / 30 



Selected Learning Outcomes – Revisited 

 Students understand…
 Latest developments in parallel processing & high performance computing (HPC)
 How to create and use high-performance clusters
 What are scalable networks & data-intensive workloads
 The importance of domain decomposition
 Complex aspects of parallel programming  e.g., scheduling(!)
 HPC environment tools that support programming 

or analyze behaviour
 Different abstractions of parallel computing on various levels
 Foundations and approaches of scientific domain-

specific applications 

 Students are able to …
 Programm and use HPC programming paradigms
 Take advantage of innovative scientific computing simulations & technology
 Work with technologies and tools to handle parallelism complexity

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 5 / 30 



Programming & Compiling C Programs

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 6 / 30 



Communities
(e.g. remote
sensing &

health)
Research 
Groups

Simulation Labs

Cross-Sectional Teams Data Life Cycle Labs Exascale co-Design

Facilities

PADC

DEEP-EST
EU PROJECT

Domain-specific 
SDLs

Cross-
Sectional 

Team Deep 
Learning

Modular
Supercomputer

JURECA

Modular 
Supercomputer 

JUWELS

Research Group 
High 

Productivity 
Data Processing

Industry
Relations

Team

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling

Jülich Supercomputing Centre High Productivity Data Processing Research Group

7 / 30 



HPC Applications & Programming Paradigms – Motivation for C Programming

 Terrestrial Systems
 E.g. ParFlow Hydrology 

Parallel Application
(primarily written in C)

 E.g. OASIS Coupler 
provides a portable
set of C routines

[4] Terrestrial Systems SimLab

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling

Application Examples from 
Simulation & Data Labs

 Lecture 12 & Lecture 13 provides more insights about selected applications in Terrestrial Sytems & some applications in Neuroscience 

[5] NEST Web page

 Neuroscience
 E.g. NEST simulator for 

spiking neural network 
models at focuses on the 
dynamics, size and 
structure of neural 
systems (e.g. monkey 
brain)

 NEST's highly optimized 
simulation kernel which 
is written in C++

8 / 30 



Step 1: SSH Access to HPC System – Jötunn HPC System Example (1)

 Nodes
 4 cpu: 2x Intel Xeon CPU E5-2690 v3 @ 2.60GHz 

(2.6 GHz, 12 core)

 Memory
 128GB DDR4

 Interconnect
 10 Gb/s ethernet

 Access via accounts (accounts planned to be ready this week)
 ssh username@jotunn.rhi.hi.is
 Only reachable within University network
 From outside use first ssh uglausername@hekla.rhi.hi.is 

(UGLA account), then ssh username@jotunn.rhi.hi.is
[1] Icelandic HPC Machines & Community

 We will have a visit to computing room of Jötunn to ‘touch metal’ and will meet our HPC System expert Hjörleifur Sveinbjörnsson
Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 9 / 30 



Step 1: SSH Access to HPC System – Jötunn HPC System Example (2)

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 10 / 30 

Hekla System

Jötunn HPC System



Step 2: Edit a Text File – Simple Hello World C Programm (1)

#include <stdio.h> 

int main() 

{

printf("Hello, World!");

return 0; 

} 

 #include is used for C header files that is a file that contains function 
declarations for C in-built library functions; stdio.h is the standard input and 
output library for C

 The main function is ‘called‘ by the operating system when a user runs the C 
program – but essentially a usual c function with optional parameters that we 
will explore during the course of the lecture series

 We will have a visit to computing room of Jötunn to ‘touch metal’ and will meet our HPC System expert Hjörleifur Sveinbjörnsson
Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 11 / 30 

 The printf() function sends formatted text as output to stdout and is often 
used for simple debugging of C programs

 Simple C Program
 Above file content is stored in file hello.c
 Although .c file extension it remains a normal text file
 hello.c is not executable as C programm  it needs a compilation

 Return provides return values to the calling function; in the case of the main 
function this can be considered as an exit status code for the OS. Mostly, 0 
exit code signifies a normal run (no errors) and a non 0 exit code (e.g., 1) 
usually means there was a problem and the program had to exit abnormally.

hello.c

C
using a C compiler



Step 2: Edit a Text File – Simple Hello World C Programm (2)

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 12 / 30 

[1] Icelandic HPC Machines & Community

hello.c

C



HPC System Module Environment – Revisited (cf. Practical Lecture 0.1) 

 Knowledge of installed compilers essential (e.g. C, Fortran90, etc.)
 Different versions and types of compilers exist (Intel, GNU, MPI, etc.)
 E.g. mpicc pingpong.c  –o   pingpong

 Module environment tool
 Avoids to manually setup environment information for every application
 Simplifies shell initialization and lets users easily modify their environment
 Modules can be loaded and unloaded
 Enable the installation of software in different versions

 Module avail
 Lists all available modules on the HPC system (e.g. compilers, MPI, etc.)

