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Outline of the Course

1. HPC Introduction & Parallel and Scalable Clustering using DBSCAN

2. Parallel and Scalable Classification using SVMs with Applications

3. Deep Learning using CNNs driven by HPC & GPUs

4. Deep Learning using LSTMs driven by HPC & GPUs
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Outline

 Supervised Classification
 Simple Example with Linear Perceptron Model
 Data-Preprocessing
 Learning Approaches & Mathematical Building Blocks
 Training and Testing
 Selected Challenges

 Application Examples
 Remote Sensing Dataset
 Rome and Indian Pines
 Support Vector Machines
 Parallel and Scalable SVM piSVM
 Non-linear Transformation and Kernel Methods
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Supervised Classification
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Methods Overview

 Groups of data exist
 New data classified 

to existing groups

Classification

?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

 Machine learning methods can be roughly categorized in classification, clustering, or regression 
augmented with various techniques for data exploration, selection, or reduction
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(flowers of type ‘IRIS Setosa‘)

Simple Application Example: Classification of a Flower
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[1] Image sources: Species Iris Group of 
North America Database, www.signa.org  

(flowers of type ‘IRIS Virginica‘)

(what type of flower is this?)

 Groups of data exist
 New data classified 

to existing groups

?

(1) Problem Understanding Phase
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The Learning Problem in the Example

Learning problem: A prediction task
 Determine whether a new Iris flower 

sample is a “Setosa” or “Virginica”
 Binary (two class) classification problem
 What attributes about the data help?
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[1] Image sources: Species Iris Group of North America Database, www.signa.org  

(flowers of type ‘IRIS Setosa‘) (flowers of type ‘IRIS Virginica‘)

(what type of flower is this?)
8 / 177



Feasibility of Machine Learning in this Example

1. Some pattern exists: 
 Believe in a ‘pattern with ‘petal length‘ & 

‘petal width‘ somehow influence the type

2. No exact mathematical formula
 To the best of our knowledge there is no 

precise formula for this problem

3. Data exists
 Data collection from UCI Dataset „Iris“
 150 labelled samples (aka ‘data points‘)
 Balanced: 50 samples / class
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[3] UCI Machine Learning 
Repository Iris Dataset

[2] Image source: Wikipedia, Sepal

(2) Data Understanding Phase

 sepal length in cm
 sepal width in cm
 petal length in cm
 petal width in cm
 class: Iris Setosa, or

Iris Versicolour,  or
Iris Virginica

(four data attributes for each
sample in the dataset)

(one class label for each
sample in the dataset)
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Understanding the Data – Check Metadata

 First: Check metadata if available
 Example: Downloaded  iris.names includes metadata about data
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[3] UCI Machine Learning Repository Iris Dataset

…
(author, source, or creator)

(Subject, title, or context)

(number of samples, instances)

(metadata is not always available in practice)

(attribute information)

(detailed attribute 
information)

(detailed attribute 
information)
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Understanding the Data – Check Table View

 Second: Check table view of the dataset with some samples
 E.g. Using a GUI like ‘Rattle‘ (library of R), or Excel in Windows, etc.
 E.g. Check the first row if there is header information or if is a sample
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 sepal length in cm
 sepal width in cm
 petal length in cm
 petal width in cm
 class: Iris Setosa, or

Iris Versicolour,  or
Iris Virginica

(four data attributes for each
sample in the dataset)

(one class label for each
sample in the dataset)

(careful first sample taken as header,
resulting in only 149 data samples)

[4] Rattle Library for R
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Preparing the Data – Corrected Header
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(3) Data Preparation Phase

(correct header information, resulting in 150 data samples)

(correcting the header is not always necessary,
or can be automated, e.g. in Rattle)
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Preparing the Data – Remove Third Class Samples

 Data preparation means to prepare our data for our problem
 In practice the whole dataset is rarely needed to solve one problem
 E.g. apply several sampling strategies (but be aware of class balance)

 Recall: Our learning problem
 Determine whether a new Iris flower sample is a “Setosa” or “Virginica”
 Binary (two class) classification problem : ‘Setosa‘ or ‘Virginica‘
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(three class problem with
N = 150 samples including
Iris Versicolour)

(remove Versicolour class
samples from dataset)

(wo class problem with
N = 100 samples excluding
Iris Versicolour)

(export or save dataset
to iris-twoclass.data)
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Preparing the Data – Feature Selection Process

 Data preparation means to prepare our data for our problem
 In practice the whole dataset is rarely needed to solve one problem
 E.g. perform feature selection (aka remove not needed attributes)

 Recall: Our believed pattern in the data
 A ‘pattern with ‘petal length‘ & ‘petal width‘ somehow influence the type
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(N = 100 samples with 4 attributes and  1 class label)

 sepal length in cm
 sepal width in cm
 petal length in cm
 petal width in cm
 class: Iris Setosa, or

Iris Versicolour, or
Iris Virginica

(N = 100 samples with 2 attributes and  1 class label)

 petal length in cm
 petal width in cm
 class: Iris Setosa, or

Iris Versicolour,  or
Iris Virginica

(export or save dataset
to iris-twoclass-twoattr.data)

14 / 177



 Different samples of the original Iris dataset
 Created for linear seperability and non-linear seperability

Iris Dataset – Open Data
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[5] Iris Dataset
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Check Preparation Phase: Plotting the Data
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(Recall: we believed in a ‘pattern‘ with ‘petal length‘ 
& ‘petal width‘ somehow influence the flower type)

(attributes with d=2)

(x1 is petal length,
x2 is petal width)

(what about the class labels?)

(N = 100 samples)
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Check Preparation Phase: Class Labels
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(still no machine learning so far)

(N = 100 samples)
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Linearly Seperable Data & Linear Decision Boundary
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(decision boundary)

(4) Modelling Phase

?

 The data is 
linearly seperable
(rarely in practice)

 A line becomes a
decision boundary
to determine if a 
new data point is 
class red/green

(N = 100 samples)
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Separating Line & Mathematical Notation

 Data exploration results
 A line can be crafted between the classes since linearly seperable data
 All the data points representing Iris-setosa will be below the line 
 All the data points representing Iris-virginica will be above the line

 More formal mathematical notation
 Input:
 Output: class +1 (Iris-virginica) or class -1 (Iris-setosa)
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(decision boundary)

(attributes of flowers)

Iris-virginica if

Iris-setosa if

(compact notation)

(wi and threshold are
still unknown to us)
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Separating Line & ‘Decision Space‘ Example

modified from [6] An Introduction to Statistical Learning

(equation of a line)

(decision boundary)

(all points Xi on this line
have to satisfy this equation)
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A Simple Linear Learning Model – The Perceptron
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 Human analogy in learning
 Human brain consists of nerve cells called neurons
 Human brain learns by changing the strength of neuron connections (wi)

upon repeated stimulation by the same impulse (aka a ‘training phase‘)
 Training a perceptron model means adapting the weights wi

 Done until they fit input-output relationships of the given ‘training data‘

(representing the threshold)

(training data)

(modelled as
bias term)

d
(dimension of features)

(activation
function,
+1 or -1) (the signal)

[7] F. Rosenblatt, 1957

21 / 177



Perceptron – Example of a Boolean Function
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(training data)

(trained perceptron model)

(training phase)

 Output node interpretation
 More than just the weighted sum of the inputs – threshold (aka bias)
 Activation function sign (weighted sum): takes sign of the resulting sum

(e.g. consider sample #3,
sum is positive (0.2)  +1)

(e.g. consider sample #6,
sum is negative (-0.1)  -1)
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Summary Perceptron & Hypothesis Set h(x)

 When: Solving a linear classification problem
 Goal: learn a simple value (+1/-1) above/below a certain threshold
 Class label renamed: Iris-setosa = -1 and Iris-virginica = +1

 Input:

 Linear formula
 All learned formulas are different hypothesis for the given problem
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[7] F. Rosenblatt, 1957

(parameters that define
one hypothesis vs. another)

(red parameters correspond
to the redline in graphics)

(attributes in one dataset)

(take attributes and give them different weights – think of ‘impact of the attribute‘)

(each green space and
blue space are regions
of the same class label
determined by sign
function)

(but question remains: how do
we actually learn wi and threshold?)
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Perceptron Learning Algorithm – Understanding Vector W

 When: If we believe there is a linear pattern to be detected
 Assumption: Linearly seperable data (lets the algorithm converge)
 Decision boundary: perpendicular vector wi fixes orientation of the line

 Possible via simplifications since 
we also need to learn the threshold:
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(vector notation, using T = transpose)wi

(equivalent dotproduct notation)

(all notations are equivalent and result is a scalar from which we derive the sign)[8] Rosenblatt, 1958

(points on the decision 
boundary satisfy this equation)
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Understanding the Dot Product – Example & Interpretation

 ‘Dot product‘
 Given two vectors
 Multiplying corresponding components of the vector
 Then adding the resulting products
 Simple example:  
 Interesting: Dot product of two vectors is a scalar

 ‘Projection capabilities of Dot product‘ (simplified)
 Orthogonal projection of vector      in the direction of vector 

 Normalize using length of vector
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(a scalar!)

