

Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management

FOG DETECTION FROM CAMERA IMAGES EXPERIENCES AT KNMI

Andrea Pagani

3rd December 2018

Jülich Supercomputing Centre - Jülich, Germany

Agenda

- Focus after last time
- > Brief recap of the approach
- Model performance
- Fog detection APP (with DEMO)
- > Future work ideas

Fog as hazard

- Substantial impact on air, marine, and road traffic
- Appears and dissipates suddenly
- Large spatial differences (local phenomenon)
- Hard to accurately forecast

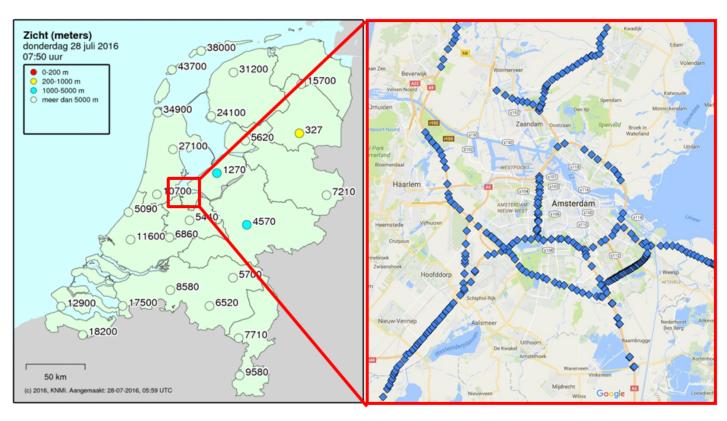
KNMI Goal

Short term

- Increase fog observations without placing new visibility sensors
- Use cameras to identify fog conditions and issue warnings

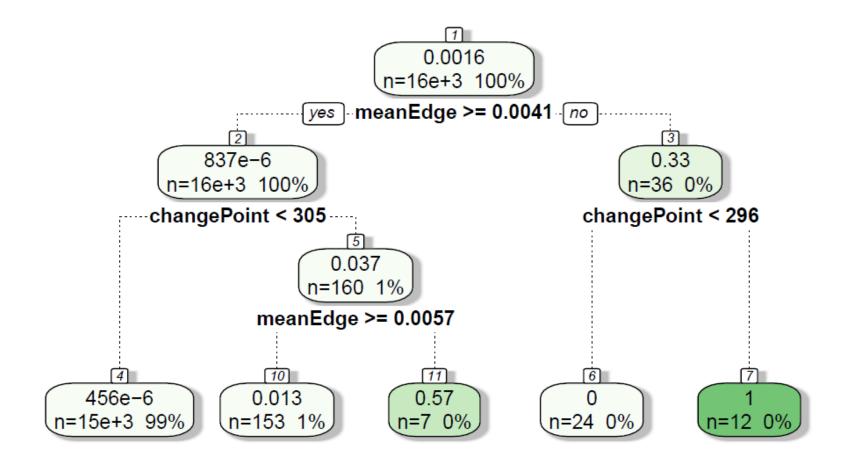
Long term

- Feed detected fog from camera observations to weather rooms and traffic control centers
- Assimilate detected fog into weather model to improve fog predictions


Limitations

 Daylight fog identification from static and moving cameras using image analysis

Satellite vs. visibility sensors vs. traffic cameras


First Steps:

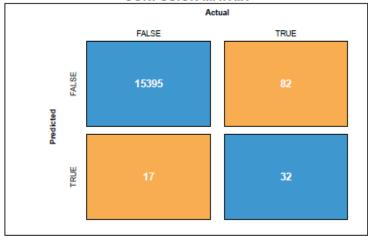
decision trees and random forest on KNMI test field pictures (7/2016)

- Features:
- **Mean Edges**: for finding the boundaries of objects within images. It works by detecting discontinuities in the image (e.g., foreground and background elements).
- Mean Brightness: perception of a source of radiating/reflecting light.
- **Mean Saturation:** is a measure of the purity of the color. The purest (most saturated) color is achieved by using just one wavelength, less pure come from a combination at different wavelengths.
- Mean HUE: perception of a source of being similar to one of the perceived colors: red, yellow, green, and blue, or to a combination of two of them.
- Fractal Dimension: self similarity in filling space.
- Transmission smoothness: transmission of the darkchannel of the image (smoothed indicator).
- Transmission changepoint: horizontal point where the transmission of the dark channel is subject to change.

