Supercomputing and Big Data

Parallel and Scalable Machine Learning Algorithms

N Prof. Dr. — Ing. Morris Riedel
a O Adjunct Associated Professor
“_ | School of Engineering and Natural Sciences, University of Iceland
Research Group Leader, Juelich Supercomputing Centre, Germany
LECTURE 2

Parallel and Scalable Classification using SVMs with Applications

July 26t, 2018, NextGen@Helmholtz Conference HELMHOLT?Z
GFZ German Research Centre for Geosciences Potsdam, Germany

(L] ..
P%5)= UNIVERSITY OF ICELAND ' J U L I C H JULICH XO ///DEEP
)& SCHOOL OF ENGINEERING AND NATURAL SCIENCES SUPERCOMPUTING
Forschungszentrum | CENTRE NextGen Projects

FACULTY OF INDUSTRIAL ENGINEERING, P
MECHANICAL ENGINEERING AND COMPUTER SCIENCE @HELMHOLTZ

RSIT,
S dr,

\’\,\)M Uy,

(3
Dsead



Outline

Lecture 2 — Parallel and Scalable Classification using SVMs with Applications 2/177



Outline of the Course

1. HPC Introduction & Parallel and Scalable Clustering using DBSCAN

2. Parallel and Scalable Classification using SVMs with Applications

3. Deep Learning using CNNs driven by HPC & GPUs

4. Deep Learning using LSTMs driven by HPC & GPUs

Lecture 2 — Parallel and Scalable Classification using SVMs with Applications 3/177



Outline

= Supervised Classification
= Simple Example with Linear Perceptron Model
= Data-Preprocessing
= Learning Approaches & Mathematical Building Blocks
®= Training and Testing
= Selected Challenges

= Application Examples
= Remote Sensing Dataset
= Rome and Indian Pines
= Support Vector Machines
= Parallel and Scalable SVM piSVM
= Non-linear Transformation and Kernel Methods




Supervised Classification

O
O 0
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Methods Overview

= Machine learning methods can be roughly categorized in classification, clustering, or regression
augmented with various techniques for data exploration, selection, or reduction

Classification Clustering Regression
" Groups of data exist =| No groups of data exist = |dentify a line with
= New data classified =] Create groups from a certain slope
to existing groups data close to each other describing the data




Simple Application Example: Classification of a Flower

I (1) Problem Understanding Phase I (what type of flower is this?)

(flowers of type ‘IRIS Setosa‘)

=  Groups of data exist
= New data classified
to existing groups

[1] Image sources: Species Iris Group of
North America Database, www.signa.org

(flowers of type ‘IRIS Virginica‘)



The Learning Problem in the Example

(flowers of type ‘IRIS Setosa‘) (flowers of type ‘IRIS Virginica‘)

[1] Image sources: Species Iris Group of North America Database, www.signa.org

Learning problem: A prediction task

" Determine whether a new lIris flower
sample is a “Setosa” or “Virginica”

= Binary (two class) classification problem
=  What attributes about the data help?

(what type of flower is this?)



Feasibility of Machine Learning in this Example

1. Some pattern exists:

= Believe in a ‘pattern with ‘petal length’ &
‘petal width somehow influence the type

2. No exact mathematical formula

= To the best of our knowledge there is no
precise formula for this problem

3. Data exists

=  Data collection from UCI Dataset ,, Iris”

= 150 labelled samples (aka ‘data points’) [2] Image source: Wikipedia, Sepal
= Balanced: 50 samples / class = sepal length in cm
(four data attributes for each = sepal width incm
I (2) Data Understanding Phase I samplein the datase) " petal length in cm

= petal width in cm

= class: Iris Setosa, or
Iris Versicolour, or
Iris Virginica

[3] UCI Machine Learning (one class label for each
Repository Iris Dataset sample in the dataset)



Understanding the Data — Check Metadata

First: Check metadata if available (metadata is not always available in practice)

Example: Downloaded iris.names includes metadata about data

h. Title: Iri=s Plants Database ) )

Updated Sept 21 by C.Blake - Added discrepency information (Subject, title, or context)
2. Sources:

(a) Creator: R.R. Fisher

{b) Donor: Michael Marshall (MAESHALL®*PLUEioc.arc.nasa.gov) (author, source, or creator)

(c) Date: July, 1588

o0 0
, (number of samples, instances)

5. MNumber of Instance=z: 150 (50 in each of three classes)
&. MNumber of Attributes: 4 numeric, predictive attributes and the (attribute information)
class
7. Lttribute Information:

1. =epal length in cm . .
2. sepal width in em (detailed attribute
3. petal length in cm information)
4. petal width in cm
5. cla=s: . .
—— Iris Setosa (detailed attribute
—— Iris Versicolour information)

—— Iri= Virginica

[3] UCI Machine Learning Repository Iris Dataset



Understanding the Data — Check Table View

= Second: Check table view of the dataset with some samples
= E.g. Using a GUI like ‘Rattle’ (library of R), or Excel in Windows, etc.
= E.g. Check the first row if there is header information or if is a sample

3100 U.0.4

I X51 X3.5 X1.4 X0.2 Iris.setosa
B oL 38 10 02 Is-setosa
40 5 35 13 03 Iris-setosa
41 45 23 13 03 Iris-setosa
42 44 32 13 02 Iris-setosa
43 5 35 16 06 Iris-setosa
4 51 38 19 04 Iris-setosa
45 48 3 14 03 Iris-setosa
46 51 38 16 0.2 Iris-setosa
47 46 32 14 02 Iris-setosa
48 53 37 15 02 Iris-setosa
49 5 33 14 02 Iris-setosa
50 7 32 47 14 Ins-versicolor
51 64 32 45 1.5 Iris-versicolor
52 69 31 49 1.5 Irs-versicolor
53 55 23 4 13 Ins-versicolor
54 65 28 46 1.5 Iris-versicolor
55 57 28 45 1.3 Tric-versicolor

[4] Rattle Library for R

(careful first sample taken as header,
resulting in only 149 data samples)

(four data attributes for each

sample in the dataset)

(one class label for each
sample in the dataset)

UL

sepal length in cm
sepal width.in cm
petal length in cm
petal width in cm
class: Iris Setosa, or
Iris Versicolour, or
Iris Virginica

b

ok ||

Cancel



Preparing the Data — Corrected Header

i Rattle Dataset -

areqit version U.0.1

I (3) Data Preparation Phase I

W ® ~N O W = W N

o N S
O W B W N O

-
~J

i 51

49
4.7
46

54
46

44
49
54
438
438
43
58
5.7

gA

V2
35

3.2
31
36
39
34
34
29
31
37
34

44
20

V3
14
14
13
15
14
1.7
14
1.5
14
15
15
16
14
11
1.2
15

12

V4
0.2
0.2
0.2
0.2
0.2
04
0.3
0.2
0.2
01
0.2
0.2
01
01
0.2
04

nA

V5
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa

Iris-setosa

Tric.catnrs

(correct header information, resulting in 150 data samples)

v ala ivliner - (nalle (iis.adala)

‘roject Tools Settings Help

& 0 = 8 « ® 4

Execute New  Open Save Report  Export Stop Quit

Jate |Eplore| Tesil Transforml Clustetl Associatel Modell Evaluatel Logﬁl

source: @ Spreadsheet () ARFF () ODBC R Dataset () RData File

wlename‘.[ ins.data ]Separaton , | Decimal: [7] Header

(correcting the header is not always necessary,
or can be automated, e.g. in Rattle)

m

»

m

ok || Cancel



39
40
41
42
43
44
45
46
47
48
49

51

52

53

55

Preparing the Data — Remove Third Class Samples

» Data preparation means to prepare our data for our problem

" |n practice the whole dataset is rarely needed to solve one problem

= E.g.apply several sampling strategies (but be aware of class balance)

= Recall: Our learning problem

= Determine whether a new lIris flower sample is a “Setosa” or “Virginica”

= Binary (two class) classification problem : ‘Setosa‘ or ‘Virginica“

X51 X3.5 X1.4 X0.2
51 34 15 02

5 35 13 03
45 23 13 03
44 32 13 02

5 35 16 06
51 38 19 04
48 3 14 03
51 38 16 02
46 32 14 02
53 37 15 02

5 33 14 02

7 32 47 14 Inis-versi r
64 32 45 15 Iris-versicolor
69 31 49 15 Ins-versicolor
55 23 4 13 Iris-versicolor
65 28 46 15 Iris-versicolor
57 28 45 13 Iric-versicolor

gy 5 5SS S5 SR
TR R R @R oR R om @i

-3
o

R R R I R S S N B

3 &# &2 2 2 2 3 &2 & 2 3 2 Q
6 & ¢ 8 8 0 @ & & © O W
2R 2 2 2 @ 2 @8 2 a @

5 & & & & ©

(three class problem with
N = 150 samples including
Iris Versicolour)

(remove Versicolour class
samples from dataset)

oK

Cani

Vi V2 V3 v V5
39 44 31302

40 51 341502
4 5351303
42 45231303
43 44 3213 02
4 513516 06
45 51 38 19 04
46 48 314 03
47 51 38 16 02
48 46 32 14 02
49 53 37 15 02
50 5331402
51 63 33 6 25 Iris-virginica
52 58 2.7 51 19 Iris-virginica
53 71 359 21 Ins
54 63 29 56 18 Iris
S5 65 3 SR 2.2 Iric-virninica

AR - - - S - S S -
P S R S O S A Y
a 3 3 23 3 2 4 & 3 3 &
a2 2 2 2 2 8 23 8 2 a3 8 2

(wo class problem with
N = 100 samples excluding
Iris Versicolour)

(export or save dataset
to iris-twoclass.data)

b
0K Cancel



Preparing the Data — Feature Selection Process

» Data preparation means to prepare our data for our problem

" |n practice the whole dataset is rarely needed to solve one problem

= E.g. perform feature selection (aka remove not needed attributes)

= Recall: Our believed pattern in the data
= A ‘pattern with ‘petal length’ & ‘petal width’ somehow influence the type

VI V2 V3 v V5 i1l ﬁ r‘;‘;
{1/ 51 3514 02 Iris-setosa = -
. 2 14 02
o 10z v =—sepaHength-irem
3 1302
3 47 3213 02  Iris-setos:
' . . 4 1502
5 5 36 14 02 Iris-setosa 6 1.7 0‘4
6 54 39 17 04  Iris-setosa M L
™ I I h m 7 1403
7 46 34 14 03 Iris-setos: peta engt In C s 15 02
8 5341502 Irs-setosa . .
9 14 02
9 44 29 14 02 Iris-setosa n petal Wldth In CI I I 10 15 01
10 49 31 15 01  Iris-setos . 1 15 02
) .
154371502 s = class: Iris Setosa, or 12 15 02
12 48 34 16 02  Iris-setosa 13 14 01
B 43 31401 sseos is-VMersicolour, or W 1o
14 43 3 11 01  Iris-setosa ’ 15 12 0.2
15 58 412 02 Iris-setosa Iris Virginica 16 15 04
16 57 44 15 04  Iris-setosa 17 12 04

(N = 100 samples with 4 attributes and 1 class Iaw-

R T I FRRTTETTERETT

V5

R I T T T T T |
iR o8R8 R 8 3R A R38R &R 28
2 0 0 0o O 06 0 0 0O 0 O 0 0 O 0 O o
EEEEEREEREERE] § 288 8

to iris-twoclass-twoattr.data)

petal length in cm
petal width in cm
class: Iris Setosa, or
Iris Versicolour, or
Iris Virginica

(export or save dataset

»

oK Cancel

(N =100 samples with 2 attributes and 1 class label)



Iris Dataset — Open Data

= Different samples of the original Iris dataset

= Created for linear seperability and non-linear seperability
& cosane e ———

<« ¢ @ @ https;//b2share.eudat.eu/records/37fb24847a73489a9c569d7033ad0238 s @ | Q Suchen

Iris Dataset LibSVM Format Preprocessing

Morris Riedel;
by Morris Riede EUDAT

Dec 22, 2016 St
L > d at Jan 11, 2018 EUDAT
Abstract: UCI Machine Learning Repository IRIS Dataset iris.scale.original and iris.scale - 3 classes. 50 samples each class iris-classiand3 - only linearly

seperable data - class 1 and 3 sampling - 100 samples iris-classi1and3-training/testing - 20 for training. 30 for testing - per class 1 and 3 iris-class2and3-

training/testing - 20 for training. 30 for testing - perclass 2and 3

Keywords: LIbSVM; Iris; Flowers; UCI;

PID:  11304/10e216d4-0a98-4ab4-86ea-75ed05ee0f46 | Copy

Files Basic metadata
NS Size Open Access True ¢
License
» B iris-classiand3-testing.txt 2.74KB
Contact Email mriedel@fz-juelich.de
> B iris-classiand3-training.txt 1.81KB
Publication Date 2016-07-03
» B iris-classiand3.ixt 454KB
> B iris-classzand3-testing.txt 2.84KB Contributors
» W iris-classzand3-training.txt 318KB Resource Type Category Other
» B iris-classzand3.txt 4.66KB Alternate identifi 397
» B iris.scale.originaloriginal 6.95KB Type B2SHARE_V1_ID
3 B Insscalescale 6.95KB http://hdLhandle.net/11304/b68b5s707-ec19-45bf-
8dag-73503aa4d1e1
Type ePIC_PID
Publisher http://bzshare.eudat.eu

[5] Iris Dataset
B2SHAR

Store and Share Research Data
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Check Preparation Phase: Plotting the Data

(attributes with d=2)

X =T .y

d
(x1 is petal length,

x2 is petal width)

Dataset
3
=
o
c
= 25 e
L *
+ W Se e
2 *e *
Z e e *
= 2 st "
I "»e *
T We MHee s
[l *
*
15 *»
. . { s . s ’ {
(Recall: we believed in a ‘pattern’ with ‘petal length
& ‘petal width somehow influence the flower type)
1
+*
05 +
‘o e
L 2
& N
* W
0 . :
0 1 2 3 4 5 &
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(N =100 samples)

(what about the class labels?)

petallength (in cm)
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Check Preparation Phase: Class Labels

3
E A
(]
£ 25 o m
[ | _
= N EEE m /X Lyyoy T,
o 1] m
g [ ] ] [ |
= 2 NN L ]
[ [ ] | [ | -
= mE mEE N yi,ft—l,--,n
o [ |
[ | )
15 m # Iris-sctosa
\_/ .Iriﬂ"'l'-rgiﬂil:a
L (X13y1)7"'7(XN?yN)
(N =100 samples)
+
0.5 *
4 : : ;
“ e (still no machine learning so far)
& .
*»» )
ﬂ.— T T T T T T T 1 pEtEIIEﬂgth(ln cm}
0 1 Z 3 4 5 & 8
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Linearly Seperable Data & Linear Decision Boundary

I (4) Modelling Phase I = Thedatais
linearly seperable
(rarely in practice

—

= Aline becomes a
decision boundary

.'/ to determine if a
new data point is

class red/green

petal width (in cm)

# Iris-setosa

M Iris~vrginica

(XIJ yl)v A (XN: yN)
(N =100 samples)

(decision boundary)

: petallength (in cm)



Separating Line & Mathematical Notation

Data exploration results
= Aline can be crafted between the classes since linearly seperable data
= All the data points representing Iris-setosa will be below the line
= All the data points representing Iris-virginica will be above the line

" More formal mathematical notation
" |nput: X =X,,...,2, (attributes of flowers)
= Qutput: class +1 (Iris-virginica) or class -1 (lris-setosa)

(decision boundary) d

Iris-virginica if Z wix; > threshold

=1 (w; and threshold are

still unknown to us)

d
Iris-setosa if Z w;x; < threshold
i—1

d
Ségn(( E 'u,‘fx?,) — Hurnshold) (compact notation)

1=1



Separating Line & ‘Decision Space‘ Example

(equation of a line)
1+ 2)(1 -+ BJYQ — 0

T | T | | l — (all points X, on this line
-1 -0 0= 0o 05 1.0 5 have to satisfy this equation)

modified from [6] An Introduction to Statistical Learning



A Simple Linear Learning Model — The Perceptron

* Human analogy in learning [7] F. Rosenblatt, 1957

Stgn
(activation

function,
+1 or-1)

d bias term)
( ( z w, .:C?,) — threshol d)
i=1
\

Human brain consists of nerve cells called neurons

Human brain learns by changing the strength of neuron connections (w;)
upon repeated stimulation by the same impulse (aka a ‘training phase’)

Training a perceptron model means adapting the weights w,
Done until they fit input-output relationships of the given ‘training data’

output
node

(%05 %1)s e (X, Yy) X
1

(training data)

(modelled as

Y

(activation
function)

Y ’ d input nodes X, (bias)

(the signal) (dimension of features) (representing the threshold)



Perceptron — Example of a Boolean Function

d 2 3
1 1 0 o_yl (X1:y1): e (XvaN)
2 1011 (training data)
3 1101
4 1111
5 00 1-1 ‘
6 0 1 0-1
7 0111 (training phase)
8 0 0 0 -

= Qutput node interpretation

(activation
function)

p input nodes t=04
s“zfgn! (Z U"L{',) — Hu‘rshoif{)
=1

(trained perceptron model)

= More than just the weighted sum of the inputs — threshold (aka bias)

= Activation function sign (weighted sum): takes sign of the resulting sum

y=1,if 0.3z1 + 0.329 + 0.323 — 0.4 > 0
y=—1,if 0.321 + 0.322 + 0.323 — 0.4 <O

(e.g. consider sample #3,
sum is positive (0.2) 2> +1)

(e.g. consider sample #6,
sum is negative (-0.1) = -1)



Summary Perceptron & Hypothesis Set h(x)

" When: Solving a linear classification problem [7] F. Rosenblatt, 1957
= Goal: learn a simple value (+1/-1) above/below a certain threshold
= (Class label renamed: Iris-setosa = -1 and Iris-virginica = +1

= |nput: X =— 3:1 g eeey SCd (attributes in one dataset)

®m  |Linear formula (take attributes and give them different weights — think of ‘impact of the attribute’)

= All learned formulas are different hypothesis for the given problem
d

: N 2 : ‘ ] . (parameters that define
h‘(X) _ W, &, — threshold ?h’ S H one hypothesis vs. another)

=1

(each green space and
blue space are regions
of the same class label
determined by sign
function)

(red parameters correspond
to the redline in graphics)

(but question remains: how do
we actually learn w; and threshold?)