(projection)

(our example)

 Dot Products are important in machine learning, e.g. in Support Vector Machines, see Appendix C
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Perceptron Learning Algorithm – Learning Step

 Iterative Method using (labelled) training data 

1. Pick one misclassified 
training point where:

2. Update the weight vector: 

 Terminates when there are 
no misclassified points
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(a) adding a vector  or
(b) subtracting a vector

x

w + yx

w

y = +1

y = -1

x

w – yx 

w

(converges only with linearly seperable data)

(one point at a time is picked)

(a)

(b)

(yn is either +1 or -1)
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[Video] Perceptron Learning Algorithm

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[9] PLA Video
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Systematic Process to Support Learning From Data

 Systematic data analysis guided by a ‘standard process‘
 Cross-Industry Standard Process for Data Mining (CRISP-DM)

 Lessons Learned from Practice
 Go back and forth between 

the different six phases 
[10] C. Shearer, CRISP-DM model, 
Journal Data Warehousing, 5:13

 A data mining project is 
guided by these six phases: 
(1) Problem Understanding; 
(2) Data Understanding; 
(3) Data Preparation; 
(4) Modeling; 
(5) Evaluation; 
(6) Deployment

 A more detailed description of all six CRISP-DM phases is in the Appendix A of the slideset

(learning
takes place)
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Machine Learning & Data Mining Tasks in Applications

 Predictive Tasks
 Predicts the value of an attribute based on values of other attributes
 Target/dependent variable: attribute to be predicted
 Explanatory/independent variables: attributed used for making predictions
 E.g. predicting the species of a flower based on characteristics of a flower

 Descriptive Tasks
 Derive patterns  that summarize the underlying relationships in the data
 Patterns here can refer to correlations, trends, trajectories, anomalies
 Often exploratory in nature and frequently require postprocessing
 E.g. credit card fraud detection with unusual transactions for owners

[11] Introduction to Data Mining

 Machine learning tasks can be divided into two major categories: Predictive and Descriptive Tasks
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Predicting Task: Obtain Class of a new Flower ‘Data Point‘ 
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(decision boundary)

(4) Modelling Phase

?

[1] Image sources: Species Iris Group of North America Database, www.signa.org  

(N = 100 samples)
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Summary  Terminologies & Different Dataset Elements

 Target Function
 Ideal function that ‘explains‘ the data we want to learn

 Labelled Dataset (samples)
 ‘in-sample‘ data given to us: 

 Learning vs. Memorizing
 The goal is to create a system that works well ‘out of sample‘ 
 In other words we want to classify ‘future data‘ (ouf of sample) correct

 Dataset Part One: Training set
 Used for training a machine learning algorithms
 Result after using a training set: a trained system

 Dataset Part Two: Test set
 Used for testing whether the trained system might work well 
 Result after using a test set: accuracy of the trained model

(5) Evaluation Phase

(4) Modelling Phase
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Model Evaluation – Training and Testing Phases

 Different Phases in Learning
 Training phase is a hypothesis search
 Testing phase checks if we are on right track

(once the hypothesis clear)

 Work on ‘training examples‘
 Create two disjoint datasets
 One used for training only

(aka training set)
 Another used for testing only

(aka test set)
 Exact seperation is rule of thumb per use case (e.g. 10 % training, 90% test)
 Practice: If you get a dataset take immediately test data away

(‘throw it into the corner and forget about it during modelling‘)
 Reasoning: Once we learned from training data it has an ‘optimistic bias‘

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

(e.g. student exam training on examples to 
get Ein ‚down‘, then test via exam)

Training Examples

(historical records, groundtruth data, examples)

(5) Evaluation Phase

‘test set’‘training set’

(4) Modelling Phase
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Model Evaluation – Testing Phase & Confusion Matrix
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 Model is fixed
 Model is just used with the testset
 Parameter wi are set and we have a linear decision function

 Evaluation of model performance
 Counts of test records that are incorrectly predicted
 Counts of test records that are correctly predicted
 E.g. create confusion matrix for a two class problem

(5) Evaluation Phase

Counting per sample Predicted Class

Class = 1 Class = 0

Actual 
Class

Class = 1 f11 f10

Class = 0 f01 f00

(serves as a basis for further performance metrics usually used)
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Model Evaluation – Testing Phase & Performance Metrics
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 Accuracy (usually in %)

 Error rate

 If model evaluation is satisfactory: 

(5) Evaluation PhaseCounting per sample Predicted Class

Class = 1 Class = 0

Actual 
Class

Class = 1 f11 f10

Class = 0 f01 f00

(6) Deployment Phase

(100% accuracy in learning often
points to problems using machine 
learning methos in practice)
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Non-linearly Seperable Data in Practice – Which model?
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?

(4) Modelling Phase

(linear decision boundary)

(non-linear decision boundary)

(lessons learned from practice: requires soft-thresholds to allow 
for some errors being overall better for new data 
 Occams razor – ‘simple model better‘)

(lessons learned from practice: requires 
non-linear decision boundaries)

(resampled, again
N = 100 samples)
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Learning Approaches – What means Learning?

 Supervised Learning
 Majority of methods follow this approach in this course
 Example: credit card approval based on previous customer applications

 Unsupervised Learning
 Often applied before other learning  higher level data representation
 Example: Coin recognition in vending machine based on weight and size

 Reinforcement Learning
 Typical ‘human way‘ of learning
 Example: Toddler tries to touch a hot cup of tea (again and again)

 The basic meaning of learning is ‘to use a set of observations to uncover an underlying process‘
 The three different learning approaches are supervised, unsupervised, and reinforcement learning

 Appendix B provides an introduction to statistical learning theory & feasibility of learning
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Learning Approaches – Supervised Learning

 Each observation of the predictor measurement(s)
has an associated response measurement:
 Input
 Output
 Data

 Goal: Fit a model that relates the response to the predictors
 Prediction: Aims of accurately predicting the response for future 

observations
 Inference: Aims to better understanding the relationship between the 

response and the predictors

 Supervised learning approaches fits a model that related the response to the predictors
 Supervised learning approaches are used in classification algorithms such as SVMs
 Supervised learning works with data = [input, correct output]

[6] An Introduction to Statistical Learning
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Supervised Learning – Overview & Summary

Unknown Target Function Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

Final Hypothesis

(ideal function)

(final formula)

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

Training Examples

(historical records, groundtruth data, examples)
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Different Models – Understanding the Hypothesis Set
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Hypothesis Set

(all candidate functions
derived from models 
and their parameters)

(e.g. support vector machine model)

(e.g. linear perceptron model)

Final Hypothesis

‘select one function‘
that best approximates

 Already a change in model 
paramters of h1, …, hm means
a completey different model

(e.g. artificial neural network model)
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Learning Approaches – Supervised Learning Example
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petal length (in cm)

(decision boundary)

?

 The labels guide 
our learning 
process like a 
‘supervisor‘ is 
helping us

(N = 100 samples)

(perceptron model)
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Supervised Learning – Linear Perceptron Example

Unknown Target Function Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

Final Hypothesis

(ideal function)

(final formula)

(Perceptron Model)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Perceptron Learning Algorithm)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

Training Examples

(historical records, groundtruth data, examples)
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Key Challenges: Why is it not so easy in practice?

 Scalability
 Gigabytes, Terabytes, and Petabytes datasets that fit not into memory
 E.g. algorithms become necessary with out-of-core/CPU strategies

 High Dimensionality
 Datasets with hundreds or thousand attributes become available
 E.g. bioinformatics with gene expression data with thousand of features

 Heterogenous and Complex Data
 More complex data objects emerge and unstructured data sets
 E.g. Earth observation time-series data across the globe

 Data Ownership and Distribution
 Distributed datasets are common (e.g. security and transfer challenges)

 Key challenges faced when doing traditional data analysis and machine learning are scalability, 
high dimensionality of datasets, heterogenous and complex data, data ownership & distribution

 Combat ‘overfitting‘ is the key challenge in machine learning using validation & regularization 
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[Video] Remote Sensing

[19] YouTube Video, “What is Remote Sensing?”
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Application Examples
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Exercises – Explore the Rome Dataset
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Example Rome Dataset

 Geographical location: Image of Rome, Italy
 Multispectral data obtained by Quickbird satellite sensor

 High-resolution (0.6m) 
panchromatic image Low-resolution (2.4m) 

multispectral images

[16] Rome Image dataset

(Reasoning for picking SVM: Good classification
accuracies on high dimensional datasets,

even with a small ‚rare‘ number of training samples)
Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

Classes
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Understanding the Rome Dataset & Feature Engineering
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10 filtered
images

