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Outline of the Course

1. HPC Introduction & Parallel and Scalable Clustering using DBSCAN

2. Parallel and Scalable Classification using SVMs with Applications

3. Deep Learning using CNNs driven by HPC & GPUs

4. Deep Learning using LSTMs driven by HPC & GPUs
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Outline

 Supervised Classification
 Simple Example with Linear Perceptron Model
 Data-Preprocessing
 Learning Approaches & Mathematical Building Blocks
 Training and Testing
 Selected Challenges

 Application Examples
 Remote Sensing Dataset
 Rome and Indian Pines
 Support Vector Machines
 Parallel and Scalable SVM piSVM
 Non-linear Transformation and Kernel Methods
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Supervised Classification
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Methods Overview

 Groups of data exist
 New data classified 

to existing groups

Classification

?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

 Machine learning methods can be roughly categorized in classification, clustering, or regression 
augmented with various techniques for data exploration, selection, or reduction
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(flowers of type ‘IRIS Setosa‘)

Simple Application Example: Classification of a Flower
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[1] Image sources: Species Iris Group of 
North America Database, www.signa.org  

(flowers of type ‘IRIS Virginica‘)

(what type of flower is this?)

 Groups of data exist
 New data classified 

to existing groups

?

(1) Problem Understanding Phase
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The Learning Problem in the Example

Learning problem: A prediction task
 Determine whether a new Iris flower 

sample is a “Setosa” or “Virginica”
 Binary (two class) classification problem
 What attributes about the data help?
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[1] Image sources: Species Iris Group of North America Database, www.signa.org  

(flowers of type ‘IRIS Setosa‘) (flowers of type ‘IRIS Virginica‘)

(what type of flower is this?)
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Feasibility of Machine Learning in this Example

1. Some pattern exists: 
 Believe in a ‘pattern with ‘petal length‘ & 

‘petal width‘ somehow influence the type

2. No exact mathematical formula
 To the best of our knowledge there is no 

precise formula for this problem

3. Data exists
 Data collection from UCI Dataset „Iris“
 150 labelled samples (aka ‘data points‘)
 Balanced: 50 samples / class
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[3] UCI Machine Learning 
Repository Iris Dataset

[2] Image source: Wikipedia, Sepal

(2) Data Understanding Phase

 sepal length in cm
 sepal width in cm
 petal length in cm
 petal width in cm
 class: Iris Setosa, or

Iris Versicolour,  or
Iris Virginica

(four data attributes for each
sample in the dataset)

(one class label for each
sample in the dataset)
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Understanding the Data – Check Metadata

 First: Check metadata if available
 Example: Downloaded  iris.names includes metadata about data
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[3] UCI Machine Learning Repository Iris Dataset

…
(author, source, or creator)

(Subject, title, or context)

(number of samples, instances)

(metadata is not always available in practice)

(attribute information)

(detailed attribute 
information)

(detailed attribute 
information)
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Understanding the Data – Check Table View

 Second: Check table view of the dataset with some samples
 E.g. Using a GUI like ‘Rattle‘ (library of R), or Excel in Windows, etc.
 E.g. Check the first row if there is header information or if is a sample
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 sepal length in cm
 sepal width in cm
 petal length in cm
 petal width in cm
 class: Iris Setosa, or

Iris Versicolour,  or
Iris Virginica

(four data attributes for each
sample in the dataset)

(one class label for each
sample in the dataset)

(careful first sample taken as header,
resulting in only 149 data samples)

[4] Rattle Library for R
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Preparing the Data – Corrected Header
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(3) Data Preparation Phase

(correct header information, resulting in 150 data samples)

(correcting the header is not always necessary,
or can be automated, e.g. in Rattle)
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Preparing the Data – Remove Third Class Samples

 Data preparation means to prepare our data for our problem
 In practice the whole dataset is rarely needed to solve one problem
 E.g. apply several sampling strategies (but be aware of class balance)

 Recall: Our learning problem
 Determine whether a new Iris flower sample is a “Setosa” or “Virginica”
 Binary (two class) classification problem : ‘Setosa‘ or ‘Virginica‘
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(three class problem with
N = 150 samples including
Iris Versicolour)

(remove Versicolour class
samples from dataset)

(wo class problem with
N = 100 samples excluding
Iris Versicolour)

(export or save dataset
to iris-twoclass.data)
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Preparing the Data – Feature Selection Process

 Data preparation means to prepare our data for our problem
 In practice the whole dataset is rarely needed to solve one problem
 E.g. perform feature selection (aka remove not needed attributes)

 Recall: Our believed pattern in the data
 A ‘pattern with ‘petal length‘ & ‘petal width‘ somehow influence the type
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(N = 100 samples with 4 attributes and  1 class label)

 sepal length in cm
 sepal width in cm
 petal length in cm
 petal width in cm
 class: Iris Setosa, or

Iris Versicolour, or
Iris Virginica

(N = 100 samples with 2 attributes and  1 class label)

 petal length in cm
 petal width in cm
 class: Iris Setosa, or

Iris Versicolour,  or
Iris Virginica

(export or save dataset
to iris-twoclass-twoattr.data)
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 Different samples of the original Iris dataset
 Created for linear seperability and non-linear seperability

Iris Dataset – Open Data
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[5] Iris Dataset
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Check Preparation Phase: Plotting the Data
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(Recall: we believed in a ‘pattern‘ with ‘petal length‘ 
& ‘petal width‘ somehow influence the flower type)

(attributes with d=2)

(x1 is petal length,
x2 is petal width)

(what about the class labels?)

(N = 100 samples)
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Check Preparation Phase: Class Labels
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(still no machine learning so far)

(N = 100 samples)
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Linearly Seperable Data & Linear Decision Boundary
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(decision boundary)

(4) Modelling Phase

?

 The data is 
linearly seperable
(rarely in practice)

 A line becomes a
decision boundary
to determine if a 
new data point is 
class red/green

(N = 100 samples)
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Separating Line & Mathematical Notation

 Data exploration results
 A line can be crafted between the classes since linearly seperable data
 All the data points representing Iris-setosa will be below the line 
 All the data points representing Iris-virginica will be above the line

 More formal mathematical notation
 Input:
 Output: class +1 (Iris-virginica) or class -1 (Iris-setosa)
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(decision boundary)

(attributes of flowers)

Iris-virginica if

Iris-setosa if

(compact notation)

(wi and threshold are
still unknown to us)
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Separating Line & ‘Decision Space‘ Example

modified from [6] An Introduction to Statistical Learning

(equation of a line)

(decision boundary)

(all points Xi on this line
have to satisfy this equation)
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A Simple Linear Learning Model – The Perceptron
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 Human analogy in learning
 Human brain consists of nerve cells called neurons
 Human brain learns by changing the strength of neuron connections (wi)

upon repeated stimulation by the same impulse (aka a ‘training phase‘)
 Training a perceptron model means adapting the weights wi

 Done until they fit input-output relationships of the given ‘training data‘

(representing the threshold)

(training data)

(modelled as
bias term)

d
(dimension of features)

(activation
function,
+1 or -1) (the signal)

[7] F. Rosenblatt, 1957
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Perceptron – Example of a Boolean Function
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(training data)

(trained perceptron model)

(training phase)

 Output node interpretation
 More than just the weighted sum of the inputs – threshold (aka bias)
 Activation function sign (weighted sum): takes sign of the resulting sum

(e.g. consider sample #3,
sum is positive (0.2)  +1)

(e.g. consider sample #6,
sum is negative (-0.1)  -1)
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Summary Perceptron & Hypothesis Set h(x)

 When: Solving a linear classification problem
 Goal: learn a simple value (+1/-1) above/below a certain threshold
 Class label renamed: Iris-setosa = -1 and Iris-virginica = +1

 Input:

 Linear formula
 All learned formulas are different hypothesis for the given problem
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[7] F. Rosenblatt, 1957

(parameters that define
one hypothesis vs. another)

(red parameters correspond
to the redline in graphics)

(attributes in one dataset)

(take attributes and give them different weights – think of ‘impact of the attribute‘)

(each green space and
blue space are regions
of the same class label
determined by sign
function)

(but question remains: how do
we actually learn wi and threshold?)
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Perceptron Learning Algorithm – Understanding Vector W

 When: If we believe there is a linear pattern to be detected
 Assumption: Linearly seperable data (lets the algorithm converge)
 Decision boundary: perpendicular vector wi fixes orientation of the line

 Possible via simplifications since 
we also need to learn the threshold:
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(vector notation, using T = transpose)wi

(equivalent dotproduct notation)

(all notations are equivalent and result is a scalar from which we derive the sign)[8] Rosenblatt, 1958

(points on the decision 
boundary satisfy this equation)
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Understanding the Dot Product – Example & Interpretation

 ‘Dot product‘
 Given two vectors
 Multiplying corresponding components of the vector
 Then adding the resulting products
 Simple example:  
 Interesting: Dot product of two vectors is a scalar

 ‘Projection capabilities of Dot product‘ (simplified)
 Orthogonal projection of vector      in the direction of vector 

 Normalize using length of vector
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(a scalar!)