Example decision tree for De Bilt

Static sceneries

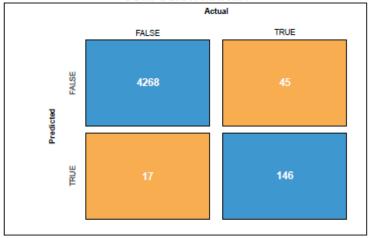
De Bilt test field


Cabauw station

Results for static cameras

De Bilt test field

CONFUSION MATRIX



Precision Recall F1 Accuracy 0.653 0.281 0.393 0.994
0.653 0.281 0.393 0.994

Train set (year 2016): 23174 Test set (6-12/2015): 15526

Cabauw station

CONFUSION MATRIX

DETAILS						
Precision	Recall	F1	Accuracy			
0.896	0.764	0.825	0.986			
0.000	5.751	5.525	0.000			

Train set (year 2017): 18266 Test set (10-12/2016): 4476

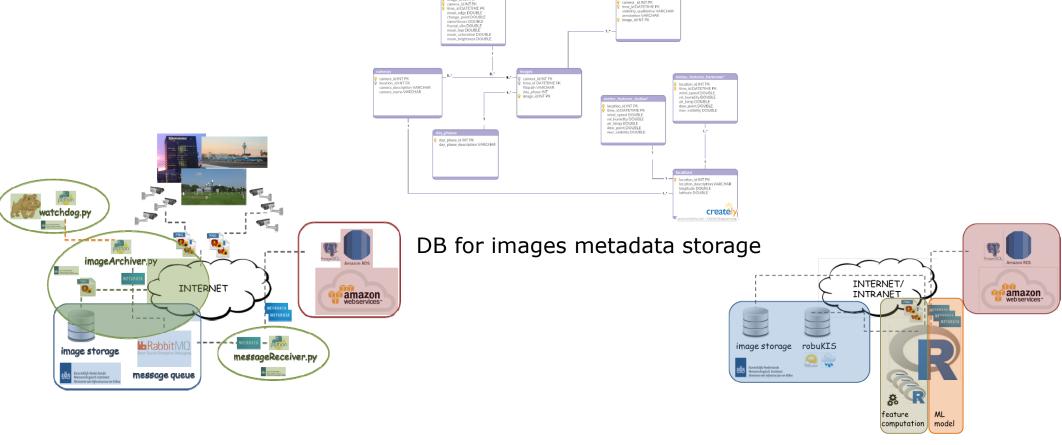
Tests with Twente station

- fish-eye lens only a few edges in the range of 50–250m fully unprotected camera

Weather (un)protection

Ice on the camera enclosure

Water drops on the camera enclosure



New phase with road department (since 01/2017)

- KNMI-RWS collaboration: partner to address a high-impact societal issue
- RWS (road dept):
 - test new/innovative solution for mobility problems
 - more automatic warnings
 - more coverage than manual operators
- KNMI:
 - have more data
 - test/improve ML models
 - deal with static and moving cameras of RWS domain
 - re-size the approach to deal with more data feeds

While waiting privacy clearance (6+ months)

Architecture for archiving images

Fetching relevant observations automatically

The dataset (finally)