Perceptron Learning Algorithm — Understanding Vector W

= When: If we believe there is a linear pattern to be detected

= Assumption: Linearly seperable data (lets the algorithm converge)

= Decision boundary: perpendicular vector w. fixes orientation of the line
h(x) = sign(w’x)
(vector notation, using T = transpose)

wlix =0
w-x =020

(points on the decision

W, — (W;1, W9, ..., Wy
boundary satisfy this equation) ‘ ( o Z_J , )

_lUﬂ
= Possible via simplifications since wl — | Wi
we also need to learn the threshold: 2
d | Wid |
h‘(X) - Szgn((zu,ﬁ’?z) + U,‘O) ;w, = —threshold X; = (33,,517 iy e gjd)
i=1
d .
. h(x) = sign(w - x)
h(x) = sign ( ( Z ufxz)) yx, =1 (equivalent dotproduct notation)
1=0

[8] Rosenblatt, 1958 (all notations are equivalent and result is a scalar from which we derive the sign)



Understanding the Dot Product — Example & Interpretation

T

= ‘Dot product’ :
. P u-v— Z U; Vg h(x) = szgn((Zuxl)),xo =1

Given two vectors — i—0
i

= Multiplying corresponding components of the vector hx) = sign(w - x)

(our example)

= Then adding the resulting products
= Simple example: (2,3)-(4,1) =24+ 3% 1 : (@ scalar)
= |nteresting: Dot product of two vectors is a scalar
" ‘Projection capabilities of Dot product’ (simplified)
= Orthogonal projection of vector v in the direction of vector u

u-v = (|lv||cos(a)))||u| = vul|u| derennyg (profection)

= Normalize using length of vector

u
m |u|| = length(u) = Lynorm = y/u-u

I » Dot Products are important in machine learning, e.g. in Support Vector Machines, see Appendix C I




Perceptron Learning Algorithm — Learning Step

Iterative Method using (labelled) training data (X,, ¥, ), ---, (X5, Yy )

(one point at a time is picked)
Pick one misclassified

=+1 W + yX

training point where: y Y
sign(w'x,) # y, (8 w )
Update the weight vector: (a) addinga vector or

b btracti t
W < W + ynxn (b) subtracting a vector

(y, is either +1 or -1)
y=-1
W

Terminates when there are
no misclassified points (b)

(converges only with linearly seperable data)



[Video] Perceptron Learning Algorithm

[9] PLA Video



Systematic Process to Support Learning From Data

= Systematic data analysis guided by a ‘standard process’
= Cross-Industry Standard Process for Data Mining (CRISP-DIM)

Data
Understanding

Lv ¥
z-L - Data
. Preparation

= A data mining project is Eﬁ:?gﬁnding
guided by these six phases:
(1) Problem Understanding;
(2) Data Understanding;
(3) Data Preparation;
(4) Modeling; (learning
(5) Evaluation; takes place)
(6) Deployment

scientific

data sets “

Deployment

‘ Modelling
= | essons Learned from Practice Evaluation ‘
" Go b?Ck and fc.thh between [10] C. Shearer, CRISP-DM model,
the different six phases Journal Data Warehousing, 5:13

I » A more detailed description of all six CRISP-DM phases is in the Appendix A of the slideset I




Machine Learning & Data Mining Tasks in Applications

I = Machine learning tasks can be divided into two major categories: Predictive and Descriptive Tasks

[11] Introduction to Data Mining
= Predictive Tasks

= Predicts the value of an attribute based on values of other attributes

= Target/dependent variable: attribute to be predicted

= Explanatory/independent variables: attributed used for making predictions
= E.g. predicting the species of a flower based on characteristics of a flower

= Descriptive Tasks
= Derive patterns that summarize the underlying relationships in the data
= Patterns here can refer to correlations, trends, trajectories, anomalies
= Often exploratory in nature and frequently require postprocessing
= E.g. credit card fraud detection with unusual transactions for owners



Predicting Task: Obtain Class of a new Flower ‘Data Point’

I (4) Modelling Phase I

M Iris~vrginica

(XIJ yl)v a (XN: yN)
(N =100 samples)

(decision boundary)

: épetal length (in cm)

[1] Image sources: Species Iris Group of North America Database, www.signa.org



Summary Terminologies & Different Dataset Elements

= Target Function f: X =Y

= |deal function that ‘explains’ the data we want to learn
= Labelled Dataset (samples)
= ‘in-sample’ data given to us: (Xl, yl), cary (XN, yN)

= |earning vs. Memorizing
= The goal is to create a system that works well ‘out of sample’
= |n other words we want to classify ‘future data‘ (ouf of sample) correct

= Dataset Part One: Training set [ (4) Modelling Phase

= Used for training a machine learning algorithms
= Result after using a training set: a trained system

= Dataset Part Two: Test set | (5 Evaluation Phase

= Used for testing whether the trained system might work well
= Result after using a test set: accuracy of the trained model



= Different Phases in Learning

= Training phase is a hypothesis search

= Work on ‘training examples’

Model Evaluation — Training and Testing Phases

(4) Modelling Phase I

Testing phase checks if we are on right track | (5) Evaluation Phase I

(once the hypothesis clear) (e.g. student exam training on examples to
get E,, ,down’, then test via exam)

I

‘test set’

Create two disjoint datasets _

o ‘training set’
One used for training only

(aka training set)

Trainin

- adlols oo oo

Examples

(X0, 8, 40 (X, U )
Another used for testlng Only (historical records, grc')undtruth data, examples)

(aka test set)

Exact seperation is rule of thumb per use case (e.g. 10 % training, 90% test)

Practice: If you get a dataset take immediately test data away
(‘throw it into the corner and forget about it during modelling’)

Reasoning: Once we learned from training data it has an ‘optimistic bias’



Model Evaluation — Testing Phase & Confusion Matrix

= Modelis fixed I (5) Evaluation Phase I

= Model is just used with the testset

= Parameter w, are set and we have a linear decision function

= Evaluation of model performance
= Counts of test records that are incorrectly predicted Sign(wan) + .
= Counts of test records that are correctly predicted sz’gn(WTxn) =
= E.g. create confusion matrix for a two class problem

Counting per sample Predicted Class
Class=1 Class=0

Actual Class=1 fiq fio

Class Class=0 for li

(serves as a basis for further performance metrics usually used)



Model Evaluation — Testing Phase & Performance Metrics

Counting per sample Predicted Class I (5) Evaluation Phase I

Class=1 Class=0
Actual Class = 1 f f (100% accuracy in learning often
C| = 10 points to problems using machine
ass Class=0 for foo learning methos in practice)

= Accuracy (usually in %)

number of correct predictions

Accuracy = —
J total number of predictions

= Errorrate
number of wrong predictions

Error rate =
total number of predictions

= If model evaluation is satisfactory: [ (6) Deployment Phase |




Non-linearly Seperable Data in Practice — Which model?

3 I . I
| (4) Modelling Phase | (X, 9, ), s (X Uy )
(resampled, again
15 N =100 samples)
2
15 # Irisversicolor
B Irisvirginica
(linear decision boundary)
1 +44—
(non-linear decision boundary)
05
u . T T T T T T T 1
0 1 2 3 4 5 6 7 g
(lessons learned from practice: requires soft-thresholds to allow (lessons learned from practice: requires
for some errors being overall better for new data non-linear decision boundaries)

- Occams razor — ‘simple model better’)
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Learning Approaches — What means Learning?

= The basic meaning of learning is ‘to use a set of observations to uncover an underlying process’
= The three different learning approaches are supervised, unsupervised, and reinforcement learning

= Supervised Learning

= Majority of methods follow this approach in this course

= Example: credit card approval based on previous customer applications
= Unsupervised Learning

= Often applied before other learning = higher level data representation

= Example: Coin recognition in vending machine based on weight and size
= Reinforcement Learning

= Typical ‘human way’ of learning
= Example: Toddler tries to touch a hot cup of tea (again and again)

I » Appendix B provides an introduction to statistical learning theory & feasibility of learning




Learning Approaches — Supervised Learning

* Each observation of the predictor measurement(s)
has an associated response measurement:
" lnput X=x,...,0
= Qutput ¥,,t=1,..,n
" Data (X17 y1)7 tee (XI\H ?JN)
" Goal: Fit a model that relates the response to the predictors

= Prediction: Aims of accurately predicting the response for future
observations

d

= |nference: Aims to better understanding the relationship between the
response and the predictors

= Supervised learning approaches fits a model that related the response to the predictors
= Supervised learning approaches are used in classification algorithms such as SVMs
= Supervised learning works with data = [input, correct output]

[6] An Introduction to Statistical Learning




Supervised Learning — Overview & Summary

Unknown Target Bistetianion Pl Probability Distribution Elements we
", (U‘X) ) not exactly
target function f X —Y plus noise P on X (need to) know
. R
(ideal function) \L
]
]
] . ‘
| X = (5’317 "'7xd)€ X constants
H in learning
i
\:, Elements we
. . must and/or
Training Examples Error Measure should have and
(X1?y1)7 ceey (XN7 yN) >6(X)< that might raise
huge demands
(historical records, gropndtruth data, examples) for storage
\ V y Elements
. . . } ] that we derive
Learning Algorithm (‘train a system?) Final Hypothesis from our skillset
A <€ > g ~ ]( and that can be
. . computationally
(set of knowp algorithms) (final formula) A
Elements
Hypothesis Set that we
H — {h} . g i~ H derive from
— our skillset

(set of candidate formulas)



Different Models — Understanding the Hypothesis Set

H={h}; geH

Hypothesis Set

H — {hl,

yhin b

(all candidate functions
derived from models
and their parameters)

Already a change in model
paramters of h,, ..., h,, means
a completey different model

‘select one function’
that best approximates

Final Hypothesis

g=/

a0,

(e.g. support vector machine model)

output

(activation
function)

input nodes X, (bias)
(representing the threshold)

(e.g. linear perceptron model)

(e.g. artificial neural network model)



Learning Approaches — Supervised Learning Example

, X, (perceptron model) * The labels guide
— our learning
S % L process like a
E 25 —— X, (acti\;ation lSUperViSOr' iS
— function) .
< input nodes X, (bias) : helping us
9
s
©
e
)
Q.
1.5 # Iris-setosa
M Iris-virginica
1 (X1ay1):---:(XNnyN)
(N =100 samples)
0.5
(decision boundary)
0

0 ) 2 3 s 5 6 7 s petal length (in cm)




Supervised Learning — Linear Perceptron Example

Unknown Target Bistetianion P

’ UY1X
target function f - X =Y olus noise (/‘ )

(ideal ftjlnction)

<_____-_-_-

Training Examples

(X17 yl)’ T (XN7 yN)

(historical records, gropndtruth data, examples)

\

Learning Algorithm (‘train a system?)

x = (z

19 °°

Probability Distribution

P on X

!

Lo e— x

Error Measure

>e(xX)<€

A 4 /

Final Hypothesis

A <

(Perceptron’tearning Algorithm)

Hypothesis Set

H={h}; ge™H

(Perceptron Model)

g~ f

(final formula)

Elements we
not exactly
(need to) know

‘constants’
in learning

Elements we
must and/or
should have and
that might raise
huge demands
for storage

Elements
that we derive
from our skillset
and that can be
computationally
intensive

Elements
that we
derive from
our skillset



Key Challenges: Why is it not so easy in practice?

= Scalability
= Gigabytes, Terabytes, and Petabytes datasets that fit not into memory
» E.g.algorithms become necessary with out-of-core/CPU strategies

= High Dimensionality
= Datasets with hundreds or thousand attributes become available

= E.g. bioinformatics with gene expression data with thousand of features

= Heterogenous and Complex Data
= More complex data objects emerge and unstructured data sets
= E.g. Earth observation time-series data across the globe

= Data Ownership and Distribution

= Distributed datasets are common (e.g. security and transfer challenges)

= Key challenges faced when doing traditional data analysis and machine learning are scalability,
high dimensionality of datasets, heterogenous and complex data, data ownership & distribution

= Combat ‘overfitting’ is the key challenge in machine learning using validation & regularization




[Video] Remote Sensing

What is
remote

- enSII‘Ig~ sensing?

[19] YouTube Video, “What is Remote Sensing?”
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Application Examples
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Exercises — Explore the Rome Dataset




Example Rome Dataset

" Geographical location: Image of Rome, Italy
= Multispectral data obtained by Quickbird satellite sensor

= High-resolution (0.6m)
panchromatic image Low-resolution (2.4m)
multispectral images

Classes
Class Training Test
BLliIdings 18126 163129
Blocks 10982 98834
Roads 16353 147176
Light Train 1606 14454
Vegetation 6962 62655
Trees 9088 81792
Bare Soil 8127 73144
Soil 15006 13551
Tower 4792 43124
. - e Total 77542 697859
(Reasoning for picking SVM: Good classification -
accuracies on high dimensional datasets -
g / [16] Rome Image dataset (o) B2 SH»A RE

even with a small ,rare’ number of training samples)

46 / 177
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Understanding the Rome Dataset & Feature Engineering

+ Input + + Input + + Input +

10 filtered
images

10 filtered

10 filtered :
images o ;

10 filtered #%
K images

images

images

Labels Pan Green Blue Red Infrared

* Each pixel vector is stored as a line with the libSVM format

 E.g,

1:0.364706 2: 3: 4. 5: 6: 7:
8: 9: 10:1 11:1 12:0.423529 13: 14. 15:
16: 17: 18: 19: 20: 21: 22:
23:0.376471 24. 25: 26: 27: 28: 29:
30: 31: 32: 33: 34:0.556863 35: 36: 37:
38: 39: 40: 41: 42: 43: 44.
45:0.360784 46: 47. 48: 49: 50: 51:
52: 53: 54. 55:

[17] G. Cavallaro & M. Riedel et al., 2014



Inspecting and Understanding the Rome Dataset

= Datais publicly available in EUDAT B2SHARE tool

Rome data set OK

by [Unknownl EUDAT
Dec 22, 2016

Jan 11, 2018 EUDAT
Abstract: Attribute area

PID: 11304/4615928c-e1a5-11e3-8cd7-14febs7d12bg  Copy

(o) B2SHARE

Store and Share Research Data

Files Basic metadata
s Size Open Access True «
[18] Rome Image dataset _
License
> K sdap_area_all_test.el 419.97MB
Contact Email
» B sdap_area_all_training.el 46.65MB
Publication Date 2014-05-22
> B scap_area_panch_testel 114.76MB
» B sdap_area_panch_training.el 12.75MB Contributors
Resource Type Category Other
Alternate identifiers 86
Type B2SHARE_V1_ID
[ t ra 1n00 1@] r«'l 12 rome ] $ de I;:;//BI;Tha;‘ndsl;nt:elt/n304/a2892f1c-7e13-4299-
I -88aegda:
/homea/hpclab/train00l/data/rome - ¢ PIC BID
[trainBG01@jrll2 rome]$ 1s -al
total 580256 r http://bashare.eudat.eu
drwxr-xr-x 2 train00l1 hpclab 512 Jan 14 21:52 . g on

drwxr-xr-x 6 train@01 hpclab 512 Jan 14 21:47 ..

