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* Traditional Machine Learning Models

= Selected Deep Learning Models

Outline

Big Data & Machine Learning Introduction
Supervised & Unsupervised Learning
Supervised Learning using parallel SVMs
Parallelization Benefits using Cross-Validation
Unsupervised Learning using parallel DBSCAN

Short Introduction to Deep Learning

Machine Learning requires
a full university course
covering topics beyond
modeling & algorithms like
statistical learning theory,
regularization &
validation techniques

Using High Performance
Computing (HPC) adds
another level of
complexity requiring a full
HPC university course

Role of Accelerators & GPGPUs
Comparisons Machine Learning & Deep Learning
Convolutional Neural Networks (CNNs) Models
Long Short-Term Memory (LSTM) Networks

" Open Challenges & Summary

N




Traditional Machine Learning Models

O
O 0
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‘Big Data’ Motivation: Intertwine HPC & Machine Learning

= Rapid advances in data collection and
storage technologies in the last decade

| = Extracting useful information is a challenge
™ | considering ever increasing massive datasets

= Traditional data analysis techniques cannot be
used in growing cases (e.g. memory, speed, etc.)

= Machine learning / Data Mining is a technology that blends traditional data analysis
methods with sophisticated algorithms for processing large volumes of data

= Machine Learning / Data Mining is the process of automatically discovering useful
information in large data repositories ideally following a systematic process

modified from [1] Introduction to Data Mining

"= Machine Learning & Statistical Data Mining

= Traditional statistical approaches are still very useful to consider

I » Link to talk this morning by J. Bungartz — HPC Meets Big Data: Analytics & HPC examples




Understanding High Performance Computing

= High Performance Computing (HPC) is based on computing resources that enable the efficient use
of parallel computing techniques through specific support with dedicated hardware such as high

performance cpu/core interconnections.

interconnection
important

focus in this talk

= High Throughput Computing (HTC) is based on commonly available computing resources such as
commodity PCs and small clusters that enable the execution of ‘farming jobs’ without providing a
high performance interconnection between the cpu/cores.

network . D |:|

interconnection
less important! HRERE

I » Link to talk this morning by J. Bungartz — HPC Meets Big Data: What is HPC & parallel efficiency
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PRACE as Persistent pan-European HPC Infrastructure
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enabling world-class science through
large scale simulations
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Before using HPC: Machine Learning Prerequisites

1. Some pattern exists

2. No exact mathematical formula

3. Data exists

" |dea ‘Learning from Data’
shared with a wide variety
of other disciplines

= E.g.signal processing,
data mining, etc.

* Challenge: Data is often complex

= Machine learning is a very broad subject and goes from
very abstract theory to extreme practice (‘rules of thumb’)

I » Link to talk by U. Leser — Web-Scale Domain-Specific Information Extraction: Data Science?!

I » Machine Learning is introduced in Appendix A of the slides with a simple classification example
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Examples of Real Data Collections

= Data collection of the earth and environmental science domain

= Different from the known ‘UCI machine learning repository examples’

(real science datasets examples) (examples for learning & comparisons)

About Citation Policy Donate a Data Set Contad

PANGAEA®

Machine Learning Repository

Center for Machine Learning and Intelligent Systems

Data Publisher for Earth & Environmental Science

Integer, Real i 8 1995
Catenopal 18802 1 1996
Integer
s Annealing Multivariate Classification ﬁ‘;‘efzge‘r’”;?a‘ 798 38
Sequential
| Time-Serie:
Anonymous Microsoft Web Data Recommender-Systems ‘Categorical 37711 294 1998
5 . Categorical
N Arrhythmia Multivariate Classification Integer. Real 452 219 1998
' CS J Engineering (75)
All Water Sediment lce Atmosphere S3ui Scancas 0 ——
Artificial Characters Multivariate Classification s 6000 7 1992
— integer, Real
Reykjavik || Search |
H Audiolog (Original) Multivariate Classification ‘Categorical 226 1987
Help Advanced Search Preferences  more... ;
Audiology (Standardized| Multivariate Classification ‘Categorical 226 69 1992
N
Auto MPG Multivariate Regression ng‘g"”“‘ 398 8 1993
About — Submit Data — Projects — Software — Contact Sutomoble — a— I P PR

[2] PANGAEA data collection
[3] UCI Machine Learning Repository

[40] M. Goetz, PhD Thesis, University of Iceland
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Learning Approaches — What means Learning?

= The basic meaning of learning is ‘to use a set of observations to uncover an underlying process’
= The three different learning approaches are supervised, unsupervised, and reinforcement learning

= Supervised Learning

= Majority of methods follow this approach in this course

= Example: credit card approval based on previous customer applications
= Unsupervised Learning

= Often applied before other learning = higher level data representation

= Example: Coin recognition in vending machine based on weight and size
= Reinforcement Learning

= Typical ‘human way’ of learning
= Example: Toddler tries to touch a hot cup of tea (again and again)

I » This invited lecture focus on supervised and unsupervised learning applications & examples




Learning Approaches — Supervised Learning

* Each observation of the predictor measurement(s)
has an associated response measurement:
" lnput X=x,...,0
= Qutput ¥,,t=1,..,n
" Data (X17 y1)7 tee (XI\H ?JN)
" Goal: Fit a model that relates the response to the predictors

= Prediction: Aims of accurately predicting the response for future
observations

d

= |nference: Aims to better understanding the relationship between the
response and the predictors

= Supervised learning approaches fits a model that related the response to the predictors
= Supervised learning approaches are used in classification algorithms such as SVMs
= Supervised learning works with data = [input, correct output]

[13] An Introduction to Statistical Learning




Learning Approaches — Supervised Learning Example

, X, (perceptron model) * The labels guide
— our learning
S % L process like a
E 25 —— X, (acti\;tation lSUperViSOF' iS
< input nodes X, (bias) S helping us
9
s
©
e
)
Q.
1.5 # Iris-setosa
M Iris-virginica
1 (X1vy1):---:(XNayN)
(N =100 samples)
0.5
(decision boundary)
0 . T T T T T T T 1 .
0 1 2 3 4 5 6 7 ¢ petal length (in cm)

I » Full example of this linear perceptron learning model is introduced in Appendix A of the slides
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Supervised Learning — Overview & Summary

Unknown Target Bistetionion )2 Probability Distribution Elements we
) (y |X) not exactly
target function f . X — Y plus noise P on X (need to) know
. "L
(ideal function) l
]
]
' . ‘constants’
] p— b
' X (Il 1 xd) X in learning
]
]
]
v ) Elements we
. . must and/or
Training Examples Error Measure should have and
X o (x —> o X ) €— that might raise
( 17y1)7 7( N7yN) ( ) huge demands
(historical records, gropndtruth data, examples) for storage

Learning Algorithm (‘train a system’) Final Hypothesis
A < g~ f

Hypothesis Set
H=1{h};, geH
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Methods Overview — Advanced Example

Statistical data mining methods can be roughly categorized in classification, clustering, or
regression augmented with various techniques for data exploration, selection, or reduction

Classification

)

Groups of data exist
New data classified
to existing groups

Clustering Regression
No groups of data exist = |dentify a line with
Create groups from a certain slope
data close to each other describing the data
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Expected Out-of-Sample Performance for ‘Best Line’

" The line with a ‘bigger margin’ seems to be better — but why?

= |ntuition: chance is higher that a new point will still be correctly classified

= Fewer hypothesis possible: constrained by sized margin

= |dea: achieving good ‘out-of-sample’ performance is goal

1'. . y
1 1 . \ 1
3 2 -1 1 2

'1‘ L 4 4

(e.g. better performance
compared to PLA technique)

(simple line in a linear setup
as intuitive decision boundary)

(Question remains:
how we can achieve
a bigger margin)

I » Support Vector Machines (SVMs) are mathematically established in Appendix C of the slideset
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Term Support Vector Machines Refined

=  Support Vector Machines (SVMs) are a classification technique developed ~1990

{

= SVMs perform well in many settings & are considered as one of the best ‘out of the box classifiers

[13] An Introduction to Statistical Learning

" Term detailed refinement into ‘three separate techniques’

= Practice: applications mostly use the SVMs with kernel methods

= ‘Maximal margin classifier’
= Asimple and intuitive classifier with a ‘best’ linear class boundary
= Requires that data is ‘linearly separable’

= ‘Support Vector Classifier’

= Extension to the maximal margin classifier for non-linearly seperable data
= Applied to a broader range of cases, idea of ‘allowing some error’

= ‘Support Vector Machines’ = Using Non-Linear Kernel Methods
= Extension of the support vector classifier
= Enables non-linear class boundaries & via kernels;
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Remote Sensing Application Example — Indian Pines Dataset

= Agricultural fields with a variety of crops
= Challenging classification problem

=  Similar spectral classes and mixed pixels

[39] Indian Pines dataset
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Indian Pines Dataset — Preprocessing

= 1417x617 pixels (~600 MB)
= 200 bands (20 discarded, with low SNR)

= 58 classes (6 discarded, with < 100 samples)

Class Number of samples Class Mumber of samples
number name training lest nuimber name training test
| Buildings 1720 15475 27 Pasiure 1039 9347
2 Com 1778 16005 28 pond 0 92
3 Corn? It 142 » Sovheans 939 3452
4 Corn-EW 31 Bk N Soybeans T B9 B03
5 Corn-M§ 236 2120 3l Sovbeans-N8 111 QoL
it Corn-CleanTill 1240 11164 32 Soybeans-CleanTill 507 4567
7 Corm-CleanTill-EW 2649 23837 i3 Sovbeans-CleanTill? 273 2453
5 Com- Till-MS J0AKE 3TN0 34 Soybeans-CleanTill-EW 1180 mne2x2
9 Corn-CleanTill-NS-Irrigated £0 T20 35 Sovbeans-CleanTill-! 10030 D348
] Corn-CleanTilled-NS? 173 1555 6 Soybeans-CleanTill-Dirilled ) s
11 Corn-NMinTill 115 LEED 37 ‘Ln-} beans-CleanTill-Weedy 54 EL
12 Corn-MinTill-EW SR SRA iH Sovbeans-Divilled 1512 13606
13 Com-MinTill-NS BE6 7976 30 Sovbeans-MinTill 267 2400
14 Corn-NoTill 438 3943 40 Sovbeans-MinTill-EW 183 1649
15 Com-NoTill-EW 121 11155 41 Hur}{I\.:J!-h-\-|||]'||H-|‘.l[|||cl| 210 TI4R
16 Corn-NaTill-NS S6H 5116 42 Sovbeans-MinTill-NS 495 4458
17 Fescue 11 |03 43 Soybeans-MNoTill 216 1941
I8 Grass 115 1032 4 Soybeans-NoTill-EW 253 2380

19 GirassTrees 233 2198 45 Sovbeans-NoTill-NS %3 B36
20 Hay 113 1015 46 Soybeans-NoTill-Drilled 873 T838
21 Hay? Mo 196G 47 Swampy Area 38 523
22 Hay- Alfalfa 226 2032 48 River L1Y | 2799
23 Ltk 22 202 41 Trees? 58 522
24 NotCropped 194 1746 0 Wheat 494 4411
25 Outs 174 1568 h] | Woods 336 37206
26 Oats? L} #1 52 Woods? 14 1301

[16] G. Cavallaro and M. Riedel, et al. , 2015
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Publicly Available Datasets — Open Data

Store and Share Research Data

" ¢oon) B2SHARE

= /ndian Pines Dataset Raw and Processed

[17] Indian Pines Raw and Processed

Indian pines: raw and processed

by [Unknownl EUDAT
Dec 22, 2016
J 8
an 11, 201 EUDAT

Abstract: 1) Indian raw: 1417x614x200 (training 10% and test) 2) Indian processed:1417x614x30 (training 10% and test)

PID: 11304/7eBeecBe-adbi1-11e4-ac7e-860aa0063d1f Copy

Files Basic metadata
NETrS Size Open Access True «
_— License

» b indian_processed_test.el 105.59MB
Contact Email

> B indian_processed_training.el 11.73MB
Publication Date 2015-02-04

» B indian_raw_test.el 74713MB

> b indian_raw_training.el 83.01MB Contributors
Resource Type Category Other
Alternate identifiers 172