(projection)

(our example)

 Dot Products are important in machine learning, e.g. in Support Vector Machines, see Appendix C
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Perceptron Learning Algorithm – Learning Step

 Iterative Method using (labelled) training data 

1. Pick one misclassified 
training point where:

2. Update the weight vector: 

 Terminates when there are 
no misclassified points
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(a) adding a vector  or
(b) subtracting a vector

x

w + yx

w

y = +1

y = -1

x

w – yx 

w

(converges only with linearly seperable data)

(one point at a time is picked)

(a)

(b)

(yn is either +1 or -1)
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[Video] Perceptron Learning Algorithm
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[9] PLA Video
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Systematic Process to Support Learning From Data

 Systematic data analysis guided by a ‘standard process‘
 Cross-Industry Standard Process for Data Mining (CRISP-DM)

 Lessons Learned from Practice
 Go back and forth between 

the different six phases 
[10] C. Shearer, CRISP-DM model, 
Journal Data Warehousing, 5:13

 A data mining project is 
guided by these six phases: 
(1) Problem Understanding; 
(2) Data Understanding; 
(3) Data Preparation; 
(4) Modeling; 
(5) Evaluation; 
(6) Deployment

 A more detailed description of all six CRISP-DM phases is in the Appendix A of the slideset

(learning
takes place)
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Machine Learning & Data Mining Tasks in Applications

 Predictive Tasks
 Predicts the value of an attribute based on values of other attributes
 Target/dependent variable: attribute to be predicted
 Explanatory/independent variables: attributed used for making predictions
 E.g. predicting the species of a flower based on characteristics of a flower

 Descriptive Tasks
 Derive patterns  that summarize the underlying relationships in the data
 Patterns here can refer to correlations, trends, trajectories, anomalies
 Often exploratory in nature and frequently require postprocessing
 E.g. credit card fraud detection with unusual transactions for owners

[11] Introduction to Data Mining

 Machine learning tasks can be divided into two major categories: Predictive and Descriptive Tasks
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Predicting Task: Obtain Class of a new Flower ‘Data Point‘ 
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(decision boundary)

(4) Modelling Phase

?

[1] Image sources: Species Iris Group of North America Database, www.signa.org  

(N = 100 samples)
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Summary  Terminologies & Different Dataset Elements

 Target Function
 Ideal function that ‘explains‘ the data we want to learn

 Labelled Dataset (samples)
 ‘in-sample‘ data given to us: 

 Learning vs. Memorizing
 The goal is to create a system that works well ‘out of sample‘ 
 In other words we want to classify ‘future data‘ (ouf of sample) correct

 Dataset Part One: Training set
 Used for training a machine learning algorithms
 Result after using a training set: a trained system

 Dataset Part Two: Test set
 Used for testing whether the trained system might work well 
 Result after using a test set: accuracy of the trained model

(5) Evaluation Phase

(4) Modelling Phase
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Model Evaluation – Training and Testing Phases

 Different Phases in Learning
 Training phase is a hypothesis search
 Testing phase checks if we are on right track

(once the hypothesis clear)

 Work on ‘training examples‘
 Create two disjoint datasets
 One used for training only

(aka training set)
 Another used for testing only

(aka test set)
 Exact seperation is rule of thumb per use case (e.g. 10 % training, 90% test)
 Practice: If you get a dataset take immediately test data away

(‘throw it into the corner and forget about it during modelling‘)
 Reasoning: Once we learned from training data it has an ‘optimistic bias‘
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(e.g. student exam training on examples to 
get Ein ‚down‘, then test via exam)

Training Examples

(historical records, groundtruth data, examples)

(5) Evaluation Phase

‘test set’‘training set’

(4) Modelling Phase
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Model Evaluation – Testing Phase & Confusion Matrix
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 Model is fixed
 Model is just used with the testset
 Parameter wi are set and we have a linear decision function

 Evaluation of model performance
 Counts of test records that are incorrectly predicted
 Counts of test records that are correctly predicted
 E.g. create confusion matrix for a two class problem

(5) Evaluation Phase

Counting per sample Predicted Class

Class = 1 Class = 0

Actual 
Class

Class = 1 f11 f10

Class = 0 f01 f00

(serves as a basis for further performance metrics usually used)
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Model Evaluation – Testing Phase & Performance Metrics
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 Accuracy (usually in %)

 Error rate

 If model evaluation is satisfactory: 

(5) Evaluation PhaseCounting per sample Predicted Class

Class = 1 Class = 0

Actual 
Class

Class = 1 f11 f10

Class = 0 f01 f00

(6) Deployment Phase

(100% accuracy in learning often
points to problems using machine 
learning methos in practice)
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Non-linearly Seperable Data in Practice – Which model?
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?

(4) Modelling Phase

(linear decision boundary)

(non-linear decision boundary)

(lessons learned from practice: requires soft-thresholds to allow 
for some errors being overall better for new data 
 Occams razor – ‘simple model better‘)

(lessons learned from practice: requires 
non-linear decision boundaries)

(resampled, again
N = 100 samples)
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Learning Approaches – What means Learning?

 Supervised Learning
 Majority of methods follow this approach in this course
 Example: credit card approval based on previous customer applications

 Unsupervised Learning
 Often applied before other learning  higher level data representation
 Example: Coin recognition in vending machine based on weight and size

 Reinforcement Learning
 Typical ‘human way‘ of learning
 Example: Toddler tries to touch a hot cup of tea (again and again)

 The basic meaning of learning is ‘to use a set of observations to uncover an underlying process‘
 The three different learning approaches are supervised, unsupervised, and reinforcement learning

 Appendix B provides an introduction to statistical learning theory & feasibility of learning
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Learning Approaches – Supervised Learning

 Each observation of the predictor measurement(s)
has an associated response measurement:
 Input
 Output
 Data

 Goal: Fit a model that relates the response to the predictors
 Prediction: Aims of accurately predicting the response for future 

observations
 Inference: Aims to better understanding the relationship between the 

response and the predictors

 Supervised learning approaches fits a model that related the response to the predictors
 Supervised learning approaches are used in classification algorithms such as SVMs
 Supervised learning works with data = [input, correct output]

[6] An Introduction to Statistical Learning
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Supervised Learning – Overview & Summary

Unknown Target Function Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

Final Hypothesis

(ideal function)

(final formula)

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

Training Examples

(historical records, groundtruth data, examples)

38 / 177



Different Models – Understanding the Hypothesis Set
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Hypothesis Set

(all candidate functions
derived from models 
and their parameters)

(e.g. support vector machine model)

(e.g. linear perceptron model)

Final Hypothesis

‘select one function‘
that best approximates

 Already a change in model 
paramters of h1, …, hm means
a completey different model

(e.g. artificial neural network model)
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Learning Approaches – Supervised Learning Example
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petal length (in cm)

(decision boundary)

?

 The labels guide 
our learning 
process like a 
‘supervisor‘ is 
helping us

(N = 100 samples)

(perceptron model)
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Supervised Learning – Linear Perceptron Example

Unknown Target Function Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

Final Hypothesis

(ideal function)

(final formula)

(Perceptron Model)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Perceptron Learning Algorithm)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

Training Examples

(historical records, groundtruth data, examples)
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Key Challenges: Why is it not so easy in practice?

 Scalability
 Gigabytes, Terabytes, and Petabytes datasets that fit not into memory
 E.g. algorithms become necessary with out-of-core/CPU strategies

 High Dimensionality
 Datasets with hundreds or thousand attributes become available
 E.g. bioinformatics with gene expression data with thousand of features

 Heterogenous and Complex Data
 More complex data objects emerge and unstructured data sets
 E.g. Earth observation time-series data across the globe

 Data Ownership and Distribution
 Distributed datasets are common (e.g. security and transfer challenges)

 Key challenges faced when doing traditional data analysis and machine learning are scalability, 
high dimensionality of datasets, heterogenous and complex data, data ownership & distribution

 Combat ‘overfitting‘ is the key challenge in machine learning using validation & regularization 
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[Video] Remote Sensing

[19] YouTube Video, “What is Remote Sensing?”
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Application Examples
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Exercises – Explore the Rome Dataset

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications 45 / 177



Example Rome Dataset

 Geographical location: Image of Rome, Italy
 Multispectral data obtained by Quickbird satellite sensor

 High-resolution (0.6m) 
panchromatic image Low-resolution (2.4m) 

multispectral images

[16] Rome Image dataset

(Reasoning for picking SVM: Good classification
accuracies on high dimensional datasets,

even with a small ‚rare‘ number of training samples)
Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

Classes
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Understanding the Rome Dataset & Feature Engineering
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10 filtered
images