-rw-r--r-- 1 train@0l1l hpclab 419974873 Dec 22 2016 sdap_area_all_test.el
-rw-r--r-- 1 train001 hpclab 46652874 Dec 22 2016 sdap_area_all_training.el . .
-rw-r--r-- 1 train001 hpclab 114763982 Dec 22 2016 sdap_area_panch_test.el (perNStenthandlel”]kfor
-rw-r--r-- 1 train00l1 hpclab 12745692 Dec 22 2016 sdap_area_panch_training.el pubHcatk)ninto papers)



Expected Out-of-Sample Performance for ‘Best Line’

" The line with a ‘bigger margin’ seems to be better — but why?
= |ntuition: chance is higher that a new point will still be correctly classified
= Fewer hypothesis possible: constrained by sized margin
= |dea: achieving good ‘out-of-sample’ performance is goal

(e.g. better performance
compared to PLA technique)

149 [ ) o - (simple line in a linear setup
as intuitive decision boundary)

-2 (Question remains:
how we can achieve
a bigger margin)

I » Appendix C shows how Support Vector Machines (SVMs) are mathematically established




Term Support Vector Machines Refined

=  Support Vector Machines (SVMs) are a classification technique developed ~1990

{

= SVMs perform well in many settings & are considered as one of the best ‘out of the box classifiers

[6] An Introduction to Statistical Learning

" Term detailed refinement into ‘three separate techniques’

= Practice: applications mostly use the SVMs with kernel methods

= ‘Maximal margin classifier’
= Asimple and intuitive classifier with a ‘best’ linear class boundary
= Requires that data is ‘linearly separable’

= ‘Support Vector Classifier’

= Extension to the maximal margin classifier for non-linearly seperable data
= Applied to a broader range of cases, idea of ‘allowing some error’

= ‘Support Vector Machines’ = Using Non-Linear Kernel Methods
= Extension of the support vector classifier
= Enables non-linear class boundaries & via kernels;




Exercises — Submit piSVM & Rome (linear)




JURECA System — SSH Login

= Use your account train004 - train050
= Windows: use putty / MobaXterm

= UNIX: ssh trainXYZ@jureca.fz-juelich.de
= Example

adminuser@linux-8djg:~> ssh train@@l@jureca.fz-juelich.de

Warning: the ECDSA host key for 'jureca.fz-juelich.de' differs from the key for the IP address '134.94.33.
9 1

Offending key for IP in /home/adminuser/.ssh/known_hosts: 12

Matching host key in /home/adminuser/.ssh/known_hosts:19

Are you sure you want to continue connecting (yes/no)? yes

JLast login: Mon Aug 21 14:29:03 2017 from zam2036.zam.kfa-juelich.de

EEF S EE S EEE S R R R R EEEEEEEE S EEEE S EFEE S EF RS SRS EEEEEEEEE RS LSS TSRS

* Welcome to JURECA *
* *
* Information about the system, latest changes, user documentation and FAQs: *
* http://www.fz-juelich.de/ias/jsc/jureca *
EE R FE R E R R E PR R R E R R E R R E R R E R EE R R E R R E SR EE R EE R R E SRR SR EEEEEEEEE R EEEE S
* ### Known Issues ### *
* *
* An up-to-date list of known issues on the system is maintained at *
* http: //www.fz-juelich.de/ias/jsc/jureca-known-issues *
* Open issues: *
* - Intel compiler error with std::valarray and *
* optimized headers, added 2016-03-20 *

» Remember to use your own trainXYZ account in order to login to the JURECA system




Rome Remote Sensing Dataset

= Datais already available in the tutorial directory

S (persistent handle link for
SR publication into papers)

(%) WﬁnZdSHARE

Share Research Data

Export

Name Date Size Export as

[18] Rome Image dataset

22May 2014 467MB

Metadata
22 May 2014 1148MB
PID

22 May 2014 4200MB

Publication: hitp://bzshare. eudateu

[train001@jrl112 romel$ pwd

/homea/hpclab/train00l/data/rome

[train@Ol@jrll2 romel$ 1s -al

total 580256

drwxr-xr-x 2 train001 hpclab 512 Jan 14 21:52 .

drwxr-xr-x 6 train@0l1 hpclab 512 Jan 14 21:47 ..

-rw-r--r-- 1 train001 hpclab 419974873 Dec 22 2016 sdap_area_all_test.el
-rw-r--r-- 1 train00l1l hpclab 46652874 Dec 22 2016 sdap_area_all_training.el
-rw-r--r-- 1 train00l1l hpclab 114763982 Dec 22 2016 sdap_area_panch_test.el
-rw-r--r-- 1 train00l1l hpclab 12745692 Dec 22 2016 sdap area panch _training.el



HPC Environment — Modules Revisited

Viodule environment tool
= Avoids to manually setup environment information for every application
= Simplifies shell initialization and lets users easily modify their environment

Module avail

= Lists all available modules on the HPC system (e.g. compilers, MPI, etc.)

Module spider

" Find modules in the installed set of modules and more information

Module load = needed before piSVM run

= Loads particular modules into the current work environment, E.g.:

= Module load Intel
= Module load IntelMPI



Parallel & Scalable PiSVM - Parameters

= C-SVC: The cost (C) in this case refers to

[train001@j3102 pisvm-1.2.11% ./pisvm-train a soft-margin specifying how much error
Usage: svm-train [options] training_set file [model_file] is allowed and thus represents a
options: . ae
=S svm Type T Set Type of SV (default 0) regularization parameter that prevents

S esit overfitting = more details tomorrow

2 -- one-class SVM = nu-SVC: nu in this case refers to values

3 -- epsilon-SVR

4 -- nuU-SVR between 0 and 1 and thus represents a
-t kernel_type : set type of kernel function (default 2) lower and upper bound on the number

0 -- linear: u'*v

T - polynomial: (gammaru TV + COeTU] degree of examples that are support vectors

2 -- radial basis function: exp(-gamma*|u-v|~2) - -

3 .. sigmoid: tanh(gamma*u'*v 4 coefo) and that lie on the wrong side of the
-d degree : set degree in kernel function (default 3) hyperplane
-g gamma : set gamma in kernel function (default 1/k)

-r coefO® : set coef0 in kernel function (default 0)

-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)

-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)

-m cachesize : set cache memory size in MB (default 40)

-e epsilon : set tolerance of termination criterion (default 0.001)

-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)

-b probability_estimates: whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
-wi weight: set the parameter C of class i to weight*C, for C-SVC (default 1)
-v n: n-fold cross validation mode

-0 n: max. size of working set

-q n: max. number of new variables entering working set

flags:

-D: Assume the feature vectors are dense (default: sparse)



Training Rome on JURECA - Job Script (linear)

= Use Rome Dataset with paralle & scalable piSVM tool

= Parameters are equal to the serial libsvm and some additional
parameters for paralellization

#!/bin/bash -x

#SBATCH- -nodes=2

#SBATCH- -ntasks=48

#SBATCH- -ntasks-per-node=24

#SBATCH- -output=mpi-out.%]j

#SBATCH- -error=mpi-err.%]j

#SBATCH- -time=01:00:00

#SBATCH- -partition=batch

#SBATCH- -mail-user=m. riedel@fz-juelich.de
#SBATCH- -mail-type=ALL

#SBATCH- - job-name=train-rome-1in-2-48-24

### location executable
PISVM=/homea/hpclab/train@0l/tools/pisvm-1.2.1/pisvm-train

### location data
TRAINDATA=/homea/hpclab/train@0l/data/rome/sdap_area_all_training.el

### submit
srun $PISVM -D -o 1024 -q 512 -c 100 -g 8 -t 0 -m 1024 -s 0 $TRAINDATA

= Note the tutorial reservation with —reservation=bigdata-cpu just valid for today on JURECA




Testing Rome on JURECA - Job Script (linear)

= Use Rome Dataset with paralle & scalable piSVM tool

= Parameters are equal to the serial libsvm and some additional
parameters for paralellization

#SBATCH- -ntasks-per-node=24

#SBATCH- -output=mpi-out.%j
#SBATCH--error=mpi-err.%j
#SBATCH--time=01:00:00

#SBATCH- -partition=batch

#SBATCH- -mail -user=m. riedel@fz-juelich.de
#SBATCH- -mail-type=ALL

#SBATCH- - job-name=pred-rome-2-48-24

### location executable
PISVMPRED=/homea/hpclab/train00l/tools/pisvim-1.2.1/pisvm-predict

### location data
TESTDATA=/homea/hpclab/train00l/data/rome/sdap_area_all_test.el

### trained model data
MODELDATA=/homea/hpclab/train00l/tools/pisvm-1.2.1/sdap_area_all_training.el.model

### submit
srun $PISVMPRED $TESTDATA $MODELDATA results.txt

= Note the tutorial reservation with —reservation=bigdata-cpu just valid for today on JURECA




Testing Rome on JURECA — Check Outcome

" The output of the training run is a model file

= Used for input for the testing/predicting phase
= |n-sample property = Support vectors of the model

### trained model data
MODELDATA=/homea/hpclab/train00l/tools/pisvm-1.2.1/sdap_area_all_training.el.model

= The output of the testing/predicting phase is accuracy
= Accuracy measurement of model performance (cf. Lecture 1)

= The job output file consists of a couple of lines:

[train001@j3102 pisvm-1.2.1]1% more mpi-out.15244542
Accuracy = 91.5994% (639235/697859) (classification)
Mean squared error = 1.04794 (regression)

Squared correlation coefficient = 0.835385 (regression)



[Video] Training Process of Support Vector Machines

12 LI LJ LI
« oOriginal positive data o2
« original negative data

10H -, subset positive data

subset negative data
gH O positive support vector
% negalive support vector

[5] YouTube Video, ‘Cascade SVM*
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Need for Non-linear Decision Boundaries

" Lessons learned from practice .
= Scientists and engineers are often “ . .
faced with non-linear class boundaries AR T ’:;-;::,_-_-
= Non-linear transformations approach ‘ K
" Enlarge feature space (computationally intensive) '

= Use quadratic, cubic, or higher-order o _ X, _
. . . (time invest: mapping done by explictly carrying
polynomial functions of the predictors  out the map into the feature space)

= Example with Support Vector Classifier

; maximize M
X1,Xo9,..., X, (previously used p features) B0:B115812-++sBp1,Bp2,E15--1€n
2 2 2
Xq, X7, X2, X5, ..., Xp, X (new 2p features) P 4
b’th@Ct toy; | Bo + Z .Sjl?ifij =+ Z _Sjg;ligj > JI(1 — Ei)
(decision boundary is linear in the enlarged feature space) j=1 j=1
(decision boundary is non-linear in the original feature n P2 5
v i
space with q(x) = 0 where q is a quadratic polynomial) Z e <C, ¢ >0, Z Z ﬁjk =1
i=1 j=1k=1

[6] An Introduction to Statistical Learning



Understanding Non-Linear Transformations (1)

= Example: ‘Use measure of distances from the origin/centre’
u ClaSSiﬁcatiOn (still linear models applicable)

= (1) new point; (2) transform to z-space; (3) classify it with e.g. perceptron

(‘changing
constants’) -2

(named as x-space)

(named as z-space)

(also called input space) (also called feature space)



= Example: From 2 dimensional to 3 dimensional: [e1x2 = [r1,22,2:2 + 227
= Much higher dimensional can cause memory and computing problems

Data projected to R™~2 (nonseparable)
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[20] E. Kim

0.8 7

Understanding Non-Linear Transformations (2)

)

Data in R™3 (separable)
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¢ Vs
% ° ‘oo °.
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I = Problems: Not clear which type of mapping (search); optimization is computationally expensive task




Understanding Non-linear Transformations (3)

= Example: From 2 dimensional to 3 dimensional: [z = [r1, 22,212

= Separating hyperplane can be found and ‘mapped back’ to input space

Data in R™3 (separable w/ hyperplane)

1.4 4 b
]
- ° L e °
1.2 o®
]
]

1.0 7 ‘:“ e o
N °.
& 08 7
o
®

06 7T

0.2 7

0.0
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(feature space)

Data projected to R~2 (hyperplane projection shown)
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0.4 T —
A A“
A
A
10 o5 -

(input space)

[20] E. Kim

10 05 0.0 05 10
X Label

I » Appendix D shows how the ‘Kernel Trick‘ uses non-linear transformations with SVMs




Visualization of SVs

" Problem: z-Space is infinite (unknown)

How can the Support Vectors (from existing points) be visualized?
Solution: non-zero alphas have been the identified support vectors

(solution of quadratic programming optimization will be a set of alphas we can visualize)

(snake seems like overfitting,
fitting to well, cf. Lecture 2)

But number of support vector is very low, expected E

Support vectors exist in Z — space (just transformed original data points)
Example: million-D means a million-D vector for W

is related to #SVs

out

(generalization behaviour despite million-D & snake-like overfitting)

Input Space

Feature Space

[21] Visualization of high-dimensional space

Counting the number of support
vectors remains to be a good indicator
for generalization behaviour even
when performing non-linear
transforms and kernel methods that
can lead to infinite-D spaces

(rule of thumb)



Parallel & Scalable PiSVM - Parameters

[train001@j3102 pisvm-1.2.1]1% ./pisvm-train
Usage: svm-train [options] training_set_file [model_file]

options:

-s svim_type : set type of SVM (default 0)
0 -- C-SVC
1 -- nu-SvVcC
2 -- one-class SVM

3 -- epsilon-SVR
4 -- hu-SVYR
-t kernel_type : set type of kernel function (default 2)

0 -- linear: u'*v

1 -- polynomial: (gamma*u'*v + coef0)“ degree

2 -- radial basis function: exp(-gamma* |u-v|~2)
3 -- sigmoid: tanh(gamma*u'*v + coefQ)

-d degree : set degree in kernel function (default 3)
-g gamma : set gamma in kernel function (default 1/k)
-T coefd : set coefl 1n Kernel function (default 0]
-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)

-h hu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)

-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)

-m cachesize : set cache memory size in MB (default 40)

-e epsilon : set tolerance of termination criterion (default 0.001)

-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)

-b probability estimates: whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
-wi weight: set the parameter C of class i to weight*C, for C-SVC (default 1)

-v n: n-fold cross validation mode

-0 n: max. size of working set

-q n: max. number of new variables entering working set

flags:

-D: Assume the feature vectors are dense (default: sparse)




Training Rome on JURECA - Job Script (RBF)

= Use Rome Dataset with paralle & scalable piSVM tool

= Parameters are equal to the serial libsvm and some additional
#!/bin/bash -x

#SBATCH- -nodes=2

#SBATCH- -ntasks=48

#SBATCH- -ntasks-per-node=24

#SBATCH- -output=mpi-out.%j

#SBATCH- -error=mpi-err.%j
#SBATCH--time=01:00:00

#SBATCH- -partition=batch

#SBATCH- -mail-user=m.riedel@fz-juelich.de
#SBATCH- -mail-type=ALL

#SBATCH- -job-name=train-rome-rbf-2-48-24

### location executable
PISVM=/homea/hpclab/train00l/tools/pisvm-1.2.1/pisvm-train

### location data
TRAINDATA=/homea/hpclab/train00l/data/rome/sdap_area_all_training.el

### submit
srun $PISVM -D -o 1024 -q 512 -c 100 -g 8 -t 2 -m 1024 -s 0 $TRAINDATA

= Note the tutorial reservation with —reservation=bigdata-cpu just valid for today on JURECA




Testing Rome on JURECA - Job Script (RBF)

= Use Rome Dataset with paralle & scalable piSVM tool

= Parameters are equal to the serial libsvm and some additional
parameters for paralellization

#SBATCH- -ntasks-per-node=24

#SBATCH- -output=mpi-out.%j
#SBATCH--error=mpi-err.%j
#SBATCH--time=01:00:00

#SBATCH- -partition=batch

#SBATCH- -mail -user=m. riedel@fz-juelich.de
#SBATCH- -mail-type=ALL

#SBATCH- - job-name=pred-rome-2-48-24

### location executable
PISVMPRED=/homea/hpclab/train00l/tools/pisvim-1.2.1/pisvm-predict

### location data
TESTDATA=/homea/hpclab/train00l/data/rome/sdap_area_all_test.el

### trained model data
MODELDATA=/homea/hpclab/train00l/tools/pisvm-1.2.1/sdap_area_all_training.el.model

### submit
srun $PISVMPRED $TESTDATA $MODELDATA results.txt

= Note the tutorial reservation with —reservation=bigdata-cpu just valid for today on JURECA