Type B2SHARE_V1_ID

http:4#/hdLhandle.net/11304/9ecseac8-61b4-4617-
ae1c-1f8c8cd3cd74

Type ePIC_PID
Publisher https://bzshare.eudat.eu
Language en
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Indian Pines — ‘pure’ Big Data vs. Feature Engineering

CASE1

INFORMATION ABSTRACTION
HYPERSPECTRAL

IMAGE

CASE2
PROCESSING + INFORMATION ABSTRACTION

dataset raw (1)

dataset processed (2) L R J
10% 90%

Feature Enhancement & Selection
Kernel Principle Component Analysis (KPCA)
Extended Self-Dual Attribute Profile (ESDAP)
Nonparametric weighted feature extraction (N\WFE)

[16] G. Cavallaro and M. Riedel, et al. , 2015
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Review of Open Source Parallel SVM Implementations

Technology Platform Approach Analysis
Apache Mahout Java; Hadoop No parallelization strategy
for SVMs
Apache Spark/MLIib Java; Spark Parallel linear SVMs
(no multi-class)
Twister/ParallelSVM Java; Twister: Parallel SVMs, open source:
Hadoop 1.0 developer version 0.9 beta
scikit-learn Python No parallelization strategy
for SVMs
piSVM 1.2 & piSVM 1.3 C: MPI Parallel SVMs; stable;
not fully scalable
GPU LibSVM CUDA Parallel SVMSs: hard to
programs. early versions
pSVM C:; MPI Parallel SVMs; unstable;
beta version

[18] M. Goetz, M. Riedel et al., ‘On Parallel and Scalable Classification and Clustering Techniques for Earth Science
Datasets’, 6" Workshop on Data Mining in Earth System Science, International Conference of Computational Science

I » Work in progress: Recent related work analysis reveals no new results; evaluations pending...
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Parallel and Scalable Machine Learning — piSVM

= ‘Different kind’ of parallel algorithms
" Goalisto ‘learn from data’ instead of modelling/approximate the reality
= Parallel algorithms often useful to reduce ‘overall time for data analysis’
= E.g. Parallel Support Vector Machines (SVMs) Technique

= Data classification algorithm PiSVM using MPI to reduce ‘training time’
= Example: classification of land cover masses from satellite image data

\ Class Training Test

Buildings 18126 163129

b S L] - Blocks 10982 98834

° . . e | | | ‘ Roads . 16353 147176
2 a4 5 6 s o« b . 5 Light Train 1606 14454
- 14 - - Vegetation 6962 62655

Trees 9088 81792

7 Bare Soil 8127 73144

Soil 1506 13551

Tower 4792 43124

Total 77542 697859

. [16] G. Cavallaro & M. Riedel et al., ‘On Understanding Big Data Impacts
.ﬂ'SvM in Remotely Sensed Image Classification Using Support Vector Machine
Methods’, Journal of Applied Earth Observations and Remote Sensing

I » Open source code publicly available at: https://github.com/mricherzhagen/pisvm
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Parallel SVM with MPI Technique — piSVM Implementation

= Original piSVM 1.2 version (2011) ’TSVM
= Open-source and based on libSVM library, C [15] piSVM on Sourceforge, 2008

= Message Passing Interface (MPI)
= New version appeared 2014-10v. 1.3 (no major improvements)

= Lack of ‘big data’ support (e.g. memory, layout) ww: " optirzet T L |
08:00 —|
= Tuned scalable parallel piSVM tool 1.2.1 i
= Highly scalable version maintained by Juelich ~ ws . ™75
= Based on original piSVM 1.2 tool 00 G -
= QOpen-source (repository to be created) .  optimized 7V < |
24 | . .
" Optimizations: load balancing; MPI collectives  =»-
|—]—]—]—|—| [T - I- :I_ — - ::-::j ‘ !'I-_ 4 L il )< memory access problems
ARRRRNS PCLLLLL] EEEEELY v R . *
B i 0 g S oo bbb bl 118 16 32 64 1:23
I Y I B S8 I | [T m[TTTTT

I » Open source code publicly available at: https://github.com/mricherzhagen/pisvm
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Processing time (min)

Processing time (min)

Parallelization Benefit: Lower-Time-To-Solution

= Major speed-ups; ~interactive (<1 min); same accuracy;

15
(1.14.06) ‘ —e— (cores, minutes)
(1) Scenario
10|eei00  ‘unprocessed data’
training time (in min)
5
(64103 (80,0.55)
(32,1.36) i
% 20 40 60 80
Number of cores
(a)
250
(1,228.46) | —e— (cores, minutes)
200 (1) Scenario
‘unprocessed data’
L testing time (in min)
(2,115.05)
100
50
(32,8.41)
o (16,1651 (64,4.46)  (80.4.09)
0 20 40 60 80
Number of cores
(b)

Processing time (min)

Processing time (min)

{ —eo— (cores, minutes)

manual & serial activities (in min)

(13.38) .
(2) Scenario

‘pre-processed data’

2239 training time (in min)

(4.2.04)

kpca esdap nwfe 10x CSV Training  Test Total
(1) Scenario 0 0 0  4.47x10° 1045 71.08 4.55 x 10°
(2) Scenario 5 1538 1 529.55 1.37  23.25 575.55

1
(64,0.31)  (80.,0.31)
0 (32,0.32)
0 20 40 60 80
Number of cores
(a)
50

40

30

20

10

(1,47.16) ‘ —e— (cores, minutes)

(2) Scenario
‘pre-processed data’
testing time (in min)

(2.24.26)

32,2.05
(16807~ ) (64,1.34)  (80,1.05)
0 20 40 60 80
Number of cores
(b)

Invited Lecture — Parallel Machine Learning & Deep Learning Driven by HPC

‘big data‘ is not always better data

(1) Scenario (2) Scenario

Number of features

200 30

Overall Accuracy (%)

40.68 77.96

(cf. Importance of feature engineering above)

[16] G. Cavallaro, M. Riedel, J.A. Benediktsson
et al., Journal of Selected Topics in Applied
Earth Observation and Remote Sensing, 2015

(aka first level of parallelism)

B2SHARE

Store and Share Research Data

 (e9)



Validation Technique — Cross-Validation for Model Selection

= 10-fold cross validation is mostly applied in practical problems by setting K = N/10 for real data
= __Having N/K training sessions on N — K points each leads to long runtimes (> use parallelization

(leave 1 point out at each run = many runs)

Training Examples D
(X17 yl)? Tt (XN7 yN)

" | eave-one-out

= N training sessions on
N — 1 points each time

(generalization to leave k points out at each run)
Training Examples
(X1’y1)7'”?(xN’yN) D
= N/K training sessions on (practice to avoid bias &
. . . . contamination: some rest for test
N — K points each time (fewer training sessions than above) as ‘unseen data’)
= Example: ‘“10-fold cross-valdation’ with K = N/10 multiple times (N/K)
(use 1/10 for validation, use 9/10 for training, then another 1/10 ... N/K times)

= | eave-more-out
= Break data into number of folds

D

(dataset)

(involved in training now) (involved in training now) (now is the current example run)
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Parallelization Benefits using Cross-Validation & Parameters

= Parallelization benefits are enormous for complex problems
= Enables feasibility to tackle extremely large datasets & high dimensions

= Provides functionality for a high number of classes (e.g. #k SVIMs)

= Massive reduction in time =2 lower time-to-solution — keeping accuracy!

(1) Scenario ‘unprocessed data’, 10xCV serial: accuracy (min)

(2) Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

~/C 1 10 100 1000 10 000 ~/C 1 10 100 1000 10 000

2 2730 (109.78) 34.59 (124.46) 39.05 (107.85) 37.38 (116.29) 37.20 (121.51) 2 4890 (18.81) 65.01 (19.57) 73.21 (20.11) 75.55 (22.53) 74.42 (21.21)
4 2924 (98.18) 37.75(85.31) 38091 (113.87) 38.36 (119.12) 38.36 (118.98) 4 5753 (16.82) 70.74 (13.94) 75.94 (13.53) 76.04 (14.04) 74.06 (15.55)
8  31.31(109.95) 39.68 (118.28) 39.06 (112.99) 39.06 (190.72) 39.06 (872.27) 8  64.18 (18.30) 74.45 (15.04) 77.00 (14.41) 75.78 (14.65) 74.58 (14.92)
16 33.37 (126.14) 39.46 (171.11) 39.19 (206.66) 39.19 (181.82) 39.19 (146.98) 16 6837 (23.21) 76.20 (21.88) 76.51 (20.69) 75.32 (19.60) 74.72 (19.66)
32 3461 (179.04) 38.37 (202.30) 38.37 (231.10) 38.37 (240.36) 38.37 (278.02) 32 70.17 (34.45) 75.48 (34.76) 74.88 (34.05) 74.08 (34.03) 73.84 (38.78)

(1) Scenario ‘unprocessed data”10xCV parallel: accuracy (min)

(2) Scenario ‘pre-processed data‘’, 10xCV parallel: accuracy (min)

v/C 1 10 100 1000 10000 ~v/C 1 10 100 1000 10000
2 27.26 (3.38) 34.49 (3.35) 39.16 (5.35) 37.56 (11.46) 37.57 (13.02) 2 7526(1.02) 65.12(1.03) 73.18 (1.33) 75.76 (2.35) 74.53 (4.40)
4 29.12 (3.34) 37.58 (3.38) 38.91 (6.02) 38.43 (7.47) 38.43 (7.47) 4 57.60 (1.03) 70.88 (1.02) 75.87 (1.03) 76.01 (1.33) 74.06 (2.35)
8 31.24 (3.38) 39.77 (4.09) 39.14 (545) 39.14 (5.42) 39.14 (5.43) 8 64.17 (1.02) 7452 (1.03 ) 77.02 (1.02) 75.79 (1.04) 74.42 (1.34)
16 33.36 (4.09) 39.61 (4.56) 39.25(5.06) 39.25 (5.27) 39.25 (5.10) 16 68.57(1.33) 76.07 (1.33) 76.40 (1.34) 75.26 (1.05) 74.53 (1.34)
32 34.61 (5.13) 38.37 (5.30) 38.36 (5.43) 38.36 (5.49) 38.36 (5.28) 32 7021(1.33) 75.38 (1.34) 74.69 (1.34) 7391 (1.47) 73.73 (1.33)

First Result: best parameter set from 118.28 min to 4.09 min
Second Result: all parameter sets from ~3 days to ~2 hours

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

[16] G. Cavallaro, M. Riedel, J.A. Benediktsson et al., Journal of Selected Topics
in Applied Earth Observation and Remote Sensing, 2015
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[YouTube Lectures] More about parallel SVMs & HPC

Parallel & Scalable Data Analysisy

Introduction to Machine Learning Algorithms

Dr. = Ing. Morris Riedel

Adjunct Associated Professor
| School of Engineering and Natural Sciences, University of Iceland
Research Group Leader, Juelich Supercomputing Centre, Germany

LECTURE 1

Machine Learning Fundamentals

November 23'", 2017
Ghent, Belgium

- < P » @ B.—oéf‘r:az:zm -
[20] Morris Riedel, ‘Introduction to Machine Learning Algorithms’, Invited
YouTube Lecture, six lectures, University of Ghent, 2017




Methods Overview — Introduction to Deep Learning

=  Statistical data mining methods can be roughly categorized in classification, clustering, or
regression augmented with various techniques for data exploration, selection, or reduction

Classification Clustering Regression
P
‘.’
-
v @9 v
-
9
" Groups of data exist = | No groups of data exist = |dentify a line with
= New data classified = | Create groups from a certain slope
to existing groups data close to each other describing the data
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Learning Approaches — Unsupervised Learning

* Each observation of the predictor measurement(s)
has no associated response measurement:
" lnput xX=2,,...,7,
= No output
= Data (x,),...,(x,)
" Goal: Seek to understand relationships between the observations

= Clustering analysis: check whether the observations fall into distinct groups

= Challenges
= No response/output that could supervise our data analysis
= Clustering groups that overlap might be hardly recognized as distinct group

Unsupervised learning approaches seek to understand relationships between the observations
Unsupervised learning approaches are used in clustering algorithms such as k-means, etc.