• Each pixel vector is stored as a line with the libSVM format
• E.g.,

Labels              Pan                             Green                          Blue                              Red     Infrared

Class + Input + Features +  Input  + Feature  + Input  + Features  + Input   + Features   + Input   + Features

10 filtered
images

10 filtered
images

10 filtered
images

10 filtered
images

2 1:0.364706 2:0.360784 3:0.356863 4:0.356863 5:0.349206 6:0.306878 7:0.419355
8:0.453608 9:0.368421 10:1 11:1 12:0.423529 13:0.403922 14:0.403922 15:0.369919
16:0.320833 17:0.302564 18:0.481481 19:0.483516 20:0.32 21:0.625 22:0.833333
23:0.376471 24:0.376471 25:0.372549 26:0.358566 27:0.318367 28:0.243386 29:0.455446
30:0.4 31:0.319149 32:0.368421 33:0.4 34:0.556863 35:0.54902 36:0.436 37:0.322176
38:0.215962 39:0.151079 40:0.257576 41:0.267857 42:0.266667 43:0.277778 44:0.4375
45:0.360784 46:0.360784 47:0.368627 48:0.368627 49:0.363636 50:0.353846 51:0.347826
52:0.335294 53:0.333333 54:0.978723 55:1

[17] G. Cavallaro & M. Riedel et al., 2014
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Inspecting and Understanding the Rome Dataset

 Data is publicly available in EUDAT B2SHARE tool

(persistent handle link for 
publication into papers)

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[18] Rome Image dataset
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Expected Out-of-Sample Performance for ‘Best Line‘

 The line with a ‘bigger margin‘ seems to be better – but why?
 Intuition: chance is higher that a new point will still be correctly classified
 Fewer hypothesis possible: constrained by sized margin
 Idea: achieving good ‘out-of-sample‘ performance is goal

-1-2-3 1 2 3 4 5 6 7

1

2

-2

-1

(e.g. better performance
compared to PLA technique)

(Question remains:
how we can achieve 
a bigger margin)

(simple line in a linear setup
as intuitive decision boundary)

 Appendix C shows how Support Vector Machines (SVMs) are mathematically established
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Term Support Vector Machines Refined

 Term detailed refinement into ‘three separate techniques’
 Practice: applications mostly use the SVMs with kernel methods

 ‘Maximal margin classifier‘ 
 A simple and intuitive classifier with a ‘best‘ linear class boundary
 Requires that data is ‘linearly separable‘

 ‘Support Vector Classifier‘
 Extension to the maximal margin classifier for non-linearly seperable data
 Applied to a broader range of cases, idea of ‘allowing some error‘

 ‘Support Vector Machines‘  Using Non-Linear Kernel Methods
 Extension of the support vector classifier 
 Enables non-linear class boundaries & via kernels;

 Support Vector Machines (SVMs) are a classification technique developed ~1990
 SVMs perform well in many settings & are considered as one of the best ‘out of the box classifiers‘

[6] An Introduction to Statistical Learning
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Exercises – Submit piSVM & Rome (linear)
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JURECA System – SSH Login
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 Use your account train004 - train050 
 Windows: use putty / MobaXterm
 UNIX: ssh trainXYZ@jureca.fz-juelich.de
 Example

 Remember to use your own trainXYZ account in order to login to the JURECA system
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Rome Remote Sensing Dataset

 Data is already available in the tutorial directory
(persistent handle link for 
publication into papers)

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[18] Rome Image dataset
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HPC Environment – Modules Revisited

 Module environment tool
 Avoids to manually setup environment information for every application
 Simplifies shell initialization and lets users easily modify their environment

 Module avail
 Lists all available modules on the HPC system (e.g. compilers, MPI, etc.)

 Module spider
 Find modules in the installed set of modules and more information

 Module load  needed before piSVM run
 Loads particular modules into the current work environment, E.g.:

 Module load Intel
 Module load IntelMPI
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Parallel & Scalable PiSVM – Parameters

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 C-SVC: The cost (C) in this case refers to 
a soft-margin specifying how much error 
is allowed and thus represents a 
regularization parameter that prevents 
overfitting more details tomorrow

 nu-SVC: nu in this case refers to values 
between 0 and 1 and thus represents a 
lower and upper bound on the number 
of examples that are support vectors 
and that lie on the wrong side of the 
hyperplane
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Training Rome on JURECA – Job Script (linear)

 Use Rome Dataset with paralle & scalable piSVM tool
 Parameters are equal to the serial libsvm and some additional 

parameters for paralellization

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 Note the tutorial reservation with –reservation=bigdata-cpu  just valid for today on JURECA
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Testing Rome on JURECA – Job Script (linear)

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 Use Rome Dataset with paralle & scalable piSVM tool
 Parameters are equal to the serial libsvm and some additional 

parameters for paralellization

 Note the tutorial reservation with –reservation=bigdata-cpu  just valid for today on JURECA
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Testing Rome on JURECA – Check Outcome

 The output of the training run is a model file
 Used for input for the testing/predicting phase
 In-sample property  Support vectors of the model

 The output of the testing/predicting phase is accuracy
 Accuracy measurement of model performance (cf. Lecture 1)
 The job output file consists of a couple of lines:
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[Video] Training Process of Support Vector Machines

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[5] YouTube Video, ‘Cascade SVM‘
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Need for Non-linear Decision Boundaries

 Lessons learned from practice
 Scientists and engineers are often 

faced with non-linear class boundaries

 Non-linear transformations approach
 Enlarge feature space (computationally intensive)
 Use quadratic, cubic, or higher-order 

polynomial functions of the predictors

 Example with Support Vector Classifier

[6] An Introduction to Statistical Learning

(previously used p features)

(new 2p features)

(decision boundary is linear in the enlarged feature space)

(decision boundary is non-linear in the original feature 
space with q(x) = 0 where q is a quadratic polynomial)

(time invest: mapping done by explictly carrying 
out the map into the feature space)
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Understanding Non-Linear Transformations (1)

 Example: ‘Use measure of distances from the origin/centre‘  
 Classification 

 (1) new point; (2) transform to z-space; (3) classify it with e.g. perceptron

-1-2-3 1 2 3

1

2

-2

-1

?

(named as x-space)

-1-2-3 1 2 3

1

2

-2

-1

3

4

(named as z-space)

(still linear models applicable)

(‘changing 
constants‘)

(also called input space) (also called feature space)

61 / 177



Understanding Non-Linear Transformations (2)

 Example: From 2 dimensional to 3 dimensional:
 Much higher dimensional can cause memory and computing problems

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[20] E. Kim

 Problems: Not clear which type of mapping (search); optimization is computationally expensive task
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Understanding Non-linear Transformations (3)

 Example: From 2 dimensional to 3 dimensional:
 Separating hyperplane can be found and ‘mapped back‘ to input space

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[20] E. Kim

(input space)
(feature space)

 Appendix D shows how the ‘Kernel Trick‘ uses non-linear transformations with SVMs
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Visualization of SVs

 Problem: z-Space is infinite (unknown)
 How can the Support Vectors (from existing points) be visualized?
 Solution: non-zero alphas have been the identified support vectors

 Support vectors exist in Z – space (just transformed original data points)
 Example: million-D means a million-D vector for 
 But number of support vector is very low,  expected Eout is related to #SVs

(solution of quadratic programming optimization will be a set of alphas we can visualize)

[21] Visualization of high-dimensional space

(generalization behaviour despite million-D & snake-like overfitting)

(snake seems like overfitting,
fitting to well, cf. Lecture 2)  Counting the number of support 

vectors remains to be a good indicator 
for generalization behaviour even
when performing non-linear 
transforms and kernel methods that
can lead to infinite-D spaces

(rule of thumb)
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Parallel & Scalable PiSVM - Parameters
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Training Rome on JURECA – Job Script (RBF)

 Use Rome Dataset with paralle & scalable piSVM tool
 Parameters are equal to the serial libsvm and some additional 

parameters for paralellization

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 Note the tutorial reservation with –reservation=bigdata-cpu  just valid for today on JURECA
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Testing Rome on JURECA – Job Script (RBF)

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 Use Rome Dataset with paralle & scalable piSVM tool
 Parameters are equal to the serial libsvm and some additional 

parameters for paralellization

 Note the tutorial reservation with –reservation=bigdata-cpu  just valid for today on JURECA
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Testing Rome on JURECA – Check Outcome

 The output of the training run is a model file
 Used for input for the testing/predicting phase
 In-sample property  Support vectors of the model

 The output of the testing/predicting phase is accuracy
 Accuracy measurement of model performance

 Output of linear SVM was as follows:
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[Video] SVM with Polynomial Kernel Example

[22] YouTube, SVM with Polynomial Kernel
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Indian Pines Dataset – Preprocessing 
Corrected by JPL

[23] G. Cavallaro and M. Riedel, et al. , 2015
(non-linearly separable) dataset
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Indian Pines – Experimental Setup
Two Cases

dataset raw (1)

dataset processed (2)

Feature Enhancement & Selection
Kernel Principle Component Analysis (KPCA)
Extended Self-Dual Attribute Profile (ESDAP)
Nonparametric weighted feature extraction (NWFE)

[23] G. Cavallaro and M. Riedel, et al. , 2015
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Publicly Available Datasets – Location 

 Indian Pines Dataset Raw and Processed

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[24] Indian Pines Raw and Processed 
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Inspecting and Understanding the Indian Pines Dataset

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

200 spectral bands

Class + Original Spectral Bands

Class + Transformed Features 

• Dataset raw (1)

30 image features

• dataset processed (2)

libSVM

libSVM

48 1:0.365 2:0.361 3:0.356 ………………………………. 209:0.333 220:0.978

48 1:0.245 2:0.360 3:0.326 …………….. 29:0.241 30:0.878
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Exercises – Indian Pines (Raw) piSVM Runs
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HPC Environment – Modules Revisited

 Module environment tool
 Avoids to manually setup environment information for every application
 Simplifies shell initialization and lets users easily modify their environment

 Module avail
 Lists all available modules on the HPC system (e.g. compilers, MPI, etc.)