Testing Rome on JURECA — Check Outcome

" The output of the training run is a model file
= Used for input for the testing/predicting phase

= |n-sample property = Support vectors of the model

### trained model data
MODELDATA=/homea/hpclab/train00l/tools/pisvm-1.2.1/sdap_area_all_training.el.model

= The output of the testing/predicting phase is accuracy
= Accuracy measurement of model performance

[train@01@j3102 pisvm-1.2.1]% more mpi-out.15244544
Accuracy = 98.0558% (684291/697859) (classification)
Mean squared error = 0.195456 (regression)

Squared correlation coefficient = 0.968742 (regression)

= Qutput of linear SVM was as follows:

[train@0l@j3102 pisvm-1.2.1]1% more mpi-out.15244542
Accuracy = 91.5994% (639235/697859) (classification)
Mean squared error = 1.04794 (regression)

Squared correlation coefficient = 0.835385 (regression)



[Video] SVM with Polynomial Kernel Example

[22] YouTube, SVM with Polynomial Kernel



Indian Pines Dataset — Preprocessing

Corrected by JPL

= 1417x617 pixels (~600 MB)

= 200 bands (20 discarded, with low SNR)

= 58 classes (6 discarded, with < 100 samples)

Class Number of samples Class Mumber of samples
number name training lest nuimber name training test
| Buildings 1720 15475 27 Pasiure 1039 9347
2 Com 1778 16005 28 pond 0 92
3 Corn? It 142 » Sovheans 939 3452
4 Corn-EW 31 Bk N Soybeans T B9 B03
5 Corn-M§ 236 2120 3l Sovbeans-N8 111 QoL
it Corn-CleanTill 1240 11164 32 Soybeans-CleanTill 507 4567
7 Corn-CleanTill-EW 2649 23837 i3 Sovbeans-CleanTill? 273 2453
5 Com- Till-MS J0AKE 3TN0 34 Soybeans-CleanTill-EW 1180 mne2x2
9 Corn-CleanTill-NS-Irrigated £0 T20 33 Sovbeuns-CleanTill-NS 10030 D348
] Corn-CleanTilled-NS? 173 1555 6 Soybeans-CleanTill-Drilled ) s
11 Corn-NMinTill 105 LEED 17 Sovbeans-CleanTill-Weedy 54 EL
12 Corn-MinTill-EW SR SRA iH Sovbeans-Divilled 1512 13606
13 Com-MinTill-NS BE6 7976 30 Sovbeans-MinTill 267 2400
14 Corn-NoTill 438 3943 40 Sovbeans-MinTill-EW 183 1649
15 Com-NoTill-EW 121 11155 41 Sovbeans-MinTill-Dnlled 210 TI4R
16 Corn-NaTill-NS S6H 5116 42 Sovbeans-MinTill-NS 495 4458
17 Fescue 11 |03 43 Soybeans-MNoTill 216 1941
I8 Grass 115 1032 4 Soybeans-NoTill-EW 253
19 GirassTrees 233 2198 45 Soyheans-Ne S @3
20 Hay 113 1015 46 Soybeans-NoTill-Drilled 73
21 Hay? Mo 196G 47 Swampy Area 38
22 Hay- Alfalfa 226 032 48 River L1Y | 2799
23 Ltk 22 202 41 Imees” 58 512
24 NotCropped 194 1746 0 Wheat 494 4411
25 Outs 174 1568 h] | Woods 336 37206
26 Oats? L} 1 52 Woods? 14 13101

[23] G. Cavallaro and M. Riedel, et al. , 2015

(non-linearly separable) dataset



Indian Pines — Experimental Setup

Two Cases

CASE1

INFORMATION ABSTRACTION
HYPERSPECTRAL

IMAGE

CASE2
PROCESSING + INFORMATION ABSTRACTION

dataset raw (1)

dataset processed (2) L N— J
10% 90%

Feature Enhancement & Selection
Kernel Principle Component Analysis (KPCA)
Extended Self-Dual Attribute Profile (ESDAP)
Nonparametric weighted feature extraction (N\WFE)

[23] G. Cavallaro and M. Riedel, et al. , 2015



Publicly Available Datasets — Location

= /ndian Pines Dataset Raw and Processed

Indian pines: raw and processed

by [Unknownl
Dec 22, 2016
Jan11, 2018
Abstract: 1) Indian raw: 1417x614x200 (training 10% and test) 2) Indian processed:1417x614x30 (training 10% and test)

PID: 11304/7eBeecBe-adbi1-11e4-ac7e-860aa0063d1f Copy

Files Basic metadata
Nera Size Open Access
_— License
» b indian_processed_test.el 105.59MB
Contact Email
> B indian_processed_training.el 11.73MB
Publication Date
» B indian_raw_test.el 74713MB
> b indian_raw_training.el 83.01MB Contributors

Resource Type

[train001@jr107 indianpinesl$ pwd T i Alternate identifiers

/homea/hpclab/train00l/data/indianpines
[train001@jrl07 indianpines]$ 1s -al
total 925344

drwxr-xr-x 2 train@ol hpclab 512 Jul 7 2016

drwxr-xr-x 5 train@0l1 hpclab 512 Jan 14 13:10 ..

-rw-r--r-- 1 train001 hpclab 36 Jul 7 2016 b2share.txt

-rw-r--r-- 1 train00l hpclab 105594346 Feb 5 2015 indian_processed_test.el Publisher
-rw-r--r-- 1 train@0l hpclab 11732509 Feb 5 2015 indian_processed_training.el
-rw-r--r-- 1 train001 hpclab 747125597 Feb 5 2015 indian_raw_test.el Language
-rw-r--r-- 1 train00l hpclab 83014311 Feb 5 2015 indian_raw_training.el

" ¢oon) B2SHARE

Store and Share Research Data

[24] Indian Pines Raw and Processed

EUDAT

EUDAT

True «

2015-02-04

Category Other

172

Type B2SHARE_V1_ID

http:4#/hdLhandle.net/11304/9ecseac8-61b4-4617-
ae1c-1f8c8cd3cd74

Type ePIC_PID

https://bzshare.eudat.eu

en



Inspecting and Understanding the Indian Pines Dataset

e Dataset raw (1)
+ Original Spectral Bands

200 spectral bands

1:0.365 2:0.361 3:0.356 ...coccevvviviiiisirinneiine, 209:0.333 220:0.978 libSVM

» dataset processed (2)

30 image features

1: 2: 3:0.326 ..cceeeeennnnn 29: 30: libSVM



Exercises — Indian Pines (Raw) piSVM Runs




HPC Environment — Modules Revisited

Vodule environment tool
= Avoids to manually setup environment information for every application
= Simplifies shell initialization and lets users easily modify their environment

Module avail

= Lists all available modules on the HPC system (e.g. compilers, MPI, etc.)

Module spider

" Find modules in the installed set of modules and more information

Module load = needed before piSVM run

= Loads particular modules into the current work environment, E.g.:

[train00l@jrl105 jsc_mpil%$ module load Intel/2018.1.163-GCC-5.4.0
[train00l1l@jrl05 jsc _mpil$ module load IntelMPI/2018.1.163



Parallel & Scalable PiSVM - Parameters

= C-SVC: The cost (C) in this case refers to

[train001@j3102 pisvm-1.2.11% ./pisvm-train a soft-margin specifying how much error
Usage: svm-train [options] training_set file [model_file] is allowed and thus represents a
options: . ae
=S svm Type T Set Type of SV (default 0) regularization parameter that prevents

? -- E;S;SC overfitting > more details tomorrow

2 -- one-class SVM = nu-SVC: nu in this case refers to values

3 -- epsilon-SVR

4 -- nuU-SVR between 0 and 1 and thus represents a
-t kernel_type : set type of kernel function (default 2) lower and upper bound on the number

0 -- linear: u'*v

1 -- polynomial: (gamma*u'*v + coef0)~degree of examples that are support vectors

2 -- radial basis function: exp(-gamma*|u-v|~2) - -

3 .. sigmoid: tanh(gamma*u'*v 4 coefo) and that lie on the wrong side of the
-d degree : set degree in kernel function (default 3) hyperplane
-g gamma : set gamma in kernel function (default 1/k)

-r coefO® : set coef0 in kernel function (default 0)

-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)

-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)

-m cachesize : set cache memory size in MB (default 40)

-e epsilon : set tolerance of termination criterion (default 0.001)

-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)

-b probability_estimates: whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
-wi weight: set the parameter C of class i to weight*C, for C-SVC (default 1)
-v n: n-fold cross validation mode

-0 n: max. size of working set

-q n: max. number of new variables entering working set

flags:

-D: Assume the feature vectors are dense (default: sparse)



Training Indian Pines (Raw) on JURECA - Job Script (RBF)

= Use Indian Pines Dataset with paralle & scalable piSVM tool

= Parameters are equal to the serial libsvm and some additional

parameters for paralellization

#!/bin/bash -x

#SBATCH- -nodes=4

#SBATCH- -ntasks=96

#SBATCH- -ntasks-per-node=24

#SBATCH- -output=mpi-out.%]

#SBATCH- -error=mpi-err.%]j

#SBATCH- -time=04:00:00

#SBATCH- -partition=batch
#SBATCH--mail-user=m. riedel@fz-juelich.de
#SBATCH--mail-type=ALL

#SBATCH- - job-name=train-indianpines-4-96-24
#SBATCH- - reservation=ml-hpc-2

### location executable
PISVM=/homea/hpclab/train@0l/tools/pisvm-1.2.1/pisvm-train

### location data
TRAINDATA=/homea/hpclab/train00l/data/indianpines/indian_raw_training.el

### submit
srun $PISVM -D -o 1024 -q 512 -c 100 -g 8 -t 2 -m 1024 -s 0 $TRAINDATA

= Note the tutorial reservation with —reservation=ml-hpc-2 just valid for today on JURECA




Testing Indian Pines (Raw) on JURECA - Job Script

= Use Rome Dataset with paralle & scalable piSVM tool

= Parameters are equal to the serial libsvm and some additional

parameters for paralellization

#!/bin/bash -x

#SBATCH- -nodes=4

#SBATCH- -ntasks=96

#SBATCH- -ntasks-per-node=24

#SBATCH- -output=mpi-out.%j

#SBATCH- -error=mpi-err.%j

#SBATCH- -time=04:00:00

#SBATCH- -partition=batch

#SBATCH- -mail-user=m. riedel@fz-juelich.de
#SBATCH- -mail-type=ALL

#SBATCH- - job-name=pred-indianpines-4-96-24
#SBATCH- - reservation=ml-hpc-2

### location executable
PISVMPRED=/homea/hpclab/train00l/tools/pisvm-1.2.1/pisvm-predict

### location data
TESTDATA=/homea/hpclab/train00l/data/indianpines/indian_raw_test.el

### trained model data
MODELDATA=/homea/hpclab/train00l/tools/pisvm-1.2.1/indian_raw_training.el.model

### submit
srun $PISVMPRED $TESTDATA $MODELDATA results.txt

Note the tutorial reservation with —reservation=ml-hpc-2 just valid for today on JURECA




Testing/Predicting Rome on JURECA — Check Outcome

" The output of the training run is a model file

= Used for input for the testing/predicting phase

= |n-sample property = Support vectors of the model

[trainBG01@j3102 pisvm-1.2.1]$%$ head indian_raw_training.el.model

svim_type c_svc

kernel_type rbf

gamma 8

nr_class 52

total_sv 32911

rho 1.66407 -0.0618225 -0.411599 1.29602 -0.178103 0.0331523 1.02995 0.157358

00999 0.502322 -0.201472 -1.37352 0.905974 -0.360055 -0.470548 -0.857891 -0.0
-0.914877 -0.733324 -0.536122 -0.689851 -0.873 -0.420949 -0.577946 -0.112022

45 -1.67725 -1.09567 -0.9257 -1.43485 -1.67098 -0.777169 -1.16524 -1.03982 -1

9 -1.56535 -2.12569 -1.63647 -2.30329 -1.53157 -1.39873 -2.59068 -2.30643 -3.
1 R22”T -1 GAAR4A -2 14RAQ4Q .2 12104 .2 AR21 .2 TARTR .2 T7ART .1 AR7R? _1 =Aa31

= The output of the testing/predicting phase is accuracy
= Accuracy measurement of model performance (cf. Lecture 1)
= The job output file consists of a couple of lines

[trainGO1@j3102 pisvm-1.2.1]% more mpi-out.15244571
Accuracy = 40.0828% (120471/300555) (classification)
Mean squared error = 453,392 (regression)

Squared correlation coefficient = 0.137346 (regression)



SVM Multi-class Classification - One vs. One

= Multi-class classification common in science & engineering
= Requires different approach as previous ‘binary classification’ (2 classes)
= (Cf. associated remote sensing SVM application (e.g. 52 land cover classes)
= Reduce the problem of multiclass to multiple binary classification problems

(advanced topic — required much more study — here just the two most popular approaches)

" One vs. One (all pairs) classification ]
= Given K > 2 classes, this approach creates (2) different SVMs ( X (K —1)/2)
= Each of the different SVMs compares a pair of classes (i.e. binary classifier)
= (Classification is done by using test data points with each of the classifiers
= Count number of times that each point is assigned to each of the k classes
= (Class is which it was most frequently assigned in (l;{) pairwise classification

(the more classes —the more SVMs are created to perform pairwise classification —the more computational complexity)
[6] An Introduction to Statistical Learning

I =  One vs. one multi-class classification creates different SVMs that compare each a pair of k classes




SVM Multi-class Classification — One vs. All (aka Rest)

= One vs. All (aka Rest) classification
= Given K > 2 classes, this approach fits only K SVIMs
= Each time one of the K classes is compaired to the remaining K-1 classes

= Coefficients that result from fitting an SVM comparing the kth class
(coded as +1) to all others (coded as -1) are _3[”“ __31!{“ Ce e 3.1,_};{_

= Classification with testset data =™ and compute confidence score
= Assign the testset data to the class for which the following is largest:

Bok + Brrw] + Barws +. .. +Ppk ),

Reasoning: high level of confidence that the test data points belong
to the kth class rather than to any of the other classes

(less SVMs are created — but more comparisons are done while creating the classifiers — can be computationally intensive)

[6] An Introduction to Statistical Learning

I =  One vs. all multi-class classification creates K SVMs compairing it with to the remaining K-1 classes




LibSVM —

Defacto Standard SVM Implementation

=" Free available tool

* [ncludes Sequential Minimal Optimization (SMO) implementation

e Edit View History Bookmarks Tools Help

Libsvm - Google-Suche - Mozilla Fire

libsvm - Google-Suche | #|
a google.de
JEUDAT B2SHARE G Google [@VirtualBox Virtual Appl {"IPiSVM Software

50 gle libsvm

Alle Videc Bilder Bicher News

LIBSVM - A Library for Support Vector Machines : _
https:/fwww.csie.ntu.edu.tw/~cjlin/libsvm/ ¥ Diese Seite iibersetzen | (2 LIBSVM -~ A Library for Support ... “ + |
LIBSVM -- A Library for Support Vector Machines. Chih-Chung Chang and Chih-Jen Lin. Vi
released on December 14, 2015. It conducts some minor

Libsvm faq
| would like to use libsvm in my
See the previous FAQ

LIBSVM Tools
LIBSVM Tools. Last medified;
01/26/2016 23:20:07. This page

Weitere Ergebnisse von ntu.edu.tw »

[25] LibSVM Webpage

LIBSVM == A Library for Support Vector Machines - Mozilla Firefox

File Edit View History Bookmarks Tools Help

e | & ntu.edu.tw v @| |Bv Google Q @
Download LIBSVM i
LIBSVM. Chih-Chung Chang anc REIEUDAT B2SHARE G Google @ VirtualBox Virtual Appl... | [ PiSvM Software

Chih-Jen Lin. Most available

LiBsvM pata: classiic LIBSVM == A Library for Support Vector Machines

LIBSVM Data: Classification ...
data sets (references given

Chih-Chung Chang and Chih-Jen Lin

rew Version 3.21 released on December 14, 2015. It conducts some minor fixes.

wew | IBSVM tools provides many extensions of LIBSVM. Please check it if you need some functions not
supported in LIBSVM.

wew We now have a nice page LIBSVM data sets providing problems in LIBSVM format.

vew A practical guide to SVM classification is available now! (mainly written for beginners)

We now have an easy script (easy.py) for users who know NOTHING about SVM. It makes everything
automatic--from data scaling to parameter selection.

The parameter selection tool grid.py generates the following contour of cross-validation accuracy. To use this
tool, you also need to install python and gnuplot.