Unupervised learning works with data = [input, ---]

[13] An Introduction to Statistical Learning
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Learning Approaches — Unsupervised Learning Example

" |essons learned from practice 1.0 [ -
= The number of clusters are often o] % try o D
i iti 1 ] “ Jr.;_'—fﬁﬁF . 3 NGy
ambiguities / no hard boundaries ¥ e kot
[13] An Introduction to Statistical Learning . fp ’ o

(similarity of clusters might be density related and measurable
- pick a specific clustering algorithm)

I » Collaboration with Forschungszentrum Juelich - INM-1 Timo Dickscheid & Katrin Amunts
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Selected Clustering Methods

= K-Means Clustering — Centroid based clustering

= Partitions a data set into K distinct clusters (centroids can be artificial)

* K-Medoids Clustering — Centroid based clustering (variation)

= Partitions a data set into K distinct clusters (centroids are actual points)

= Sequential Agglomerative hierarchic nonoverlapping (SAHN)

= Hiearchical Clustering (create tree-like data structure - ‘dendrogram’)

* Clustering Using Representatives (CURE)

= Select representative points / cluster — as far from one another as possible

* Density-based spatial clustering of applications + noise (DBSCAN)

=  Assumes clusters of similar density or areas of higher density in dataset
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DBSCAN Algorithm

= DBSCAN Algorithm [15] Ester et al.

® |ntroduced 1996 and most cited clustering algorithm
= Groups number of similar points into clusters of data

= Similarity is defined by a distance measure
(e.g. euclidean distance)

= Distinct Algorithm Features

= Clusters a variable number of clusters O o’/ (Ow®
= Forms arbitrarily shaped clusters (except ‘bow ties’) ./: :\O '
= |dentifies inherently also outliers/noise L ’

(I\/IinP;i-r;;; =4)
=" Understanding Parameters

" Looks for a similar points within a given search radius  (pg - pensity rReachable)
—> Parameter epsilon (DDR = Directly Density

= A cluster consist of a given minimum number of points Reachable)
—> Parameter minPoints (DC = Density Connected)
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DBSCAN Algorithm — Non-Trivial Example

= Compare K-Means vs. DBSCAN — How would K-Means work?
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Clustered
Data

DBSCAN forms arbitrarily shaped clusters (except ‘bow ties‘) where other clustering algorithms fail
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[Video] DBSCAN Clustering

_. IN(x)| = 2
O - |

@ Border

minpts = 4 O © Core
4> 2 O OO

[6] DBSCAN, YouTube Video



‘Big Data’ Example — Point Cloud Applications

= ‘Big Data‘: 3D/4D laser scans

= Captured by robots or drones
= Millions to billion entries

= |nner cities (e.g. Bremen inner city)
= Whole countries (e.g. Netherlands, USA per state)
= Selected Scientific Cases

= Filter noise to better represent real data
= Grouping of objects (e.g. buildings)

= Study level of continous details (complex)
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Open Bremen Dataset using Hierarchical Data Format (HDF)

= Different clusterings of the inner city of Bremen
= Using smart visualizations of the point cloud library (PCL)

= The Bremen
Dataset is encoded
in the HDF5
parallel file format

=  Enables efficient
parallel I/O in HPC

[22] Bremen Dataset

(eo0) B2SHARE

o | /o | 1o | 1o | 1o
(read & write : read point L

cloud data and assign
cluster — IDs or mark noise)

P1 P2 P3 P4 P5 ‘ Rasterimage  Darray

“Datasets”

I > Power of parallel 1/0 in HPC for ‘big data’ is often underestimated in machine learning community
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Review of Open Source Parallel DBSCAN Implementations

Technologv Platform Approach Analvsis
HPDBSCAN C: MPI; OpenMP Parallel, hybrid, DBSCAN
(authors implementation)
~ Apache Mahout Tava: Hadoop K-means variants, spectal,
no DBSCAN
Apache Spark/MLIlib Java; Spark Only k-means clustering,
No DBSCAN
scikit-learn Python No parallelization strategy
for NRS(CA
Northwestern University | C++; MPI; OpenMP Parallel DBSCAN
PDSDBSCAN-D

[18] M. Goetz, M. Riedel et al., ‘On Parallel and Scalable Classification and Clustering
Techniques for Earth Science Datasets’, 61" Workshop on Data Mining in Earth System
Science, International Conference of Computational Science (ICCS)

I » Work in progress: Spark/MLlib & ~10 DBSCAN codes not so good; other MPI code 2D only, ...
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HDBSCAN Algorithm Details

= Parallelization Strategy

= Smart ‘Big Data‘ Preprocessing ] .ﬁ; ¢
into Spatial Cells (‘indexed’) J:',' "
= OpenMP standalone ‘f:F.”
. . "
= MPI (+ optional OpenMP hybrid) AT 28
= Preprocessing Step
= Spatial indexing and redistribution 45 | 46

according to the point localities

54 55

= Data density based chunking of
Computations 63 | 64

. . . [24] M.Goetz, M. Riedel et al., ‘HPDBSCAN - Highly
. Com pUtatlon d I O ptl mizations Parallel DBSCAN’, MLHPC Workshop at

= Caching point neighborhood searches Supercomputing 2015

= Cluster merging based on comparisons instead of zone reclustering

I » Open source code publicly available at: https://bitbucket.org/markus.goetz/hpdbscan
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HPDBSCAN — Smart Domain Decomposition Example

= Parallelization Strategy T hd m

<3Py —I—]—J_I
= Chunk data space equally Slezder | ¢ | i .
= Qverlay with hypergrid el e
. 0l°"0l 0 K o
= Apply cost heuristic Lm0l ud »
o =
= Redistribute points (data locality) "3 Joador 7F 0
= Execute DBSCAN locally Om;;f‘r“""o e
= Merge clusters at chunk edges oo T =
1677 (yez o) 54 () a
@] . .
= Restore initial order D oedon| | o3

= Data organization

512 | —=—Hybrid DS1

256 | - Hybrid DS2 gL
= Use of HDF5 (stores I
noise ID / cluster ID) B
°

[24] M.Goetz, M. Riedel et al., 'HPDBSCAN — Highly
Parallel DBSCAN’, MLHPC Workshop at Supercomputing 2015

4
2 {
1

2 8 32 128 512
number of cores

I » Open source code publicly available at: https://bitbucket.org/markus.goetz/hpdbscan
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[YouTube Lectures] More about parallel DBSCANs & HPC

Parallel & Scalable Data Analysisy

Introduction to Machine Learning Algorithms

Dr. = Ing. Morris Riedel

Adjunct Associated Professor
| School of Engineering and Natural Sciences, University of Iceland
Research Group Leader, Juelich Supercomputing Centre, Germany

LECTURE 1

Machine Learning Fundamentals

November 23'", 2017
Ghent, Belgium

- < P » @ B.—oéf‘r:az:zm -
[20] Morris Riedel, ‘Introduction to Machine Learning Algorithms’, Invited
YouTube Lecture, six lectures, University of Ghent, 2017




Selected Deep Learning Models

O
O 0
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Methods Overview — Introduction to Deep Learning

Statistical data mining methods can be roughly categorized in classification, clustering, or
regression augmented with various techniques for data exploration, selection, or reduction

Classification

)

Groups of data exist
New data classified
to existing groups

Clustering Regression
No groups of data exist = |dentify a line with
Create groups from a certain slope
data close to each other describing the data
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More Recent HPC Developments: GPU Acceleration

=  CPU acceleration means that GPUs accelerate computing due to a massive parallelism with
thousands of threads compared to only a few threads used by conventional CPUs

=  GPUs are designed to compute large numbers of floating point operations in parallel

" GPU accelerator architecture example (e.g. NVIDIA card)
= GPUs can have 128 cores on one single GPU chip
= Each core can work with eight threads of instructions
= GPU is able to concurrently execute 128 * 8 = 1024 threads
= |nteraction and thus major (bandwidth)

bottleneck between CPU and GPU &PU
iS Via memory interactions Multiprocessor 1 Multiprocessor N —
. (P[P [] || (B[R] (2o || omu
= E.g. applications Lﬁ:
that use matrix — = : Ll " Main |
o . Device memory ! memory |
vector multiplication 3 i I | LR

A=R*C [29] Distributed & Cloud Computing Book

I » HPC Impact: Top500 #1 Summit (ORNL) 6 GPUs/node; 1st time more flop/s added by GPUs vs. CPUs




Keras with Tensorflow Backend — GPU Support

= Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

= The key idea behind the Keras tool is to enable faster experimentation with deep networks
= Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

K e r a S [30] Keras Python Deep Learning Library

= Tensorflow is an open source library for deep learning models using a flow graph approach

= Tensorflow nodes model mathematical operations and graph edges between the nodes are
so-called tensors (also known as multi-dimensional arrays)

= The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
= Tensorflow work with the high-level deep learning tool Keras in order to create models fast

[31] Tensorflow Deep Learning Framework

worker A
GPUy | | CPU,
run 32] A Tour o
client > master g_ ] K f
worker B ensorjiow
CPUy | |CPU,




What is a Tensor?

= Meaning
= Multi-dimensional array used in big data analysis often today
= Best understood when comparing it with vectors or matrices

[33] Big Data Tips,
What is a Tensor?

(one dimensional tensor) (two dimensional tensor) (three dimensional tensor)

(vector of dimension [5]) (matrix of dimensions [5,6]) (tensor of dimension [4,4,3])

(note: learned weighted connections
often omitted from many deep

learning network visualizations)

(“tensors flow through the
—- .
deep learning networks)

nv pool conv --- FCL
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Artificial Neural Network — Feature Engineering & Layers

= Approach: Prepare data before Engeneer %

Transfrom
Reduce

oots - RS — > I

Classical Machine Learning

Feature engineering

Dimensionality reduction techniques
Low number of layers (many layers computationally infeasible in the past)
Very succesful for speech recognitition (‘state-of-the-art in your phone’)

input hidden output
layer layer layer

output
node

X,
y
[ activation X,
X. (bi function
i 1as
Input nodes 0 ( ) known < Initially unknown = known

(Perceptron model: designed after human brain neuron)  (Artificial neural network two layer feed — forward)
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[Video] Towards Multi-Layer Perceptrons

:

|

_ Connection
~ Weight

[34] YouTube Video, Neural Networks — A Simple Explanation
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Deep Learning Architectures

= Deep Neural Network (DNN)
= ‘Shallow ANN‘ approach with many hidden layers between input/output

= Convolutional Neural Network (CNN, sometimes ConvNet)

= Connectivity pattern between neurons is like animal visual cortex

= Deep Belief Network ( DBN)

= Composed of mult iple layers of variables; only connections between layers

= Recurrent Neural Network (RNN)

= ‘ANN‘but connections form a directed cycle; state and temporal behaviour

Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural
Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristica

Deep Learning needs ‘big data’ to work well & for high accuracy — works not well on sparse data
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Deep Learning — Feature Learning & More Smart Layers

Engeneer

" Approach: Learn Features Transfrom

Reduce

= (Classical Machine Learning -—>“

= (Powerful computing evolved)

" Deep (Feature) Learning --

= Very succesful for image recognition and other emerging areas

<2

= Assumption: data was generated by the interactions of many different
factors on different levels (i.e. form a hierarchical representation)

= QOrganize factors into multiple levels, corresponding to different levels
of abstraction or composition(i.e. first layers do some kind of filtering)

= Challenge: Different learning architectures: varying numbers of layers,
layer sizes & types used to provide different amounts of abstraction

(Example: Parcellation [

of cytoarchitectonic
cortical regions

in the human brain)

> 4 conv pool conv ---  FCL
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Deep Learning — Feature Learning Benefits

elephants chairs faces, cars, airplanes, motorbikes

= Traditional machine learning applied feature engineering
before modeling

= Feature engineering requires expert knowledge, is time-
consuming and a often long manual process, requires
often 90% of the time in applications, and is sometimes
even problem-specific

= Deep Learning enables feature learning promising a
massive time advancement

[25] H. Lee et al.

