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FORSCHUNGSZENTRUM JUELICH (FZJ)

Multi-Disciplinary Research Centre of the Helmholtz Association in Germany

(Juelich Supercomputing
Centre known as JSC)

= Selected Facts

= One of EU largest
inter-disciplinary
research centres
(~5000 employees)

w

HELMHOLTZ

= Expertise in physics, materials science, nanotechnology, neuroscience and  researcr For GrRAND CHALLENGES
medicine & information technology (HPC, Big Data, Artificial Intelligence) [1] Holmholtz Association Web Page
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HIGH PERFORMANCE COMPUTING (HPC)

Perspective: Floating Point Operations
per one second (FLOPS or FLOP/s)

1.000.000 FLOP/s

1 GigaFlop/s = 10° FLOPS
1 TeraFlop/s = 10'2 FLOPS
1 PetaFlop/s = 105 FLOPS
1 ExaFlop/s = 108 FLOPS

© Photograph by Rama,
Wikimedia Commons

1.000.000.000.000.000 FLOP/s > 1 PFLOP/s |
~295.000 cores~2009 (JUGENE)

>5.900.000.000.000.008
FLOP/s -

~ 500.000 cores y
~ 20175 _ et ..

NERSIIOUEEN
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TOPS500 SUPERCOMPUTERS - JUNE 2018

Enabling High Performance Computing

Rmax Rpeak Power
Rank System Cores (TFlop/s)  (TFlop/sl (kW)
1 Summit - IBM Power System AC?22, IBM POWER? 22C 3.07GHz, 2,282 b4k 122,300.0 187,659.3 8,804
NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM
DOE/SC/0ak Ridge National Laboratory
United States
2 Sunway Ta'lhuL'lght - Sunway MPP, Sunway SW24010 260C 10,64%,600 93,014.5 1254359 15371
1.45GHz, Sunway , NRCPC
Mational Supercomputing Center in Wux
China
3 Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, 1,572,480 71,610.0 119,193.6
NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM
DOE/NNSA/LLMNL
United States
23 Forschungszentrum Juelich (FZJ] JUWELS Module 1 - Bull 114,480 61777 2.891.1 1,341
Germany Sequana X1000, lf“r Platinum
8168 24C 2.7GHz, Mellanox EDR
InfiniBand/ParTec ParaStation
ClusterSuite
[27] Top500 Bull, Atos Group
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[Multicore processor
Core 1 Core2 | | oo Core n
L1 cache| |L1cache| | - - L1 cache
'\ \ / / CPU
L2 cache (one Chlp)
1T
0
| L3cacheDRAM |
GPU
Multiprocessor 1 Multiprocessor N || | ___ |

[9] Distributed & Cloud Computing Book

* Top500 #1 Summit (ORNL) 6
GPUs/node (June 2018)

= 1st time more flop/s added
by GPUs vs. CPUs (2018)

= The LINPACK performance
benchmark not fully reflects
the broad range of
applications in HPC today




SIMULATION SCIENCES

Traditional Supercomputing Impact in Scientific Computing

= Known physical laws
= Numerical methods

= Parallel Computing

rical calculatic

ulation over ti

________________
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RESEARCH FIELDS AND THEIR SHARES (2016-2018)

Supercomputing Systems Utilization > Requirement for sending in HPC project proposals to receive ‘time*

Highly Scalable “./ \‘.