- 7 cameras at KNMI Automatic Weather Stations
- 160 cameras along Dutch highways (since June 2017) + 160 new cameras (since October 2018)
- ~14 million images archived (and counting)
- Image sampling every 10 minutes
- Upon collection day phase is associated (day, night, dawn, dusk)
- Limited camera metadata (only lat/long position)

Change in approach: Why Neural Network (09/2017)

- Used proficiently in image processing and image classification
- More general method of fog detection than our previous attempt with decision trees and image features
- Sceneries are too different also for the same camera (e.g., zoom, pan, tilt)

Same camera, same day, few hours apart

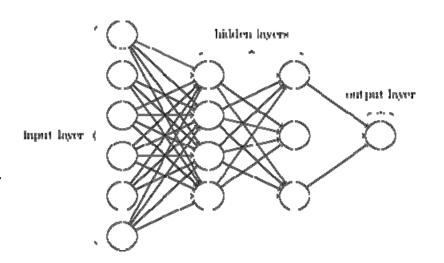
Labeling the data

- Visibility via meteorological optical range (MOR)
- From visibility to categorical indicator:
 - MOR<=250m → FOG</p>
 - MOR>250m → NO FOG

- Trade-off:
 - automatic labeling vs. manual labeling
 - enough data and enough GOOD data

Labeling for a case study (9/2018)

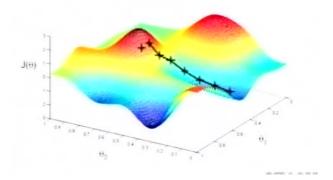
Two cases are considered for a work for CIMO-TECO WMO 2018 conference:



- Case A: 16 cameras along the highways in range of 4 MOR sensors
- Case B: 82 cameras along the highways in range of 7 MOR sensors

Neural network

- Brain inspired
- Each node (neuron) operates on the inputs and if a threshold is passed it "fires"
- Goal: learn about the phenomenon under investigation without explicitly providing specific rules
- A node sums up the (weighted) inputs and applies a rectifier



Neural network

- Learning phase: find the right weights that are best suited in approximating the desired output
- Weights start from an initial random guess and they are updated iteratively in order to minimize a loss function using some form of gradient descent
- By exposing to many (tens of thousands to millions) examples, the network will learn to approximate the output from the inputs provided

Gradient Descent

Image pre-processing

Reshape to 28x28 px
Image blurring
to
Harmonize images
Reduce computation
Counter overfitting

From image to features

- RGB channels extracted
- RGB pixel intensity
- Pixels intensity are the features (i.e., predictors)
- The input of the image to the neural network is constituted by a vector of 28x28x3=2352 variables

Full data transformation and feature extraction

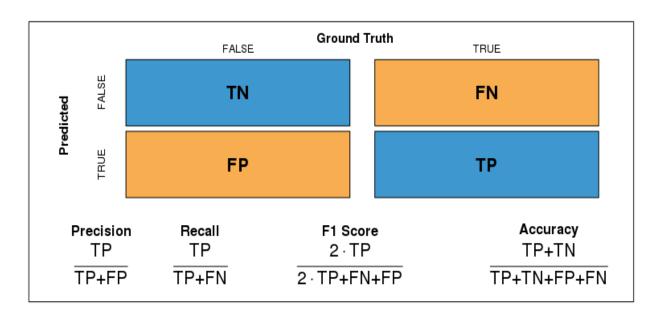
Model fitting

Dataset split

- Training (60%) Case A \sim 350k images Case B \sim 1.2M images
- Validation (20%)
- Test (20%)
- Deep neural network fitting via R and H2O library

Hyperparameters optimization via random grid search

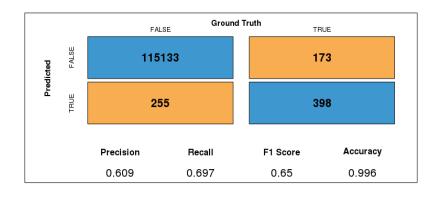
Model fitting


Case	Number of layers	Number of nodes in hidden layers	Activation function in hidden layers	F1 score training subset*
2.5km data set	7 (Input, 5 hidden layers, output)	75, 75, 50, 50, 10	Rectifier	0.986
7.5km data set	7 (Input, 5 hidden layers, output)	50, 50, 50, 25, 10	Rectifier	0.981