I » More background information about CNN and its key elements are provided in Appendix D I
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HPC Machine: JSC JURECA System — CLUSTER Module

= Characteristics

Login nodes with 256 GB
memory per node

45,216 CPU cores

1.8 (CPU) + 0.44 (GPU)
Petaflop/s peak performance

Two Intel Xeon E5-2680 v3 Haswell
CPUs per node: 2 x 12 cores, 2.5 GhZ

75 compute nodes equipped with two
NVIDIA K80 GPUs (2 x 4992 CUDA cores)

= Architecture & Network

= 100 GiB per second storage connection to JUST

Based on T-Platforms V-class server architecture

Mellanox EDR InfiniBand high-speed

network with non-blocking fat tree topology
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[48] JURECA HPC System

Use our ssh keys to get an
access and use reservation

Put the private key into
your ./ssh directory (UNIX)

Use the private key with
your putty tool (Windows)

& ..
g we




Deep Learning — Scaling Example on JURECA HPC System

= Simple Image Benchmark on JURECA JSC HPC System
= 75 x 2 NVIDIA Tesla K80/node — dual GPU design

= 1.2 mio images with 224 x 224 pixels

#GPUs  images/s  speedup  Performance per GPU [images/s]

1 55 1.0
4 178 32
8 357 6.5
16 689 12.5
32 1230 224
64 2276 414
128 5562 101.1

(absolute number of images per second and relative speedup

normalized to 1 GPU are given)

[41] A. Sergeev, M. Del
Balso,’Horovod’, 2018

55
44.5
44.63
43.06
38.44
35.56
43.45

Speedup

128

112

96

80

64

48

32

16

0

0

Ideal

—8— Speedup

32

64
# GPUs

96

= Third goal is to avoid much feature engineering through ‘feature learning’

=  Open source tool Horovod enables distributed deep learning with TensorFlow / Keras
= Machine & Deep Learning: speed-up is just secondary goal after 1st goal accuracy
= Speed-up & parallelization good for faster hyperparameter tuning, training, inference
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(setup: TensorFlow 1.4, Python 2.7, CUDA 8, cuDNN 6, Horovod 0.11.2, MVAPICH-2.2-GDR)



Deep Learning — Key Properties & Application Areas

In Deep Learning networks are many layers between the input and output layers enabling multiple
processing layers that are composed of multiple linear and non-linear transformations

Layers are not (all) made of neurons (but it helps to think about this analogy to understand them)

Deep Learning performs (unsupervised) learning of multiple levels of features whereby higher
level features are derived from lower level features and thus form a hierarchical representation

= Application before modeling data with other models (e.g. SVM)

= Create better data representations and create deep learning models to
learn these data representations from large-scale unlabeled data

- Application aleas (Deep Learning is often characterized as ‘buzzword’)

= Computer vision (Deep Learning is often ‘just’ called
) o rebranding of traditional neural networks)
= Automatic speech recognition

Natural language processing

Bioinformatics

(hierarchy from low level to high level features)

Invited Lecture — Parallel Machine Learning & Deep Learning Driven by HPC




CNN Architecture for Application — Land Cover Classification

= (Classify pixels in a hyperspectral remote sensing image having groundtruth/labels available

= Created CNN architecture for a specific hyperspectral land cover type classification problem
= Used dataset of Indian Pines (compared to other approaches) using all labelled pixels/classes
= Performed no manual feature engineering to obtain good results (aka accuracy)

Input: . 1D Max Pooling Fully Connected Softmax Output:
Window Tensor 3D Convolution (spectral dimension) Flatten Layers Layer Probabilities
— e |
|
|
] | n
] | n o ——> 4
- a = o —
i —> . —p = —>: 58
: : i . . °o ——
- m ] o —>
n | n ® —> v
] | L]
- - |
S —_— il m
3X

[26] J. Lange, G. Cavallaro, M. Riedel, et al. , IGARSS 2018
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Comparison: Traditional Machine Learning vs. Deep Learning

= Traditional Methods
C MPI-based Support Vector Machine (SVM) -] ==

Substantial manual feature engineering i—_

10-fold cross-validation for model selection

Achieved 77,02 % accuracy
(subsambled classes of 52 classes) . "

= Convolutional Neural
Networks (CNNs)

= Python/TensorFlow/Keras

Hyperspectral
Image Cube

= Automated feature learning

= Achieved 84,40 % accuracy

on all 58 classes [26] J. Lange, G. Cavallaro,

= Warning: optimistic bias — M. Riedel, et al., 2018

careful data sampling vs. ‘big data‘!
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Deep Learning Architectures — Revisited

= Deep Neural Network (DNN)
= ‘Shallow ANN‘ approach with many hidden layers between input/output

= Convolutional Neural Network (CNN, sometimes ConvNet)

= Connectivity pattern between neurons is like animal visual cortex

= Deep Belief Network ( DBN)

= Composed of mult iple layers of variables; only connections between layers

= Recurrent Neural Network (RNN)

= ‘ANN‘but connections form a directed cycle; state and temporal behaviour

Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural
Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristica

Deep Learning needs ‘big data’ to work well & for high accuracy — works not well on sparse data
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Revisit CNNs vs. RNNs — Different Type of Neural Networks

= CNNs —> Spatial

= Example: remote sensing application
domain, hyperspectral datasets

|Forest |

= Neural network key property:
exploit spatial geometry of inputs

= Approach: Apply convolution & pooling
(height x width x feature) dimensions

= RNNs = Temporal @

= Examples: texts, speech, time series datasets

= Neural network key property:
exploit sequential nature of inputs

= Approach: Train a graph of ‘RNN cells’ & each cell performs
the same operation on every element in the given sequence

= RNNs are used to create sequence models whereby the occurrence of an element in the
sequence (e.g. text, speech, time series) is dependent on the elements that appeared before it
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Sequence Models

= Sequence models enable various sequence predictions that are inherent different to other
more traditional predictive modeling techniques or supervised learning approaches

= In contrast to mathematical sets often used, the ‘sequence’ model imposes an explicit
order on the input/output data that needs to be preserved in training and/or inference

= Sequence models are driven by application goals and include sequence prediction,
sequence classification, sequence generation, and sequence-to-sequence prediction

" Model Categorization
= Based on different inputs/outputs to/from the sequence models
" Practical ‘standard dataset’ perspective

= Often the order of samples is not important

* Training/testing datasets and their samples
have often no explicit order (i.e. ‘sets’)

" Practical ‘sequence dataset’ perspective

= QOrder of samples is important: sequence learning/inference needs order

I » More background information about RNNs & LSTMs is in the Appendix E in this slideset




Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) consists of cyclic connections that enable the neural network to
better model sequence data compared to a traditional feed forward artificial neural network (ANN)

RNNs consists of ‘loops’ (i.e. cyclic connections) that allow for information to persist while training
The repeating RNN model structure is very simple whereby each has only a single layer (e.g. tanh)

tanhx

1of —— —_—

= Selected applications Ve
= Sequence labeling R If"; _—
= Sequence prediction tasks f-{i- @
= E.g. handwriting recognition —/_>/_ R
= E.g.language modeling g;:t::‘a:/_’l)

= Loops / cyclic connections

" Enable to pass information(‘delay’) @ ?
from one step to the :

next iteration \

NEETPPPPIPS PV

= Remember ‘short-term’
data dependencies @
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RNN Model - Simple Example — Predict Next Character

significant number of
words (i.e. deep RNN)
(unroll the ‘loop’ leads to the vanishing

° ° gradient problem

= Reasoning is that small
‘e ‘€1 ‘1 ‘0 gradients or weights
with values than 1 are

(’delay')@ Q = Sequence values that
i ‘ are separated by a

over t timesteps)

0.1 0.2 0.2 0.0 e
(probabilities) g:g g:z g:; g:‘l’ n:lultlplled many
0.1 0.1 0.1 0.9 times through the

multiple time steps,
i.e. gradients shrink
asymptotically to zero

= Effect is that weights of
those earlier layers are

not changed
1 0 0 0 . g
ded 0 1 0 0 significantly and the
(one-hot encode 0 0 1 L network will not learn
characters) 0 0 0 0
long-term dependencies
(hl lel (¢ (?
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Long Short Term Memory (LSTM) Model

= Long Short Term Memory (LSTM) networks are a
special kind of Recurrent Neural Networks (RNNs)

. =  LSTMs learn long-term dependencies in data by
remembering information for long periods of time
=  The LSTM chain structure consists of four neural

network layers interacting in a specific way

e

0
o

(each line carries
an entire vector)

tanh

(weight

matrix)
—

(weight matrix)

Xt- 1
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LSTM Model — Memory Cell & Cell State

LSTM introduce a ‘memory cell’ structure into the underlying basic RNN architecture using four key
elements: an input gate, a neuron with self-current connection, a forget gate, and an output gate

The data in the LSTM memory cell flows straight down the chain with some linear interactions (x,+)
The cell state s, can be different at each of the LSTM model steps & modified with gate structures
Linear interactions of the cell state are pointwise multiplication (x) and pointwise addition (+)

In order to protect and control the cell state s, three different types of gates exist in the structure




Deep Learning for Sequence Data: Long Short-Term Memory

= Standard LSTM

rom keras.models import Sequential
rom keras.layers i Dense

rom keras.layers i LSTM

rom keras.layers i C Dropout

model = Sequential()
model . add (LSTM(
units=config[ ‘units'],
input shape=(train_X.shape[1], train_X.shape[2])

))
model.add(Dense(1, activation=config[ activation']))

model . compile(loss=config| "loss'], optimizer=config[ ' opt

print("Fitting model..™)

history = model.fit(
train X,
train y,
epochs=config[ "ep
batch_size=config[ 'batchsize'],
validation_data=(test X, test_y),
verbose=2,
shuffle=config[ "shuffle’]
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Jul 2015 Jan 2016 Jul 2016 Jan 2017 Jul 2017 Jan 2018

LSTM models work quite well to
predict power but needs to be
trained and tuned for different
power stations

Observing that some peaks can not
be ‘learned’ although robust model

Requires much longer time to train
(i.e. more HPC time or GPUs/node)




Different Useful LSTM Models — Stacked LSTMs

= E.g. predicting electricity

140

consumption / customer
= Stacked LSTM cells | |

100 ~

=
]
(=]

= Periodic elements can
take advantage of state

electricity consumption
[==]
(=]
=

= Needs to be carefully tuned

=1}
[=]
|

= Requires through use of “ H' L A‘
state more computing 40 ’
[ | E.g. damped Sine time (1pt = 15 mins)

. e # € $Q =
wave prediction

= Stacked LSTM cells since
again periodic character

= Depending on wave
the pattern might be
not able to be detected w/o LSTMs
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[YouTube Lectures] More about Deep Learning & HPC

Deep Learning

Using a Convolutional Neural Network

Dr. - Ing. Morris Riedel
Adjunct Associated Professor

| School of Engineering and Natural Sciences, University of Iceland
Research Group Leader, Juelich Supercomputing Centre, Germany

LECTURE 1

Deep Learning Fundamentals & GPGPUs

November 30", 2017
Ghent, Belgium

FEX. UNIVERSITY OF ICELAND

-

| 4 P » o) 0:00/2:19:47
[21] Morris Riedel, ‘Deep Learning - Using a Convolutional Neural Network’,
Invited YouTube Lecture, six lectures, University of Ghent, 2017




[Video] Deep Learning ‘Revolution’

Google Deep Mind® &

AlphaGO defeats world champuon‘ YAy

P »l o 200/235

[27] The Deep Learning Revolution, YouTube



Open Challenges & Summary

O
O 0
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Number of Parameters — Challenges on the Horizon

[26] J. Lange, G. Cavallaro,
M. Riedel, et al. , IGARSS 2018

u .= Blue: correctly classified

[l

L Red: incorrectly classified
Feature Representation / Value
Conv. Layer Filters 48, 32, 32
Conv. Layer Filter size | (3,3,5), (3,3,5), (3,3,5)
Dense Layer Neurons 128,128
Optimizer SGD
Loss Function mean squared error
Activation Functions ReLU
Training Epochs 600
Batch Size 50
) Learning Rate 1
Learning Rate Decay 5x10°°

Using Python with TensorFlow & Keras easily enables changes in hyper-parameter tuning

Various runs on different topologies add up to computational demand of GPUs

Need for HPC machines with good GPUs and good deep learning software stacks required

Key challenge remains in the number of parameters for deep learning networks & configuration

I » Link to ISC 2018 Machine Learning Track Keynote by Frank Hutter about hyper-parameter problems
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DEEP

= Dynamic Exascale

Entry Platform

3 EU Exascale projects g

DEEP
DEEP-ER
DEEP-EST

27 partners
Coordinated by JSC

EU-funding: 30 M€

JSC-part > 5,3 M€

Nov 2011 —Jun 2020

[28] DEEP-EST EU Project

DEEP Projects & Partners

8517,
=

%ﬁ;} UNIVERSITY OF ICELAND

ASTRRON

erlands institute for Radlo Ascranomy

i
|

[///p&'p]

Projects
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DEEP-EST EU Project & Modular Supercomputing

/
GPU Module

Deep
Iearnmg

Cluster
Module

™

/Many-core Booster \

= ML
Training

= ML Testing,
Inference

/Data Analytics
Module

Network Attached
Memory Module

Transfer i
Learning

Deep
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Summary

= Mindset

= Think traditional machine learning still relevant for deep learning
= Using interpreted languages like Python is ‘modus operandi’
= Selected new specific deep learning methods (CNN, LSTM, etc.)