 Module load 
 Loads particular modules into the current work environment
 E.g. module load  gnu openmpi

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 13 / 30 

[1] Icelandic HPC Machines & Community



GNU OpenMPI Implementation

 Message Passing Interface (MPI)
 A standardized and portable message-passing standard
 Designed to support different HPC architectures
 A wide variety of MPI implementations exist
 Standard defines the syntax and semantics 

of a core of library routines used in C, C++ & Fortran

 OpenMPI Implementation
 Open source license based on the BSD license
 Full MPI (version 3) standards conformance
 Developed & maintained by a consortium of 

academic, research, & industry partners
 Typically available as modules on HPC systems and used with mpicc compiler
 Often built with the GNU compiler set and/or Intel compilers

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 14 / 30 

 Lecture 2 will provide a full introduction and many more examples of the Message Passing Interface (MPI) for parallel programming

[6] OpenMPI Web page

[7] MPI Forum



HPC System Module Environment – Jötunn HPC System Example

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 15 / 30 

[1] Icelandic HPC Machines & Community

 Lecture 8 will provide an overview of performing unsupervised learning with clustering using the parallel HPDBSCAN module

 Parallel & 
scalable 
HPDBSCAN 
clustering 
algorithm
module for 
unsupervised
learning from 
extreme large 
quantities of 
data

 Different modules 
with various 
versions of 
openmpi using 
different compilers 
with openmpi

 We use the GNU 
compiled openmpi 
version that 
requires to load the 
GNU compiler too



Step 3: Load the right Modules for Compilers & Compile C Program

 Using modules to get the
right C compiler for 
compiling hello.c
 ‘module load gnu openmpi‘
 Note: there are many C

compilers available, we
here pick one for our 
particular HPC course that 
works with the Message
Passing Interface (MPI)

 Note: If there are no errors,
the file hello is now a full
C program executable that
can be started by an OS

[1] Icelandic HPC Machines & Community

hello.c

C
using a C compiler

 Lecture 2 will provide a full introduction and many more examples of the Message Passing Interface (MPI) for parallel programming

mpicc

hello
executable

C

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 16 / 30 



Step 4: Executing C Programs on HPC System Login Node (not good!) 

 Example
 Execute C on login node is 

a bad practice, just compiling is ok
 Here just for teaching purposes
 Execution of C programs

on HPC systems are usually
performed via schedulers
on HPC systems
(i.e., next lecture part)

 Execution provides output
 Visible directly on the screen

(stdout in this case)
 Execution is very fast  not a major problem here…
 … but think of a 24h climate simulation for example…

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 17 / 30 

Jötunn HPC System Experts
Máni & Hjölli

Jötunn compute nodes

Jötunn login node

Sc
he

du
le

r



Working with Schedulers on HPC Systems

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 18 / 30 



DEEP series of PROJECTS & HPC – Revisited 

 3 EU Exascale projects
DEEP, DEEP-ER, DEEP-EST

 27 partners
Coordinated by JSC

 EU-funding: 30 M€
JSC-part > 5,3 M€ 

 Nov 2011 – Dec 2020

 Juelich Supercomputing Centre
implements the DEEP projects 
designs in its HPC production 
infrastructure

 Strong collaboration
with our industry partners 
Intel, Extoll & Megware

[8] DEEP Projects Web Page

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 19 / 30 



JSC

General Purpose Cluster

File 
Server
GPFS, 
Lustre

IBM Power 6 
JUMP, 9 TFlop/s

IBM Blue Gene/P
JUGENE, 1 PFlop/s

HPC-FF
100 TFlop/s

JUROPA
200 TFlop/s

IBM Blue Gene/Q
JUQUEEN (2012)
5.9 PFlop/s

IBM Blue Gene/L
JUBL, 45 TFlop/s

IBM Power 4+
JUMP (2004), 9 TFlop/s

Highly scalable

Hierarchical
Storage Server JUWELS Scalable

Module (2019/20)
50+ PFlop/s

JUWELS Cluster 
Module (2018)
12 PFlop/s

JURECA Cluster (2015)
2.2 PFlop/s

JURECA Booster (2017)
5 PFlop/s

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 20 / 30 



Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 21 / 30 

Most important Screen at the Hall of Supercomputers @ JSC



Modular Supercomputer JUWELS in the Hall of Supercomputers @ JSC

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 22 / 30 



Modular Supercomputer JUWELS – Multi-User HPC System Example

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 23 / 30 

 Supercomputers & HPC systems 
are typically multi-user systems 
with concurrent usage by users at 
the same time