 Module spider
 Find modules in the installed set of modules and more information

 Module load  needed before piSVM run
 Loads particular modules into the current work environment, E.g.:
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Parallel & Scalable PiSVM – Parameters

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 C-SVC: The cost (C) in this case refers to 
a soft-margin specifying how much error 
is allowed and thus represents a 
regularization parameter that prevents 
overfitting more details tomorrow

 nu-SVC: nu in this case refers to values 
between 0 and 1 and thus represents a 
lower and upper bound on the number 
of examples that are support vectors 
and that lie on the wrong side of the 
hyperplane
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Training Indian Pines (Raw) on JURECA – Job Script (RBF)

 Use Indian Pines Dataset with paralle & scalable piSVM tool
 Parameters are equal to the serial libsvm and some additional 

parameters for paralellization

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 Note the tutorial reservation with –reservation=ml-hpc-2  just valid for today on JURECA
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Testing Indian Pines (Raw) on JURECA – Job Script

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 Use Rome Dataset with paralle & scalable piSVM tool
 Parameters are equal to the serial libsvm and some additional 

parameters for paralellization

 Note the tutorial reservation with –reservation=ml-hpc-2  just valid for today on JURECA
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Testing/Predicting Rome on JURECA – Check Outcome

 The output of the training run is a model file
 Used for input for the testing/predicting phase
 In-sample property  Support vectors of the model

 The output of the testing/predicting phase is accuracy
 Accuracy measurement of model performance (cf. Lecture 1)
 The job output file consists of a couple of lines
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SVM Multi-class Classification - One vs. One

 Multi-class classification common in science & engineering
 Requires different approach as previous ‘binary classification‘ (2 classes)
 Cf. associated remote sensing SVM application (e.g. 52 land cover classes)
 Reduce the problem of multiclass to multiple binary classification problems

 One vs. One (all pairs) classification
 Given K > 2 classes, this approach creates           different SVMs (                   )
 Each of the different SVMs compares a pair of classes (i.e. binary classifier)
 Classification is done by using test data points with each of the classifiers
 Count number of times that each point is assigned to each of the k classes
 Class is which it was most frequently assigned in         pairwise classification

 One vs. one multi-class classification creates different SVMs that compare each a pair of k classes

[6] An Introduction to Statistical Learning
(the more classes – the more SVMs are created to perform pairwise classification – the more computational complexity)

(advanced topic – required much more study – here just the two most popular approaches)
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SVM Multi-class Classification – One vs. All (aka Rest)

 One vs. All (aka Rest) classification
 Given K > 2 classes, this approach fits only K SVMs
 Each time one of the K classes is compaired to the remaining K-1 classes
 Coefficients that result from fitting an SVM comparing the kth class

(coded as +1) to all others (coded as −1) are 
 Classification with testset data         and compute confidence score
 Assign the testset data to the class for which the following is largest: 

 Reasoning:  high level of confidence that the test data points belong
to the kth class rather than to any of the other classes

 One vs. all multi-class classification creates K SVMs compairing it with to the remaining K-1 classes 

[6] An Introduction to Statistical Learning

(less SVMs are created – but more comparisons are done while creating the classifiers – can be computationally intensive)
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LibSVM – Defacto Standard SVM Implementation

 Free available tool
 Includes Sequential Minimal Optimization (SMO) implementation

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications
[25] LibSVM Webpage
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LibSVM – Download

 Download tar.gz (or in Windows zip bundle)

 Put package in a folder of your choice
 Alternatively copy file to your usual working environment

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[25] LibSVM Webpage
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LibSVM – Make (only in UNIX) 

 Use make to generate executables (needs g++ compiler)

 Check executables 
important for us

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[25] LibSVM Webpage

(use in testing phase)

(use in training phase)
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LibSVM – svm-train Parameters

 Important parameters

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[25] LibSVM Webpage

(we need a training set file)
(take default here = C-SVC)

(in this lecture we have just ‘linear kernels‘)

(Regularization Parameter)

(training phase)

Training Examples
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LibSVM – svm-predict Parameters

 Important parameters

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

(testing phase)

(the model file is generated in the training phase  the support vectors found in optimization)

(test file is a testing dataset set aside to be used once training is finished)

(output file gives us indications how each sample was classified)

Testing Examples
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Review of Parallel SVM Implementations

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[26] M. Goetz, M. Riedel et al., ‘On Parallel and Scalable Classification and Clustering Techniques for Earth Science 
Datasets’, 6th Workshop on Data Mining in Earth System Science, International Conference of Computational Science
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Parallel and Scalable Machine Learning – piSVM 

 ‘Different kind‘ of parallel algorithms
 Goal is to ‘learn from data‘ instead of modelling/approximate the reality
 Parallel algorithms often useful to reduce ‘overall time for data analysis‘

 E.g. Parallel Support Vector Machines (SVMs) Technique
 Data classification algorithm PiSVM using MPI to reduce ‘training time‘
 Example: classification of land cover masses from satellite image data

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[23] G. Cavallaro & M. Riedel et al., ‘On Understanding Big Data Impacts 
in Remotely Sensed Image Classification Using Support Vector Machine 
Methods’, Journal of Applied Earth Observations and Remote Sensing
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Parallel SVM with MPI Technique – piSVM Implementation

 Original piSVM 1.2 version (2011)
 Open-source and based on libSVM library, C
 Message Passing Interface (MPI)
 New version appeared 2014-10 v. 1.3 (no major improvements)
 Lack of ‘big data‘ support (e.g. memory, layout)

 Tuned scalable parallel piSVM tool 1.2.1
 Highly scalable version maintained by Juelich
 Based on original piSVM 1.2 tool
 Open-source (repository to be created)
 Optimizations: load balancing; MPI collectives

[27] piSVM on SourceForge, 2008
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Indian Pines – Experimental Setup
Two Cases

dataset raw (1)

dataset processed (2)

Feature Enhancement & Selection
Kernel Principle Component Analysis (KPCA)
Extended Self-Dual Attribute Profile (ESDAP)
Nonparametric weighted feature extraction (NWFE)

[23] G. Cavallaro and M. Riedel, et al. , 2015
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Exercises – Indian Pines (Processed) piSVM Runs
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Training Indian Pines (Proc) on JURECA – Job Script (RBF)

 Use Indian Pines Dataset with paralle & scalable piSVM tool
 Parameters are equal to the serial libsvm and some additional 

parameters for paralellization

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 Note the tutorial reservation with –reservation=bigdata-cpu  just valid for today on JURECA
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Testing Indian Pines (Proc) on JURECA – Job Script

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 Use Rome Dataset with paralle & scalable piSVM tool
 Parameters are equal to the serial libsvm and some additional 

parameters for paralellization

 Note the tutorial reservation with –reservation=bigdata-cpu  just valid for today on JURECA
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Testing/Predicting Rome on JURECA – Check Outcome

 The output of the training run is a model file
 Used for input for the testing/predicting phase
 In-sample property  Support vectors of the model

 The output of the testing/predicting phase is accuracy
 Accuracy measurement of model performance (cf. Lecture 1)
 The job output file consists of a couple of lines
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Exercises – Indian Pines – Change Number of Nodes
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Parallelization Benefit: Lower-Time-To-Solution

 Major speed-ups; ~interactive (<1 min); same accuracy;

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

(1) Scenario 
‘unprocessed data‘
training time (in min)

(1) Scenario 
‘unprocessed data‘
testing time (in min)

‘big data‘ is not always better data

manual & serial activities (in min)

(2) Scenario 
‘pre-processed data‘
training time (in min)