System

General-Purpose
Supercomputer

JUQUEEN JURECA

‘ca. 170 Projects

@ Astrophysics @ Plasma Physics @ Computer Science

ca. 100 Projects

@ Biophysics @ Soft Matter @® Condensed Matter
@ Chemistry ® Fluid Dynamics Materials Science
® Earth & Elementary

Environment Particle Physics
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HPC DRIVES ‘BIG DATA® STORAGE

IBM Power 4+ JUMP
9 TFlops/s

IBM Power 6 JUMP IBM Blue Gene/L JUBL

9 TFlops /s _ 45 TFlops /s

JUROPA

200 TFiops/s IBM Blue Gene/P JUGENE

1 PFlops/s

HPC-FF

100 TFlops/s IBM Blue Gene/Q JUQUEEN

5.9 PFlops/s

GPFS Lustre

JUQUEEN * |

Hierarchical Storage
Server

General-Purpose Cluster Highly Scalable System
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Scientific computing
applications can be
considered as‘creators*
of big data in science &
engineering domains

Traditional simulation
sciences already
require high capacity in
data storages to store
output of various
application models

(or checkpointing)




‘BIG DATA* INFRASTRUCTURE FOR HPC & DATA SCIENCE

Multiple systems combined with whole federation of other Helmholtz centre systems

= JUST Storage Cluster
» IBM Spectrum Scale file system (GPFS)
= /5 PB gross capacity
= 5th generation
= Parallel access

= Tape Libraries

» Automated cartridge systems
= 300 PB

= 3 libraries (in 2 buildings) | =  Journals will/do require to store data
with persistent identifiers for papers

» Need for sharing of data in
» 35,000 tapes communities (e.g. turbulence flow)

» 60 tape drives
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EUROPEAN UNION & COMMISSION PLANS

Strategic Plans towards Artificial Intelligence & Supercomputers

“By supporting
strategic projects in frontline

areas such as artificial

intelligence, supercomputers,

1 You Retweeted
European Commission M & @EU Commission - Apr 25

How can Europe be at the forefront of artificial intelligence, #dataeconomy,

| and digital healthcare?

cybersecurity or
industrial digitisation, and
investing in digital skills,
the new programme will
help to complete the Digital
Single Market, a key priority of
the Union.”

[2] COMMUNICATION FROM
THE COMMISSION TO THE
EUROPEAN PARLIAMENT,
THE EUROPEAN COUNCIL,

THE COUNCIL, THE EUROPEAN
ECONOMIC AND SOCIAL
COMMITTEE AND THE
COMMITTEE OF THE REGIONS,
EC, 2018, 2" May 2018

@Ansip_EU @GabrielMariya @EBienkowskaElU @Moedas

#DigitalsingleMarket #4I

Boosting snnovation
i the Digital Single Markeat

- - - i

()
‘- T

. Y
l‘ \

| —

45:15 | 4K viewers o
g

L

Digital Single Market proposals: artificial intelligence, data econ...

European Commission @EU_Commission

Qs T Wi B
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#h. Mariya Gabriel @ (
@GabrielMariya

We are proud of you @fz] jsc for the

#firstclass #supercomputing facility you run.
It is by efforts like yours that we reaffirm

#EUaddedvalue and leadership in

Follow )

groundbreaking technologies. It is by
cooperating that we will achieve our
objectives for #EU leader in #HPC

828 AM - 5 Mar 2018



ARTIFICIAL INTELLIGENCE & DATA SCIENCE

1. Some pattern exists

2. No exact mathematical formula =

3. Data exists Mining

» |dea ‘Learning from (Big) Data’
shared with a wide variety
of other disciplines
e E.g. signal processing, data mining, etc.
e Challenges: too slow, not enough memory, etc.

= Artificial Intelligence uses methods from machine learning, pattern
recognition, data mining, applied statistics, deep learning, etc.