• Each pixel vector is stored as a line with the libSVM format
• E.g.,

Labels              Pan                             Green                          Blue                              Red     Infrared

Class + Input + Features +  Input  + Feature  + Input  + Features  + Input   + Features   + Input   + Features

10 filtered
images

10 filtered
images

10 filtered
images

10 filtered
images

2 1:0.364706 2:0.360784 3:0.356863 4:0.356863 5:0.349206 6:0.306878 7:0.419355
8:0.453608 9:0.368421 10:1 11:1 12:0.423529 13:0.403922 14:0.403922 15:0.369919
16:0.320833 17:0.302564 18:0.481481 19:0.483516 20:0.32 21:0.625 22:0.833333
23:0.376471 24:0.376471 25:0.372549 26:0.358566 27:0.318367 28:0.243386 29:0.455446
30:0.4 31:0.319149 32:0.368421 33:0.4 34:0.556863 35:0.54902 36:0.436 37:0.322176
38:0.215962 39:0.151079 40:0.257576 41:0.267857 42:0.266667 43:0.277778 44:0.4375
45:0.360784 46:0.360784 47:0.368627 48:0.368627 49:0.363636 50:0.353846 51:0.347826
52:0.335294 53:0.333333 54:0.978723 55:1

[17] G. Cavallaro & M. Riedel et al., 2014
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Inspecting and Understanding the Rome Dataset

 Data is publicly available in EUDAT B2SHARE tool

(persistent handle link for 
publication into papers)

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[18] Rome Image dataset
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Expected Out-of-Sample Performance for ‘Best Line‘

 The line with a ‘bigger margin‘ seems to be better – but why?
 Intuition: chance is higher that a new point will still be correctly classified
 Fewer hypothesis possible: constrained by sized margin
 Idea: achieving good ‘out-of-sample‘ performance is goal

-1-2-3 1 2 3 4 5 6 7

1

2

-2

-1

(e.g. better performance
compared to PLA technique)

(Question remains:
how we can achieve 
a bigger margin)

(simple line in a linear setup
as intuitive decision boundary)

 Appendix C shows how Support Vector Machines (SVMs) are mathematically established
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Term Support Vector Machines Refined

 Term detailed refinement into ‘three separate techniques’
 Practice: applications mostly use the SVMs with kernel methods

 ‘Maximal margin classifier‘ 
 A simple and intuitive classifier with a ‘best‘ linear class boundary
 Requires that data is ‘linearly separable‘

 ‘Support Vector Classifier‘
 Extension to the maximal margin classifier for non-linearly seperable data
 Applied to a broader range of cases, idea of ‘allowing some error‘

 ‘Support Vector Machines‘  Using Non-Linear Kernel Methods
 Extension of the support vector classifier 
 Enables non-linear class boundaries & via kernels;

 Support Vector Machines (SVMs) are a classification technique developed ~1990
 SVMs perform well in many settings & are considered as one of the best ‘out of the box classifiers‘

[6] An Introduction to Statistical Learning
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Exercises – Submit piSVM & Rome (linear)
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JURECA System – SSH Login
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 Use your account train004 - train050 
 Windows: use putty / MobaXterm
 UNIX: ssh trainXYZ@jureca.fz-juelich.de
 Example

 Remember to use your own trainXYZ account in order to login to the JURECA system
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Rome Remote Sensing Dataset

 Data is already available in the tutorial directory
(persistent handle link for 
publication into papers)
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[18] Rome Image dataset

53 / 177



Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

HPC Environment – Modules Revisited

 Module environment tool
 Avoids to manually setup environment information for every application
 Simplifies shell initialization and lets users easily modify their environment

 Module avail
 Lists all available modules on the HPC system (e.g. compilers, MPI, etc.)

 Module spider
 Find modules in the installed set of modules and more information

 Module load  needed before piSVM run
 Loads particular modules into the current work environment, E.g.:

 Module load Intel
 Module load IntelMPI
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Parallel & Scalable PiSVM – Parameters

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 C-SVC: The cost (C) in this case refers to 
a soft-margin specifying how much error 
is allowed and thus represents a 
regularization parameter that prevents 
overfitting more details tomorrow

 nu-SVC: nu in this case refers to values 
between 0 and 1 and thus represents a 
lower and upper bound on the number 
of examples that are support vectors 
and that lie on the wrong side of the 
hyperplane
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Training Rome on JURECA – Job Script (linear)

 Use Rome Dataset with paralle & scalable piSVM tool
 Parameters are equal to the serial libsvm and some additional 

parameters for paralellization
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 Note the tutorial reservation with –reservation=bigdata-cpu  just valid for today on JURECA
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Testing Rome on JURECA – Job Script (linear)
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 Use Rome Dataset with paralle & scalable piSVM tool
 Parameters are equal to the serial libsvm and some additional 

parameters for paralellization

 Note the tutorial reservation with –reservation=bigdata-cpu  just valid for today on JURECA
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Testing Rome on JURECA – Check Outcome

 The output of the training run is a model file
 Used for input for the testing/predicting phase
 In-sample property  Support vectors of the model

 The output of the testing/predicting phase is accuracy
 Accuracy measurement of model performance (cf. Lecture 1)
 The job output file consists of a couple of lines:
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[Video] Training Process of Support Vector Machines
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[5] YouTube Video, ‘Cascade SVM‘

59 / 177



Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

Need for Non-linear Decision Boundaries

 Lessons learned from practice
 Scientists and engineers are often 

faced with non-linear class boundaries

 Non-linear transformations approach
 Enlarge feature space (computationally intensive)
 Use quadratic, cubic, or higher-order 

polynomial functions of the predictors

 Example with Support Vector Classifier

[6] An Introduction to Statistical Learning

(previously used p features)

(new 2p features)

(decision boundary is linear in the enlarged feature space)

(decision boundary is non-linear in the original feature 
space with q(x) = 0 where q is a quadratic polynomial)

(time invest: mapping done by explictly carrying 
out the map into the feature space)
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Understanding Non-Linear Transformations (1)

 Example: ‘Use measure of distances from the origin/centre‘  
 Classification 

 (1) new point; (2) transform to z-space; (3) classify it with e.g. perceptron

-1-2-3 1 2 3

1

2

-2

-1

?

(named as x-space)

-1-2-3 1 2 3

1

2

-2

-1

3

4

(named as z-space)

(still linear models applicable)

(‘changing 
constants‘)

(also called input space) (also called feature space)
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Understanding Non-Linear Transformations (2)

 Example: From 2 dimensional to 3 dimensional:
 Much higher dimensional can cause memory and computing problems

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[20] E. Kim

 Problems: Not clear which type of mapping (search); optimization is computationally expensive task
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Understanding Non-linear Transformations (3)

 Example: From 2 dimensional to 3 dimensional:
 Separating hyperplane can be found and ‘mapped back‘ to input space

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[20] E. Kim

(input space)
(feature space)

 Appendix D shows how the ‘Kernel Trick‘ uses non-linear transformations with SVMs
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Visualization of SVs

 Problem: z-Space is infinite (unknown)
 How can the Support Vectors (from existing points) be visualized?
 Solution: non-zero alphas have been the identified support vectors

 Support vectors exist in Z – space (just transformed original data points)
 Example: million-D means a million-D vector for 
 But number of support vector is very low,  expected Eout is related to #SVs

(solution of quadratic programming optimization will be a set of alphas we can visualize)

[21] Visualization of high-dimensional space

(generalization behaviour despite million-D & snake-like overfitting)

(snake seems like overfitting,
fitting to well, cf. Lecture 2)  Counting the number of support 

vectors remains to be a good indicator 
for generalization behaviour even
when performing non-linear 
transforms and kernel methods that
can lead to infinite-D spaces

(rule of thumb)
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Parallel & Scalable PiSVM - Parameters
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Training Rome on JURECA – Job Script (RBF)

 Use Rome Dataset with paralle & scalable piSVM tool
 Parameters are equal to the serial libsvm and some additional 

parameters for paralellization

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 Note the tutorial reservation with –reservation=bigdata-cpu  just valid for today on JURECA
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Testing Rome on JURECA – Job Script (RBF)

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 Use Rome Dataset with paralle & scalable piSVM tool
 Parameters are equal to the serial libsvm and some additional 

parameters for paralellization

 Note the tutorial reservation with –reservation=bigdata-cpu  just valid for today on JURECA
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Testing Rome on JURECA – Check Outcome

 The output of the training run is a model file
 Used for input for the testing/predicting phase
 In-sample property  Support vectors of the model

 The output of the testing/predicting phase is accuracy
 Accuracy measurement of model performance

 Output of linear SVM was as follows:
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[Video] SVM with Polynomial Kernel Example

[22] YouTube, SVM with Polynomial Kernel
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Indian Pines Dataset – Preprocessing 
Corrected by JPL

[23] G. Cavallaro and M. Riedel, et al. , 2015
(non-linearly separable) dataset
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Indian Pines – Experimental Setup
Two Cases

dataset raw (1)

dataset processed (2)

Feature Enhancement & Selection
Kernel Principle Component Analysis (KPCA)
Extended Self-Dual Attribute Profile (ESDAP)
Nonparametric weighted feature extraction (NWFE)

[23] G. Cavallaro and M. Riedel, et al. , 2015
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Publicly Available Datasets – Location 

 Indian Pines Dataset Raw and Processed

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[24] Indian Pines Raw and Processed 
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Inspecting and Understanding the Indian Pines Dataset

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

200 spectral bands

Class + Original Spectral Bands

Class + Transformed Features 

• Dataset raw (1)

30 image features

• dataset processed (2)

libSVM

libSVM

48 1:0.365 2:0.361 3:0.356 ………………………………. 209:0.333 220:0.978

48 1:0.245 2:0.360 3:0.326 …………….. 29:0.241 30:0.878

73 / 177



Exercises – Indian Pines (Raw) piSVM Runs
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HPC Environment – Modules Revisited

 Module environment tool
 Avoids to manually setup environment information for every application
 Simplifies shell initialization and lets users easily modify their environment

 Module avail
 Lists all available modules on the HPC system (e.g. compilers, MPI, etc.)