(2) Scenario 
‘pre-processed data‘
testing time (in min)

[23] G. Cavallaro, M. Riedel, J.A. Benediktsson 
et al., Journal of Selected Topics in Applied 
Earth Observation and Remote Sensing, 2015

(cf. Importance of feature engineering above)
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Exercises – Indian Pines – Perform n-fold Cross-Validation
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Parallelization Benefit – 10-fold Cross-Validation

 Parallelization benefits are enormous for complex problems
 Enables feasibility to tackle extremely large datasets & high dimensions
 Provides functionality for a high number of classes (e.g. #k SVMs)
 Achieves a massive reduction in time  lower time-to-solution

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

(1) Scenario ‘unprocessed data‘, 10xCV serial: accuracy (min)

(1) Scenario ‘unprocessed data‘’10xCV parallel: accuracy (min)

First Result: best parameter set from 118.28 min to 4.09 min
Second Result: all parameter sets from ~3 days to ~2 hours

(2) Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

(2) Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

[23] G. Cavallaro, M. Riedel, J.A. Benediktsson et al., Journal of Selected Topics 
in Applied Earth Observation and Remote Sensing, 2015
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Prevent Overfitting for better ‘ouf-of-sample‘ generalization

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[12] Stop Overfitting, YouTube
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[YouTube Lectures] More about parallel piSVM & HPC 

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[32] Morris Riedel, ‘Introduction to Machine Learning Algorithms‘, Invited 
YouTube Lecture, six lectures, University of Ghent, 2017
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Appendix A: CRISP-DM Process
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Summary: Systematic Process

 Systematic data analysis guided by a ‘standard process‘
 Cross-Industry Standard Process for Data Mining (CRISP-DM)

 Lessons Learned from Practice
 Go back and forth between 

the different six phases 
[10] C. Shearer, CRISP-DM model, 
Journal Data Warehousing, 5:13

 A data mining project is 
guided by these six phases: 
(1) Problem Understanding; 
(2) Data Understanding; 
(3) Data Preparation; 
(4) Modeling; 
(5) Evaluation; 
(6) Deployment
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1 – Problem (Business) Understanding

 Task A – Determine Business Objectives
 Background, Business Objectives, Business Success Criteria

 Task B – Situation Assessment
 Inventory of Resources, Requirements, Assumptions, and Contraints
 Risks and Contingencies, Terminology, Costs & Benefits

 Task C – Determine Data Mining Goal
 Data Mining Goals and Success Criteria

 Task D – Produce Project Plan
 Project Plan
 Initial Assessment of Tools & Techniques

[11] CRISP-DM User Guide

 The Business Understanding phase consists of four distinct tasks: (A) Determine Business 
Objectives; (B) Situation Assessment; (C) Determine Data Mining Goal; (D) Produce Project Plan
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2 – Data Understanding

 Task A – Collect Initial Data
 Initial Data Collection Report

 Task B – Describe Data
 Data Description Report

 Task C – Explore Data
 Data Exploration Report

 Task D – Verify Data Quality
 Data Quality Report

 The Data Understanding phase consists of four distinct tasks: 
(A) Collect Initial Data; (B) Describe Data; (C) Explore Data; (D) Verify Data Quality

[11] CRISP-DM User Guide
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3 – Data Preparation

 Task A – Data Set
 Data set description

 Task B – Select Data
 Rationale for inclusion / exclusion

 Task C – Clean Data
 Data cleaning report

 Task D – Construct Data
 Derived attributes, generated records

 Task E – Integrate Data
 Merged data

 Task F – Format Data
 Reformatted data

 The Data Preparation phase consists of six distinct tasks: (A) Data Set; (B) Select Data; 
(C) Clean Data; (D) Construct Data; (E) Integrate Data; (F) Format Data

[11] CRISP-DM User Guide
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4 – Modeling

 Task A – Select Modeling Technique
 Modeling assumption, modeling technique

 Task B – Generate Test Design
 Test design

 Task C – Build Model
 Parameter settings, models, model description

 Task D – Assess Model
 Model assessment, revised parameter settings

 The Data Preparation phase consists of four distinct tasks: (A) Select Modeling 
Technique; (B) Generate Test Design; (C) Build Model; (D) Assess Model; 

[11] CRISP-DM User Guide
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5 – Evaluation

 Task A – Evaluate Results
 Assessment of data mining results w.r.t. business success criteria
 List approved models

 Task B – Review Process
 Review of Process

 Task C – Determine Next Steps
 List of possible actions, decision

 The Data Preparation phase consists of three distinct tasks: (A) Evaluate Results; 
(B) Review Process; (C) Determine Next Steps

[11] CRISP-DM User Guide

107 / 177



Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

6 – Deployment

 Task A – Plan Deployment
 Establish a deployment plan

 Task B – Plan Monitoring and Maintenance
 Create a monitoring and maintenance plan

 Task C – Product Final Report
 Create final report and provide final presentation

 Task D – Review Project
 Document experience, provide documentation

 The Data Preparation phase consists of three distinct tasks: (A) Plan Deployment; 
(B) Plan Monitoring and Maintenance; (C) Produce Final Report; (D) Review Project

[11] CRISP-DM User Guide
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Appendix B: Learning Theory Basics
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Learning Approaches – Supervised Learning – Formalization 

 Each observation of the predictor measurement(s)
has an associated response measurement:
 Input
 Output
 Data

 Goal: Fit a model that relates the response to the predictors
 Prediction: Aims of accurately predicting the response for future 

observations
 Inference: Aims to better understanding the relationship between the 

response and the predictors

 Supervised learning approaches fits a model that related the response to the predictors
 Supervised learning approaches are used in classification algorithms such as SVMs
 Supervised learning works with data = [input, correct output]

[6] An Introduction to Statistical Learning

Training Examples

(historical records, groundtruth data, examples)
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Feasibility of Learning

 Theoretical framework underlying practical learning algorithms
 E.g. Support Vector Machines (SVMs)
 Best understood for ‘Supervised Learning‘

 Theoretical background used to solve ‘A learning problem‘
 Inferring one ‘target function‘ that maps 

between input and output
 Learned function can be used to 

predict output from future input
(fitting existing data is not enough)

 Statistical Learning Theory deals with the problem of finding a predictive function based on data

[13] Wikipedia on ‘statistical learning theory’

Unknown Target Function

(ideal function)
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Mathematical Building Blocks (1)

Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

Unknown Target Function

(ideal function)

Training Examples

(historical records, groundtruth data, examples)
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Mathematical Building Blocks (1) – Our Linear Example 

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

Unknown Target Function

(ideal function)

Training Examples

(historical records, groundtruth data, examples)

(decision boundaries depending on f)

Iris-virginica if

Iris-setosa if

(wi and threshold are
still unknown to us)

1. Some pattern exists
2. No exact mathematical 

formula (i.e. target function)
3. Data exists

(if we would know the exact target function we dont need 
machine learning, it would not make sense)

(we search a 
function similiar 
like a target function)
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Feasibility of Learning – Hypothesis Set & Final Hypothesis

 The ‘ideal function‘ will
remain unknown in learning
 Impossible to know and learn from data
 If known a straightforward implementation would be better than learning
 E.g. hidden features/attributes of data not known or not part of data

 But ‘(function) approximation‘ of the target function is possible
 Use training examples to learn and approximate it
 Hypothesis set        consists of m different hypothesis (candidate functions)

Unknown Target Function

Final HypothesisHypothesis Set

‘select one function‘
that best approximates
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Feasibility of Learning – Understanding the Hypothesis Set
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Hypothesis Set

(all candidate functions
derived from models 
and their parameters)

(e.g. support vector machine model)

(e.g. linear perceptron model)

Final Hypothesis

‘select one function‘
that best approximates

 Already a change in model 
paramters of h1, …, hm means
a completey different model

(e.g. artificial neural network model)
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Mathematical Building Blocks (2)

Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

Unknown Target Function

(ideal function)

Training Examples

(historical records, groundtruth data, examples)

Final Hypothesis

(set of candidate formulas)

Hypothesis Set
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Mathematical Building Blocks (2) – Our Linear Example
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(Perceptron model – linear model)

Hypothesis Set

Final Hypothesis

(decision boundaries depending on f)

(we search a function similiar 
like a target function)

(trained perceptron model
and our selected final hypothesis)

 Already a change in model 
paramters of h1, …, hm means
a completey different model
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The Learning Model: Hypothesis Set & Learning Algorithm

 The solution tools – the learning model:
1. Hypothesis set - a set of candidate formulas /models
2. Learning Algorithm - ‘train a system‘ with known algorithms

Final HypothesisLearning Algorithm (‘train a system‘)

Hypothesis Set

Training Examples

 Our Linear Example
1. Perceptron Model
2. Perceptron Learning

Algorithm (PLA)‘solution tools‘
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Mathematical Building Blocks (3)

Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

Unknown Target Function

(ideal function)