= Artificial Intelligence is a very broad subject and goes from
very abstract theory to extreme practice (‘rules of thumb’)
251 July 2018 Page 10




INNOVATIVE DEEP LEARNING TECHNOLOGIES

Recent Innovative & Disruptive Approach in Artificial Intelligence

Engeneer
Transform
Reduce

Learn Traditional
Machine
Learning

[5] M. Riedel, Invited

YouTube Tutorial on Deep iﬂ_ =
° Learning, Ghent University

Deep Learning requires ‘big data‘ in order to learn ‘reasonable well‘ thus requires ‘big storage*
Common Deep Learning frameworks like Keras/TensorFlow take advantage of HPC via GPUs

» Workshops tomorrow cover deep learning technologies and approaches as well as machine learning methods
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RECENT TREND IN SCIENCE: PYTHON

SIMPLE AND FLEXIBLE PROGRAMMING LANGUAGE

= Selected Benefits Rules —

@ python’

[2] Webpage Python

Data —

Classical
programming

— Answers

Work with many students reveal: qucky & easy to learn
Is an interpreted powerful programming language
Has Efficient high-level data structures N

Provides a simple but effective approach
to object-oriented programming

Great libraries & community support (e.g. numpy)

Machine
learning

— Rules

Python is an ideal language for fast scripting and rapid application development
that in turn makes it interesting for the machine learning modeling process

The machine learning modeling process in general and the deep learning
modeling process in particular requires iterative and highly flexible approaches

E.g. network topology prototyping, hyper-parameter tuning, etc.

251 July 2018 Page 12

[6] F. Chollet, ‘Deep
Learning with Python’ Book



DEEP LEARNING FRAMEWORKS

Example: Programming with TensorFlow & Python

» Tensorflow is an open source library for deep learning models using a flow graph approach

» Tensorflow nodes model mathematical operations and graph edges between the nodes are so-called tensors (also
known as multi-dimensional arrays)

» The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPU versions)
» Tensorflow work with the high-level deep learning tool Keras in order to create models fast (i.e. layer-wise fashion)

client

run

master

worker A
\ GPU, \ \ CPU, \

worker B
|cPUy | |CPU |

GPU

Multiprocessor 1

Multiprocessor N

RRECY

[

i

Device memory

[8] A Tour of
Tensorflow

nl:\

Tensor

[9] Distributed & Cloud Computing Book
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[7] Tensorflow Deep Learning
Framework

(Lessons learned: Installing TensorFlow with
right versions of CUDA, Python, and other
dependencies on a specific system
is NOT a trivial task)

[5] M. Riedel, Invited
\;.‘; YouTube Tutorial on Deep
Learning, Ghent University



DEEP LEARNING

Learning process using massive amounts of Matrix/Vector — Matrix multiplications

= A Tensor is nothing else than a multi-dimensional array often used in scientific & engineering environments
» Tensors are best understood when comparing it with vectors or matrices and their dimensions
» Those tensors ‘flow* through the deep learning network during the optimization / learning & inference process

a, by e boseil bo 2 by ses

(one dimensional tensor) (two dimensional tensor) (three dimensional tensor) a | _| Buocold B Beld By

= 25 by et by sl ;2044 by sy

(vector of dimension [5]) (matrix of dimensions [5,6]) (tensor of dimension [4,4,3]) La ] | Bygei] e By se by e
A=R*C

[10] Big Data Tips, What is a Tensor? ) .
[1] M. Riedel, Invited YouTube Tutorial on Deep

Learning, Ghent University
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DEEP LEARNING

Programming with TensorFlow & Keras

» Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-
level deep learning frameworks like Tensorflow, CNTK, or Theano

» The key idea behind the Keras tool is to enable faster experimentation with deep networks
» Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

keras.layers.Dense (units,

activation=None,

use_bias=True,

kernel initializer='glorot uniform',
bias initializer='zeros',

kernel regularizer=None,

bias regularizer=None,

activity regularizer=None,

kernel constraint=None,

bias constraint=None)

keras.optimizers.SGD(1lr=0.01,

momentum=0.0,
decay=0.0,
nesterov=False)

Tool Keras supports inherently the
creation of artificial neural
networks using Dense layers

and optimizers (e.g. SGD)

Includes regularization (e.g.
weight decay) or momentum

K e ra S [10] Keras Python Deep Learning Library
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[5] M. Riedel, Invited
YouTube Tutorial on Deep
Learning, Ghent University