 Module spider
 Find modules in the installed set of modules and more information

 Module load  needed before piSVM run
 Loads particular modules into the current work environment, E.g.:
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Parallel & Scalable PiSVM – Parameters

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 C-SVC: The cost (C) in this case refers to 
a soft-margin specifying how much error 
is allowed and thus represents a 
regularization parameter that prevents 
overfitting more details tomorrow

 nu-SVC: nu in this case refers to values 
between 0 and 1 and thus represents a 
lower and upper bound on the number 
of examples that are support vectors 
and that lie on the wrong side of the 
hyperplane
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Training Indian Pines (Raw) on JURECA – Job Script (RBF)

 Use Indian Pines Dataset with paralle & scalable piSVM tool
 Parameters are equal to the serial libsvm and some additional 

parameters for paralellization

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 Note the tutorial reservation with –reservation=ml-hpc-2  just valid for today on JURECA
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Testing Indian Pines (Raw) on JURECA – Job Script

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 Use Rome Dataset with paralle & scalable piSVM tool
 Parameters are equal to the serial libsvm and some additional 

parameters for paralellization

 Note the tutorial reservation with –reservation=ml-hpc-2  just valid for today on JURECA
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Testing/Predicting Rome on JURECA – Check Outcome

 The output of the training run is a model file
 Used for input for the testing/predicting phase
 In-sample property  Support vectors of the model

 The output of the testing/predicting phase is accuracy
 Accuracy measurement of model performance (cf. Lecture 1)
 The job output file consists of a couple of lines
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SVM Multi-class Classification - One vs. One

 Multi-class classification common in science & engineering
 Requires different approach as previous ‘binary classification‘ (2 classes)
 Cf. associated remote sensing SVM application (e.g. 52 land cover classes)
 Reduce the problem of multiclass to multiple binary classification problems

 One vs. One (all pairs) classification
 Given K > 2 classes, this approach creates           different SVMs (                   )
 Each of the different SVMs compares a pair of classes (i.e. binary classifier)
 Classification is done by using test data points with each of the classifiers
 Count number of times that each point is assigned to each of the k classes
 Class is which it was most frequently assigned in         pairwise classification

 One vs. one multi-class classification creates different SVMs that compare each a pair of k classes

[6] An Introduction to Statistical Learning
(the more classes – the more SVMs are created to perform pairwise classification – the more computational complexity)

(advanced topic – required much more study – here just the two most popular approaches)
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SVM Multi-class Classification – One vs. All (aka Rest)

 One vs. All (aka Rest) classification
 Given K > 2 classes, this approach fits only K SVMs
 Each time one of the K classes is compaired to the remaining K-1 classes
 Coefficients that result from fitting an SVM comparing the kth class

(coded as +1) to all others (coded as −1) are 
 Classification with testset data         and compute confidence score
 Assign the testset data to the class for which the following is largest: 

 Reasoning:  high level of confidence that the test data points belong
to the kth class rather than to any of the other classes

 One vs. all multi-class classification creates K SVMs compairing it with to the remaining K-1 classes 

[6] An Introduction to Statistical Learning

(less SVMs are created – but more comparisons are done while creating the classifiers – can be computationally intensive)
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LibSVM – Defacto Standard SVM Implementation

 Free available tool
 Includes Sequential Minimal Optimization (SMO) implementation

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications
[25] LibSVM Webpage
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LibSVM – Download

 Download tar.gz (or in Windows zip bundle)

 Put package in a folder of your choice
 Alternatively copy file to your usual working environment

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[25] LibSVM Webpage
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LibSVM – Make (only in UNIX) 

 Use make to generate executables (needs g++ compiler)

 Check executables 
important for us

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[25] LibSVM Webpage

(use in testing phase)

(use in training phase)
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LibSVM – svm-train Parameters

 Important parameters

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[25] LibSVM Webpage

(we need a training set file)
(take default here = C-SVC)

(in this lecture we have just ‘linear kernels‘)

(Regularization Parameter)

(training phase)

Training Examples
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LibSVM – svm-predict Parameters

 Important parameters

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

(testing phase)

(the model file is generated in the training phase  the support vectors found in optimization)

(test file is a testing dataset set aside to be used once training is finished)

(output file gives us indications how each sample was classified)

Testing Examples
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Review of Parallel SVM Implementations

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[26] M. Goetz, M. Riedel et al., ‘On Parallel and Scalable Classification and Clustering Techniques for Earth Science 
Datasets’, 6th Workshop on Data Mining in Earth System Science, International Conference of Computational Science
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Parallel and Scalable Machine Learning – piSVM 

 ‘Different kind‘ of parallel algorithms
 Goal is to ‘learn from data‘ instead of modelling/approximate the reality
 Parallel algorithms often useful to reduce ‘overall time for data analysis‘

 E.g. Parallel Support Vector Machines (SVMs) Technique
 Data classification algorithm PiSVM using MPI to reduce ‘training time‘
 Example: classification of land cover masses from satellite image data

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[23] G. Cavallaro & M. Riedel et al., ‘On Understanding Big Data Impacts 
in Remotely Sensed Image Classification Using Support Vector Machine 
Methods’, Journal of Applied Earth Observations and Remote Sensing
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Parallel SVM with MPI Technique – piSVM Implementation

 Original piSVM 1.2 version (2011)
 Open-source and based on libSVM library, C
 Message Passing Interface (MPI)
 New version appeared 2014-10 v. 1.3 (no major improvements)
 Lack of ‘big data‘ support (e.g. memory, layout)

 Tuned scalable parallel piSVM tool 1.2.1
 Highly scalable version maintained by Juelich
 Based on original piSVM 1.2 tool
 Open-source (repository to be created)
 Optimizations: load balancing; MPI collectives

[27] piSVM on SourceForge, 2008
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Indian Pines – Experimental Setup
Two Cases

dataset raw (1)

dataset processed (2)

Feature Enhancement & Selection
Kernel Principle Component Analysis (KPCA)
Extended Self-Dual Attribute Profile (ESDAP)
Nonparametric weighted feature extraction (NWFE)

[23] G. Cavallaro and M. Riedel, et al. , 2015
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Exercises – Indian Pines (Processed) piSVM Runs
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Training Indian Pines (Proc) on JURECA – Job Script (RBF)

 Use Indian Pines Dataset with paralle & scalable piSVM tool
 Parameters are equal to the serial libsvm and some additional 

parameters for paralellization

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 Note the tutorial reservation with –reservation=bigdata-cpu  just valid for today on JURECA
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Testing Indian Pines (Proc) on JURECA – Job Script

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

 Use Rome Dataset with paralle & scalable piSVM tool
 Parameters are equal to the serial libsvm and some additional 

parameters for paralellization

 Note the tutorial reservation with –reservation=bigdata-cpu  just valid for today on JURECA
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Testing/Predicting Rome on JURECA – Check Outcome

 The output of the training run is a model file
 Used for input for the testing/predicting phase
 In-sample property  Support vectors of the model

 The output of the testing/predicting phase is accuracy
 Accuracy measurement of model performance (cf. Lecture 1)
 The job output file consists of a couple of lines
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Exercises – Indian Pines – Change Number of Nodes
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Parallelization Benefit: Lower-Time-To-Solution

 Major speed-ups; ~interactive (<1 min); same accuracy;

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

(1) Scenario 
‘unprocessed data‘
training time (in min)

(1) Scenario 
‘unprocessed data‘
testing time (in min)

‘big data‘ is not always better data

manual & serial activities (in min)

(2) Scenario 
‘pre-processed data‘
training time (in min)