LibSVM - Download

* Download tar.gz (or in Windows zip bundle)

LIBSVM -- A Library for Support Vector Machines - Mozilla Firefox
File Edit View History Bookmarks Tools Help

| % LIBSVM -- A Library for Support . || + ‘

S & ntu.edu.tw ¥ G| B Googl Q | [25] LibSVM WEbpage
EBEUDAT B2SHARE G Google [@ VirtualBox Virtual Appl... i IPiSYM Software

Download LIBSVM

The current release (Version 3.21, December 2015) of LIBSVM can be obtained by downloading the zip file or
tar.gz file. You can also check this github directory. Please e-mail us if you have problems to download the file.

The package includes the source code of the library in C++ and Java, and a simple program for scaling training
data. A README file with detailed explanation is provided. For MS Windows users, there is a sub-directory in the
zip file containing binary executable files. Precompiled Java class archive is also included.

Please read the COPYRIGHT notice before using LIBSVM.

" Put package in a folder of your choice

= Alternatively copy file to your usual working environment

adminuser@linux-8djg:~/tools> scp libsvm-3.21.tar.gz mriedel@jureca.fz-juelich.de:/homeb/zam/mriedel
libsvm-3.21.tar.qgz 100% B827KE 827.4KB/s  00:00

-bash-4.2% 1s -al

total &4

drwxr-xr-x 2 mriedel zam 512 Jul 6 20:008
drwxr-xr-x 29 mriedel zam 32768 Jul 6 159:58

-rw-r--r-- 1 mriedel zam 847291 Jul 6 20:00 libsvm-3.21.tar.gz
-bash-4.2% pwd

JShomeby/zam/mriedel /serialtools



LibSVM — Make (only in UNIX)

= Use make to generate executables (needs g++ compiler)

-bash-4.2% pwd

JShomeby/zam/mriedel /serialtools/libsvm-3.21

-hash-4.2% make

g++ -Wall -Wconversion -03 -fPIC -c svm.cpp

g++ -Wall -Wconversion -03 -fPIC svm-train.c swvm.o

-0 svm-train -lm

g++ -Wall -Wconversion -03 -fPIC svm-predict.c svm.o -o svm-predict -Tm
g++ -Wall -Wconversion -03 -fPIC svm-scale.c

= Check executables

important for us

[25] LibSVM Webpage

-bash-4.2% pwd

/homeb/zam/mriedel/serialtools/libsvm-3.21

-bash-4.2% 1s -al

-0 svm-scale

total B96
drwxr-xr-x 8 mriedel zam 32768 Jul 6 20:05 .
drwxr-xr-x 3 mriedel zam 512 Jul 6 20:03 ..
-rw-r--r-- 1 mriedel zam 14597 Dec 14 2015 COPYRIGHT
-rw-r--r-- 1 mriedel zam 83089 Dec 14 2015 FAQ.html
-rw-r--r-- 1 mriedel zam 27670 Dec 14 2015 heart_scale
drwxr-xr-x 3 mriedel zam 512 Dec 14 2015 java
-rw-r--r-- 1 mriedel zam 732 Dec 14 2015 Makefile
-rw-r--r-- 1 mriedel zam 1136 Dec 14 2015 Makefile.win
drwxr-xr-x 2 mriedel zam 512 Dec 14 2015 matlab
drwxr-xr-x 2 mriedel zam 512 Dec 14 2015 python
-rw-r--r-- 1 mriedel zam 28679 Dec 14 2015 README
-rw-r--r-- 1 mriedel zam 64836 Dec 14 2015 svm.cpp
-rw-r--r-- 1 mriedel zam 477 Dec 14 2015 svm.def
-rw-r--r-- 1 mriedel zam 3382 Dec 14 2015 svm.h
l ul i 4 ol ﬁ AT L W | - | ks T W 1 i
I -rwxr-xr-x 1 mriedel zam 78270 Jul 6 20:05 I (use in testing phase)
—_—— e —— e
-rwxr-xr-x 1 mriedel zam 18587 Jul 6 20:05

-rw-r--r-- 1 mriedel zam 8539

8509 Jul 6 20:05

s —
I -rwxr-xr-x 1 mriedel zam 7

Dec 14 2015

svm-scale.c

(use in training phase)

PRV ) g g

drwxr-xr-x 2 mriedel zam 512 Dec 14 2015 tools
drwxr—xr—x 2 mriedel zam 512 Dec 14 2015 windows



LibSVM - svm-train Parameters

= |mportant parameters (training phase)

- - - O
Usage: svm-train [options] training set file [model file] (we need a training set file)
| -s svm_type : set type of SUM (default 0) (take default here = C-SVC)
g -- C-5VC (multi-class classificatiorf)
T - nu-ove (multi-class classiftication)
2 -- one-class SVM
3 -- epsilon-5VR (regression)
ﬂ __ g _cyR fr‘wihn‘l
-t kernel_type : set type of kernel function (default 2) (in this lecture we have just ‘linear kernels’)
B -- linear: u'*y
1 -- polynomial: (gamma*u'*v + coefl)“degree
2 -- radial basis function: exp(-gamma®|u-v|"2)
3 -- sigmoid: tanh{gamma*u'*v + coefd)
4 -- precomputed kernel (kernel values in training set file)

-d degree : set degree in kernel function (default 3)

-g gamma : set gamma in kernel function (default 1/num_ features)

-r coef@ : set coefl in kermnel function (default @l -

cost : set the parameter C of C-5VC, epsilon-SVR, and nu-SVR (default 1)
-Nonu T se e parameter nu ot nu- , ohe-class , an
-p epsilon @ set the epsilon in loss function of epsilon-SYR (default ©.1)

-m cachesize : set cache memory size in ME (default 1060)

-2 epsilon : set tolerance of termination criterion (default @.001)

-h shrinking : whether to use the shrinking heuristics, @ or 1 (default 1)

-b probability estimates : whether to train a SVC or SVR model for probability estimates, @ or 1 (default O)
-wi weight : set the parameter C of class 1 to weight*C, for C-5VC (default 1)
-v n: n-fold cross validation mode

-g @ guiet mode (no outputs) Training Examples

(X17y1)7 et (XNJyN)

(Regularization Parameter)
.5)

[25] LibSVM Webpage



LibSVM - svm-predict Parameters

= |Important parameters (testing phase)

_ _ _ it
IUsage: svm-predict [options] test file model file output file

U'»JLJ_UIIE.
-b probability estimates: whether to predict probability estimates, 0 or 1 (default @); for one-class SVM only @ is supported
-g @ quiet mode (no outputs)

(the model file is generated in the training phase = the support vectors found in optimization)

(test file is a testing dataset set aside to be used once training is finished)

(output file gives us indications how each sample was classified)

Testing Examples

(Xt )s oo (X, Yy)




Review of Parallel SVM Implementations

Technology Platform Approach Analysis
Apache Mahout Java; Hadoop No parallelization strategy
for SVMs
Apache Spark/MLIib Java; Spark Parallel linear SVMs
(no multi-class)
Twister/ParallelSVM Java; Twister: Parallel SVMs, open source:
Hadoop 1.0 developer version 0.9 beta
scikit-learn Python No parallelization strategy
for SVMs
piSVM 1.2 & piSVM 1.3 C: MPI Parallel SVMs; stable;
not fully scalable
GPU LibSVM CUDA Parallel SVMSs: hard to
programs. early versions
pSVM C:; MPI Parallel SVMs; unstable;
beta version

[26] M. Goetz, M. Riedel et al., ‘On Parallel and Scalable Classification and Clustering Techniques for Earth Science
Datasets’, 6" Workshop on Data Mining in Earth System Science, International Conference of Computational Science



Parallel and Scalable Machine Learning — piSVM

= ‘Different kind’ of parallel algorithms
" Goalisto ‘learn from data’ instead of modelling/approximate the reality
= Parallel algorithms often useful to reduce ‘overall time for data analysis’
= E.g. Parallel Support Vector Machines (SVMs) Technique

= Data classification algorithm PiSVM using MPI to reduce ‘training time’
= Example: classification of land cover masses from satellite image data

Class Training Test

Buildings 18126 163129
Blocks 10982 98834
Roads 16353 147176

Light Train 1606 14454
Vegetation 6962 62655

Trees 9088 81792
Bare Soil 8127 73144
Soil 1506 13551
Tower 4792 43124
Total 77542 697859

e [23] G. Cavallaro & M. Riedel et al., ‘On Understanding Big Data Impacts
.TFSVM in Remotely Sensed Image Classification Using Support Vector Machine
Methods’, Journal of Applied Earth Observations and Remote Sensing



Parallel SVM with MPI Technique — piSVM Implementation

* QOriginal piSVM 1.2 version (2011)

= QOpen-source and based on |libSVM library, C
= Message Passing Interface (MPI)

.YTSVM

[27] piSVM on SourceForge, 2008

= New version appeared 2014-10v. 1.3 (no major improvements)

= Lack of ‘big data“ support (e.g. memory, layout)

* Tuned scalable parallel piSVM tool 1.2.1
= Highly scalable version maintained by Juelich
= Based on original piSVM 1.2 tool

= QOpen-source (repository to be created)
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Indian Pines — Experimental Setup

Two Cases

CASE1

INFORMATION ABSTRACTION
HYPERSPECTRAL

IMAGE

CASE2
PROCESSING + INFORMATION ABSTRACTION

dataset raw (1)

dataset processed (2) L N— J
10% 90%

Feature Enhancement & Selection
Kernel Principle Component Analysis (KPCA)
Extended Self-Dual Attribute Profile (ESDAP)
Nonparametric weighted feature extraction (N\WFE)

[23] G. Cavallaro and M. Riedel, et al. , 2015



Exercises — Indian Pines (Processed) piSVM Runs




Training Indian Pines (Proc) on JURECA - Job Script (RBF)

= Use Indian Pines Dataset with paralle & scalable piSVM tool

= Parameters are equal to the serial libsvm and some additional
parameters for paralellization

#!/bin/bash -x

#SBATCH- -nodes=4

#SBATCH- -ntasks=96

#SBATCH- -ntasks-per-node=24
#SBATCH- - output=mpi-out.%j

#SBATCH- -error=mpi-err.%j

#SBATCH- -time=04:00:00

#SBATCH- -partition=batch

#SBATCH- -mail-user=m. riedel@fz-juelich.de
#SBATCH- -mail-type=ALL

#SBATCH- - job-name=train-indianpines-4-96-24
#SBATCH- - reservation=ml-hpc-2

### location executable
PISVM=/homea/hpclab/train@@l/tools/pisvm-1.2.1/pisvm-train

### location data
TRAINDATA=/homea/hpclab/train00l/data/indianpines/indian_processed_training.el

### submit
srun $PISVM -D -o 1024 -q 512 -c 100 -g 8 -t 2 -m 1024 -s 0 $TRAINDATA

= Note the tutorial reservation with —reservation=bigdata-cpu just valid for today on JURECA




Testing Indian Pines (Proc) on JURECA - Job Script

= Use Rome Dataset with paralle & scalable piSVM tool

= Parameters are equal to the serial libsvm and some additional
parameters for paralellization

#!/bin/bash -x

#SBATCH- -nodes=4

#SBATCH- -ntasks=96

#SBATCH- -ntasks-per-node=24

#SBATCH- -output=mpi-out.%j
#SBATCH--error=mpi-err.%j

#SBATCH- -time=04:00: 00

#SBATCH- -partition=batch
#SBATCH--mail-user=m. riedel@fz-juelich.de
#SBATCH--mail-type=ALL

#SBATCH- - job-name=pred-indianpines-4-96-24
#SBATCH- -reservation=ml-hpc-2

### location executable
PISVMPRED=/homea/hpclab/train00l/tools/pisvm-1.2.1/pisvm-predict

### location data
TESTDATA=/homea/hpclab/train00l/data/indianpines/indian_processed_test.el

### trained model data
MODELDATA=/homea/hpclab/train00l/tools/pisvm-1.2.1/indian_processed_training.el.model

### submit
srun $PISVMPRED $TESTDATA $MODELDATA results.txt

Note the tutorial reservation with —reservation=bigdata-cpu just valid for today on JURECA




Testing/Predicting Rome on JURECA — Check Outcome

" The output of the training run is a model file
= Used for input for the testing/predicting phase

= |n-sample property = Support vectors of the model

[trainG01@j3102 pisvm-1.2.1]% head indian_processed_training.el.model
svm_type c_svc

kernel_type rbf

gamma 8

nr_class 52

total_sv 26062
rho 1.07276 -0.440311 -0.640771 0.548192 -0.722158 -0.168075 0.551069 -

6 -0.000349507 0.314899 -0.270607 -0.941572 0.328627 -0.241276 -0.6386
0.818067 -1.85287 -0.793607 -0.513811 -0.754098 -0.870286 -0.489813 -0.
041 -0.138668 -1.62263 -0.856795 -0.43055 -0.751147 -1.68925 -0.704193
47 -0.995375 -0.973193 -1.13304 -1.48614 -0.925452 -1.1306 -3.10747 -0.

= The output of the testing/predicting phase is accuracy
= Accuracy measurement of model performance (cf. Lecture 1)

= The job output file consists of a couple of lines

[train001@j3102 pisvm-1.2.1]% more mpi-out.15244572
Accuracy = 77.9678% (234336/300555) (classification)
Mean squared error = 153.787 (regression)

Squared correlation coefficient = 0.601418 (regression)



Exercises — Indian Pines — Change Number of Nodes




Processing time (min)

Processing time (min)

Parallelization Benefit: Lower-Time-To-Solution

= Major speed-ups; ~interactive (<1 min); same accuracy;

manual & serial activities (in min)

15

4
.14.06 ores, minutes :
L ‘+((n minutes) [+(""""““- minutes) kpca esdap nwfe  10x CSV  Training  Test Total
. 1,3.38)
(1) Scenario =, : (2) Scenario (1) Scenario 0 0 0  4.47x10° 1045 71.08 4.55 x 10°
olbem  ‘unprocessed data’ £ ‘ore-processed data’ (2) Scenario 5 1538 | 529.55 137 2325 57555
training time (in min) £ [%®*®  training time (in min)
*; 2 (4.2.04)
5 2 ‘big data‘ is not always better data
c : X
- (1) Scenario (2) Scenario
(64,1.03) (80.0.55) (64,0.31)  (80,0.31)
. (2036) . (2032 Number of features 200 30
0 20 40 60 80 0 20 10 60 80
Number of cores Number of cores Overall Accuracy (%) 40.68 77.96
(a) (a)
250 50 (cf. Importance of feature engineering above)
(1,228.46) |+ (cores, minutes) (1,47.16) ‘—0— (cores, minutes)
200 (1) Scenario g (2) Scenario
‘unprocessed data’ £ “ ‘pre-processed data’ [23] G. Cavallaro, M. Riedel, J.A. Benediktsson
150 . . . . = . . . . . . .
testing time (in min) | £ iy LESUING TIMe (in min) et al., Journal of Selected Topics in Applied
ool £ 2 Earth Observation and Remote Sensing, 2015
% (4.14.07)
Ay
10
50 8,7.12)
(16,1651) (32.8.41) (64.4.46)  (80.4.09) 0 P il Ghlsh)  (80,105)
0 = 0 20 40 60 80
0 20 40 60 80
Number of cores (@) BZSHARE

Store and Share Research Data

Number of cores
(b) (b)



Exercises — Indian Pines — Perform n-fold Cross-Validation




Parallelization Benefit — 10-fold Cross-Validation

= Parallelization benefits are enormous for complex problems
= Enables feasibility to tackle extremely large datasets & high dimensions
= Provides functionality for a high number of classes (e.g. #k SVIMs)
= Achieves a massive reduction in time = lower time-to-solution

(1) Scenario ‘unprocessed data‘, 10xCV serial: accuracy (min) (2) Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

~/C 1 10 100 1000 10 000 ~/C 1 10 100 1000 10 000

2 2730 (109.78) 34.59 (124.46) 39.05 (107.85) 37.38 (116.29) 37.20 (121.51) 2 4890 (18.81) 65.01 (19.57) 73.21 (20.11) 75.55 (22.53) 74.42 (21.21)
4 2924 (98.18) 37.75(85.31) 38091 (113.87) 38.36 (119.12) 38.36 (118.98) 4 5753 (16.82) 70.74 (13.94) 75.94 (13.53) 76.04 (14.04) 74.06 (15.55)
8  31.31(109.95) 39.68 (118.28) 39.06 (112.99) 39.06 (190.72) 39.06 (872.27) 8  64.18 (18.30) 74.45 (15.04) 77.00 (14.41) 75.78 (14.65) 74.58 (14.92)
16 33.37 (126.14) 39.46 (171.11) 39.19 (206.66) 39.19 (181.82) 39.19 (146.98) 16 6837 (23.21) 76.20 (21.88) 76.51 (20.69) 75.32 (19.60) 74.72 (19.66)
32 3461 (179.04) 38.37 (202.30) 38.37 (231.10) 38.37 (240.36) 38.37 (278.02) 32 70.17 (34.45) 75.48 (34.76) 74.88 (34.05) 74.08 (34.03) 73.84 (38.78)