= Skillset

= Basic knowledge of machine learning required for deep learning

= Validation (i.e. model selection) and regularization still valid(!)

= Many job offers for specialists in machine/deep learning & HPC

" Toolset
= Parallel versions of machine learning methods exist (piSVM, HPDBSCAN)
= Python, Tensorflow & Keras often used for deep learning

= Explore technology trends, e.g. specific chips for deep learning

I » Challenges: intertwine physical models with machine learning & finding good hyperparameters
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Appendix A: Introduction to Machine Learning
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Methods Overview

= Machine learning methods can be roughly categorized in classification, clustering, or regression
augmented with various techniques for data exploration, selection, or reduction

Classification Clustering Regression
" Groups of data exist =| No groups of data exist = |dentify a line with
= New data classified =] Create groups from a certain slope
to existing groups data close to each other describing the data
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Simple Application Example: Classification of a Flower

I (1) Problem Understanding Phase I (what type of flower is this?)

(flowers of type ‘IRIS Setosa‘)

=  Groups of data exist
= New data classified
to existing groups

[4] Image sources: Species Iris Group of
North America Database, www.signa.org

(flowers of type ‘IRIS Virginica‘)
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The Learning Problem in the Example

(flowers of type ‘IRIS Setosa‘) (flowers of type ‘IRIS Virginica‘)

[4] Image sources: Species Iris Group of North America Database, www.signa.org

Learning problem: A prediction task

" Determine whether a new lIris flower
sample is a “Setosa” or “Virginica”

= Binary (two class) classification problem
=  What attributes about the data help?

(what type of flower is this?)
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Feasibility of Machine Learning in this Example

1. Some pattern exists:

= Believe in a ‘pattern with ‘petal length’ &
‘petal width somehow influence the type

2. No exact mathematical formula

= To the best of our knowledge there is no
precise formula for this problem

3. Data exists

=  Data collection from UCI Dataset ,, Iris”

= 150 labelled samples (aka ‘data points’) [5] Image source: Wikipedia, Sepal
= Balanced: 50 samples / class = sepal length in cm
(four data attributes for each = sepal width incm

sample in the dataset) - petal Iength incm

= petal width in cm

= class: Iris Setosa, or
Iris Versicolour, or
Iris Virginica

I (2) Data Understanding Phase I

[6] UCI Machine Learning (one class label for each
Repository Iris Dataset sample in the dataset)
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Understanding the Data — Check Metadata

" First: Check metadata if available (metadata is not always available in practice)

= Example: Downloaded iris.names includes metadata about data

h. Title: Iris Plants Database ) )
Updated Sept 21 by C.Blake - Added discrepency information (Subject, title, or context)

2. Sources:
(a) Creator: R.R. Fisher

{b) Donor: Michael Marshall (MAESHALL®*PLUEioc.arc.nasa.gov) (author, source, or creator)
(c) Date: July, 1588

, (number of samples, instances)
5. MNumber of Instance=z: 150 (50 in each of three classes)

&. MNumber of Attributes: 4 numeric, predictive attributes and the (attribute information)
class

7. Attribute Information:

1. =epal length in cm . .
2. sepal width in em (detailed attribute
3. petal length in cm information)
4. petal width in cm
5. cla=s: . .
—— Iris Setosa (detailed attribute
—— Iris Versicolour information)

—— Iri= Virginica

[6] UCI Machine Learning Repository Iris Dataset
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Understanding the Data — Check Table View

= Second: Check table view of the dataset with some samples
= E.g. Using a GUI like ‘Rattle’ (library of R), or Excel in Windows, etc.
= E.g. Check the first row if there is header information or if is a sample

3100 U.0.4

| 5165x14%2 Iissetoss
B oL 38 10 02 Is-setosa
40 5 35 13 03 Iris-setosa
41 45 23 13 03 Iris-setosa
42 44 32 13 02 Iris-setosa
43 5 35 16 06 Iris-setosa
4 51 38 19 04 Iris-setosa
45 48 3 14 03 Iris-setosa
46 51 38 16 0.2 Iris-setosa
47 46 32 14 02 Iris-setosa
48 53 37 15 02 Iris-setosa
49 5 33 14 02 Iris-setosa
50 7 32 47 14 Ins-versicolor
51 64 32 45 1.5 Iris-versicolor
52 69 31 49 1.5 Irs-versicolor
53 55 23 4 13 Ins-versicolor
54 65 28 46 1.5 Iris-versicolor
55 57 28 45 1.3 Tric-versicolor
[7] Rattle Library for R

(careful first sample taken as header,
resulting in only 149 data samples)

(four data attributes for each

sample in the dataset)

(one class label for each
sample in the dataset)

UL
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petal length in cm
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Iris Versicolour, or
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Preparing the Data — Corrected Header

I (3) Data Preparation Phase I

i hatlie vataset - aredit version U.0.1

— P— —

Vi V2 V3 V4 V5
i 51 3514 02 Iris-setosa
49 3 14 0.2 Iris-setosa
47 32 13 02 Iris-setosa
46 31 15 0.2 Iris-setosa
36 14 0.2 Iris-setosa

€I - halle g

(correct header information, resulting in 150 data samples)

54 39 17 04 Iris-setosa
46 34 14 03 Iris-setosa P
&

534 15 0.2 Iris-setosa Execute

</

‘roject Tools Settings Help
O B El
New  Open Save Report  Export

Stop Quit

W ® ~N O W = W N
w

44 29 14 0.2 Iris-setosa Date

Explorel Tesil Transforml Clustell Associatel Modell Evaluatel Logﬁl

10 49 31 15 01 Iris-setosa Source:
11 54 37 15 02 Iris-setosa tename: [
12 48 34 16 0.2 Iris-setosa

13 48 314 01 Iris-setosa

14 43 31101 Iris-setosa

15 58 41202 Iris-setosa

16 57 44 15 04 Iris-setosa

17 84 2012 04 Tric.catnea
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@ Spreadsheet

) ARFF () ODBC

ins.data

] Separator: |,

R Dataset

Decimal:

) RData File

[7] Header I

(correcting the header is not always necessary,
or can be automated, e.g. in Rattle)

]

ok || Cancel



39
40
41
42
43
44
45
46
47

49

51

52

53

55

Preparing the Data — Remove Third Class Samples

» Data preparation means to prepare our data for our problem

" |n practice the whole dataset is rarely needed to solve one problem

= E.g.apply several sampling strategies (but be aware of class balance)

= Recall: Our learning problem

= Determine whether a new lIris flower sample is a “Setosa” or “Virginica”

= Binary (two class) classification problem : ‘Setosa‘ or ‘Virginica“

X51 X3.5 X1.4 X0.2  Iris.setosa
51 34 15 02 Tris-setos:
5 35 13 03 Iris-setos.
45 23 13 03 Iris-setos: .
T i (three class problem with
5 35 16 06 Iris-setos: — H H
Lo e N =150 samples including
1831403 sscos Iris Versicolour)
51 38 16 02 Iris-setos
46 32 14 02 Iris-setos:
53 37 15 02 Iris-setos.
5 33 14 02 Iris-setos:
7 32 47 14 Iris-versicolor
64 32 45 15 Iris-versicolor

69 31 49 15 Ins-versicolor
55 23 4 13 Iris-versicolor
65 28 46 15 Iris-versicolor
57 28 45 13 Iric-versicolor

(remove Versicolour class
samples from dataset)

5 & & 8§ & &

oK

Invited Lecture — Parallel Machine Learning & Deep Learning Driven by HPC

Vi V2 V3 v V5
39 44 31302

40 51 341502
4 5351303
42 45231303
43 44 3213 02
4 513516 06
45 51 38 19 04
46 48 314 03
47 51 38 16 02
48 46 32 14 02
49 53 37 15 02
50 5331402
51 63 33 6 25 Iris-virginica
52 58 2.7 51 19 Iris-virginica
53 71 359 21 Ins
54 63 29 56 18 Iris
S5 65 3 SR 2.2 Iric-virninica

AR - - - S - S S -
P S R S O S A Y
a 3 3 23 3 2 4 & 3 3 &
a2 2 2 2 2 8 23 8 2 a3 8 2

(wo class problem with
N = 100 samples excluding
Iris Versicolour)

(export or save dataset
to iris-twoclass.data)

b
0K Cancel



Preparing the Data — Feature Selection Process

» Data preparation means to prepare our data for our problem

" |n practice the whole dataset is rarely needed to solve one problem

= E.g. perform feature selection (aka remove not needed attributes)

= Recall: Our believed pattern in the data

A ‘pattern with ‘petal length’ & ‘petal width’ somehow influence the type

|

VIV2 V3V Vs
[l 51351402 Irissetosa
g 1o 2102 Liaon *—sepalength-hem
3 47 32 13 02 Iris-setosa
4 46 31 15 0.2  Iris-setosa = M M
5 5361402 Inisset Sepal WIdtll H-E
6 543917 04 Iris-set .
7 46 34 14 03  Iris-setosa u petal Iength In Cm
8 5341502 Inisset . .
5 44 2514 02 lissm = petal width incm
10 49 31 15 01  Iris-setosa .
11 54371502 lissetos = class: Iris Setosa, or
12 48 34 16 02  Iris-setosa
14 43 31101 Irs-setosa ’ or
15 58 4 12 02 Iris-setosa I H V' N1
16 57 44 15 04  Iris-setosa rI S I rgl n Ica

(N = 100 samples with 4 attributes and 1 class Iaw-
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V3 v4
[1] 14 02
2 14 02
3 1302

V5

ris-setosa
ris-setosa
ris-setosa

4 1502 Iris-setosa
5 14 02  Iris-setosa
6 17 04  Iris-setosa
7 14 03  Iris-setosa

8 1502

9 14 02 Iris-setosa
10 15 01 ris-setosa

11 15 02
12 16 02

a2 4 3 2 2 2 3 & 4
9 9 © 9 9 o

ris-setosa

ris-setosa

13 14 01 ris-setosa

14 1101 ris-setosa
15 12 02 ris-setosa
16 15 04 ris sa

I
I
I
I
I
I
I
Iris-setosa
I
I
I
I
I
I
I
I

to iris-twoclass-twoattr.data)

petal length in cm
petal width in cm
class: Iris Setosa, or
Iris Versicolour, or
Iris Virginica

(export or save dataset

»

oK Cancel

(N =100 samples with 2 attributes and 1 class label)



Iris Dataset — Open Data

= Different samples of the original Iris dataset

= Created for linear seperability and non-linear seperability
& cosane e ———

<« ¢ @ @ https;//b2share.eudat.eu/records/37fb24847a73489a9c569d7033ad0238 s @ | Q Suchen