(2) Scenario 
‘pre-processed data‘
testing time (in min)

[23] G. Cavallaro, M. Riedel, J.A. Benediktsson 
et al., Journal of Selected Topics in Applied 
Earth Observation and Remote Sensing, 2015

(cf. Importance of feature engineering above)
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Exercises – Indian Pines – Perform n-fold Cross-Validation
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Parallelization Benefit – 10-fold Cross-Validation

 Parallelization benefits are enormous for complex problems
 Enables feasibility to tackle extremely large datasets & high dimensions
 Provides functionality for a high number of classes (e.g. #k SVMs)
 Achieves a massive reduction in time  lower time-to-solution

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

(1) Scenario ‘unprocessed data‘, 10xCV serial: accuracy (min)

(1) Scenario ‘unprocessed data‘’10xCV parallel: accuracy (min)

First Result: best parameter set from 118.28 min to 4.09 min
Second Result: all parameter sets from ~3 days to ~2 hours

(2) Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

(2) Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

[23] G. Cavallaro, M. Riedel, J.A. Benediktsson et al., Journal of Selected Topics 
in Applied Earth Observation and Remote Sensing, 2015

98 / 177



Prevent Overfitting for better ‘ouf-of-sample‘ generalization

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[12] Stop Overfitting, YouTube
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[YouTube Lectures] More about parallel piSVM & HPC 

Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

[32] Morris Riedel, ‘Introduction to Machine Learning Algorithms‘, Invited 
YouTube Lecture, six lectures, University of Ghent, 2017
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Appendix A: CRISP-DM Process
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Summary: Systematic Process

 Systematic data analysis guided by a ‘standard process‘
 Cross-Industry Standard Process for Data Mining (CRISP-DM)

 Lessons Learned from Practice
 Go back and forth between 

the different six phases 
[10] C. Shearer, CRISP-DM model, 
Journal Data Warehousing, 5:13

 A data mining project is 
guided by these six phases: 
(1) Problem Understanding; 
(2) Data Understanding; 
(3) Data Preparation; 
(4) Modeling; 
(5) Evaluation; 
(6) Deployment
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1 – Problem (Business) Understanding

 Task A – Determine Business Objectives
 Background, Business Objectives, Business Success Criteria

 Task B – Situation Assessment
 Inventory of Resources, Requirements, Assumptions, and Contraints
 Risks and Contingencies, Terminology, Costs & Benefits

 Task C – Determine Data Mining Goal
 Data Mining Goals and Success Criteria

 Task D – Produce Project Plan
 Project Plan
 Initial Assessment of Tools & Techniques

[11] CRISP-DM User Guide

 The Business Understanding phase consists of four distinct tasks: (A) Determine Business 
Objectives; (B) Situation Assessment; (C) Determine Data Mining Goal; (D) Produce Project Plan
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2 – Data Understanding

 Task A – Collect Initial Data
 Initial Data Collection Report

 Task B – Describe Data
 Data Description Report

 Task C – Explore Data
 Data Exploration Report

 Task D – Verify Data Quality
 Data Quality Report

 The Data Understanding phase consists of four distinct tasks: 
(A) Collect Initial Data; (B) Describe Data; (C) Explore Data; (D) Verify Data Quality

[11] CRISP-DM User Guide
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3 – Data Preparation

 Task A – Data Set
 Data set description

 Task B – Select Data
 Rationale for inclusion / exclusion

 Task C – Clean Data
 Data cleaning report

 Task D – Construct Data
 Derived attributes, generated records

 Task E – Integrate Data
 Merged data

 Task F – Format Data
 Reformatted data

 The Data Preparation phase consists of six distinct tasks: (A) Data Set; (B) Select Data; 
(C) Clean Data; (D) Construct Data; (E) Integrate Data; (F) Format Data

[11] CRISP-DM User Guide
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4 – Modeling

 Task A – Select Modeling Technique
 Modeling assumption, modeling technique

 Task B – Generate Test Design
 Test design

 Task C – Build Model
 Parameter settings, models, model description

 Task D – Assess Model
 Model assessment, revised parameter settings

 The Data Preparation phase consists of four distinct tasks: (A) Select Modeling 
Technique; (B) Generate Test Design; (C) Build Model; (D) Assess Model; 

[11] CRISP-DM User Guide
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5 – Evaluation

 Task A – Evaluate Results
 Assessment of data mining results w.r.t. business success criteria
 List approved models

 Task B – Review Process
 Review of Process

 Task C – Determine Next Steps
 List of possible actions, decision

 The Data Preparation phase consists of three distinct tasks: (A) Evaluate Results; 
(B) Review Process; (C) Determine Next Steps

[11] CRISP-DM User Guide
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6 – Deployment

 Task A – Plan Deployment
 Establish a deployment plan

 Task B – Plan Monitoring and Maintenance
 Create a monitoring and maintenance plan

 Task C – Product Final Report
 Create final report and provide final presentation

 Task D – Review Project
 Document experience, provide documentation

 The Data Preparation phase consists of three distinct tasks: (A) Plan Deployment; 
(B) Plan Monitoring and Maintenance; (C) Produce Final Report; (D) Review Project

[11] CRISP-DM User Guide
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Learning Approaches – Supervised Learning – Formalization 

 Each observation of the predictor measurement(s)
has an associated response measurement:
 Input
 Output
 Data

 Goal: Fit a model that relates the response to the predictors
 Prediction: Aims of accurately predicting the response for future 

observations
 Inference: Aims to better understanding the relationship between the 

response and the predictors

 Supervised learning approaches fits a model that related the response to the predictors
 Supervised learning approaches are used in classification algorithms such as SVMs
 Supervised learning works with data = [input, correct output]

[6] An Introduction to Statistical Learning

Training Examples

(historical records, groundtruth data, examples)
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Feasibility of Learning

 Theoretical framework underlying practical learning algorithms
 E.g. Support Vector Machines (SVMs)
 Best understood for ‘Supervised Learning‘

 Theoretical background used to solve ‘A learning problem‘
 Inferring one ‘target function‘ that maps 

between input and output
 Learned function can be used to 

predict output from future input
(fitting existing data is not enough)

 Statistical Learning Theory deals with the problem of finding a predictive function based on data

[13] Wikipedia on ‘statistical learning theory’

Unknown Target Function

(ideal function)
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Mathematical Building Blocks (1)

Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

Unknown Target Function

(ideal function)

Training Examples

(historical records, groundtruth data, examples)
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Mathematical Building Blocks (1) – Our Linear Example 
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Unknown Target Function

(ideal function)

Training Examples

(historical records, groundtruth data, examples)

(decision boundaries depending on f)

Iris-virginica if

Iris-setosa if

(wi and threshold are
still unknown to us)

1. Some pattern exists
2. No exact mathematical 

formula (i.e. target function)
3. Data exists

(if we would know the exact target function we dont need 
machine learning, it would not make sense)

(we search a 
function similiar 
like a target function)
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Feasibility of Learning – Hypothesis Set & Final Hypothesis

 The ‘ideal function‘ will
remain unknown in learning
 Impossible to know and learn from data
 If known a straightforward implementation would be better than learning
 E.g. hidden features/attributes of data not known or not part of data

 But ‘(function) approximation‘ of the target function is possible
 Use training examples to learn and approximate it
 Hypothesis set        consists of m different hypothesis (candidate functions)

Unknown Target Function

Final HypothesisHypothesis Set

‘select one function‘
that best approximates
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Feasibility of Learning – Understanding the Hypothesis Set
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Hypothesis Set

(all candidate functions
derived from models 
and their parameters)

(e.g. support vector machine model)

(e.g. linear perceptron model)

Final Hypothesis

‘select one function‘
that best approximates

 Already a change in model 
paramters of h1, …, hm means
a completey different model

(e.g. artificial neural network model)
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Mathematical Building Blocks (2)

Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

Unknown Target Function

(ideal function)

Training Examples

(historical records, groundtruth data, examples)

Final Hypothesis

(set of candidate formulas)

Hypothesis Set
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Mathematical Building Blocks (2) – Our Linear Example
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(Perceptron model – linear model)

Hypothesis Set

Final Hypothesis

(decision boundaries depending on f)

(we search a function similiar 
like a target function)

(trained perceptron model
and our selected final hypothesis)

 Already a change in model 
paramters of h1, …, hm means
a completey different model
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The Learning Model: Hypothesis Set & Learning Algorithm

 The solution tools – the learning model:
1. Hypothesis set - a set of candidate formulas /models
2. Learning Algorithm - ‘train a system‘ with known algorithms

Final HypothesisLearning Algorithm (‘train a system‘)

Hypothesis Set

Training Examples

 Our Linear Example
1. Perceptron Model
2. Perceptron Learning

Algorithm (PLA)‘solution tools‘
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Mathematical Building Blocks (3)

Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

Unknown Target Function

(ideal function)

Training Examples

(historical records, groundtruth data, examples)