Training Examples

(historical records, groundtruth data, examples)

Final Hypothesis

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)
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Mathematical Building Blocks (3) – Our Linear Example
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Unknown Target Function

(ideal function)

Training Examples

(historical records, groundtruth data, examples)

Final Hypothesis

(Perceptron model – linear model)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Perceptron Learning Algorithm)

(trained perceptron model
and our selected final hypothesis)

(training data)

(training phase;
Find wi and threshold 
that fit the data)(algorithm uses 

training dataset)
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Feasibility of Learning – Probability Distribution

 Predict output from future input 
(fitting existing data is not enough)
 In-sample ‘1000 points‘ fit well
 Possible: Out-of-sample >= ‘1001 point‘ 

doesn‘t fit very well
 Learning ‘any target function‘

is not feasible (can be anything)

 Assumptions about ‘future input‘
 Statement is possible to 

define about the data outside 
the in-sample data 

 All samples (also future ones) are 
derived from same ‘unknown probability‘ distribution

Unknown Target Function

Training Examples

 Statistical Learning Theory assumes an unknown probability distribution over the input space X

Probability Distribution

(which exact
probability

is not important,
but should not be

completely 
random)
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Feasibility of Learning – In Sample vs. Out of Sample 

 Given ‘unknown‘ probability 
 Given large sample N for
 There is a probability of ‘picking one point or another‘ (i.e. from statistics)
 ‘Error on in sample‘ is known quantity (using labelled data):
 ‘Error on out of sample‘ is unknown quantity:
 In-sample frequency is likely close to out-of-sample frequency

‘in sample‘

‘out of sample‘

use for predict!

 Statistical Learning Theory part that enables that learning is feasible in a probabilistic sense (P on X) 

use Ein(h) as a proxy – thus the other 
way around in learning

depend on 
which

hypothesis h 
out of m

different ones

Ein tracks Eout
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Feasibility of Learning – Union Bound & Factor M

 Assuming no overlaps in hypothesis set 
 Apply mathematical rule ‘union bound‘ (i.e. poor bound)
 Characterizes the number of data samples N needed

Final Hypothesis

 The union bound means that (for any countable set of m ‘events‘) the probability that at least one 
of the events happens is not greater that the sum of the probabilities of the m individual ‘events‘

or

or
...

fixed quantity for each hypothesis
obtained from Hoeffdings Inequality

problematic: if M is too big we loose the link
between the in-sample and out-of-sample

‘visiting M
different
hypothesis‘

Think if Ein deviates from Eout with more than tolerance Є it is a ‘bad event‘ in order to apply union bound

sum of Pr
is ‘worst case‘
bound
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Feasibility of Learning – Modified Hoeffding‘s Inequality

 Errors in-sample                 track errors out-of-sample
 Statement is made being ‘Probably Approximately Correct (PAC)‘
 Given M as number of hypothesis  of hypothesis set 
 ‘Tolerance parameter‘ in learning 
 Mathematically established via ‘modified Hoeffdings Inequality‘:

(original Hoeffdings Inequality doesn‘t apply to multiple hypothesis)

 Theoretical ‘Big Data‘ Impact more N better learning
 The more samples N the more reliable will track                                    well
 (But: the ‘quality of samples‘ also matter, not only the number of samples)

 Statistical Learning Theory part describing the Probably Approximately Correct (PAC) learning

‘Probability that Ein deviates from Eout by more than the tolerance Є is a small quantity depending on M and N‘

‘Probably‘‘Approximately‘

[14] Valiant, ‘A Theory
of the Learnable’, 1984
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Mathematical Building Blocks (4)

Unknown Target Function Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

(ideal function)

(historical records, groundtruth data, examples)

‘constants‘ 
in learning

Probability Distribution

Training Examples

Final Hypothesis

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)

125 / 177



Mathematical Building Blocks (4) – Our Linear Example
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(infinite M decision boundaries depending on f) Probability Distribution

P

Is this point very likely from the same distribution or just noise?

Is this point very likely from the same distribution or just noise?

P

(we do not solve the M problem here)(we help here with the assumption for the samples)

We assume future points are taken from the
same probability distribution as those that
we have in our training examples

Training Examples

(counter example would be for instance a random number generator, impossible to learn this!)
126 / 177



Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

Statistical Learning Theory – Error Measure & Noisy Targets

 Question: How can we learn a function from (noisy) data?
 ‘Error measures‘ to quantify our progress, the goal is:

 Often user-defined, if not often ‘squared error‘:

 E.g. ‘point-wise error measure‘

 ‘(Noisy) Target function‘ is not a (deterministic) function
 Getting with ‘same x in‘ the ‘same y out‘ is not always given in practice
 Problem: ‘Noise‘ in the data that hinders us from learning
 Idea: Use a ‘target distribution‘

instead of ‘target function‘
 E.g. credit approval (yes/no)

Error Measure

 Statistical Learning Theory refines the learning problem of learning an unknown target distribution

(e.g. think movie rated now and in 10 years from now)
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Mathematical Building Blocks (5)

Unknown Target Function Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

Final Hypothesis

(ideal function)

(final formula)

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

Training Examples

(historical records, groundtruth data, examples)
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Mathematical Building Blocks (5) – Our Linear Example
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Error Measure

 Iterative Method using (labelled) training data 

1. Pick one misclassified 
training point where:

2. Update the weight vector: 

 Terminates when there are 
no misclassified points

(a) adding a vector  or
(b) subtracting a vector

x

w + yx

w

y = +1

y = -1

x

w – yx 

w

(converges only with linearly seperable data)

(one point at a time is picked)

(a)

(b)

(yn is either +1 or -1)

Error Measure
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Training and Testing – Influence on Learning

 Mathematical notations
 Testing follows: 

(hypothesis clear)
 Training follows:

(hypothesis search) 

 Practice on ‘training examples‘
 Create two disjoint datasets
 One used for training only

(aka training set)
 Another used for testing only

(aka test set)

 Training & Testing are different phases in the learning process
 Concrete number of samples in each set often influences learning 

(e.g. student exam training on examples to get Ein ‚down‘, then test via exam)

Training Examples

(historical records, groundtruth data, examples)
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Theory of Generalization – Initial Generalization & Limits

 Learning is feasible in a probabilistic sense
 Reported final hypothesis – using a ‘generalization window‘ on
 Expecting ‘out of sample performance‘ tracks ‘in sample performance‘
 Approach:                acts as a ‘proxy‘ for

 Reasoning
 Above condition is not the final hypothesis condition:
 More similiar like                   approximates 0 

(out of sample error is close to 0 if approximating f)
 measures how far away the value is from the ‘target function’
 Problematic because                 is an unknown quantity (cannot be used…)
 The learning process thus requires ‘two general core building blocks‘

Final Hypothesis

This is not full learning – rather ‘good generalization‘ since the quantity Eout(g) is an unknown quantity 
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Theory of Generalization – Learning Process Reviewed

 ‘Learning Well‘
 Two core building blocks that achieve                   approximates 0 

 First core building block
 Theoretical result using Hoeffdings Inequality
 Using                    directly is not possible – it is an unknown quantity

 Second core building block
 Practical result using tools & techniques to get
 e.g. linear models with the Perceptron Learning Algorithm (PLA)
 Using                is possible – it is a known quantity – ‘so lets get it small‘
 Lessons learned from practice: in many situations ‘close to 0‘ impossible
 E.g. remote sensing images use case of land cover classification

 Full learning means that we can make sure that Eout(g) is close enough to Ein(g) [from theory]
 Full learning means that we can make sure that Ein(g) is small enough [from practical techniques]

(try to get the ‘in-sample‘ error lower)
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Complexity of the Hypothesis Set – Infinite Spaces Problem 

 Tradeoff & Review 
 Tradeoff between Є, M, and the ‘complexity of the hypothesis space H‘
 Contribution of detailed learning theory is to ‘understand factor M‘

 M Elements of the hypothesis set
 Ok if N gets big, but problematic if M gets big  bound gets meaningless
 E.g. classification models like perceptron, support vector machines, etc.
 Challenge: those classification models have continous parameters
 Consequence: those classification models have infinite hypothesis spaces
 Aproach: despite their size, the models still have limited expressive power

 Many elements of the hypothesis set H have continous parameter with infinite M hypothesis spaces

M elements in H here

theory helps to find a way to deal 
with infinite M hypothesis spaces
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Factor M from the Union Bound & Hypothesis Overlaps

 Union bound is a ‘poor bound‘, ignores correlation between h
 Overlaps are common: the interest is shifted to data points changing label

or

or
...