[9] LLview

 Usually a supercomputer & HPC 
system is 99% full of jobs of users 
and new computing jobs need to 
wait in a specific queue to be 
scheduled at some time

 Supercomputers & HPC systems 
execute a wide variety of different 
applications also named as 
‘computational jobs‘ at the same 
time raising requirements for job 
security w.r.t. data protection



HPC System Software Environment

 Operating System
 Former times often ‘proprietary OS’, nowadays often (reduced) ‘Linux’

 Scheduling Systems
 Manage concurrent access of users on Supercomputers
 Different scheduling algorithms can be used with different ‘batch queues’
 Example: SLURM @ JÖTUNN Cluster, LoadLeveler @ JUQUEEN, etc.

 Monitoring Systems
 Monitor and test status of the system (‘system health checks/heartbeat’)
 Enables view of usage of system per node/rack (‘system load’)
 Examples: LLView, INCA, Ganglia @ JOTUNN Cluster, etc.

 Performance Analysis Systems
 Measure performance of an application and recommend improvements (.e.g Scalasca, Vampir, etc.)

 HPC systems and 
supercomputers typically 
provide a software 
environment that support 
the processing of parallel 
and scalable applications

 Lecture 9 will offer more insights into performance analysis systems with debugging, profiling, and HPC performance toolsets
Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 24 / 30 

focus in this lecture

 Monitoring systems offer a 
comprehensive view of the 
current status of a HPC 
system  or supercomputer

 Scheduling systems 
enable a method by which 
user processes are given 
access to processors



HPC System Software Environment – Scheduling Principles

 HPC Systems are typically not used in an interactive fashion
 Program application starts ‘processes‘

on processors (‘do a job for a user‘)
 Users of HPC systems send ‘job scripts‘ 

to schedulers to start programs
 Scheduling enables the sharing of the HPC system 

with other users (i.e., multi-user environment)
 Offers a wide varity of algorithms

 E.g. First Come First Serve (FCFS)
 Queues processes in the order that they arrive in the ready queue.

 E.g. Backfilling
 Enables to maximize cluster utilization and throughput 
 Scheduler searches to find jobs that can fill gaps in the schedule
 Smaller jobs further back in the queue run ahead of a job waiting at the front of the queue 

(but this job should not be delayed by backfilling!)
Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 25 / 30 

[9] LLview



HPC System Jötunn – SLURM Scheduler Example

 Not interactive use of Jötunn
 Batch processing of computational jobs that will be scheduled
 Using a batch job script for the scheduler SLURM in a specific syntax

[1] Icelandic HPC Machines & Community

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 26 / 30 

 A scheduler typically takes a computational job script as an 
input in order to schedule this job somewhere on a 
supercomputer or HPC system at a specific time  i.e., if 
there is space available

 Typical parameters of the job script are number of 
processors, email address to get computational job 
notifications (e.g., when job is finished), and the location of 
the executable that should be run on the supercomputer



Step 4: Executing C Programs on HPC System Compute Nodes (right way!) 

 Example
 Execute C on login node is 

a bad practice, just compiling is ok
 Execution of C programs

on HPC systems are usually
performed via schedulers
on HPC systems

 E.g. SLURM on Jötunn using
sbatch JOBSCRIPT

 Job status with qstat
 Output & errors can 

be obtained from files

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 27 / 30 

Jötunn HPC System Experts
Máni & Hjölli

Jötunn compute nodes

Jötunn login node

Sc
he

du
le

r

output file



Lecture Bibliography

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 28 / 30 



Lecture Bibliography

 [1] Icelandic HPC Machines & Community, Online: 
http://ihpc.is

 [2] DEEP-EST Project DEEP Test Cluster, Online:
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/DEEP-EST/_node.html

 [3] MobaXterm SSH Client, Online: 
https://mobaxterm.mobatek.net/

 [4] Terrestrial Systems Simulation Lab, Online: 
http://www.hpsc-terrsys.de/hpsc-terrsys/EN/Home/home_node.html

 [5] Nest:: The Neural Simulation Technology Initiative, Online: 
https://www.nest-simulator.org/

 [6] OpenMPI Web page, Online:
https://www.open-mpi.org/

 [7] MPI Forum, Online: 
https://www.mpi-forum.org/

 [8] DEEP Projects Web page, Online: 
http://www.deep-projects.eu/

 [9] T. Bauer, ‘System Monitoring and Job Reports with LLView‘, Online: 
https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/supercomputer-ressources-2018-11/12b-sc-llview.pdf?__blob=publicationFile

Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 29 / 30 



Practical Lecture 0.2 – Short Introduction to C Programming & Scheduling 30 / 30 