(1) Scenario ‘unprocessed data”10xCV parallel: accuracy (min)

(2) Scenario ‘pre-processed data‘’, 10xCV parallel: accuracy (min)

v/C 1 10 100 1000 10000 ~v/C 1 10 100 1000 10000
2 27.26 (3.38) 34.49 (3.35) 39.16 (5.35) 37.56 (11.46) 37.57 (13.02) 2 7526(1.02) 65.12(1.03) 73.18 (1.33) 75.76 (2.35) 74.53 (4.40)
4 29.12 (3.34) 37.58 (3.38) 38.91 (6.02) 38.43 (7.47) 38.43 (7.47) 4 57.60 (1.03) 70.88 (1.02) 75.87 (1.03) 76.01 (1.33) 74.06 (2.35)
8 31.24 (3.38) 39.77 (4.09) 39.14 (545) 39.14 (5.42) 39.14 (5.43) 8 64.17 (1.02) 7452 (1.03 ) 77.02 (1.02) 75.79 (1.04) 74.42 (1.34)
16 33.36 (4.09) 39.61 (4.56) 39.25(5.06) 39.25 (5.27) 39.25 (5.10) 16 68.57(1.33) 76.07 (1.33) 76.40 (1.34) 75.26 (1.05) 74.53 (1.34)
32 34.61 (5.13) 38.37 (5.30) 38.36 (5.43) 38.36 (5.49) 38.36 (5.28) 32 7021(1.33) 75.38 (1.34) 74.69 (1.34) 7391 (1.47) 73.73 (1.33)

First Result: best parameter set from 118.28 min to 4.09 min
Second Result: all parameter sets from ~3 days to ~2 hours

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

[23] G. Cavallaro, M. Riedel, J.A. Benediktsson et al., Journal of Selected Topics
in Applied Earth Observation and Remote Sensing, 2015

B2SHARE
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Prevent Overfitting for better ‘ouf-of-sample’ generalization

[12] Stop Overfitting, YouTube



[YouTube Lectures] More about parallel piSVM & HPC

Parallel & Scalable Data Analysisy

Introduction to Machine Learning Algorithms

Dr. = Ing. Morris Riedel

Adjunct Associated Professor
| School of Engineering and Natural Sciences, University of Iceland
Research Group Leader, Juelich Supercomputing Centre, Germany

LECTURE 1

Machine Learning Fundamentals

November 23'", 2017
Ghent, Belgium

- < P » @ B.—oéf‘r:az:zm -
[32] Morris Riedel, ‘Introduction to Machine Learning Algorithms’, Invited
YouTube Lecture, six lectures, University of Ghent, 2017
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Summary: Systematic Process

= Systematic data analysis guided by a ‘standard process’
= Cross-Industry Standard Process for Data Mining (CRISP-DIM)

- . . . . Problem Data
A d.ata mlnlng pro.JeCt IS Understanding » Understanding
guided by these six phases:
(1) Problem Understanding; ' ,f
(2) Data Understanding; -
(3) Data Preparation; & - |Data

(4) MOdeIing; scientific e

(5) Evaluation; Depioyment data sets “

(6) Deployment ‘ Modelling
= |[essons Learned from Practice Evaluation ‘

|
Go bE?Ck and f(_) rth between [10] C. Shearer, CRISP-DM model,
the different six phases Journal Data Warehousing, 5:13



1 — Problem (Business) Understanding

= The Business Understanding phase consists of four distinct tasks: (A) Determine Business
Objectives; (B) Situation Assessment; (C) Determine Data Mining Goal; (D) Produce Project Plan

* Task A— Determine Business Objectives [11] CRISP-DIM User Guide

= Background, Business Objectives, Business Success Criteria

= Task B — Situation Assessment

= |nventory of Resources, Requirements, Assumptions, and Contraints
= Risks and Contingencies, Terminology, Costs & Benefits

= Task C— Determine Data Mining Goal

= Data Mining Goals and Success Criteria

= Task D — Produce Project Plan

= Project Plan
= |nitial Assessment of Tools & Techniques



2 — Data Understanding

= The Data Understanding phase consists of four distinct tasks:
(A) Collect Initial Data; (B) Describe Data; (C) Explore Data; (D) Verify Data Quality

= Task A — Collect Initial Data [11] CRISP-DM User Guide

= |nitial Data Collection Report
= Task B — Describe Data

= Data Description Report

= Task C— Explore Data

= Data Exploration Report

= Task D — Verify Data Quality
= Data Quality Report



3 — Data Preparation

The Data Preparation phase consists of six distinct tasks: (A) Data Set; (B) Select Data;

(C) Clean Data; (D) Construct Data; (E) Integrate Data; (F) Format Data

Task A — Data Set

= Data set description
Task B — Select Data

= Rationale for inclusion / exclusion

Task C — Clean Data

= Data cleaning report
Task D — Construct Data

= Derived attributes, generated records

Task E — Integrate Data
= Merged data

Task F — Format Data

= Reformatted data

[11] CRISP-DM User Guide



4 — Modeling

= The Data Preparation phase consists of four distinct tasks: (A) Select Modeling
Technique; (B) Generate Test Design; (C) Build Model; (D) Assess Model;

[11] CRISP-DM User Guide

= Task A — Select Modeling Technique

= Modeling assumption, modeling technique

= Task B — Generate Test Design
= Test design

= Task C— Build Model

= Parameter settings, models, model description

= Task D — Assess Model

= Model assessment, revised parameter settings



5 — Evaluation

= The Data Preparation phase consists of three distinct tasks: (A) Evaluate Results;
(B) Review Process; (C) Determine Next Steps

= Task A — Evaluate Results [11] CRISP-DM User Guide

= Assessment of data mining results w.r.t. business success criteria
= List approved models

= Task B — Review Process

= Review of Process

= Task C— Determine Next Steps

= List of possible actions, decision



6 — Deployment

= The Data Preparation phase consists of three distinct tasks: (A) Plan Deployment;
(B) Plan Monitoring and Maintenance; (C) Produce Final Report; (D) Review Project

[11] CRISP-DM User Guide

= Task A— Plan Deployment
= Establish a deployment plan

= Task B —Plan Monitoring and Maintenance

= Create a monitoring and maintenance plan
= Task C— Product Final Report

= Create final report and provide final presentation

= Task D — Review Project

= Document experience, provide documentation
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Learning Approaches — Supervised Learning — Formalization

* Each observation of the predictor measurement(s)
has an associated response measurement:

" lnput X=x,...,0

d Training Examples
u Output y.“Z — 1,..,?1 (X17y1)7""(XN7yN)
m Data (Xl , Uy ) ) oeees (XN : yN) (historical records, groundtruth data, examples)

" Goal: Fit a model that relates the response to the predictors

= Prediction: Aims of accurately predicting the response for future
observations

= |nference: Aims to better understanding the relationship between the
response and the predictors

= Supervised learning approaches fits a model that related the response to the predictors
= Supervised learning approaches are used in classification algorithms such as SVMs
= Supervised learning works with data = [input, correct output]

[6] An Introduction to Statistical Learning



Feasibility of Learning

I = Statistical Learning Theory deals with the problem of finding a predictive function based on data

’

[13] Wikipedia on ‘statistical learning theory

" Theoretical framework underlying practical learning algorithms

= E.g. Support Vector Machines (SVMs)
= Best understood for ‘Supervised Learning’

* Theoretical background used to solve ‘A learning problem’

= |nferring one ‘target function’ that maps

between input and output Unknown Target Function
f: X =Y

= |[earned function can be used to

predict output from future input (ideal function)

(fitting existing data is not enough)



Mathematical Building Blocks (1)

Unknown Target Function Elements we

f . X N Y not exactly

(need to) know

(ideal fLénction)

]
]
]
]
]
]
]
]
\:/ Elements we
— must and/or
Training Examples should have and
X L (x that might raise
( 12 yl)’ ? ( N2 yN) huge demands
(historical records, groundtruth data, examples) e
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Mathematical Building Blocks (1) — Our Linear Example

Unknown Target Function 1. Some pattern EXiStS
f: X =Y
(deal foetion) 2. No exact mathematical

formula (i.e. target function)
Data exists

(____.._..--
w

Training Examples
(X17 y1)7 T (XNJ yN)

(historical records, groundtruth data, examples)

(if we would know the exact target function we dont need
machine learning, it would not make sense)

(decision boundaries depending on f) d

Iris-virginica if Z w;x; > threshold

=1 (w; and threshold are

still unknown to us)

d
Iris-setosa if Z w;x; < threshold
i—1

d (we search a
h(X) = sign ( ( Z “,371) _ th'r'eshold) heH function similiar

— like a target function)
1=



Feasibility of Learning — Hypothesis Set & Final Hypothesis

* The ‘ideal function’ will Unkn;;vn?gge"u;;tion
. . . X —
remain unknown in learning

" |Impossible to know and learn from data

= |f known a straightforward implementation would be better than learning
= E.g. hidden features/attributes of data not known or not part of data

= But ‘(function) approximation’ of the target function is possible
= Use training examples to learn and approximate it
= Hypothesis set 7{ consists of m different hypothesis (candidate functions)

H — {hla - hm}a ‘select one function’ qg: X =Y

that best approximates

Hypothesis Set Final Hypothesis
H={h}; geH g~ f




Feasibility of Learning — Understanding the Hypothesis Set

Hypothesis Set

H={h}; geH
H = {hl,,hm},

(all candidate functions
derived from models
and their parameters)

= Already a change in model
paramters of h,, ..., h,, means ]'2,.2
a completey different model

‘select one function’
that best approximates

Final Hypothesis
| — ),

(e.g. support vector machine model)

output

(activation
function)

input nodes X, (bias)
(representing the threshold)

(e.g. linear perceptron model)

(e.g. artificial neural network model)



Mathematical Building Blocks (2)

Unknown Target Function Elements we

not exactly
f: X =Y

(need to) know

(ideal fLénction)

]
]
]
]
]
]
]
]
\:/ Elements we
— must and/or
Training Examples should have and
X L (x that might raise
( 12 yl)’ ? ( N2 yN) huge demands
(historical records, groundtruth data, examples) e

Final Hypothesis

g f

Hypothesis Set

H={h}; geH
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Mathematical Building Blocks (2) — Our Linear Example

(decision boundaries depending on f)

= Already a change in model H — {hl o hm} )
paramters of h,, ..., h_ means ?ctT ’

a completey different model (we search a function similiar

like a target function)

d
h(x) = sign ( ( Z uxl) - th'r'eshold) ;h e H

1=1

Final Hypothesis

g=J

d
h(x) = sign ( ( Z ua:l) - th'r'eshold) ;h e H

=1

(activation
function)

input nodes t=04
Hypothesis Set

H = {h}, g c H (trained perceptron model

and our selected final hypothesis)

(Perceptron model — linear model)



The Learning Model: Hypothesis Set & Learning Algorithm

" The solution tools — the learning model:

1. Hypothesis set H - a set of candidate formulas /models

2. Learning Algorithm A - ‘train a system’ with known algorithms

Training Examples

(Xl’yl)ﬂ Tt (XN’yN)

Final Hypothesis

Learning Algorithm (‘train a system‘)
Hypothesis Set
H=1{h}; geH

‘solution tools’

A4

g=f

= Qur Linear Example

1.
2.

Perceptron Model

Perceptron Learning
Algorithm (PLA)



Mathematical Building Blocks (3)

Unknown Target Function Elements we

f X Y not exactly

(need to) know

(ideal fLénction)

<____.._.._-

Elements we
— must and/or
Training Examples should have and
X L (x that might raise
( 12 yl)’ ? ( N2 yN) huge demands
(historical records, gropndtruth data, examples) for storage

Learning Algorithm (‘train a system’)

Final Hypothesis

g f

Hypothesis Set

H=1{h};, geH
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Mathematical Building Blocks (3) — Our Linear Example

| (XY e )
Unknown'l;(tgetFu;;tlon 1 S i [ XisYy )y oo, XN’ yN
JiX = 2 1011 (training data)

(idealfuinction) 3 1101

H 2 1111

: 5 00 1-1 ?

| sign E w.x, | — threshold

' 6 0 1 0 -1 ' _ o

1 i=1

] 7 0111

Y (training phase;
Training Examples 8 0 0 041

Find w; and threshold
(X17 y1)7 aae) (XN7 yN) (algorithm uses that fit the data)

(historical records, gropindtruth data, examples) training dataset)

output
0.3 node

A4

Learning Algorithm (‘train a system?) Final Hypothesis

1 9=/

(Perceptron’tearning Algorithm)

(activation
function)

input nodes t=04
Hypothesis Set

H = {h}, g c H (trained perceptron model

: and our selected final hypothesis)
(Perceptron model — linear model)



Feasibility of Learning — Probability Distribution

" Predict output from future input ——
(fitting existing data is not enough) f: XY
= |n-sample ‘1000 points’ fit well

= Possible: Out-of-sample >= ‘1001 point’
doesn‘t fit very well

v
= Learning ‘any target function’ Training Examples
. S . (%08, )s s (X 1)
is not feasible (can be anything)
= Assumptions about ‘future input’ e
= Statement is possible to Pon X
define about the data outside _
. (which exact
the In_sample data (X1ayl):---a(XN:yN) X = (ZEI,...,iEd)b probability
= All samples (also future ones) are 's hot important,
] , e . . but should not be
derived from same ‘unknown probability’ distribution P on X completely
random)

Statistical Learning Theory assumes an unknown probability distribution over the input space X




Feasibility of Learning — In Sample vs. Out of Sample

" Given ‘unknown’ probability P on X
= Given large sample N for (x,,y,). ... (X5, yy)
= There is a probability of ‘picking one point or another’ (i.e. from statistics)
= ‘Error on in sample’is known quantity (using labelled data): Em(h)
= ‘Error on out of sample’is unknown quantity: F_ . (h)
" |n-sample frequency is likely close to out-of-sample frequency E tracks E,;

depend on
which
hypothesis h Eout (h) Em (h)
out of m ‘ Y . ®
different ones " -

,- lef
00 &7y | B (W)~ E,(h)
." ‘ “ use for predict!

P ’ use E, (h) as a proxy — thus the other

‘out of sample’ way around in learning

H = {%1; --whm}; Eout (h’) ~ Ezn(h’)

I = Statistical Learning Theory part that enables that learning is feasible in a probabilistic sense (P on X)




Feasibility of Learning — Union Bound & Factor M

= The union bound means that (for any countable set of m ‘events’) the probability that at least one
of the events happens is not greater that the sum of the probabilities of the m individual ‘events’

= Assuming no overlaps in hypothesis set

Final Hypothesis

= Apply mathematical rule ‘union bound’ (i.e. poor bound) g~ f

= Characterizes the number of data samples N needed

Think if E;, deviates from E_,, with more than tolerance € itis a ‘bad event’ in order to apply union bound

out

Pr [ E, (9)=-F,.(9)|>€e] <=Pr || E (l)—-E

1T e (3] out

(hy) | > €
‘visiting M
or ‘ Ez-n(h»z) — Eom(hz) | > € ... different

or | E (hy)—E. (ha) | >€ ] hypothesis
M sum of Pr
Pr [ ‘ Ein(-g) - Eout (g) ‘ > € ] <= Z Pr [ | Ein(h’}"ﬂ) - Eout(h"rn) ‘ > € } iS lWOl"St Casel
m=1 bound
M

02N fixed quantity for each hypothesis
Pr[| E, (9)—E,.(9) | >€] <= 226_ ‘ obtained from Hoeffdings Inequality

m=1

Pr [| E.(9) = E,.(9) | >¢] <= 2Me 2N

problematic: if M is too big we loose the link
between the in-sample and out-of-sample



Feasibility of Learning — Modified Hoeffding’s Inequality

= Errorsin-sample E. (g) track errors out-of-sample E_.(g)
= Statement is made being ‘Probably Approximately Correct (PAC)’
= Given M as number of hypothesis of hypothesis set H [14] Valiant, A Theory
= ‘Tolerance parameter’in learning € of the Learnable’, 1984

= Mathematically established via ‘modified Hoeffdings Inequality”:
(original Hoeffdings Inequality doesn‘t apply to multiple hypothesis)
‘Approximately’ ‘Probably’

P [ ‘ L, (Q) —E,, (Q) ‘ > € ] <= 211{6_262N

‘Probability that E,, deviates from E_ , by more than the tolerance € is a small quantity depending on M and N’

out

* Theoretical ‘Big Data’ Impact = more N = better learning
= The more samples N the more reliable will track £, (g) E .(g) well
= (But: the ‘quality of samples’ also matter, not only the number of samples)

Statistical Learning Theory part describing the Probably Approximately Correct (PAC) learning




Mathematical Building Blocks (4)

Unknown Target Function Probability Distribution Elements we
not exactly
f X =Y P on X (need to) know
. I
(ideal function)
]
]
' . ¢ ‘constants’
E X = ($17"'7$d) in learning
]
]
]
H Elements we
. . X Y must and/or
Training Examples should have and
X o (x that might raise
( 1ay1)7 7( N7yN) huge demands
(historical records, grolindtruth data, examples) for storage

Learning Algorithm (‘train a system’)

Final Hypothesis

g f

Hypothesis Set

H={h}; geH
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Mathematical Building Blocks (4) — Our Linear Example

(infinite M decision boundaries depending on f) Probability Distribution
Pon X
x=(x,,..,¢,)e—

l 2
> Is this point very likely from the same distribution or just noise?