 Statistical Learning Theory provides a quantity able to characterize the overlaps for a better bound

h1
h2 ΔEout 

ΔEout

ΔEin

change in areas change in data label

assumes no
overlaps, all 
probabilities 

happen
disjointly

takes no overlaps of M hypothesis into account

(at least very often,
indicator to reduce M)

‘unimportant‘ ‘important‘

134 / 177



Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

Replacing M & Large Overlaps

 The mathematical proofs that mH(N) can replace M is a key part of the theory of generalization

(Hoeffding Inequality) (Union Bound) (towards Vapnik Chervonenkis Bound)

 Characterizing the overlaps is the idea of a ‘growth function‘
 Number of dichotomies:

Number of hypothesis but
on finite number N of points

 Much redundancy: Many hypothesis will reports the same dichotomies

(valid for 1 hypothesis) (valid for M hypothesis, worst case) (valid for m (N) as growth function)
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Complexity of the Hypothesis Set – VC Inequality

 Vapnik-Chervonenkis (VC) Inequality
 Result of mathematical proof when replacing M with growth function m
 2N of growth function to have another sample ( 2 x            , no              )    

 In Short – finally : We are able to learn and can generalize ‘ouf-of-sample‘

 The Vapnik-Chervonenkis Inequality is the most important result in machine learning theory
 The mathematial proof brings us that M can be replaced by growth function (no infinity anymore)
 The bound changes thus from ‘infinity with M‘ to a realistic bound that we can work with: max 2N

(characterization of generalization)

Important for bound:
mh(N) is polynomial in N
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‘Growth Function‘ – Perceptron Example

 Dichotomies
 Hypothesis set seperates data, but only change important 
 Set of ‘mini-hyposthesis‘ is restricted to finite data points N
 Number of mini-hypothesis = number of dichotomies

 ‘Growth Function‘
 Based on the number of

dichotomies (cardiality)
 Pick                     wisely to maximise the dichotomies (# at most 2N)

 2D Perceptron
 Practice: restriction on dichotomies means

less mini-hypothesis possible (less than 2N)
 E.g. for N = 4 points, there is always 

a pattern that can not be realized

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[15] Book ‘Learning from Data’

ΔEin

change in data label

‘important‘

(breakpoint k = 4)
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Towards Complexity of the Hypothesis Set – VC Dimension 

 Vapnik-Chervonenkis (VC) Dimension over instance space X
 VC dimension gets a ‘generalization bound‘ on all possible target functions
 Practice: think how much model parameters (‘degrees of freedom‘)

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 Complexity of Hypothesis set H can be measured by the Vapnik-Chervonenkis (VC) Dimension dVC

 Ignoring the model complexity dVC leads to situations where Ein(g) gets down and Eout(g) gets up

Error

VC dimension dVC

model
complexity

d*VC

(‘generalization error‘)

(‘training error‘)

Issue: unknown to ‘compute‘ – VC solved this using the growth function on different samples 

‘out of sample‘

‘first sample‘

‘second sample‘

idea: ‘first sample‘ frequency 
close to ‘second sample‘ frequency[15] Book ‘Learning from Data’
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Appendix C: Geometric Interpretation of SVMs & Kernels
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Geometric SVM Interpretation and Setup (1)

 Think ‘simplified coordinate system‘ and use ‘Linear Algebra‘
 Many other samples are removed (red and green not SVs)
 Vector        of ‘any length‘ perpendicular to the decision boundary
 Vector     points to an unknown quantity (e.g. new sample to classify)
 Is      on the left or right side of the decision boundary?
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--

-- ++

++

--

--

 Dot product
 With      takes the projection on the 
 Depending on where projection is it is 

left or right from the decision boundary
 Simple transformation brings decison rule:

means 
 (given that b and         are unknown to us)

(projection)

++1

(constraints are not enough to fix particular b or w,
need more constraints to calculate b or w)

++
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Geometric SVM Interpretation and Setup (2)

 Creating our constraints to get b or       computed
 First constraint set for positive samples
 Second constraint set for negative samples 
 For mathematical convenience introduce variables (i.e. labelled samples)

for           and                      for 
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--

--

--

(projection)

++
--

++ --

 Multiply equations by 
 Positive samples: 
 Negative samples: 
 Both same due to                   and 

(brings us mathematical convenience often quoted)

(additional constraints just for support vectors itself helps)

2

++

++
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Geometric SVM Interpretation and Setup (3)

 Determine the ‘width of the margin‘
 Difference between positive and negative SVs:
 Projection of                       onto the vector 
 The vector        is a normal vector, magnitude is 
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--

--

++

-- ++

(projection)

 Unit vector is helpful for ‘margin width‘
 Projection (dot product) for margin width:

 When enforce constraint: 

(unit vector)

(Dot product of two vectors is a scalar, here the width of the margin)

2

++
--

3
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Constrained Optimization Steps SVM (1)

 Use ‘constraint optimization‘ of mathematical toolkit

 Idea is to ‘maximize the width‘ of the margin: 
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--

--

++

-- ++

(projection)

(drop the constant 
2 is possible here)

(equivalent)

(equivalent for max)

(mathematical
convenience) 3

 Next: Find the extreme values
 Subject to constraints

2
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (2)

 Use ‘Lagrange Multipliers‘ of mathematical toolkit
 Established tool in ‘constrained optimization‘ to find function extremum
 ‘Get rid‘ of constraints by using Lagrange Multipliers 4

 Introduce a multiplier for each constraint

 Find derivatives for extremum & set 0
 But two unknowns that might vary
 First differentiate w.r.t. 
 Second differentiate w.r.t. 

2

(interesting: non zero for support vectors, rest zero)

(derivative gives the gradient, setting 0 means extremum like min)
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (3)

 Lagrange gives: 

 First differentiate w.r.t      

 Simple transformation brings:

 Second differentiate w.r.t. 

(i.e. vector is linear sum of samples)

(recall: non zero for support vectors, rest zero  even less samples)

5

5

(derivative gives the 
gradient, setting 0 means 
extremum like min)
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (4)

 Lagrange gives: 

 Find minimum
 Quadratic optimization problem
 Take advantage of 5

(plug into)

(b constant
in front sum)

5
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (5)

 Rewrite formula: 

(was 0)

(the same)

6

(results in)

 Equation to be solved by some 
quadratic programming package

(optimization 
depends only on dot 
product of samples)
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++1

(decision rule also
depends on 
dotproduct)

++

Use of SVM Classifier to Perform Classification

 Use findings for decision rule
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-- ++

--

--

(projection)

++

5

148 / 177



Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM & Dot Product

 Rewrite formula: 

(was 0)

(the same)

6

(results in)

 Equation to be solved by some 
quadratic programming package

(optimization 
depends only on dot 
product of samples)
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 Dotproduct enables nice more elements
 E.g. consider non linearly seperable data
 Perform non-linear transformation        of the 

samples into another space (work on features)

6

(optimization 
depends only on dot 
product of samples)

(for decision rule 
above too)

(in optimization)

++1

(decision rule also
depends on 
dotproduct)

++

Kernel Methods & Dot Product Dependency

 Use findings for decision rule
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-- ++

--

--

(projection)

++

5

(trusted Kernel
avoids to know Phi)7(kernel trick is 

substitution)
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Appendix D: Kernel Methods
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Need for Non-linear Decision Boundaries

 Lessons learned from practice
 Scientists and engineers are often 

faced with non-linear class boundaries

 Non-linear transformations approach
 Enlarge feature space (computationally intensive)
 Use quadratic, cubic, or higher-order 

polynomial functions of the predictors

 Example with Support Vector Classifier

[6] An Introduction to Statistical Learning

(previously used p features)

(new 2p features)

(decision boundary is linear in the enlarged feature space)

(decision boundary is non-linear in the original feature 
space with q(x) = 0 where q is a quadratic polynomial)

(time invest: mapping done by explictly carrying 
out the map into the feature space)
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Understanding Non-Linear Transformations (1)

 Example: ‘Use measure of distances from the origin/centre‘  
 Classification 

 (1) new point; (2) transform to z-space; (3) classify it with e.g. perceptron

-1-2-3 1 2 3

1

2

-2

-1

?