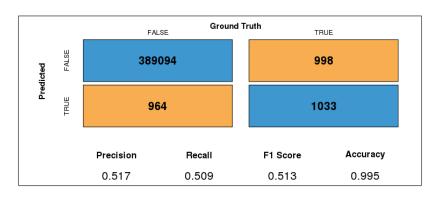
^{*}F1 score computed on a balanced subset from the training set of 10000 images per class.

Results

How to interpret

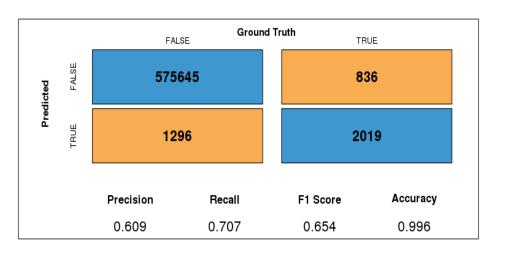


TRUE=foggy



Results

Case A


Case B

Results

All data of case A

False Positives and False Negatives

False Positives (model says FOG, label is NO FOG)

Strange scenery

Lens not protected

Just wrong

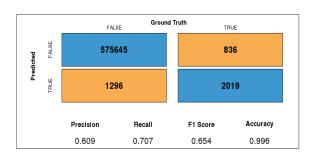
I'm (not) loving it ;-)

False Negatives (models says NO FOG, label is FOG)

Indeed no fog

Strange scenery

Just wrong



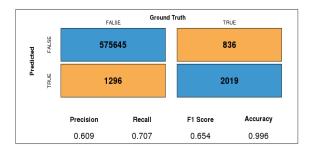
Not sure...

Analysis of results

- 1296 FP cases (model predicts dense fog and the sensor reports no dense fog)
- 707 (55%) the sensor reports fog (MOR<1000m)
- 235 cases (18%) not even report haze (MOR<5000m)
- FP occur mainly isolated in time (603 cases) and space (914 cases)

Examples FP cases

Analysis of results

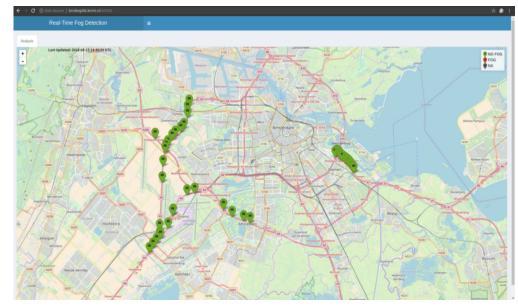

- 836 FN cases (model predicts no dense fog and the sensor reports dense fog)
- FN isolated in time (270 cases)
- FN occurs less often spatially isolated (305 cases)

Examples FN cases

Possibilities of post processing

Based on consistency in space and time

Doct mysessing	Duocicion	Decall	E4 coops	A	O/ amittad	Duncicion	0/ 50 5
Post processing	Precision	Recall	FT SCORE	ACCUIACY	% omitted	Precision*	% 10g
none	60.9%	70.7%	65.4%	0.9963	0.00%		
change	70.2%	74.7%	72.4%	0.9975	0.26%	22.5%	11.7%
change F> T	70.2%	69.3%	69.7%	0.9972	0.11%	21.5%	4.8%
change T> F	60.9%	76.0%	67.6%	0.9967	0.15%	23.3%	6.9%
difference with nearest		77.6%	76.2%	0.9982	0.37%	31.2%	23.7%
change OR nearest		80.6%	80.2%	0.9986	0.54%	28.4%	31.0%
change AND nearest	67.4%	72.7%	69.9%	0.9971	0.09%	23.4%	4.3%

