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Automated Soccer Scene Tracking
Using Deep Neural Networks
C. Bodenstein*, M.Goetz*, M. Riedel*
* High Productivity Data Processing Research Group, Jülich Supercomputing Center (JSC)
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Input Construction of an automated pipeline for the
broadcast of football games

In Germany: Up to 80k football games each week
Most matches will never be recorded e.g. amateurs
TV camera systems and cinematographer are expensive
Simple object tracking—i.e. the ball—is not sufficient for
specific game situations like e.g. corners
Learn the scene tracking using Deep Neural Networks
Goal: determine the point of interest coordinates and
camera zoom for each frame
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Figure: Panorama of the entire football field. The tetragons represent the focused areas by the cameraman. Manually captured ground truth, Prediction made by Deep Neural Network

Data Source
Capture the entire field with
multiple static cameras—two
prototypes with 2 or 5 images
respectively
Stitch images to singular panorama
Labeled focus x , y point and zoom
Currently 30 labeled football
games
∼0.5 TB MJPEG compressed
∼1.500.000 Frames
High resolution images in 2017
More at www.soccerwatch.tv

Why Deep Learning?
Convolutional Neural Networks
(CNNs) are state-of-the-art in
image classification and object
tracking [1]
Layers abstract different things:
the audience, players, the ball,
etc.
Recurrent Neural Networks
retain time information from
sequentially analyzed frames [2]
Popularity resulted in highly
optimized tools that use GPUs

The Learning Outcome
Input: DNN gets a
sequence of frames
Output: Three output
neurons describing x and y
position of the camera
focus plus the additional
zoom
Prediction close to the
ground truth and appears
natural
A look into the convolutions
can show learned features
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Genetic Optimization of the Deep Neural Networks

Select 2 genomes
Cut genomes at arbitrary position
Combine to one new genome

Each DNN can be expressed as a
genome
Examples: Enable/Disable Layer,
number of convolutions, size of kernel ...
Mutate genome randomly

Genome is decoded to phenotype (i.e.
DNN)
DNN trained with backpropagation
Training progress recorded

Train ends after timeout
Test on special data set
Best 30 percent will arbitraty choose
their mating partner
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Figure: Fitness over generations
(lower is better)

Genetic optimization of
Network Architecture on
Apache Spark Cluster
20 different DNN
”individuals” in parallel
Selection after three
hours of learning

Future Work
Training on new, high-quality data
Evaluation of the usage of RNNs
Reduction of the Network’s
complexity to allow real time
performance—5 FPS is sufficient
Smooth the camera motions in a
post processing step
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Figure: Network architecture