Final Hypothesis

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)
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Mathematical Building Blocks (3) – Our Linear Example
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Unknown Target Function

(ideal function)

Training Examples

(historical records, groundtruth data, examples)

Final Hypothesis

(Perceptron model – linear model)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Perceptron Learning Algorithm)

(trained perceptron model
and our selected final hypothesis)

(training data)

(training phase;
Find wi and threshold 
that fit the data)(algorithm uses 

training dataset)
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Feasibility of Learning – Probability Distribution

 Predict output from future input 
(fitting existing data is not enough)
 In-sample ‘1000 points‘ fit well
 Possible: Out-of-sample >= ‘1001 point‘ 

doesn‘t fit very well
 Learning ‘any target function‘

is not feasible (can be anything)

 Assumptions about ‘future input‘
 Statement is possible to 

define about the data outside 
the in-sample data 

 All samples (also future ones) are 
derived from same ‘unknown probability‘ distribution

Unknown Target Function

Training Examples

 Statistical Learning Theory assumes an unknown probability distribution over the input space X

Probability Distribution

(which exact
probability

is not important,
but should not be

completely 
random)
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Feasibility of Learning – In Sample vs. Out of Sample 

 Given ‘unknown‘ probability 
 Given large sample N for
 There is a probability of ‘picking one point or another‘ (i.e. from statistics)
 ‘Error on in sample‘ is known quantity (using labelled data):
 ‘Error on out of sample‘ is unknown quantity:
 In-sample frequency is likely close to out-of-sample frequency

‘in sample‘

‘out of sample‘

use for predict!

 Statistical Learning Theory part that enables that learning is feasible in a probabilistic sense (P on X) 

use Ein(h) as a proxy – thus the other 
way around in learning

depend on 
which

hypothesis h 
out of m

different ones

Ein tracks Eout
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Feasibility of Learning – Union Bound & Factor M

 Assuming no overlaps in hypothesis set 
 Apply mathematical rule ‘union bound‘ (i.e. poor bound)
 Characterizes the number of data samples N needed

Final Hypothesis

 The union bound means that (for any countable set of m ‘events‘) the probability that at least one 
of the events happens is not greater that the sum of the probabilities of the m individual ‘events‘

or

or
...

fixed quantity for each hypothesis
obtained from Hoeffdings Inequality

problematic: if M is too big we loose the link
between the in-sample and out-of-sample

‘visiting M
different
hypothesis‘

Think if Ein deviates from Eout with more than tolerance Є it is a ‘bad event‘ in order to apply union bound

sum of Pr
is ‘worst case‘
bound
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Feasibility of Learning – Modified Hoeffding‘s Inequality

 Errors in-sample                 track errors out-of-sample
 Statement is made being ‘Probably Approximately Correct (PAC)‘
 Given M as number of hypothesis  of hypothesis set 
 ‘Tolerance parameter‘ in learning 
 Mathematically established via ‘modified Hoeffdings Inequality‘:

(original Hoeffdings Inequality doesn‘t apply to multiple hypothesis)

 Theoretical ‘Big Data‘ Impact more N better learning
 The more samples N the more reliable will track                                    well
 (But: the ‘quality of samples‘ also matter, not only the number of samples)

 Statistical Learning Theory part describing the Probably Approximately Correct (PAC) learning

‘Probability that Ein deviates from Eout by more than the tolerance Є is a small quantity depending on M and N‘

‘Probably‘‘Approximately‘

[14] Valiant, ‘A Theory
of the Learnable’, 1984
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Mathematical Building Blocks (4)

Unknown Target Function Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

(ideal function)

(historical records, groundtruth data, examples)

‘constants‘ 
in learning

Probability Distribution

Training Examples

Final Hypothesis

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)
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Mathematical Building Blocks (4) – Our Linear Example
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(infinite M decision boundaries depending on f) Probability Distribution

P

Is this point very likely from the same distribution or just noise?

Is this point very likely from the same distribution or just noise?

P

(we do not solve the M problem here)(we help here with the assumption for the samples)

We assume future points are taken from the
same probability distribution as those that
we have in our training examples

Training Examples

(counter example would be for instance a random number generator, impossible to learn this!)
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Statistical Learning Theory – Error Measure & Noisy Targets

 Question: How can we learn a function from (noisy) data?
 ‘Error measures‘ to quantify our progress, the goal is:

 Often user-defined, if not often ‘squared error‘:

 E.g. ‘point-wise error measure‘

 ‘(Noisy) Target function‘ is not a (deterministic) function
 Getting with ‘same x in‘ the ‘same y out‘ is not always given in practice
 Problem: ‘Noise‘ in the data that hinders us from learning
 Idea: Use a ‘target distribution‘

instead of ‘target function‘
 E.g. credit approval (yes/no)

Error Measure

 Statistical Learning Theory refines the learning problem of learning an unknown target distribution

(e.g. think movie rated now and in 10 years from now)
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Mathematical Building Blocks (5)

Unknown Target Function Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

Final Hypothesis

(ideal function)

(final formula)

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

Training Examples

(historical records, groundtruth data, examples)
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Mathematical Building Blocks (5) – Our Linear Example
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Error Measure

 Iterative Method using (labelled) training data 

1. Pick one misclassified 
training point where:

2. Update the weight vector: 

 Terminates when there are 
no misclassified points

(a) adding a vector  or
(b) subtracting a vector

x

w + yx

w

y = +1

y = -1

x

w – yx 

w

(converges only with linearly seperable data)

(one point at a time is picked)

(a)

(b)

(yn is either +1 or -1)

Error Measure
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Training and Testing – Influence on Learning

 Mathematical notations
 Testing follows: 

(hypothesis clear)
 Training follows:

(hypothesis search) 

 Practice on ‘training examples‘
 Create two disjoint datasets
 One used for training only

(aka training set)
 Another used for testing only

(aka test set)

 Training & Testing are different phases in the learning process
 Concrete number of samples in each set often influences learning 

(e.g. student exam training on examples to get Ein ‚down‘, then test via exam)

Training Examples

(historical records, groundtruth data, examples)
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Theory of Generalization – Initial Generalization & Limits

 Learning is feasible in a probabilistic sense
 Reported final hypothesis – using a ‘generalization window‘ on
 Expecting ‘out of sample performance‘ tracks ‘in sample performance‘
 Approach:                acts as a ‘proxy‘ for

 Reasoning
 Above condition is not the final hypothesis condition:
 More similiar like                   approximates 0 

(out of sample error is close to 0 if approximating f)
 measures how far away the value is from the ‘target function’
 Problematic because                 is an unknown quantity (cannot be used…)
 The learning process thus requires ‘two general core building blocks‘

Final Hypothesis

This is not full learning – rather ‘good generalization‘ since the quantity Eout(g) is an unknown quantity 
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Theory of Generalization – Learning Process Reviewed

 ‘Learning Well‘
 Two core building blocks that achieve                   approximates 0 

 First core building block
 Theoretical result using Hoeffdings Inequality
 Using                    directly is not possible – it is an unknown quantity

 Second core building block
 Practical result using tools & techniques to get
 e.g. linear models with the Perceptron Learning Algorithm (PLA)
 Using                is possible – it is a known quantity – ‘so lets get it small‘
 Lessons learned from practice: in many situations ‘close to 0‘ impossible
 E.g. remote sensing images use case of land cover classification

 Full learning means that we can make sure that Eout(g) is close enough to Ein(g) [from theory]
 Full learning means that we can make sure that Ein(g) is small enough [from practical techniques]

(try to get the ‘in-sample‘ error lower)
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Complexity of the Hypothesis Set – Infinite Spaces Problem 

 Tradeoff & Review 
 Tradeoff between Є, M, and the ‘complexity of the hypothesis space H‘
 Contribution of detailed learning theory is to ‘understand factor M‘

 M Elements of the hypothesis set
 Ok if N gets big, but problematic if M gets big  bound gets meaningless
 E.g. classification models like perceptron, support vector machines, etc.
 Challenge: those classification models have continous parameters
 Consequence: those classification models have infinite hypothesis spaces
 Aproach: despite their size, the models still have limited expressive power

 Many elements of the hypothesis set H have continous parameter with infinite M hypothesis spaces

M elements in H here

theory helps to find a way to deal 
with infinite M hypothesis spaces
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Factor M from the Union Bound & Hypothesis Overlaps

 Union bound is a ‘poor bound‘, ignores correlation between h
 Overlaps are common: the interest is shifted to data points changing label

or

or
...