(named as x-space)

-1-2-3 1 2 3

1

2

-2

-1

3

4

(named as z-space)

(still linear models applicable)

(‘changing 
constants‘)

(also called input space) (also called feature space)
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Understanding Non-Linear Transformations (2)

 Example: From 2 dimensional to 3 dimensional:
 Much higher dimensional can cause memory and computing problems
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[20] E. Kim

 Problems: Not clear which type of mapping (search); optimization is computationally expensive task
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Understanding Non-linear Transformations (3)

 Example: From 2 dimensional to 3 dimensional:
 Separating hyperplane can be found and ‘mapped back‘ to input space
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[6] E. Kim

(input space)
(feature space)

 Problem: ‘curse of dimensionality’ – As dimensionality increases & volume of space too: sparse data! 
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Term Support Vector Machines – Revisited 

 Term detailed refinement into ‘three separate techniques’
 Practice: applications mostly use the SVMs with kernel methods

 ‘Maximal margin classifier‘ 
 A simple and intuitive classifier with a ‘best‘ linear class boundary
 Requires that data is ‘linearly separable‘

 ‘Support Vector Classifier‘
 Extension to the maximal margin classifier for non-linearly seperable data
 Applied to a broader range of cases, idea of ‘allowing some error‘

 ‘Support Vector Machines‘  Using Non-Linear Kernel Methods
 Extension of the support vector classifier 
 Enables non-linear class boundaries & via kernels;

 Support Vector Machines (SVMs) are a classification technique developed ~1990
 SVMs perform well in many settings & are considered as one of the best ‘out of the box classifiers‘

[1] An Introduction to Statistical Learning
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM & Dot Product

 Rewrite formula: 

(was 0)

(the same)

6

(results in)

 Equation to be solved by some 
quadratic programming package

(optimization 
depends only on dot 
product of samples)
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 Dotproduct enables nice more elements
 E.g. consider non linearly seperable data
 Perform non-linear transformation        of the 

samples into another space (work on features)

6

(optimization 
depends only on dot 
product of samples)

(for decision rule 
above too)

(in optimization)

++1

(decision rule also
depends on 
dotproduct)

++

Kernel Methods & Dot Product Dependency

 Use findings for decision rule
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-- ++

--

--

(projection)

++

5

(trusted Kernel
avoids to know Phi)7(kernel trick is 

substitution)
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Support Vector Machines & Kernel Methods

 Non-linear transformations
 Lead to high number of features  Computations become unmanageable

 Benefits with SVMs
 Enlarge feature space using ‘kernel trick‘ ensures efficient computations
 Map training data into a higher-dimensional feature space using 
 Create a seperating ‘hyperplane‘ with maximum margin in feature space

 Solve constraint optimization problem
 Using Lagrange multipliers & quadratic programming (cf. earlier classifiers)
 Solution involves the inner products of the data points (dot products)
 Inner product of two r-vectors a and b is defined as
 Inner product of two data points:

 Support Vector Machines are extensions of the support vector classifier using kernel methods
 Support Vector Machines enable non-linear decision boundaries that can be efficiently computed
 Support Vector Machines avoids ‘curse of dimensionality‘ and mapping search using a ‘kernel trick‘

[1] An Introduction to Statistical Learning

(including the danger to run into ‘curse of dimensionality‘)
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Linear SV Classifier Refined & Role of SVs

 Linear support vector classifier 
 Details w.r.t. inner products
 With n parameters 

(Lagrange multipliers)
 Use training set to estimate parameters
 Estimate                          and          using           inner products

 Evaluate           with a new point
 Compute the inner product between

new point x and each of the training points xi

 Identify support vectors  Quadratic programming
 is zero most of the times
 is nonzero several times

n (n – 1) / 2 number of pairs

(between all pairs of training data points)

(identified as the support vectors)

(identified as not support vectors)

[6] An Introduction to Statistical Learning (S with indices of support vectors)

‘big data‘
reduction
& less
computing
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The (‘Trusted‘) Kernel Trick

 Summary for computation
 All that is needed to compute 

coefficients are inner products

 Kernel Trick
 Replace the inner product 

with a generalization 
of the inner product

 K is some kernel function

 Kernel types
 Linear kernel

 Polynomial kernel

(inner product used before)

 Kernel trick refers to a mechanism of using different kernel functions (e.g. polynomial)
 A kernel is a function that quantifies the similarity of two data points (e.g. close to each other)

(linear in features)

(choosing a specific kernel type)

(polynomial of degree d)
[6] An Introduction to Statistical Learning

(kernel ~ distance measure)

(sompute the hyperplane without explictly 
carrying  out the map into the feature space)
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Kernel Trick – Example 

 Consider again a simple two dimensional dataset
 We found an ideal mapping         after long search
 Then we need to transform the whole dataset according to 

 Instead, with the ‘kernel trick‘ we ‘wait‘ and ‘let the kernel do the job‘:
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 Example shows that the dot product in the transformed space can be expressed in terms of a 
similarity function in the original space (here dot product is a similiarity between two vectors)

(no need to compute the mapping already)

(in transformed space still a dot product
in the original space  no mapping needed)

(we can save computing time by do not perform the mapping)
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Linear vs. Polynomial Kernel Example

 Linear kernel
 Enables linear decision boundaries

(i.e. like linear support vector classifier)

 Polynomial kernel
 Satisfy Mercer‘s theorem = trusted kernel
 Enables non-linear decision boundaries

(when choosing degree d > 1)
 Amounts to fit a support

vector classifier in a
higher-dimensional space

 Using polynomials of degree d
(d=1 linear support vector classifier)

(linear in features)

(polynomial of degree d)

(SVM with polynomial kernel of degree 3)

(significantly 
improved 

decision rule due
to much more

flexible decision
boundary)

(observed useless for 
non-linear data)

 Polynomial kernel applied to non-linear data is an improvement over linear support vector classifiers

[6] An Introduction to Statistical Learning
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Polynomial Kernel Example

 Circled data points are from the test set
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[20] E. Kim
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RBF Kernel

 Radial Basis Function (RBF) kernel
 One of the mostly used kernel function
 Uses parameter      as positive constant

 ‘Local Behaviour functionality‘
 Related to Euclidean distance measure

 Example
 Use test data 
 Euclidean distance gives        far from 

 RBF kernel have local behaviour (only nearby training data points have an effect on the class label

[1] An Introduction to Statistical Learning

(also known as radial kernel)

(SVM with radial kernel)

(ruler distance)

(large value with large distance)

(tiny value)

(training data xi plays no role for x* & its class label)
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RBF Kernel Example

 Circled data points are from the test set

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[20] E. Kim

(similiar decision boundary 
as polynomial kernel)
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Exact SVM Definition using non-linear Kernels

 General form of SVM classifier
 Assuming non-linear kernel function K
 Based on ‘smaller‘ collection S of SVs

 Major benefit of Kernels: Computing done in original space

 Linear Kernel

 Polynomial Kernel

 RBF Kernel

 True Support Vector Machines are Support Vector Classifiers combined with a non-linear kernel
 There are many non-linear kernels, but mostly known are polynomial and RBF kernels

[6] An Introduction to Statistical Learning

(linear in features)

(polynomial of degree d)

(large distance, small impact)

(independent from transformed space)

(the win: kernel can compute this without ever computing the coordinates of the data in that space, next slides)
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Solution Tools: Support Vector Classifier & QP Algorithm

Elements we 
not exactly

(need to) know 

Training Examples

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Final Hypothesis

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

(ideal function)

(historical records, groundtruth data, examples)

(final formula)

(Support Vector Machines with Kernels)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Quadratic Programming)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise
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Non-Linear Transformations with Support Vector Machines

 Same idea: work in z space instead of x space with SVMs
 Understanding effect on solving (labels remain same)
 SVMs will give the ‘best seperator‘

 Value: inner product is done with z instead of x – the only change
 Result after quadratic programming is hyperplane in z space using the value

 Impacts of      to optimization
 From linear to 2D  probably no drastic change
 From 2D to million-D  sounds like a drastic change but just inner product
 Input for                 remains the number of data points
 Computing longer million-D vectors is ‘easy‘ – optimization steps ‘difficult‘

(replace this simply with z‘s obtained by          )

(result from this new inner product is given to quadratic programming optimization as input as before )

(nothing to do with million-D)

 Infinite-D Z spaces are possible since the non-linear transformation does not affect the optimization
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Kernels & Infinite Z spaces

 Understanding advantage of using a kernel 
 Better than simply enlarging the feature space 
 E.g. using functions of the original features like

 Computational advantages
 By using kernels only compute 
 Limited to just all          distinct pairs 

 Computing without explicitly working in the enlarged feature space
 Important because in many applications the enlarged feature space is large

 Infinite-D Z spaces
 Possible since all that is needed to compute coefficients are inner products

(number of 2 element sets from n element set)

(computing would be infeasible then w/o kernels)

 Kernel methods like RBF have an implicit and infinite-dimensional features space that is not ‘visited’

[1] An Introduction to Statistical Learning

(maps data to higher-dimensional
feature spaces)
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Visualization of SVs

 Problem: z-Space is infinite (unknown)
 How can the Support Vectors (from existing points) be visualized?
 Solution: non-zero alphas have been the identified support vectors

 Support vectors exist in Z – space (just transformed original data points)
 Example: million-D means a million-D vector for 
 But number of support vector is very low,  expected Eout is related to #SVs

(solution of quadratic programming optimization will be a set of alphas we can visualize)

[21] Visualization of high-dimensional space

(generalization behaviour despite million-D & snake-like overfitting)

(snake seems like overfitting,
fitting to well, cf. Lecture 2)  Counting the number of support 

vectors remains to be a good indicator 
for generalization behaviour even
when performing non-linear 
transforms and kernel methods that
can lead to infinite-D spaces

(rule of thumb)
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