DEEP LEARNING - ARCHITECTURES

Each of the Architectures provide Unique Characteristica (e.g. ‘smart layers’)

Deep Neural Network (DNN)
= ‘Shallow ANN* approach with many hidden layers between input/output

Convolutional Neural Network (CNN, sometimes ConvNet)

= Connectivity pattern between neurons is like animal visual cortex

Deep Belief Network (DBN)

= Composed of mult iple layers of variables; = Deep Learning architectures can be classified into

. Deep Neural Networks, Convolutional Neural
Only connections between Iayers Networks, Deep Belief Networks, and Recurrent

» Recurrent Neural Network (RNN) Neural Networks all with unique characteristica
‘ ‘ _ _ = Deep Learning needs ‘big data‘ to work well & for
= 'ANN’ but connections form a directed cycle; high accuracy — works not well on sparse data

state and temporal behaviour
251 July 2018 Page 16



SUPERCOMPUTING IMPACT VIA GPUS

Disruptive results for Deep Learning — Now State-of-the-Art

= Dataset: ImageNet
= Total number of images: 14.197.122

= Number of images with
bounding box annotations: 1.034.908

O numbers in bracats: (v Treemar ation Downloads

ImageNet 2011 Fall Release (32326)
plant. flora, plant life (4486) |
geological formation, formation (1
natural object (1112)
sport, athletics (176)
artifact, artefact (10504)
i~ instrumentality, instrumentatior

device (2760)
musical instrument, ins!
acoustic device (27)

Traditional CV Deep Learning

Error Rate

[22] J. Dean et al., ‘Large-Scale Deep Learning’
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lgzglz‘.:l fsi“t;ncsaf;goriesj ::ss#eitmages er Total # images
amphibian 94 591 S6K
animal 3822 73z 2ZT99K
appliance 51 1164 SO
vird 856 == 812K
covering 945 819 TT4K
device 2385 675 1810K
fabric 262 590 181K
fish 566 254 280K
flower 452 735 339K
food 1485 670 100K
fruit 309 807 188K
fungus 303 453 137K
furniture 187 1043 195K
geological formation 151 838 127K
invertebrate 728 573 417K
mammal 1138 821 S34K
musical instrument 157 891 140K
plant 1666 500 SOOK
reptile 268 7O7 190K
sport 186 1207 200K
structure 1239 763 S4EK
tool 316 551 174K
tree 953 568 SG4K
utensil 85 Mz Tk
wegetable 178 TE4 135K
wehicle 481 TTe 374K
person 2035 458 952K

[23] ImageNet Web page




DEEP LEARNING & GPU PARALLELIZATION

Simple Image Benchmark on JURECA JSC HPC System (75 x 2 NVIDIA Tesla K80/node — dual GPU design)

[20] JURECA HPC System
u Setup #GPUs  images/s  speedup  Performance per GPU [images/s] 128
1 55 1.0 55 . \deal
= TensorFlow 1.4 4 178 32 4.5 ~e—Speedup
8 357 6.5 44.63 %
= Python 2.7 16 689 12.5 43.06 .
32 1230 22.4 38.44 g
= CUDAS8 64 2276 414 3556 3
128 5562 101.1 43.45 &
= cuDNN 6 %
[21] A. Sergeev, M. Del  (absolute number of images per -
= Horovod 0.11.2 Balso,’Horovod’, 2018 second and relative speedup
normalized to 1 GPU are given) 16
= MVAPICH-2.2-GDR
° 32 64 96 128
= ‘Simple’ 1.2 million images with 224 x 224 pixels # GPUS
» Tool Horovod (using Message Passing Interface) for distributed deep learning TensorFlow (and Keras) Nvidia
NVLink

Machine & Deep Learning: speed-up is just secondary goal after primary goal accuracy (applications!)