T——
\ We assume future points are taken from the

same probability distribution as those that
‘ we have in our training examples

Training Examples

(X17y1)7 t (XN7yN)

Is this point very likely from the same distribution or just noise?
(we help here with the assumption for the samples) (we do not solve the M problem here)
—2e2N
Pr [| E, (g9)—FE, .(9) | >¢] <= 2Me

(counter example would be for instance a random number generator, impossible to learn this!)

out
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Statistical Learning Theory — Error Measure & Noisy Targets

= Question: How can we learn a function from (noisy) data?

= ‘Error measures’ to quantify our progress, the goalis: h ~ f
= Often user-defined, if not often ‘squared error”:

e(h(x), f(x) = (h(x) — f(x))? [

07

u { H _ H {
E.g. ‘point-wise error measure (e.g. think movie rated now and in 10 years from now)

= ‘(Noisy) Target function”is not a (deterministic) function

= Getting with ‘same x in” the ‘same y out’ is not always given in practice
= Problem: ‘Noise’ in the data that hinders us from learning

= |dea: Use a ‘target distribution’

instead of ‘target function’ Unknown T‘jfEE‘D“”E““D” P(y|x)
target function f : X — Y bplusnoise

= E.g.credit approval (yes/no) -

(ideal function)

=  Statistical Learning Theory refines the learning problem of learning an unknown target distribution




Mathematical Building Blocks (5)

Unknown Target Bistetianion J2 Probability Distribution Elements we
(y |X) not exactly
target function f X =Y plus noise P on X (need to) know
(ideal fLEnction) l
]
]
' . ‘constants’
] pr— b
' X (I 17 ) xd) X in learning
]
]
]
N N Elements we

must and/or
Training Examples Error Measure

should have and
(X17 yl), ceey (XN7 yN) ﬁe(x)@ that might raise

huge demands
for storage

(historical records, gropndtruth data, examples)

Learning Algorithm (‘train a system’) Final Hypothesis

A < g~ f

Hypothesis Set

H=1{h};, geH
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Mathematical Building Blocks (5) — Our Linear Example

= |terative Method using (labelled) training data (X, ¥,), ---, (X5, Yy )

(one point at a time is picked)
1. Pick one misclassified

. : y=+1 W + yX

training point where:

sign(Ww'x,) Zy, | e (@ w N
2. Update the weight vector: (a) addingavector or

W < W + ynxn (b) subtracting a vector

(y, is either +1 or -1)
y=-1
W
= Terminates when there are [ trormeasure
no misclassified points e} (b) X

(converges only with linearly seperable data)



Training and Testing — Influence on Learning

= Mathematical notations

= Testingfollows: Pr [ | E _(9)—FE,,(9) |>¢] <= 2 o~ 262N
(hypothesis clear)

u .. . 5.2
Training follows: — pr [ | B (g) — E,,.(9) | > €] <= 2Me "
(hypothesis search) (e.g. student exam training on examples to get E,_,down’, then test via exam)

" Practice on ‘training examples’

= Create two disjoint datasets

Training Examples

= One used for training only (X, U, )y ooes (X s Uy

(aka trammg Set) (historical records, groundtruth data, examples)

= Another used for testing only
(aka test set)

" Training & Testing are different phases in the learning process

* Concrete number of samples in each set often influences learning



Theory of Generalization — Initial Generalization & Limits

= Learning is feasible in a probabilistic sense
= Reported final hypothesis — using a ‘generalization window’ on F_ . (g)
= Expecting ‘out of sample performance’ tracks ‘in sample performance’
= Approach: /. (g)actsasa ‘proxy for E_,(g)

E,.(9)~E, (9)

This is not full learning — rather ‘good generalization’ since the quantity E_(g) is an unknown quantity

= Reasoning
Final Hypothesis

= Above condition is not the final hypothesis condition: g f

= More similiar like £ (g) approximates O
(out of sample error is close to O if approximating f)

= I (g) measures how far away the value is from the ‘target function’
= Problematic because Eout (g) is an unknown quantity (cannot be used...)
= The learning process thus requires ‘two general core building blocks’



Theory of Generalization — Learning Process Reviewed

= ‘Learning Well’
= Two core building blocks that achieve £ (g) approximates 0

" First core building block
= Theoretical result using Hoeffdings Inequality k. (9) ~Fk,, (g)
= Using Eout (g) directly is not possible — it is an unknown quantity

= Second core building block (try to get the ‘in-sample’ error lower)
= Practical result using tools & techniques to get . (g) =~ 0
= e.g. linear models with the Perceptron Learning Algorithm (PLA)
= Using £, (g) is possible —itis a known quantity — ‘so lets get it small’
= Lessons learned from practice: in many situations ‘close to 0 impossible

= E.g. remote sensing images use case of land cover classification

Full learning means that we can make sure that E_,(g) is close enough to E, (g) [from theory]
Full learning means that we can make sure that E, (g) is small enough [from practical techniques]




Complexity of the Hypothesis Set — Infinite Spaces Problem

Pr [ | E,(9) = E,.(9) | >¢] <= 2Me> "

theory helps to find a way to deal
with infinite M hypothesis spaces

" Tradeoff & Review
= Tradeoff between €, M, and the ‘complexity of the hypothesis space H’
= Contribution of detailed learning theory is to ‘understand factor M’

= M Elements of the hypothesis set . m elements in H here
= Ok if N gets big, but problematic if M gets big = bound gets meaningless
= E.g. classification models like perceptron, support vector machines, etc.
= Challenge: those classification models have continous parameters
= Consequence: those classification models have infinite hypothesis spaces
= Aproach: despite their size, the models still have limited expressive power

= Many elements of the hypothesis set H have continous parameter with infinite M hypothesis spaces




Factor M from the Union Bound & Hypothesis Overlaps

[ ‘ Ezn( ) Eout(g) ‘ > € ] <= Pr [ ‘ Ein(h’l) - Eout(h"l) | > € dssumes no
overlaps, all
or | E. (he) —E, ,(hs) | >€ ... probabilities
happen
or | E, (hy)—E,, (har) | > € ] disjointly

r [ ‘ Em (g) — Eowt (g) ‘ > € ] <= QJ\"fe_QEzN takes no overlaps of M hypothesis into account

"= Union bound is a ‘poor bound’, ignores correlation between h

= Qverlaps are common: the interest is shifted to data points changing label

| B, (M) = E, () [ = | B, (ha) = E,.(h2) | Geiororegucem

out Unimportant’ ‘important’

»\»

change in areas change in data label

= Statistical Learning Theory provides a quantity able to characterize the overlaps for a better bound




Replacing M & Large Overlaps

(Hoeffding Inequality) (Union Bound) (towards Vapnik Chervonenkis Bound)

(valid for 1 hypothesis) (valid for M hypothesis, worst case) (valid for m (N) as growth function)

" Characterizing the overlaps is the idea of a ‘growth function’

* Number of dichotomies: my (N) = maxy x..x | H(X, Xy, Xy
Number of hypothesis but
on finite number N of points

= Much redundancy: Many hypothesis will reports the same dichotomies

The mathematical proofs that m,(N) can replace M is a key part of the theory of generalization




Complexity of the Hypothesis Set — VC Inequality

Pr[| E,(9) — E,.(9) | >€] <= 2Me™>¥

out
mH(N) — maxxl Koy yee s Xy |H(X17X27 e XN)|

= Vapnik-Chervonenkis (VC) Inequality
= Result of mathematical proof when replacing M with growth function m
= 2N of growth function to have another sample (2x £ (h), no £,,.(h))

Pr [ | E (g) — Eout(g) | > € ] <= 4mH(2N)6—1/862N Important for bound:

in m; (N) is polynomial in N

(characterization of generalization)

= |n Short —finally : We are able to learn and can generalize ‘ouf-of-sample’

= The Vapnik-Chervonenkis Inequality is the most important result in machine learning theory
= The mathematial proof brings us that M can be replaced by growth function (no infinity anymore)
=  The bound changes thus from ‘infinity with M‘ to a realistic bound that we can work with: max 2N




‘Growth Function’ — Perceptron Example

‘important’

= Dichotomies

= Hypothesis set seperates data, but only change important

=
= Set of ‘mini-hyposthesis’ is restricted to finite data points N e o

= Number of mini-hypothesis = number of dichotomies
change in data label

= ‘Growth Function’

= Based on the number of
dichotomies (cardiality)

" Pick x,.X,,....X, wisely to maximise the dichotomies (# at most 2N)

= 2D Perceptron

= Practice: restriction on dichotomies means
less mini-hypothesis possible (less than 2N)

= E.g.for N =4 points, there is always
a pattern that can not be realized

(breakpoint k = 4)

[15] Book ‘Learning from Data’



Towards Complexity of the Hypothesis Set — VC Dimension

= Vapnik-Chervonenkis (VC) Dimension over instance space X
= VCdimension gets a ‘generalization bound’ on all possible target functions
= Practice: think how much model parameters (‘degrees of freedom”)

Issue: unknown to ‘compute’ — VC solved this using the growth function on different samples

(‘geeneralization error?) E ( )
Error 4 out \Y E (h)
Eout (h) Ln
4 w ‘first sample’
00 _,
e e 0%
o (“training error’)
‘out of sample’
, . n second sample
L g
; VC dimension d,, idea: ‘first sample’ frequency
d VC close to ‘second sample’ frequency

[15] Book ‘Learning from Data’

= Complexity of Hypothesis set H can be measured by the Vapnik-Chervonenkis (VC) Dimension d,
= Ignoring the model complexity d, . leads to situations where E; (g) gets down and E_,(g) gets up




Appendix C: Geometric Interpretation of SVMs & Kernels

O
O



Geometric SVM Interpretation and Setup (1)

" Think ‘simplified coordinate system’ and use ‘Linear Algebra’
= Many other samples are removed (red and green not SVs) @ &
= Vector W of ‘any length’ perpendicular to the decision boundary
= Vector U points to an unknown guantity (e.g. new sample to classify)
= |s 1 on the left or right side of the decision boundary?

.'-.(.projection)
= Dotproduct w-u>C;C =—b
= With u takes the projection on the W
= Depending on where projection is it is
left or right from the decision boundary
= Simple transformation brings decison rule:
@O w-u+b>0 > means #
= (given thatb and W are unknown to us)

(constraints are not enough to fix particular b or w,
need more constraints to calculate b or w)




Geometric SVM Interpretation and Setup (2)

= Creating our constraints to get b or w computed
= First constraint set for positive samples # WX, + b>1
= Second constraint set for negative samples® w-x_ +b <1

= For mathematical convenience introduce variables (i.e. labelled samples)
y; = +for®# and Y; = —for@

.'-,(.projection)

| = Multiply equations by ¥
= Positive samples:  ¥;(X; - W + D)
= Negative samples: Ui (x; W+ b)
= Bothsamedueto ¥ = +and y; = —

(brings us mathematical convenience often quoted)

yi(x;-w+b)—1>0

(additional constraints just for support vectors itself helps)

> 1
> 1

@ yi(xi-w+b)—1=0




Geometric SVM Interpretation and Setup (3)

" Determine the ‘width of the margin’
= Difference between positive and negative SVs: X, — X_
= Projection of X, — X_ onto the vector W

y " The vector W is a normal vector, magnitude is HWH
(projection)

(Dot product of two vectors is a scalar, here the width of the margin)

= Unit vector is helpful for ‘margin width’
= Projection (dot product) for margin width:

X, —X_ W
e Xy — X 1 m (unit vector)
A 4 ——————> i@
: 1—b 1+b [w|]
= When enforce constraint: Yi =+ %




Constrained Optimization Steps SVM (1)

" Use ‘constraint optimization’ of mathematical toolkit

2

. , o . , : drop th tant
= |deais to ‘maximize the width’ of the margin: 'TTL(I.’.I?W (Zirsoﬁossfbfgr:ef:)
W
\\%

v..
(projection)

» TmoaaT L (equivalent)
[w]|

» min, ‘ | W ‘ ‘ (equivalent for max)

X—l— — X . 1 2 (mathematical
e < » nl”?’§ HW H convenience)
= Next: Find the extreme values

® = Subject to constraints

@ vilxi-w+0b)—1=0




Constrained Optimization Steps SVM (2)

" Use ‘Lagrange Multipliers® of mathematical toolkit
= Established tool in ‘constrained optimization’ to find function extremum
= ‘Get rid’ of constraints by using Lagrange Multipliers @

(projection)

" |ntroduce a multiplier for each constraint

1 ..
L(a) = 5|lw||* - Y oulyi(xi - w+b) — 1]
(interesting: non zero for support vectors, rest zero)

= Find derivatives for extremum & set O

= But two unknowns that might vary
X = First differentiate w.r.t. W

= Second differentiate w.r.t. b

(derivative gives the gradient, setting 0 means extremum like min)




Constrained Optimization Steps SVM (3)

: 1 ..
" lagrange gives: [(a) = §HWH2 - Zﬂi[?ﬁ(xi -w+b) — 1]

v..
(projection)

= First differentiate w.r.tw

W oc

Oow

(derivative gives the

W — E aiyixi — 0 gradient, setting 0 means

extremum like min)

4 W -
o —x Ow =

(recall: non zerG TOT SUPPOTT Vecto!

Z Y X
\ 4

= Simple transformation brings:

(i.e. vector is linear sum of samples)

s, rest zero = even less samples)

= Second differentiate w.r.t.