Iris Dataset LibSVM Format Preprocessing

Morris Riedel;
by Morris Riede EUDAT

Dec 22, 2016 St
L > d at Jan 11, 2018 EUDAT
Abstract: UCI Machine Learning Repository IRIS Dataset iris.scale.original and iris.scale - 3 classes. 50 samples each class iris-classiand3 - only linearly

seperable data - class 1 and 3 sampling - 100 samples iris-classi1and3-training/testing - 20 for training. 30 for testing - per class 1 and 3 iris-class2and3-

training/testing - 20 for training. 30 for testing - perclass 2and 3

Keywords: LIbSVM; Iris; Flowers; UCI;

PID:  11304/10e216d4-0a98-4ab4-86ea-75ed05ee0f46 | Copy

Files Basic metadata
NS Size Open Access True ¢
License
» B iris-classiand3-testing.txt 2.74KB
Contact Email mriedel@fz-juelich.de
> B iris-classiand3-training.txt 1.81KB
Publication Date 2016-07-03
» B iris-classiand3.ixt 454KB
> B iris-classzand3-testing.txt 2.84KB Contributors
» W iris-classzand3-training.txt 318KB Resource Type Category Other
» B iris-classzand3.txt 4.66KB Alternate identifi 397
» B iris.scale.originaloriginal 6.95KB Type B2SHARE_V1_ID
3 B Insscalescale 6.95KB http://hdLhandle.net/11304/b68b5s707-ec19-45bf-
8dag-73503aa4d1e1
Type ePIC_PID
Publisher http://bzshare.eudat.eu

[14] Iris Dataset
(o) B2SHAR

Store and Share Research Data
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Check Preparation Phase: Plotting the Data

Dataset

3
=
o
;E. 2.5 — (attributes with d=2)
= * —
= Wt S 4 o X=Ty,..,T,
= *e *
= s PO (x1 is petal length,
™ " . x2 is petal width)
E ®He Nee o
o *

*
15 ey J—
*
(Recall: we believed in a ‘pattern’ with ‘petal length’ (Xl )7 s (XN)
& ‘petal width somehow influence the flower type)
1 (N =100 samples)
+
> f.u:q (what about the class labels?)
4
fiﬂ‘:ﬂrf
*
o . : .
0 . , : : . : ? petal length (in cm)
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Check Preparation Phase: Class Labels

3
E /\
o
;E_ 25 o m
[ | S
= N BN m [ X =Ty, Xy,
o (T n
g ] ] [ |
= 2 i EE
m [ ]| [ | -
= mE WmEE B y,t=1..,n
o u .
15 - # Iris-setosa
\_/./ B Irisvrginica
L (Xlayl)a"'v(xN:yN)
(N =100 samples)
+
05 e
+ée 4 : : ;
“ e (still no machine learning so far)
* SNt &
et tal length (in cm)
ﬂ.— T T T T T T T 1 E a En |n cm
0 1 7 3 4 5 & 7 sp gt
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Linearly Seperable Data & Linear Decision Boundary

I (4) Modelling Phase I = Thedatais
linearly seperable

(rarely in practice
/\ " Aline becomes a
decision boundary
./ to determine if a
new data point is
class red/green

—

petal width (in cm)

# Iris-setosa

M Iris~vrginica

(XIJ yl)v A (XN: yN)
(N =100 samples)

(decision boundary)

: épetal length (in cm)
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Separating Line & Mathematical Notation

= Data exploration results
= Aline can be crafted between the classes since linearly seperable data
= All the data points representing Iris-setosa will be below the line
= All the data points representing Iris-virginica will be above the line

" More formal mathematical notation

" |nput: X =2,,...,T, (attributes of flowers)

= Qutput: class +1 (Iris-virginica) or class -1 (lris-setosa)
(decision boundary) J

Iris-virginica if Z wix; > threshold

=1 (w; and threshold are

still unknown to us)

d
Iris-setosa if Z w;x; < threshold
i—1

d
Ségn(( E 'u,‘fx?,) — thn.nshold) (compact notation)

1=1
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Separating Line & ‘Decision Space‘ Example

(decision boundary) (11111 1EIIii LI

o
=

e e N
' '::::::::::::.':::::::::”:”.”“I """" (equationofaline)
o 1—|—2Ji71 —I—Sji'g = (

! ' ' l I I — (all points X, on this line
-1 -0 0= oo 05 1.0 5 have to satisfy this equation)
X

modified from [13] An Introduction to Statistical Learning
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A Simple Linear Learning Model — The Perceptron

* Human analogy in learning

[8] F. Rosenblatt, 1957

= Human brain consists of nerve cells called neurons

"= Human brain learns by changing the strength of neuron connections (w;)
upon repeated stimulation by the same impulse (aka a ‘training phase’)

" Training a perceptron model means adapting the weights w,

= Done until they fit input-output relationships of the given ‘training data’

(X17y1)3 Y (XN7yN)

(training data)

(modelled as

d bias term)
sign Z w,z, | — threshold
(activation i=1

function, \ J d

|
+lor-1) (the signal)
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output
node

Y

A

(activation
function)

X, (bias)
(representing the threshold)

input nodes

(dimension of features)



Perceptron — Example of a Boolean Function

d 2 3 y
1 10 0 -1 (X13y1): ey (XvaN)
2 1011 (training data)
3 1101
4 1111 Yy
6 0 1 0-1 N

. (activation

7 0111 (training phase) function)
8 00 0 - t=0.4

) p input nodes .
.s*'zfg-nl (Z U',r,) — Hu'f.fshold)
i=1 (trained perceptron model)

= Qutput node interpretation

= More than just the weighted sum of the inputs — threshold (aka bias)
= Activation function sign (weighted sum): takes sign of the resulting sum

(e.g. consider sample #3,

Yy = 17 if 03171 + 03I2 + 03-7:3 — 0.4 > () sum is positive (0.2) > +1)

(e.g. consider sample #6,

Yy = —1, if 031'1 -+ OSIQ + 03333 — 04 <0 sum is negative (-0.1) = -1)
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Summary Perceptron & Hypothesis Set h(x)

" When: Solving a linear classification problem [8] F. Rosenblatt, 1957
= Goal: learn a simple value (+1/-1) above/below a certain threshold
= (Class label renamed: Iris-setosa = -1 and Iris-virginica = +1

= |nput: X — 3:1 g eeey SCd (attributes in one dataset)

®m  Linear formula (take attributes and give them different weights — think of ‘impact of the attribute’)

= All learned formulas are different hypothesis for the given problem
d

: N 2 : ‘ ] . (parameters that define
h‘(X) _ W, &, — threshold ?h’ S H one hypothesis vs. another)

=1

(each green space and
blue space are regions
of the same class label
determined by sign
function)

° (red parameters correspond
to the redline in graphics)

@

® : :

(but question remains: how do

we actually learn w; and threshold?)
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Perceptron Learning Algorithm — Understanding Vector W

= When: If we believe there is a linear pattern to be detected
= Assumption: Linearly seperable data (lets the algorithm converge)
= Decision boundary: perpendicular vector w. fixes orientation of the line
h(x) = sign(w’x)
(vector notation, using T = transpose)

w x =0
w-x =020

(points on the decision

W, — (W;1, W9, ..., Wy
boundary satisfy this equation) ‘ ( o Z_J , )

w1
= Possible via simplifications since wl — |Wi2
we also need to learn the threshold: '
d | Wid |
h(x) = sign((z uaf:z) + uo) w, = —threshold X; = (X1, Tigy -.rs Tq)
i=1
d .
_ h(x) = sign(w - x)
h(x) — Sgn ( ( Z ua;‘l) ) o = 1 (equivalent dotproduct notation)
i=0
(all notations are equivalent and result is a scalar from which we derive the sign)
[9] Rosenblatt, 1958
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Understanding the Dot Product — Example & Interpretation

T

= ‘Dot product’ :
P u-v— Z U; Vg h(x) = szgn((Zuxl)),xo =1

" Given two vectors — i—0
1=

= Multiplying corresponding components of the vector hx) = sign(w - x)

(our example)

= Then adding the resulting products
= Simple example: (2,3)-(4,1) =24+ 3% 1 : (@ scalar)
= |nteresting: Dot product of two vectors is a scalar
" ‘Projection capabilities of Dot product’ (simplified)
= Orthogonal projection of vector v in the direction of vector u

u-v = (|lv||cos(a)))||u| = vul|u| derennyg (profection)

= Normalize using length of vector

u
m |u|| = length(u) = Lynorm = y/u-u

I » Dot Products are important in machine learning, e.g. in Support Vector Machines, see Appendix C I
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Perceptron Learning Algorithm — Learning Step

= |terative Method using (labelled) training data (X, ¥,), ---, (X5, Yy )

(one point at a time is picked)
1. Pick one misclassified

training point where: y=+1 WYX
sign(w'x ) #y. (a) W X
2. Update the weight vector: (a) addingavector or
W < W + yn Xn (b) subtracting a vector
(y, is either +1 or -1)
y=-1
w
= Terminates when there are
no misclassified points (b)
(converges only with linearly seperable data)
W — yX
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[Video] Perceptron Learning Algorithm

[10] PLA Video
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Systematic Process to Support Learning From Data

= Systematic data analysis guided by a ‘standard process’
= Cross-Industry Standard Process for Data Mining (CRISP-DIM)

Data
Understanding

Lv ¥
z-L - Data
. Preparation

= A data mining project is Eﬁ:?gﬁnding
guided by these six phases:
(1) Problem Understanding;
(2) Data Understanding;
(3) Data Preparation;
(4) Modeling; (learning
(5) Evaluation; takes place)
(6) Deployment

scientific

data sets “

Deployment

‘ Modelling
= | essons Learned from Practice Evaluation ‘
" Go baCk and fc.thh between [11] C. Shearer, CRISP-DM model,
the different six phases Journal Data Warehousing, 5:13

I » A more detailed description of all six CRISP-DM phases is in the Appendix B of the slideset I
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Machine Learning & Data Mining Tasks in Applications

Machine learning tasks can be divided into two major categories: Predictive and Descriptive Tasks

[1] Introduction to Data Mining
= Predictive Tasks

= Predicts the value of an attribute based on values of other attributes

= Target/dependent variable: attribute to be predicted

= Explanatory/independent variables: attributed used for making predictions
= E.g. predicting the species of a flower based on characteristics of a flower

= Descriptive Tasks
= Derive patterns that summarize the underlying relationships in the data
= Patterns here can refer to correlations, trends, trajectories, anomalies
= QOften exploratory in nature and frequently require postprocessing
= E.g. credit card fraud detection with unusual transactions for owners
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Predicting Task: Obtain Class of a new Flower ‘Data Point’

I (4) Modelling Phase I

M Iris~vrginica

(XIJ yl)v a (XN: yN)
(N =100 samples)

(decision boundary)

: épetal length (in cm)

[4] Image sources: Species Iris Group of North America Database, www.signa.org
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Summary Terminologies & Different Dataset Elements

= Target Function f: X =Y

= |deal function that ‘explains’ the data we want to learn
= Labelled Dataset (samples)

= ‘in-sample’ data given to us: (Xl, yl), cary (XN, yN)

= |earning vs. Memorizing
= The goal is to create a system that works well ‘out of sample’
= |n other words we want to classify ‘future data‘ (ouf of sample) correct

= Dataset Part One: Training set [ (4) Modelling Phase

= Used for training a machine learning algorithms
= Result after using a training set: a trained system

= Dataset Part Two: Test set | (5 Evaluation Phase

= Used for testing whether the trained system might work well
= Result after using a test set: accuracy of the trained model

Invited Lecture — Parallel Machine Learning & Deep Learning Driven by HPC



Model Evaluation — Training and Testing Phases

= Different Phases in Learning

= Training phase is a hypothesis search (4) Modelling Phase I

= Testing phase checks if we are on right track | (5) Evaluation Phase I
(Once the hypothesis clea r) (e.g. student exam training on examples to

- Work on 'training examples, get E,, ,down’, then test via exam)

= Create two disjoint datasets _ —

‘training set’ ‘test set’

= One used for training only
(aka training set)

Trainin

- adlols oo oo

Examples

(X0, 8, 40 (X, U )
= Another used for tEStmg Only (historical records, grc')undtruth data, examples)

(aka test set)

= Exact seperation is rule of thumb per use case (e.g. 10 % training, 90% test)

= Practice: If you get a dataset take immediately test data away
(‘throw it into the corner and forget about it during modelling’)

= Reasoning: Once we learned from training data it has an ‘optimistic bias’
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Model Evaluation — Testing Phase & Confusion Matrix

= Modelis fixed I (5) Evaluation Phase I

= Model is just used with the testset

= Parameter w, are set and we have a linear decision function

= Evaluation of model performance
= Counts of test records that are incorrectly predicted Sign(WTxn) + .
= Counts of test records that are correctly predicted sz’gn(WTxn) =
= E.g. create confusion matrix for a two class problem

Counting per sample Predicted Class
Class=1 Class=0

Actual Class=1 fiq fio

Class Class=0 for li

(serves as a basis for further performance metrics usually used)
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Model Evaluation — Testing Phase & Performance Metrics

Counting per sample Predicted Class I (5) Evaluation Phase I
Class = Class=0

Actual Class = flo (100% accuracy in learning often
cl points to problems using machine
ass Class=0 f01 foo learning methos in practice)

= Accuracy (usually in %)

number of correct predictions
total number of predictions

Accuracy =

" Error rate

number of wrong predictions
Error rate =

total number of predictions

= If model evaluation is satisfactory: [ (6) Deployment Phase |
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Non-linearly Seperable Data in Practice — Which model?