 Statistical Learning Theory provides a quantity able to characterize the overlaps for a better bound

h1
h2 ΔEout 

ΔEout

ΔEin

change in areas change in data label

assumes no
overlaps, all 
probabilities 

happen
disjointly

takes no overlaps of M hypothesis into account

(at least very often,
indicator to reduce M)

‘unimportant‘ ‘important‘
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Replacing M & Large Overlaps

 The mathematical proofs that mH(N) can replace M is a key part of the theory of generalization

(Hoeffding Inequality) (Union Bound) (towards Vapnik Chervonenkis Bound)

 Characterizing the overlaps is the idea of a ‘growth function‘
 Number of dichotomies:

Number of hypothesis but
on finite number N of points

 Much redundancy: Many hypothesis will reports the same dichotomies

(valid for 1 hypothesis) (valid for M hypothesis, worst case) (valid for m (N) as growth function)
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Complexity of the Hypothesis Set – VC Inequality

 Vapnik-Chervonenkis (VC) Inequality
 Result of mathematical proof when replacing M with growth function m
 2N of growth function to have another sample ( 2 x            , no              )    

 In Short – finally : We are able to learn and can generalize ‘ouf-of-sample‘

 The Vapnik-Chervonenkis Inequality is the most important result in machine learning theory
 The mathematial proof brings us that M can be replaced by growth function (no infinity anymore)
 The bound changes thus from ‘infinity with M‘ to a realistic bound that we can work with: max 2N

(characterization of generalization)

Important for bound:
mh(N) is polynomial in N
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‘Growth Function‘ – Perceptron Example

 Dichotomies
 Hypothesis set seperates data, but only change important 
 Set of ‘mini-hyposthesis‘ is restricted to finite data points N
 Number of mini-hypothesis = number of dichotomies

 ‘Growth Function‘
 Based on the number of

dichotomies (cardiality)
 Pick                     wisely to maximise the dichotomies (# at most 2N)

 2D Perceptron
 Practice: restriction on dichotomies means

less mini-hypothesis possible (less than 2N)
 E.g. for N = 4 points, there is always 

a pattern that can not be realized
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[15] Book ‘Learning from Data’

ΔEin

change in data label

‘important‘

(breakpoint k = 4)
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Towards Complexity of the Hypothesis Set – VC Dimension 

 Vapnik-Chervonenkis (VC) Dimension over instance space X
 VC dimension gets a ‘generalization bound‘ on all possible target functions
 Practice: think how much model parameters (‘degrees of freedom‘)
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 Complexity of Hypothesis set H can be measured by the Vapnik-Chervonenkis (VC) Dimension dVC

 Ignoring the model complexity dVC leads to situations where Ein(g) gets down and Eout(g) gets up

Error

VC dimension dVC

model
complexity

d*VC

(‘generalization error‘)

(‘training error‘)

Issue: unknown to ‘compute‘ – VC solved this using the growth function on different samples 

‘out of sample‘

‘first sample‘

‘second sample‘

idea: ‘first sample‘ frequency 
close to ‘second sample‘ frequency[15] Book ‘Learning from Data’
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Appendix C: Geometric Interpretation of SVMs & Kernels
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Geometric SVM Interpretation and Setup (1)

 Think ‘simplified coordinate system‘ and use ‘Linear Algebra‘
 Many other samples are removed (red and green not SVs)
 Vector        of ‘any length‘ perpendicular to the decision boundary
 Vector     points to an unknown quantity (e.g. new sample to classify)
 Is      on the left or right side of the decision boundary?
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--

-- ++

++

--

--

 Dot product
 With      takes the projection on the 
 Depending on where projection is it is 

left or right from the decision boundary
 Simple transformation brings decison rule:

means 
 (given that b and         are unknown to us)

(projection)

++1

(constraints are not enough to fix particular b or w,
need more constraints to calculate b or w)

++
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Geometric SVM Interpretation and Setup (2)

 Creating our constraints to get b or       computed
 First constraint set for positive samples
 Second constraint set for negative samples 
 For mathematical convenience introduce variables (i.e. labelled samples)

for           and                      for 
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--

--

--

(projection)

++
--

++ --

 Multiply equations by 
 Positive samples: 
 Negative samples: 
 Both same due to                   and 

(brings us mathematical convenience often quoted)

(additional constraints just for support vectors itself helps)

2

++

++
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Geometric SVM Interpretation and Setup (3)

 Determine the ‘width of the margin‘
 Difference between positive and negative SVs:
 Projection of                       onto the vector 
 The vector        is a normal vector, magnitude is 
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--

--

++

-- ++

(projection)

 Unit vector is helpful for ‘margin width‘
 Projection (dot product) for margin width:

 When enforce constraint: 

(unit vector)

(Dot product of two vectors is a scalar, here the width of the margin)

2

++
--

3
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Constrained Optimization Steps SVM (1)

 Use ‘constraint optimization‘ of mathematical toolkit

 Idea is to ‘maximize the width‘ of the margin: 
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--

--

++

-- ++

(projection)

(drop the constant 
2 is possible here)

(equivalent)

(equivalent for max)

(mathematical
convenience) 3

 Next: Find the extreme values
 Subject to constraints

2
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (2)

 Use ‘Lagrange Multipliers‘ of mathematical toolkit
 Established tool in ‘constrained optimization‘ to find function extremum
 ‘Get rid‘ of constraints by using Lagrange Multipliers 4

 Introduce a multiplier for each constraint

 Find derivatives for extremum & set 0
 But two unknowns that might vary
 First differentiate w.r.t. 
 Second differentiate w.r.t. 

2

(interesting: non zero for support vectors, rest zero)

(derivative gives the gradient, setting 0 means extremum like min)
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (3)

 Lagrange gives: 

 First differentiate w.r.t      

 Simple transformation brings:

 Second differentiate w.r.t. 

(i.e. vector is linear sum of samples)

(recall: non zero for support vectors, rest zero  even less samples)

5

5

(derivative gives the 
gradient, setting 0 means 
extremum like min)
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (4)

 Lagrange gives: 

 Find minimum
 Quadratic optimization problem
 Take advantage of 5

(plug into)

(b constant
in front sum)

5
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (5)

 Rewrite formula: 

(was 0)

(the same)

6

(results in)

 Equation to be solved by some 
quadratic programming package

(optimization 
depends only on dot 
product of samples)
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++1

(decision rule also
depends on 
dotproduct)

++

Use of SVM Classifier to Perform Classification

 Use findings for decision rule
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-- ++

--

--

(projection)

++

5
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM & Dot Product

 Rewrite formula: 

(was 0)

(the same)

6

(results in)

 Equation to be solved by some 
quadratic programming package

(optimization 
depends only on dot 
product of samples)
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 Dotproduct enables nice more elements
 E.g. consider non linearly seperable data
 Perform non-linear transformation        of the 

samples into another space (work on features)

6

(optimization 
depends only on dot 
product of samples)

(for decision rule 
above too)

(in optimization)

++1

(decision rule also
depends on 
dotproduct)

++

Kernel Methods & Dot Product Dependency

 Use findings for decision rule
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-- ++

--

--

(projection)

++

5

(trusted Kernel
avoids to know Phi)7(kernel trick is 

substitution)
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Appendix D: Kernel Methods
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Need for Non-linear Decision Boundaries

 Lessons learned from practice
 Scientists and engineers are often 

faced with non-linear class boundaries

 Non-linear transformations approach
 Enlarge feature space (computationally intensive)
 Use quadratic, cubic, or higher-order 

polynomial functions of the predictors

 Example with Support Vector Classifier

[6] An Introduction to Statistical Learning

(previously used p features)

(new 2p features)

(decision boundary is linear in the enlarged feature space)

(decision boundary is non-linear in the original feature 
space with q(x) = 0 where q is a quadratic polynomial)

(time invest: mapping done by explictly carrying 
out the map into the feature space)
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Understanding Non-Linear Transformations (1)

 Example: ‘Use measure of distances from the origin/centre‘  
 Classification 

 (1) new point; (2) transform to z-space; (3) classify it with e.g. perceptron

-1-2-3 1 2 3

1

2

-2

-1

?