Constrained Optimization Steps SVM (4)

: 1 ..
* Lagrange gives: £(a) = |w* = > aily(xi- w+b) — 1]

. - o (plug into)
= Find minimum '
v W = Quadratic optimization problem

“*.. (projection)

= Take advantage of @W = Z XY X

£= 2T awx)- (Camx)
o s —*- = awxi - () ayx;)
. — Z o;y;b + Z o

(b constant

in front sum) gz{}u L O
1t T



Constrained Optimization Steps SVM (5)

. 1
= Rewrite formula: £ = 5 Z QYX;) - (Z o;Y;X;)

~ |Z aixi - () 0y%;)

(was 0)
(optimization
(results in) depends only on dot

(the same)

V.
(projection)

X_|_ — X product of samples)
- ' 1
L= E Q — 5 E E Q; Y Y @
X B
. = = Equation to be solved by some

guadratic programming package




Use of SVM Classifier to Perform Classification

" Use findings for decision rule
(decision rule also

@W = E ;Y X depends on

dotproduct)

OVutzoe B Yo ulrzoo

.'-,(projection)




Constrained Optimization Steps SVM & Dot Product

. 1
= Rewrite formula: £ = 5 Z QYX;) - (Z o;Y;X;)

~ |Z aixi - () 0y%;)

(was 0)
(optimization
(results in) depends only on dot

(the same)

V.
(projection)

X_|_ — X product of samples)
- ' 1
L= E Q — 5 E E Q; Y Y @
X B
. ® = Equation to be solved by some

guadratic programming package




Kernel Methods & Dot Product Dependency

" Use findings for decision rule
(decision rule also

@W: E ;Y X depends on

dotproduct)

@W-qusz* » Zafiyib?j(]*
", (projection) = Dotproduct enables nice more elements

= E.g.consider non linearly seperable data

= Perform non-linear transformation @ of the
samples into another space (work on features)

[— Za _ —Zzaaﬂ ?;ETJE@

(optimization
» q) XE ) (in opt|m|zat|on) depends only on dot

product of samples)
(P X ll ) (for decision rule
C above too)

(kernel trick is .- - (trusted Kernel
substitution) K (X_?' ' XJ-‘) = &g Xj@ B‘ Xi: X_?) ( ) ( ) avoids to know Phi)




Appendix D: Kernel Methods

O
O 0
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Need for Non-linear Decision Boundaries

" Lessons learned from practice .
= Scientists and engineers are often “ . .
faced with non-linear class boundaries AR T ’:;-;::,_-_-
= Non-linear transformations approach ‘ K
" Enlarge feature space (computationally intensive) '

= Use quadratic, cubic, or higher-order o _ X, _
. . . (time invest: mapping done by explictly carrying
polynomial functions of the predictors  out the map into the feature space)

= Example with Support Vector Classifier

; maximize M
X1,Xo9,..., X, (previously used p features) B0:B115812-++sBp1,Bp2,E15--1€n
2 2 2
Xq, X7, X2, X5, ..., Xp, X (new 2p features) P 4
b’th@Ct toy; | Bo + Z .Sjl?ifij =+ Z _Sjg;ligj > JI(1 — Ei)
(decision boundary is linear in the enlarged feature space) j=1 j=1
(decision boundary is non-linear in the original feature n P2 5
v i
space with q(x) = 0 where q is a quadratic polynomial) Z e <C, ¢ >0, Z Z ﬁjk =1
i=1 j=1k=1

[6] An Introduction to Statistical Learning



Understanding Non-Linear Transformations (1)

= Example: ‘Use measure of distances from the origin/centre’
u ClaSSiﬁcatiOn (still linear models applicable)

= (1) new point; (2) transform to z-space; (3) classify it with e.g. perceptron

(‘changing
constants’) -2

(named as x-space)

(named as z-space)

(also called input space) (also called feature space)



= Example: From 2 dimensional to 3 dimensional: [e1x2 = [r1,22,2:2 + 227
= Much higher dimensional can cause memory and computing problems

Data projected to R™~2 (nonseparable)

1.5
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1.0f e o .9
RS AL RCARO
L 4 L] ®
-: b o °
° L] 8 )
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0.5} ‘.
° A 'y °
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1.5

1.4 7

1.2 7

1.0 7

leqel Z

06 T

0.4 7

0.2 7

[20] E. Kim

0.8 7

Understanding Non-Linear Transformations (2)

)

Data in R™3 (separable)

° °
¢ Vs
% ° ‘oo °.
OTJ .ocb 0.
g O‘i% o ° o & e ogig
o, © .':. 8, ° .n e ®q °g
* . 'o" = o o °|,
L] ° °

I = Problems: Not clear which type of mapping (search); optimization is computationally expensive task




Understanding Non-linear Transformations (3)

)

= Example: From 2 dimensional to 3 dimensional: [e, =2 = [e1.20,2:2 + 257
= Separating hyperplane can be found and ‘mapped back’ to input space

Data projected to R~2 (hyperplane projection shown)

15
Data in R™3 (separable w/ hyperplane)
1.0+
14 4 b °
] o0
° L o
- ° L
1.2 .f . I L e | e ‘.O; 05k
° ee [ & % 8
1.0 T | S 8y 3% 50
0!0“ ° pre ° 0% o o
N b & o0 @ ] o(. .’g _
g 0.8 7 e * o Lo o .‘0 g
LA o * o 8 T 00}
06 T -
i =
A —0.5}
A i e
0.2 .i‘ﬁ“ﬁ?“ P
1.0
0.5
0.0 0.5 1.0 -1.0}
=0.5 0.0 -
Y -1.0 - -0.5
“abef L0 X Label
(input space)
(feature space) 15

. 215 10 05 0.0 05 10 15
[6] E K’m X Label

Problem: ‘curse of dimensionality’ — As dimensionality increases & volume of space too: sparse data!




Term Support Vector Machines — Revisited

=  Support Vector Machines (SVMs) are a classification technique developed ~1990

{

= SVMs perform well in many settings & are considered as one of the best ‘out of the box classifiers

[1] An Introduction to Statistical Learning

" Term detailed refinement into ‘three separate techniques’

= Practice: applications mostly use the SVMs with kernel methods

= ‘Maximal margin classifier’
= Asimple and intuitive classifier with a ‘best’ linear class boundary
= Requires that data is ‘linearly separable’

= ‘Support Vector Classifier’

= Extension to the maximal margin classifier for non-linearly seperable data
= Applied to a broader range of cases, idea of ‘allowing some error’

= ‘Support Vector Machines’ = Using Non-Linear Kernel Methods
= Extension of the support vector classifier
= Enables non-linear class boundaries & via kernels;




Constrained Optimization Steps SVM & Dot Product

. 1
= Rewrite formula: £ = 5 Z QYX;) - (Z o;Y;X;)

~ |Z aixi - () 0y%;)

(was 0)
(optimization
(results in) depends only on dot

(the same)

V.
(projection)

X_|_ — X product of samples)
- ' 1
L= E Q — 5 E E Q; Y Y @
X B
. = = Equation to be solved by some

guadratic programming package




Kernel Methods & Dot Product Dependency

" Use findings for decision rule
(decision rule also

@W: E ;Y X depends on

dotproduct)

@W-qusz* » Zafiyib?j(]*
", (projection) = Dotproduct enables nice more elements

= E.g.consider non linearly seperable data

= Perform non-linear transformation @ of the
samples into another space (work on features)

[— Za _ —Zzaaﬂ ?;ETJE@

(optimization
» q) XE ) (in opt|m|zat|on) depends only on dot

product of samples)
(P X ll ) (for decision rule
C above too)

(kernel trick is .- - (trusted Kernel
substitution) K (X_?' ' XJ-‘) = &g Xj@ B‘ Xi: X_?) ( ) ( ) avoids to know Phi)




Support Vector Machines & Kernel Methods

= Support Vector Machines are extensions of the support vector classifier using kernel methods
=  Support Vector Machines enable non-linear decision boundaries that can be efficiently computed
=  Support Vector Machines avoids ‘curse of dimensionality’ and mapping search using a ‘kernel trick’

= Non -lin ear tran SfO rmations [1] An Introduction to Statistical Learning

= Lead to high number of features 2 Computations become unmanageable
] . (including the danger to run into ‘curse of dimensionality’)
= Benefits with SVMs

= Enlarge feature space using ‘kernel trick’ = ensures efficient computations
= Map training data into a higher-dimensional feature space using (I)
= Create a seperating ‘hyperplane’ with maximum margin in feature space

= Solve constraint optimization problem
= Using Lagrange multipliers & quadratic programming (cf. earlier classifiers)
" Solution involves the inner products of the data points (dot broducts)
= Inner product of two r-vectors a and b is defingd as (@,b) = 2 imy aibi
= Inner product of two data points: (u;, ;) = Z L3 T
j=1




Linear SV Classifier Refined & Role of SVs

p
" Linear support vector classifier (e, 20) = ;“*ﬁ‘“’-’j
" Details w.r.t. inner products ; ‘
= With n parameters ;. © = 1,..., n  f@) =P+ ) aile, )
(Lagrange multipliers) =
= Use training set to estimate parameters (between all pairs of training data points)
" Estimate @q..... apand o using (5) inner products (s, /)
n (n—1) /2 number of pairs
mn
= Evaluate f(«) with a new point flx) = B+ E i (r, i)
= Compute the inner product between i=1 |
new point x and each of the training points x. ol dara
» |dentify support vectors = Quadratic programming f‘o'n‘jfutmg

= (v; is zero most of the times (identified as not support vectors)

= (' is nonzero several times (identified as the support vectors) 4 (£) = Fo + Z (@, i)
iES
[6] An Introduction to Statistical Learning (S with indices of support vectors)



The (‘Trusted’) Kernel Trick

(sompute the hyperplane without explictly

u Summary for Computation carrying out the map into the feature space)
T
= All th.a’F is neede.d to compute £(x) = Bo + Z i {, )
coefficients are inner products P
u Kernel TriCk (inner product used before)
p
= Replace the inner product (5, 1) = Z.i;ﬁ-ﬂ;i,j
with a generalization j=1

of the inner product K (iwq,wy) (kernel ~ distance measure)

= Kissome kernel function (choosing a specific kernel type)
= Kernel types l

p
= linear kernel K (xi,xy) = Z LijLi5 (linear in features)
j=1
p
. - : d
- Polynomlal kernel K(ri,xp) = (1+ Z -i"z'ji«'i’j) (polynomial of degree d)
[6] An Introduction to Statistical Learning j=1

=  Kernel trick refers to a mechanism of using different kernel functions (e.g. polynomial)
= Akernel is a function that quantifies the similarity of two data points (e.g. close to each other)




Kernel Trick — Example

= Consider again a simple two dimensional dataset

= We found an ideal mapping (I) after long search
= Then we need to transform the whole dataset according to (]:)

b - (.”L'l,l'g) —> (-CUl,ZUQg \/7-/1;17 \/7'/1;27 )

= |nstead, with the ‘kernel trick’ we ‘wait‘ and ‘let the kernel do the job*:

K(X“Xj) = (I)(Xz) : (I)(Xj) ‘mzna Zzazajyzy] XzaX Z@z

(no need to compute the mapping aIready
d(u) - P(v) = (Up u3, \f'u,l, V2us, 1 1) - (vy,v3, V201, V209, 1 1)
®(u) - ®(v) = ujvi + usvs + 2ugvy + 2ugvy + 1

(I)(u) . q)(v) — (u -V 4+ 1) — K(ll, V) (in transformed space still a dot product

in the original space = no mapping needed)
(we can save computing time by do not perform the mapping)

Example shows that the dot product in the transformed space can be expressed in terms of a
similarity function in the original space (here dot product is a similiarity between two vectors)




Linear vs. Polynomial Kernel Example

P
= Linear kernel K (i, xp) = Zifz'j;i-'z"j (linear in features)
. .. . =1
» Enables linear decision boundaries ’

(i.e. like linear support vector classifier) (observed useless for
non-linear data)

p

= Polynomial kernel K(xg,wy) = (1+ Z injifz"j)d (polynomial of degree d)
=1
= Satisfy Mercer‘s theorem = trusted kernel !

. o . (SVM with polynomial kernel of degree 3)
" Enables non-linear decision boundaries — .

~ Lo 'ZZ
. (significantly . | TN
(when choosing degree d > 1) mproved
= Amounts to fit a support decision rule due  « 37
e to much more =
vector classifier in a flexible decision N
higher-dimensional space boundary) 4| 2T
= Using polynomials of degree d T e
(d=1 linear support vector classifier) L o 5
[6] An Introduction to Statistical Learning X

I =  Polynomial kernel applied to non-linear data is an improvement over linear support vector classifiers




Polynomial Kernel Example

* Circled data points are from the test set

isi d =0. I=li ici s -
B L 0.445 (Kernel=linear SVM Decision Boundary accuracy=1.0 (Kernel=poly

C=1.0 coef0=10.0 gamma=0.1 degree=4)

1.0

0.5+

0.0

=1.0}

Z10 205 0.0 0.5 1.0

[20] E. Kim



RBF Kernel

= Radial Basis Function (RBF) kernel (also known as radial kernel)
. p
|
One of the mostly used kernel function K (rie) = exp(— Y (g — r0)?)
= Uses parameter 7y as positive constant j=1

= ‘Local Behaviour functionality’

= Related to Euclidean distance measure d(zi.za.....z0). [v1.v0.. .. unl) =J
(ruler distance) '

" Example
= Usetestdata o™ = (x7 .. .Jf;)T )
= Euclidean distance gives ™ far from £ .
? 1 (;,{j €T ij )Q(Iarge value with large distance) =
_ - p L e 2 (ti lue) 5
K (J E'-Kp(— ¥ =1 (“{j — J—'Lj) ) iny value
» flx) = Bo + ZClgf& x, x; ) (training data x; plays no role for x* & its class label) = ; 2 4
ieS [1] An Introduction to Statistical Learning

I =  RBF kernel have local behaviour (only nearby training data points have an effect on the class label




RBF Kernel Example

» (Circled data points are from the test set (similiar decision boundary

as polynomial kernel)

SVM Decision Boundary accuracy=0.445 (Kernel=linear
C=1.0)

SVM Decision Boundary accuracy=1.0 (Kernel=rbf
C=10.0 gamma=0.1)

10 205 0.0 0.5 1.0

[20] E. Kim
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Exact SVM Definition using non-linear Kernels

= True Support Vector Machines are Support Vector Classifiers combined with a non-linear kernel
= There are many non-linear kernels, but mostly known are polynomial and RBF kernels

[6] An Introduction to Statistical Learning

= General form of SVM classifier
= Assuming non-linear kernel function K f(-‘g) = [Bg + Z o K (i, ‘f?;)
= Based on ‘smaller’ collection S of SVs icS

= Major benefit of Kernels: Computing done in original space

(independent from transformed space)

p
= Linear Kernel K(xi, o) = Y _aijw; (linear in features)
j=1
p
= Pol ial K | K(rgoop) =1+ agm05)° :
olynomial Kerne \ Ly Ly ( LijLi'j) (polynomial of degree d)
Jj=1
p
= RBF Kernel K (i, xy) = exp(— Z ‘13 11,3 ’(Iarged|stance small impact)

(the win: kernel can compute this without ever computing the coordinates of the data in that space, next slides)




Solution Tools: Support Vector Classifier & QP Algorithm

Unknown Target Distribution P (y ‘ X)
target function f .4 — Y plus noise

(ideal ftj.nction)

<_____-_-_-

Training Examples

(X17 yl)’ T (XN7 yN)

(historical records, gropndtruth data, examples)

\
Learning Algorithm (‘train a system?)

x = (z

19 °°

Probability Distribution

P on X

!

Lo e— x

Error Measure

>e(xX)<€

A 4 /

Final Hypothesis

A <

(Quadratic’brogramming)

Hypothesis Set
H={h}; geH

(Support Vector Machines with Kernels)

g~ f

(final formula)

Elements we
not exactly
(need to) know

‘constants’
in learning

Elements we
must and/or
should have and
that might raise
huge demands
for storage

Elements
that we derive
from our skillset
and that can be
computationally
intensive

Elements
that we
derive from
our skillset



Non-Linear Transformations with Support Vector Machines

= Same idea: work in z space instead of x space with SVMs
= Understanding effect on solving (labels remain same)

= SVMs will give the ‘best seperator’
N N N

1 .
ﬁ(@) — E oy — § E E Y Y, oo X;‘Txm (replace this simply with z‘s obtained by @ )

n=1 n=1 m=1

(result from this new inner product is given to quadratic programming optimization as input as before )

= Value: inner product is done with z instead of x —the only change
= Result after quadratic programming is hyperplane in z space using the value

* |mpacts of ¢ to optimization
= From linear to 2D = probably no drastic change
= From 2D to million-D = sounds like a drastic change but just inner product
" |nput for K(z;,7;) remains the number of data points (nothing to do with million-D)
= Computing longer million-D vectors is ‘easy’ — optimization steps ‘difficult’

I = Infinite-D Z spaces are possible since the non-linear transformation does not affect the optimization




Kernels & Infinite Z spaces
» Understanding advantage of using a kernel K(i,%;) = 0)T0))
(maps data to higher-dimensional

= Better than simply enlarging the feature space feature spaces)
= E.g. using functions of the original features like X;, X7, X2, X3,..., X, X7
= Computational advantages

By using kernels only compute K (z;, z)

Limited to just all (2) distinct pairs 7, ¢/

(number of 2 element sets from n element set)

Computing without explicitly working in the enlarged feature space

Important because in many applications the enlarged feature space is large
(computing would be infeasible then w/o kernels)

" [nfinite-D Z spaces Kk(xix;) = 0(x)70(x;)
= Possible since all that is needed to compute coefficients are inner products

[1] An Introduction to Statistical Learning

Kernel methods like RBF have an implicit and infinite-dimensional features space that is not ‘visited’




Visualization of SVs

" Problem: z-Space is infinite (unknown)

How can the Support Vectors (from existing points) be visualized?
Solution: non-zero alphas have been the identified support vectors

(solution of quadratic programming optimization will be a set of alphas we can visualize)

(snake seems like overfitting,
fitting to well, cf. Lecture 2)

But number of support vector is very low, expected E

Support vectors exist in Z — space (just transformed original data points)
Example: million-D means a million-D vector for W

is related to #SVs

out

(generalization behaviour despite million-D & snake-like overfitting)

Input Space

Feature Space

[21] Visualization of high-dimensional space

Counting the number of support
vectors remains to be a good indicator
for generalization behaviour even
when performing non-linear
transforms and kernel methods that
can lead to infinite-D spaces

(rule of thumb)
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