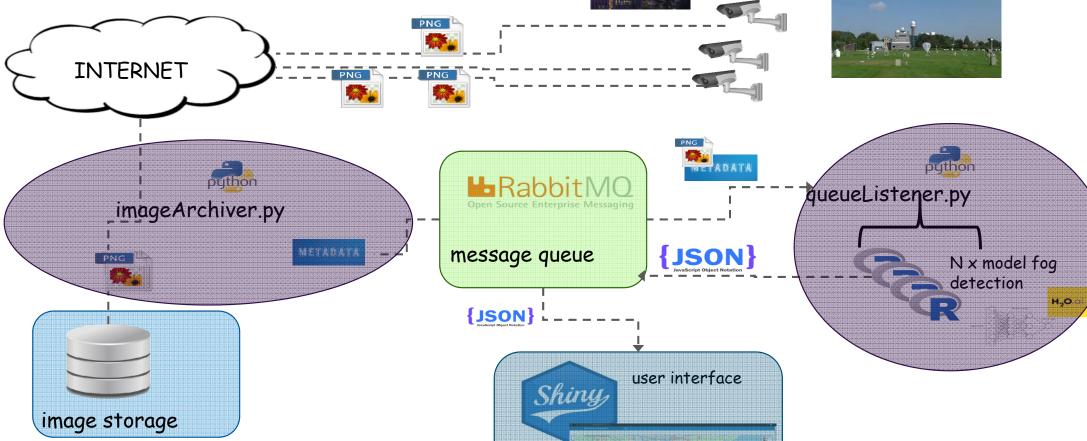

GUI implementation (8/2018)

- Web application using R shiny
- Goal: MVP (quick and dirty)
- But: standardized data exchange format (GeoJSON)

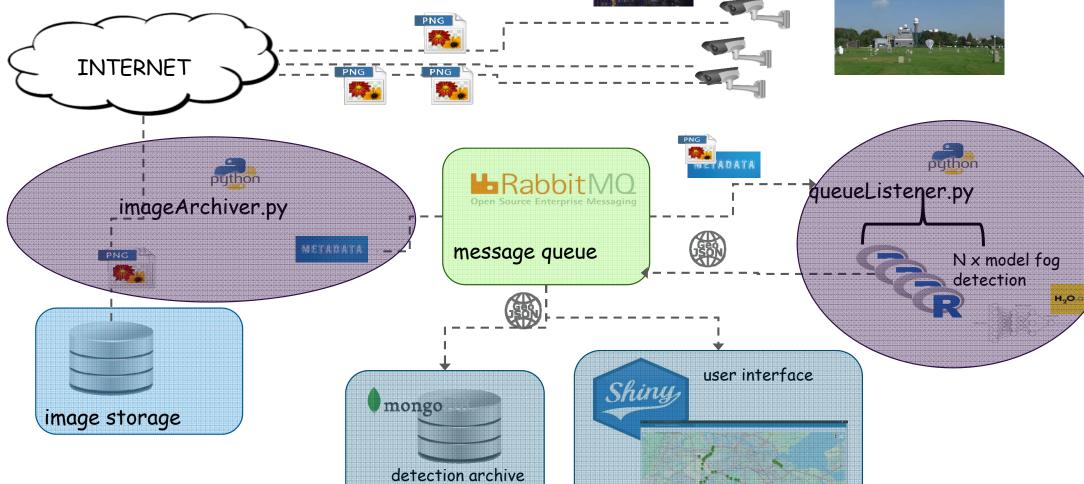
MVP available for test at KNMI weather room

Work ideas for 2019

- Fog in dawn/dusk conditions
- Model for multiple visibility classes
- Feedback from weather room experience
- Upscaling number of cameras and stress test
- CNN work with Ernir



Architecture



Architecture