(named as x-space)

-1-2-3 1 2 3

1

2

-2

-1

3

4

(named as z-space)

(still linear models applicable)

(‘changing 
constants‘)

(also called input space) (also called feature space)
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Understanding Non-Linear Transformations (2)

 Example: From 2 dimensional to 3 dimensional:
 Much higher dimensional can cause memory and computing problems
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[20] E. Kim

 Problems: Not clear which type of mapping (search); optimization is computationally expensive task
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Understanding Non-linear Transformations (3)

 Example: From 2 dimensional to 3 dimensional:
 Separating hyperplane can be found and ‘mapped back‘ to input space
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[6] E. Kim

(input space)
(feature space)

 Problem: ‘curse of dimensionality’ – As dimensionality increases & volume of space too: sparse data! 
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Term Support Vector Machines – Revisited 

 Term detailed refinement into ‘three separate techniques’
 Practice: applications mostly use the SVMs with kernel methods

 ‘Maximal margin classifier‘ 
 A simple and intuitive classifier with a ‘best‘ linear class boundary
 Requires that data is ‘linearly separable‘

 ‘Support Vector Classifier‘
 Extension to the maximal margin classifier for non-linearly seperable data
 Applied to a broader range of cases, idea of ‘allowing some error‘

 ‘Support Vector Machines‘  Using Non-Linear Kernel Methods
 Extension of the support vector classifier 
 Enables non-linear class boundaries & via kernels;

 Support Vector Machines (SVMs) are a classification technique developed ~1990
 SVMs perform well in many settings & are considered as one of the best ‘out of the box classifiers‘

[1] An Introduction to Statistical Learning

156 / 177



Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM & Dot Product

 Rewrite formula: 

(was 0)

(the same)

6

(results in)

 Equation to be solved by some 
quadratic programming package

(optimization 
depends only on dot 
product of samples)
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 Dotproduct enables nice more elements
 E.g. consider non linearly seperable data
 Perform non-linear transformation        of the 

samples into another space (work on features)

6

(optimization 
depends only on dot 
product of samples)

(for decision rule 
above too)

(in optimization)

++1

(decision rule also
depends on 
dotproduct)

++

Kernel Methods & Dot Product Dependency

 Use findings for decision rule
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-- ++

--

--

(projection)

++

5

(trusted Kernel
avoids to know Phi)7(kernel trick is 

substitution)
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Support Vector Machines & Kernel Methods

 Non-linear transformations
 Lead to high number of features  Computations become unmanageable

 Benefits with SVMs
 Enlarge feature space using ‘kernel trick‘ ensures efficient computations
 Map training data into a higher-dimensional feature space using 
 Create a seperating ‘hyperplane‘ with maximum margin in feature space

 Solve constraint optimization problem
 Using Lagrange multipliers & quadratic programming (cf. earlier classifiers)
 Solution involves the inner products of the data points (dot products)
 Inner product of two r-vectors a and b is defined as
 Inner product of two data points:

 Support Vector Machines are extensions of the support vector classifier using kernel methods
 Support Vector Machines enable non-linear decision boundaries that can be efficiently computed
 Support Vector Machines avoids ‘curse of dimensionality‘ and mapping search using a ‘kernel trick‘

[1] An Introduction to Statistical Learning

(including the danger to run into ‘curse of dimensionality‘)
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Linear SV Classifier Refined & Role of SVs

 Linear support vector classifier 
 Details w.r.t. inner products
 With n parameters 

(Lagrange multipliers)
 Use training set to estimate parameters
 Estimate                          and          using           inner products

 Evaluate           with a new point
 Compute the inner product between

new point x and each of the training points xi

 Identify support vectors  Quadratic programming
 is zero most of the times
 is nonzero several times

n (n – 1) / 2 number of pairs

(between all pairs of training data points)

(identified as the support vectors)

(identified as not support vectors)

[6] An Introduction to Statistical Learning (S with indices of support vectors)

‘big data‘
reduction
& less
computing
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The (‘Trusted‘) Kernel Trick

 Summary for computation
 All that is needed to compute 

coefficients are inner products

 Kernel Trick
 Replace the inner product 

with a generalization 
of the inner product

 K is some kernel function

 Kernel types
 Linear kernel

 Polynomial kernel

(inner product used before)

 Kernel trick refers to a mechanism of using different kernel functions (e.g. polynomial)
 A kernel is a function that quantifies the similarity of two data points (e.g. close to each other)

(linear in features)

(choosing a specific kernel type)

(polynomial of degree d)
[6] An Introduction to Statistical Learning

(kernel ~ distance measure)

(sompute the hyperplane without explictly 
carrying  out the map into the feature space)
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Kernel Trick – Example 

 Consider again a simple two dimensional dataset
 We found an ideal mapping         after long search
 Then we need to transform the whole dataset according to 

 Instead, with the ‘kernel trick‘ we ‘wait‘ and ‘let the kernel do the job‘:
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 Example shows that the dot product in the transformed space can be expressed in terms of a 
similarity function in the original space (here dot product is a similiarity between two vectors)

(no need to compute the mapping already)

(in transformed space still a dot product
in the original space  no mapping needed)

(we can save computing time by do not perform the mapping)
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Linear vs. Polynomial Kernel Example

 Linear kernel
 Enables linear decision boundaries

(i.e. like linear support vector classifier)

 Polynomial kernel
 Satisfy Mercer‘s theorem = trusted kernel
 Enables non-linear decision boundaries

(when choosing degree d > 1)
 Amounts to fit a support

vector classifier in a
higher-dimensional space

 Using polynomials of degree d
(d=1 linear support vector classifier)

(linear in features)

(polynomial of degree d)

(SVM with polynomial kernel of degree 3)

(significantly 
improved 

decision rule due
to much more

flexible decision
boundary)

(observed useless for 
non-linear data)

 Polynomial kernel applied to non-linear data is an improvement over linear support vector classifiers

[6] An Introduction to Statistical Learning

163 / 177



Polynomial Kernel Example

 Circled data points are from the test set
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[20] E. Kim
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RBF Kernel

 Radial Basis Function (RBF) kernel
 One of the mostly used kernel function
 Uses parameter      as positive constant

 ‘Local Behaviour functionality‘
 Related to Euclidean distance measure

 Example
 Use test data 
 Euclidean distance gives        far from 

 RBF kernel have local behaviour (only nearby training data points have an effect on the class label

[1] An Introduction to Statistical Learning

(also known as radial kernel)

(SVM with radial kernel)

(ruler distance)

(large value with large distance)

(tiny value)

(training data xi plays no role for x* & its class label)
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RBF Kernel Example

 Circled data points are from the test set
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[20] E. Kim

(similiar decision boundary 
as polynomial kernel)
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Exact SVM Definition using non-linear Kernels

 General form of SVM classifier
 Assuming non-linear kernel function K
 Based on ‘smaller‘ collection S of SVs

 Major benefit of Kernels: Computing done in original space

 Linear Kernel

 Polynomial Kernel

 RBF Kernel

 True Support Vector Machines are Support Vector Classifiers combined with a non-linear kernel
 There are many non-linear kernels, but mostly known are polynomial and RBF kernels

[6] An Introduction to Statistical Learning

(linear in features)

(polynomial of degree d)

(large distance, small impact)

(independent from transformed space)

(the win: kernel can compute this without ever computing the coordinates of the data in that space, next slides)
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Solution Tools: Support Vector Classifier & QP Algorithm

Elements we 
not exactly

(need to) know 

Training Examples

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Final Hypothesis

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

(ideal function)

(historical records, groundtruth data, examples)

(final formula)

(Support Vector Machines with Kernels)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Quadratic Programming)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

168 / 177



Lecture 2 – Parallel and Scalable Classification using SVMs with Applications

Non-Linear Transformations with Support Vector Machines

 Same idea: work in z space instead of x space with SVMs
 Understanding effect on solving (labels remain same)
 SVMs will give the ‘best seperator‘

 Value: inner product is done with z instead of x – the only change
 Result after quadratic programming is hyperplane in z space using the value

 Impacts of      to optimization
 From linear to 2D  probably no drastic change
 From 2D to million-D  sounds like a drastic change but just inner product
 Input for                 remains the number of data points
 Computing longer million-D vectors is ‘easy‘ – optimization steps ‘difficult‘

(replace this simply with z‘s obtained by          )

(result from this new inner product is given to quadratic programming optimization as input as before )

(nothing to do with million-D)

 Infinite-D Z spaces are possible since the non-linear transformation does not affect the optimization
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Kernels & Infinite Z spaces

 Understanding advantage of using a kernel 
 Better than simply enlarging the feature space 
 E.g. using functions of the original features like

 Computational advantages
 By using kernels only compute 
 Limited to just all          distinct pairs 

 Computing without explicitly working in the enlarged feature space
 Important because in many applications the enlarged feature space is large

 Infinite-D Z spaces
 Possible since all that is needed to compute coefficients are inner products

(number of 2 element sets from n element set)

(computing would be infeasible then w/o kernels)

 Kernel methods like RBF have an implicit and infinite-dimensional features space that is not ‘visited’

[1] An Introduction to Statistical Learning

(maps data to higher-dimensional
feature spaces)
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Visualization of SVs

 Problem: z-Space is infinite (unknown)
 How can the Support Vectors (from existing points) be visualized?
 Solution: non-zero alphas have been the identified support vectors

 Support vectors exist in Z – space (just transformed original data points)
 Example: million-D means a million-D vector for 
 But number of support vector is very low,  expected Eout is related to #SVs

(solution of quadratic programming optimization will be a set of alphas we can visualize)

[21] Visualization of high-dimensional space

(generalization behaviour despite million-D & snake-like overfitting)

(snake seems like overfitting,
fitting to well, cf. Lecture 2)  Counting the number of support 

vectors remains to be a good indicator 
for generalization behaviour even
when performing non-linear 
transforms and kernel methods that
can lead to infinite-D spaces

(rule of thumb)
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