will be next

Speed-up & parallelization nice to have for faster hyperparameter tuning, model creation, and inference | interesting
Third goal is avoiding much feature engineering through ‘feature learning‘ of deep learning networks technology
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COMPARE TRADITIONAL MACHINE LEARNING

Supervised Classification Example — Remote Sensing Dataset & Results

Engeneer

= Traditional Methods ey - s
= Support Vector Machine (SVM)
52 classes of different land cover, 6 discarded, mixed pixels, rare groundtruth

Substantial manual feature englneerlng e.g. Self Dual Attrlbute Profile (SDAP)

10-fold cross-validation

& [14] C.Cortes

and V. Vapnik,
1995

Achieved 77,02 % accuracy

30m [15] G. Cavallaro and M. Riedel, et al. , 2015
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SUPERCOMPUTING IMPACT IN MACHINE LEARNING

Supervised Classification Example — Speed-up Cross-Validation & MPI C Code

= Traditional Methods m w o gmSyM

= Support Vector Machine (SVM)

= pISVM C code that & B
can be improved e
(taken from ML
experts — not parallel

E

pe| T -
CEEEEL L |
EEEEEE ]

EEEEEEE

[EEEEnEEE

Pa

experts, tuned @ JSC)

= Message Passing
Interface (MPI)

sssss
0

= Feature Engineering

o TSyM
optimized 7SyM <
finear

e

memory access problems
N -®

64

gray-level

[16] M. Goetz and M.

Riedel, et al., 2018

= Working also on parallel feature

engineering using tree-based approach (MP1/OpenMP C)
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128

Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

10

100

1000

10000

v/C 1
2 48.90 (18.81)
4 57.53 (16.82)
8 64.18 (18.30)
16  68.37 (23.21)
2 70.17 (34.45)

65.01 (19.57)
70.74 (13.94)
74.45 (15.04)
76.20 (21.88)
75.48 (34.76)

73.21 (20.11)
75.94 (13.53)
77.00 (14.41)
76.51 (20.69)
74.88 (34.05)

75.55 22.53)
76.04 (14.04)
75.78 (14.65)
75.32 (19.60)
74.08 (34.03)

74.42 (21.21)
74.06 (15.55)
74.58 (14.92)
74.72 (19.66)
73.84 (38.78)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

~IC 1 10 100 1000 10000
2 7526(1.02) 65.12 (1.03) 73.18 (1.33) 75.76 (2.35) 74.53 (4.40)
4 5760 (1.03) 70.88 (1.02) 75.87 (1.03) 76.01 (1.33) 74.06 (2.35)
8 64.17 (1.02) 7452 (1.03) 77.02 (1.02) 75.79 (1.04) 74.42 (1.34)
16 68.57 (1.33) 76.07 (1.33) 7640 (1.34) 7526 (1.05) 74.53 (1.34)
32 7021 (1.33) 75.38 (1.34)  74.69 (1.34) 73.91 (1.47) 73.73 (1.33)

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

[15] G. Cavallaro and M. Riedel, et al. , 2015



TRADITIONAL MACHINE LEARNING VS DEEP LEARNING

Supervised Classification Example — Remote Sensing Dataset & Results

Engeneer

= Traditional Methods e i g
= C MPI-based Support Vector Machine (SVM)

Learn
= Substantial manual feature engineering i—_ Lo

= 10-fold cross-validation for model selection

= Achieved 77,02 % accuracy Wb 0 Comsluson JOMRIOONE P Eometed s o
= Convolutional Neural _ . @_ cor

Networks (CNNs) 7 0| ininin — |

= Python/TensorFlow/Keras @ & ¢ —

« Automated feature learning _ 4o T

= Achieved 84,40 % accuracy on all 58 classes i [12] J. Lange, G. Cavallaro,

M. Riedel, et al. , 2018

= SVM + Feature Engineering (~3 years) vs. CNN architecture setup (~1 month)
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DEEP LEARNING HYPERPARAMETER TUNING