3 I . I
| (4) Modelling Phase | (X, 9, ), s (X Uy )
(resampled, again
15 N =100 samples)
2
15 # Irisversicolor
B Irisvirginica
(linear decision boundary)
1 +44—
(non-linear decision boundary)
05
u . T T T T T T T 1
0 1 2 3 4 5 6 7 g
(lessons learned from practice: requires soft-thresholds to allow (lessons learned from practice: requires
for some errors being overall better for new data non-linear decision boundaries)

- Occams razor — ‘simple model better’)
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Key Challenges: Why is it not so easy in practice?

= Scalability
= Gigabytes, Terabytes, and Petabytes datasets that fit not into memory
» E.g.algorithms become necessary with out-of-core/CPU strategies

= High Dimensionality
= Datasets with hundreds or thousand attributes become available

= E.g. bioinformatics with gene expression data with thousand of features

= Heterogenous and Complex Data
= More complex data objects emerge and unstructured data sets
= E.g. Earth observation time-series data across the globe

= Data Ownership and Distribution

= Distributed datasets are common (e.g. security and transfer challenges)

Key challenges faced when doing traditional data analysis and machine learning are scalability,
high dimensionality of datasets, heterogenous and complex data, data ownership & distribution

Combat ‘overfitting’ is the key challenge in machine learning using validation & regularization
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Prevent Overfitting for better ‘ouf-of-sample’ generalization

OVeR errTiN G

[15] Stop Overfitting, YouTube
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Appendix B: CRISP-DM Process

O
O 0
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Summary: Systematic Process

= Systematic data analysis guided by a ‘standard process’
= Cross-Industry Standard Process for Data Mining (CRISP-DIM)

e ‘f'ata mining pro.jeCt is E:l‘:it:f:tanding » B:t;erstanding
guided by these six phases:
(1) Problem Understanding;
(2) Data Understanding; - "
(3) Data Preparation; & - |Data
(4) Modeling; . Preparation
(5) Evaluation;
(6) Deployment

scientific

data sets “

Deployment

‘ Modelling
= | essons Learned from Practice Evaluation ‘
" Go baCk and f(?rth between [11] C. Shearer, CRISP-DM model,
the different six phases Journal Data Warehousing, 5:13
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1 — Problem (Business) Understanding

= The Business Understanding phase consists of four distinct tasks: (A) Determine Business
Objectives; (B) Situation Assessment; (C) Determine Data Mining Goal; (D) Produce Project Plan

* Task A — Determine Business Objectives [12] CRISP-DM User Guide

= Background, Business Objectives, Business Success Criteria

= Task B — Situation Assessment

= |nventory of Resources, Requirements, Assumptions, and Contraints
= Risks and Contingencies, Terminology, Costs & Benefits

= Task C— Determine Data Mining Goal

= Data Mining Goals and Success Criteria

= Task D — Produce Project Plan

= Project Plan
= |nitial Assessment of Tools & Techniques
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2 — Data Understanding

= The Data Understanding phase consists of four distinct tasks:
(A) Collect Initial Data; (B) Describe Data; (C) Explore Data; (D) Verify Data Quality

» Task A — Collect Initial Data [12] CRISP-D User Guide

= |nitial Data Collection Report
= Task B— Describe Data

= Data Description Report

= Task C— Explore Data

= Data Exploration Report

= Task D — Verify Data Quality
= Data Quality Report
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3 — Data Preparation

= The Data Preparation phase consists of six distinct tasks: (A) Data Set; (B) Select Data;

(C) Clean Data; (D) Construct Data; (E) Integrate Data; (F) Format Data

= Task A — Data Set

= Data set description
= Task B —Select Data

= Rationale for inclusion / exclusion
= Task C— Clean Data

= Data cleaning report
= Task D — Construct Data

= Derived attributes, generated records
"= Task E —Integrate Data

= Merged data
" Task F—Format Data

= Reformatted data
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4 — Modeling

= The Data Preparation phase consists of four distinct tasks: (A) Select Modeling
Technique; (B) Generate Test Design; (C) Build Model; (D) Assess Model;

= Task A — Select Modeling Technique

= Modeling assumption, modeling technique

= Task B — Generate Test Design
= Test design

= Task C— Build Model

= Parameter settings, models, model description

= Task D — Assess Model

= Model assessment, revised parameter settings
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5 — Evaluation

= The Data Preparation phase consists of three distinct tasks: (A) Evaluate Results;
(B) Review Process; (C) Determine Next Steps

= Task A — Evaluate Results [12] CRISP-DM User Guide

= Assessment of data mining results w.r.t. business success criteria
= List approved models

= Task B — Review Process

= Review of Process

= Task C— Determine Next Steps

= List of possible actions, decision
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6 — Deployment

= The Data Preparation phase consists of three distinct tasks: (A) Plan Deployment;
(B) Plan Monitoring and Maintenance; (C) Produce Final Report; (D) Review Project

= Task A —Plan Deployment
= Establish a deployment plan

= Task B—Plan Monitoring and Maintenance
= Create a monitoring and maintenance plan
"= Task C—Product Final Report

= Create final report and provide final presentation

= Task D — Review Project

= Document experience, provide documentation
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Appendix C: Geometric Interpretation of SVMs & Kernels

O
O
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Geometric SVM Interpretation and Setup (1)

" Think ‘simplified coordinate system’and use ‘Linear Algebra’
= Many other samples are removed (red and green not SVs) @ &
= Vector W of ‘any length’ perpendicular to the decision boundary
= Vector U points to an unknown guantity (e.g. new sample to classify)
= |s 1 on the left or right side of the decision boundary?

.'o.(.projection)
= Dotproduct w-u>C;C =—b
= With u takes the projection on the W

= Depending on where projection is it is
left or right from the decision boundary

= Simple transformation brings decison rule:
@ w-u-+b>0 2 means ¢
= (giventhatband W are unknown to us)

(constraints are not enough to fix particular b or w,

need more constraints to calculate b or w)
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Geometric SVM Interpretation and Setup (2)

= Creating our constraints to get b or w computed
= First constraint set for positive samples # WX, + b>1
= Second constraint set for negative samples® w-x_ +b <1

= For mathematical convenience introduce variables (i.e. labelled samples)
y; = +for®# and Y; = —for@

.'o,(.projection)

| = Multiply equations by ¥
= Positive samples:  ¥;(X; - W + D)
= Negative samples: Ui (x; W+ b)
= Bothsamedueto ¥ = +and y; = —

(brings us mathematical convenience often quoted)

yi(x;-w+b)—1>0

(additional constraints just for support vectors itself helps)

@ yi(xi-w+b)—1=0

> 1
> 1
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Geometric SVM Interpretation and Setup (3)

" Determine the ‘width of the margin’

= Difference between positive and negative SVs: X, — X_
= Projection of X, — X_ onto the vector W

" The vector W is a normal vector, magnitude is HWH

v..
(projection)

(Dot product of two vectors is a scalar, here the width of the margin)

= Unit vector is helpful for ‘margin width’

= Projection (dot product) for margin width:

X_|_ — X_ W
e Xy — X 1 m (unit vector)
X v ¥ ———————> i@
. 1—b 1+b Iwl
- = When enforce constraint: Yi = +#

@uilxi-w+b)—1=0 yi=—¢
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Constrained Optimization Steps SVM (1)

" Use ‘constraint optimization’ of mathematical toolkit

2

. p .. . , . (drop the constant
= |deais to ‘maximize the width’ of the margin: max —HWH 2 is possible here)
A%

v..
(projection)

» Taixr L (equivalent)
W

» min, ‘ | W H (equivalent for max)

° X‘|‘ — X » -m:i-nl HWHZ (mathematical
2 convenience)
Next: Find the extreme values

® = Subject to constraints

@ yi(x;-w+b)—1=0
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Constrained Optimization Steps SVM (2)

" Use ‘Lagrange Multipliers® of mathematical toolkit
= Established tool in ‘constrained optimization’ to find function extremum
= ‘Get rid’ of constraints by using Lagrange Multipliers @

(projection)

" |ntroduce a multiplier for each constraint

1 ..
L(a) = S[wl* - Y ailyi(xi- w4 b) — 1]
(interesting: non zero for support vectors, rest zero)

= Find derivatives for extremum & set O

= But two unknowns that might vary
X = First differentiate w.r.t. W

= Second differentiate w.r.t. b

(derivative gives the gradient, setting 0 means extremum like min)
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Constrained Optimization Steps SVM (3)

: 1 ..
* Lagrange gives: £(a) = - |w* = > aily(xi- w+b) — 1]

= First differentiate w.r.tw

W oL (derivative gives the
V-_.. o —_— = W — E ﬂ{ir'!;"i Xi — 0 gradient, setting 0 means
-,.(prOJectlon) ()W ‘ extremum like min)

= Simple transformation brings:

W

x x @W — E {1{1';.!}-'1'}(1- (i.e. vector is linear sum of samples)
o.. _|_ - . '

(recall: non zerGTOT SUPPOTL VeCtors, rest zero = even less samples)

= Second differentiate w.r.t.

X, é;_g:_z&iyi:g»zgiyi:()@
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Constrained Optimization Steps SVM (4)

: 1 ..
" Lagrange gives: L(a) = §HWH2 — E ilyi(xi - W+ b) — 1]
| - (plug into)
= Find minimum '

v )% = Quadratic optimization problem
= Take advantage of @W = E XY X

£= 2T awx) - (o)
o e X = awxi - () ayx;)
. — Z o;y;b + Z o

(b constant

(projection)

in front sum) ng}y L O
11 T
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Constrained Optimization Steps SVM (5)

1
= Rewrite formula: £ = — Z QYiX;) - (Z ;Y X5 )

9

=D (3 %)

l (results in)

(the same)

;@% Y
(was 0)

(optimization
depends only on dot
product of samples)

L = Z{J{ ——ZZaayiy

® = Equation to be solved by some

!

guadratic programming package
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Use of SVM Classifier to Perform Classification

" Use findings for decision rule
(decision rule also

@W: E ;Y X depends on

dotproduct)

OVutzoe B Yo ulrzoo

.'-,(projection)
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Constrained Optimization Steps SVM & Dot Product

, 1
= Rewrite formula: £ = 5 Z QYX;) - (Z ;Y X5 )

=D (3 %)

l (results in)

(the same)

;@% Y
(was 0)

(optimization
depends only on dot
product of samples)

L = Z{J{ ——ZZaayiy

® = Equation to be solved by some

!

guadratic programming package
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Kernel Methods & Dot Product Dependency

" Use findings for decision rule
(decision rule also

@W: E ;Y X depends on

dotproduct)

@Qw-u+b>0 # » Zafiyib?j(]*
", (projection) = Dotproduct enables nice more elements

= E.g.consider non linearly seperable data

= Perform non-linear transformation @ of the
samples into another space (work on features)

[— Za _ —Zzaaﬂ ?;ETJE@

(optimization
» q) XE ) (in opt|m|zat|on) depends only on dot
(for decision rule product of samples)
» (P X? ll ) above too)
(kernel trick is .- (trusted Kernel
substitution) K (X_?‘ ' XJ-‘) = &g Xj@ B‘ Xi: X_?) ( ) ( ) avoids to know Phi)
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Appendix D: Convolutional Neural Networks in Keras

O
O
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Solution Tools: Artificial Neural Network Learning Model

Unknown Target Distribution P (y ‘ X)
target function f .4 — Y plus noise

(ideal ftj.nction)

<_____-_-_-

Training Examples

(X,,9,), -

’ (XN7 yN)

(historical records, gropndtruth data, examples)

\

Learning Algorithm (‘train a system?)

x = (z

19 °°

Probability Distribution

P on X

!