‘Finding‘ good Deep Learning Network Topology requires Supercomputing

Ly =
il s
lll"|=--|l7'_l-
6 °

P 2=

Blue: correctly classified
Red: incorrectly classified

[12] J. Lange, G. Cavallaro,
M. Riedel, et al. , IGARSS 2018

Feature

Representation / Value

Conv. Layer Filters
Conv. Layer Filter size
Dense Layer Neurons
Optimizer
Loss Function
Activation Functions
Training Epochs
Batch Size
Learning Rate
Learning Rate Decay

48, 32, 32
(3,3,5), (3,3,5), (3,3,5)
128, 128
SGD
mean squared error
Rel.U
600
50
1
5x10°°

Accuracy

Accuracy [%]: In

e
o

e
o

o
IS

0.2

80

60

40

20

Training Accuracy
L . Test Accuracy

0 200 400 600
Epoch

= Using Python with TensorFlow & Keras easily enables changes in hyper-parameter tuning
= Various runs on different topologies add up to computational demand of (interlinked) GPUs
= Need for HPC machines with good GPUs and good deep learning software stacks required

25t July 2018
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DEEP SERIES OF PROJECTS

EU Projects Driven by Co-Design of HPC Applications

IDEEP

Projects

Strong
collaboration
with our industry
partners Intel,
Extoll & Megware

3 EU Exascale projects

DEEP
DEEP-ER
DEEP-EST

Innovative HPC
hardware like Intel
Nervana Neon and
persisten RAMs

27 partners
Coordinated by JSC

EU-funding: 30 M€

ST

Barcalona
Supsrcomputing

Center

‘Gontro Necionalde Suparcomputacidn

JSC-part > 5,3 M€
Nov 2011 — Jun 2020

Juelich Supercomputing Centre
implements the DEEP projects designs
in its HPC production infrastructure

25t July 2018
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&
%;t%éij; UNIVERSITY OF ICELAND

Norwegian University
of Life Sciences

) J0LICH [

=
MEGWARE 4 Fraunhofer
—

ITWM

o~
ausm
Pastue oS
Nge?”

EXTOoLL.. . =

[4] DEEP Projects Web Page



SUPERCOMPUTING IMPACTS IN ARTIFICIAL INTELLIGENCE

Modular Supercomputing Design for Resource Provisioning in Helmholtz Association

Flop/s metric will become increasingly less(!) relevant (IDEEP

= Driven by application co-design of HPC & Data Systems

Support for less regular computational tasks

Significantly larger memory footprint
Extreme data processing capabilities

Improved/optimized data transport
capabilities & specialized analytics

Scalable visualisation capabilities

Management of complex work-flows

One plausible answer to those facts is
the modular supercomputer architecture
driven by JSC & DEEP projects
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Projects
Module 1 senesl || Mem
urpose
Cluster Module CPU
o CN
| CN

| 1 )
Service Module CN ; CN Module 2 N
Scalable Storage Extreme Scale Booster

Storage Storage

NVRAM

NAM

Network

Module 3
Data Analytics Module
Federation

[4] DEEP Projects Web Page



MODULAR SUPERCOMPUTING ARCHITECTURE

IDEEP

Projects

GPU Module Cluster /Many-core Booster \ 4 Data Analytics\ Network Attached Transfer

Module Module Memory Module learning:
e.g. trained

/ = models in

memory

I

\ Persistent Innovative

memory memory,

aproaches e.g
/ faster than N
SSDs persistent
T — P | RAM
- ML N Intel . Innovative
= Dee .. ML Testing, ervana :

I - Training g = Deep Neon chips, e.qg.
earnlng Inference learning use O_f deep

- optimized

. chip designs
Storage | = Data ‘Big data‘/ P g
Module | . Models parallel 1/O
——

25t July 2018




IBM Power 4+ ///DEEP

JUMP (2004), 9 TFlop/s Projects

JSC ROADMAP

Supercomputing in

IBM Power 6 IBM Blue Gene/L
He'mh_‘"t_z JUMP, 9 TFlop/s JUBL, 45 TFlop/s
Association JUROPA IBM Blue Gene/P
200 TFlop/s JUGENE, 1 PFlop/s
— HPC-FF

100 TFlop/s IBM Blue Gene/Q

JUQUEEN (2012)

JURECA Cluster 5.9 PFlop/s

(2015) 2.2 PFlop/s

JURECA Booster

27 NVIDIA.
(2017) 5 PFlop/s

JUWELS Cluster

Module (2018) Stom%e Server JUWELS Scalable

12 PFlop/s S dular Module (2019/20)
Upercomputer 50+ PFlop/s

General Purpose Cluster Highly scalable

CLUSTER
PARTEC ‘ COMPETENCE
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FUTURE: MORE HYBRID MODELS |- Forward: WRF

simulation (physics)

Implementing a ‘Full Science Loop*

Simulation HPC Simulation
Run

(Computational Science/Engineering Application ]

Resulf;

= Forward part of loop:
known physical laws,

Response from data

VA
m
g
2

Request for analytics

numerical methods, ot aepmonics The ‘full loop of Scientific Big Data Analytics'  mivtm s
to refine model characteristica application,
iterative simulations = Backward: Statistics, Artificial
Intelligence, particle filters, ...
= Backward part of loop:
. . [ Data Analysis/Analytics (e.g. solving in}fsrse problems) ]
machine learning,
HPC/HTC Resource
deep learnin
p . _g ,_ . . . [ ’Big Pata' Processing Unit: Preparing & - Big data &
analytics, artificial intelligence fitering data (o emoiical data) presous G urs massive
data fusion
methods
. [3] Thomas Lippert, Daniel Mallmann, Morris Riedel

" Exam ple . Weather Resea rCh Publication Series of the John von Neumann Institute for Computing

& Forecasting (WRF) models
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(NIC) NIC Series 48, 417, ISBN 978-3-95806-109-5, pp. 1— 10, 2016



OTHER INTERESTING POINTERS HELMHOLTZ }I%

RESEARCH FOR GRAND CHALLENGES

NextGen

@HELMHOLTZ

Helmholtz Association Activities & Research Data Alliance

* Helmholtz Data Federation (HDF)

= Federation and extension of multi-topical data centers
with new storage- and analysis hardware

v .
@'AN, - Polar Ice Sheets
- Virtual Observatory for Polar and Marine Research Data
-
A

- Particle Physics Experiments
- Photon Science at Petra lll, Flash & Flash 2

= Usage of innovative data management solutions & e
excellent user support ‘ B
. - : :::Iit:)isgtiggli::d Radiotherapeutical Research
= Helmholtz Analytics Framework (HAF) e s | e |
= Common components for data analytics e T s s 0/ JUIRLY) - iormed mago Anaies
Unsupervised learning X X x o - - Big Plant Data
= Applied parallel machine learning methods .
- FAIR
N =1 -NuclearPh_ysiG_
= Research Data Alliance (RDA) R -l & i ence

= Research data sharing without boundaries ‘@ i e
her - Particle and Astroparticle Physics
= [nterest groups and working groups
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SUMMARY

" Mindset

= Think traditional machine learning still relevant for deep learning & big data analysis

= Using interpreted languages like Python enable easy & flexible parameter-tuning
= Selected new approaches with specific deep learning per problem (CNN, LSTM, etc.)

= Skillset

= Basic knowledge of machine learning required for deep learning
= Faster experimentation and use of various topologies and architectures through Python
= Validation (i.e. model selection) and regularization still valid(!)

= Toolset

= Parallel versions of traditional machine learning methods exist

= Python with Tensorflow & Keras just one example that takes advantage of supercomputing
= EXxplore technology trends, e.g. specific chips for deep learning, NAM, NVLink, etc.
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