Lo e— x

Error Measure

>e(xX)<€

A 4 /

Final Hypothesis

A <

(Backpropagation

Hypothesis Set

H={h}; ge™H

(Artificial Neural Networks - ANNs)

g~ f

(final formula)

Elements we
not exactly
(need to) know

‘constants’
in learning

Elements we
must and/or
should have and
that might raise
huge demands
for storage

Elements
that we derive
from our skillset
and that can be
computationally
intensive

Elements
that we
derive from
our skillset



ANN - Handwritten Character Recognition MNIST Dataset

* Metadata
= Subset of a larger dataset from US National Institute of Standards (NIST)
= Handwritten digits including corresponding labels with values 0 to 9

= All digits have been size-normalized to 28 * 28 pixels
and are centered in a fixed-size image for direct processing

* Not very challenging dataset, but good for experiments / tutorials

OHZRANZITNH I
= Dataset Samples g%%%%%%%%%
= Labelled data (10 classes) %}1 % % % % % I% %} % %

= Two separate files ~ - :
for trairrw)ing and test % % % % % % %
= 60000 training samples (~47 MB) Zl 1 [el 3182 /]2 7
= 10000 test samples (~7.8 MB) % % % % % %
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MNIST Dataset for the Tutorial

» When working with the dataset

Dataset is not in any standard image format like jpg, bmp, or gif
File format not known to a graphics viewer
One needs to write typically a small program to read and work for them

Data samples are stored in a simple file format that is designed for
storing vectors and multidimensional matrices

The pixels of the handwritten digit images are organized row-wise with
pixel values ranging from O (white background) to 255 (black foreground)

Images contain grey levels as a result of an anti-aliasing technique used
by the normalization algorithm that generated this dataset.

" Available already for the tutorial

Part of the Tensorflow tutorial package and Keras tutorial package

# download & unpack MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mhist = input_data.read_data_sets("MNIST_data/", one_hot=True)
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MNIST Dataset for the Tutorial

» When working with the dataset

Dataset is not in any standard image format like jpg, bmp, or gif
One needs to write typically a small program to read and work for them

Data samples are stored in a simple file format that is designed for
storing vectors and multidimensional matrices (here numpy binary files)

The pixels of the handwritten digit images are organized row-wise with
pixel values ranging from 0 (white background) to 255 (black foreground)

Images contain grey levels as a result of an anti-aliasing technique used
by the normalization algorithm that generated this dataset.

fhomea/hpclab/trainfdl/data/mnist
[trainf@1@jrl09 mnist]$ pwd
/homea/hpclab/trainBfl/data/mnist
[train®01@jrl09 mnistl$ 1s -al

otal 53728

drwxr-xr-x 2 train@0l hpclab 512 Jun

drwxr-xr-x 180 train@8l hpclab 512 Jun .-
-rwW-r----- 1 train@@]1 hpclab 734080360 Jun : x_test.npy
-rw-r----- 1 train@Bl hpclab 47040030 Jun : X_train.npy
-rwW-r----- 1 train@®l hpclab 1060860 Jun : y _test.npy
-FrwW-r----- 1 train@®l hpclab 60080 Jun : y train.npy




MNIST Dataset — Exploration — One Character Encoding

[trainBB1@jr109 mnist]$ python explore-mnist-training.py

Samples of 28 x 28 pixel matrices reserved for training
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MNIST Dataset — Exploration Script Training

LMpOrtT numpy as np

(_train

np.load("/homea/hpclab/traing

_train np.load("/homea/hpclab/train0o1/

print("Samples of 28 x 28 pixel

def character show(character):
for y in character:
row = "'
for x in y:
row += '{0: =4}"' _format(x)
print row

for i in range (0,9):
character show(X train[i])
print(“\n")
print(“Label:")
print(Y train[i])
print{"\n")

; reserved for training")

Loading MNIST training
datasets (X) with labels
(Y) stored in a binary
numpy format

Format is 28 x 28 pixel
values with grey level
from 0 (white
background) to 255
(black foreground)

Small helper function
that prints row-wise one
‘hand-written’ character
with the grey levels
stored in training dataset

Should reveal the nature
of the number (aka label)

= Loop of the training dataset and the testing dataset (e.g. first 10 characters as shown here)
= At each loop interval the ‘hand-written’ character (X) is printed in ‘matrix notation’ & label (Y)
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ANN —MNIST Dataset — Parameters & Data Normalization

import numpy np

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers.core import Dense, Activation
from keras.utils import np_utils

# parameters

-
-
-
-

NB_CLASSES = 10 -
NB_EPOCH = 200 =T
BATCH_SIZE = 128 ="

VERBOSE = 1 [

N_HIDDEN = 128
OPTIMIZER = 'SGD'
VALIDATION_SPLIT = 0.2

NB_CLASSES: 10 Class Problem

NB_EPOCH: number of times the model is
exposed to the training set — at each
iteration the optimizer adjusts the weights
so that the objective function is minimized

BATCH_SIZE: number of training instances
taken into account before the optimizer
performs a weight update

OPTIMIZER: Stochastic Gradient Descent
(‘SGD’) — only one training sample/iteration

# dataset 28 x 28 pixels = 784 reshaped
(X_train, y_train),
RESHAPED = 784
X_train = X_train. reshape (60000, RESHAPED)
X_test = X_test.reshape (10000, RESHAPED)
X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

# normalization
X_train /= 255
X_test /= 255

# data output
print(X_train.shape[Q], 'train samples')
print(X_test.shape[0], 'test samples')

(X_test, y_test) = mnist.load_data() = Data load shuffled between

training and testing set

= Data preparation, e.g. X_train is
60000 samples / rows of 28 x 28
pixel values that are reshaped in
60000 x 784 including type
specification (i.e. float32)

= Data normalization: divide by
255 — the max intensity value
to obtain values in range [0,1]

Invited Lecture — Parallel Machine Learning & Deep Learning Driven by HPC




ANN — MNIST Dataset — A Simple Model

= The Sequential() = Dense() represents a = The non-linear Activation function
Keras model is a fully connected layer ‘softmax’ represents a generalization of
linear pipeline (aka used in ANNs that the sigmoid function — it squashes an n-
‘a stack’) of various means that each dimensional vector of arbitrary real
neural network layers neuron in a layer is values into a n-dimenensional vector of
including Activation connected to all real values in the range of 0 and 1 — here
functions of different neurons located in it aggregates 10 answers provided by
types (e.g. softmax) the previous layer the Dense layer with 10 neurons
- & ’4'
\\ "” "’,'
# convert vectors to\binary matrices of ,c?a'sses ‘,"
Y_train = np_utils.to_dategorical (}t'ln‘gin, NB_CLASSES) P e
Y_test = np_utils.to_ca%egoric’aj\{'y_test, NB_CLASSES) _o"
\ _o P
# Simple ANN model ,—" _
model = Sequential() ,—" c;oftmax(x)- — eXp(X,_,,)
model. add (Dense (NB_CLASSES, input_shape=(RESHAPED, ))) S ! 3 exp(x;)
model.add(Activation( 'softmax')) ) J
“model. summary ()
# Compilation
model.compile(loss='categorical_crossentropy', optimizer=0PTIMIZER, metrics=['accuracy']) -6 -4 -2 0 2 a 6
# Fit the model Ssao
history = model.fit(X_train, Y_train, batch_size=BATC’f—l:ﬂZE, epochs=NB_EPOCH, verbose=VERBOSE, validation_split=VALIDATION_SPLIT)
\\\
# evaluation Sso . - - q .
score = model.evaluate(X_test, Y_test, verbose=VERBOSE) ‘~~ - LOSS funCtlon ISa mUItICIaSS |Ogarlthmlc
print(‘Test score:", scorel0]) loss: target is ti,j and prediction is pi,j
print('Test accuracy:', score[l]) Lz = _Zﬂci.j log(pi,j} g i P pLJ
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ANN — MNIST Dataset — Job Script

#!/bin/bash

#PBS -1 nodes=1:ppn=all
#PBS -1 walltime=1:0:0

#PBS -N KERAS_MNIST_ANN

module load TensorFlow/1.4.0-intel-2017b-Python-3.6.3
module load Keras/2.1l.1l-intel-2017b-Python-3.6.3

# make sure Keras is using TensorFlow as backend
export KERAS_BACKEND=tensorflow

export WORKDIR=$VSC_SCRATCH/${PBS_JOBNAME}_${PBS_JOBID}
mkdir -p $WORKDIR
cd $WORKDIR

export OMP_NUM_THREADS=1
python $PBS_0_WORKDIR/KERAS_MNIST_ANN.py

echo "Working directory was $WORKDIR"
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ANN — MNIST Dataset — A Simple Model — Output

[vsc42544@gligar03 deeplearningl]$ more KERAS_MNIST_ANN.ell79465
Using TensorFlow backend.

[vsc42544@gligar03 deeplearning]$ more KERAS MNIST ANN.o0l1179465

60000 train sampleé
10000 test samples

Layer (type) Output Shape Param #
dense_1 (Dense) (None, 10) 7850
activation_1 (Activation) (None, 10) 0

Total params: 7,850
Trainable params: 7,850
Non-trainable params: 0

Train on 48000 samples, validate on 12000 samples

[vsc42544@gligar03 deeplearningl$ tail KERAS_MNIST_ANN.o01179465

48000/48000 [==============================] - 1s l2us/step - loss: 0.2760 - acc: 0.9227 - val_loss: 0.2747 - val_acc: 0.9234
32/10000 [..... .. e 1 - ETA: Os

3104/10000 [========>,, ... 0 00t iiarirr1s 1 - ETA: Os

6208/10000 [s================>,,.......... 1 - ETA: Os

9344/10000 [===========================>,,] - ETA: 0Os

10000/10000 [::::::::::::::::::::::::::::::] - 0Os 16u5/step

H 6
cy: 00,9221

Working directory was /user/scratch/gent/vsc425/vsc42544/KERAS _MNIST ANN_1179465.masterl9.golett.gent.vsc
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Solution Tools: Convolutional Networks Learning Model

Unknown Target Distribution P (y ‘ X)
target function f .4 — Y plus noise

(ideal ftj.nction)

<_____-_-_-

Training Examples

(X17 yl)’ T (XN7 yN)

(historical records, gropndtruth data, examples)

\
Learning Algorithm (‘train a system?)

x = (z

19 °°

Probability Distribution

P on X

!

Lo e— x

Error Measure

>e(xX)<€

A 4 /

Final Hypothesis

A <

(Backpropagationl\— modified layers)

Hypothesis Set
H={h}; geH

(Convolutional Neural Networks)

g~ f

(final formula)

Elements we
not exactly
(need to) know

‘constants’
in learning

Elements we
must and/or
should have and
that might raise
huge demands
for storage

Elements
that we derive
from our skillset
and that can be
computationally
intensive

Elements
that we
derive from
our skillset



CNNs — Basic Principles

Convolutional Neural Networks (CNNs/ConvNets) implement a connectivity pattner between
neurons inspired by the animal visual cortex and use several types of layers (convolution, pooling)

CNN key principles are local receptive fields, shared weights, and pooling (or down/sub-sampling)
CNNs are optimized to take advantage of the spatial structure of the data

= Simple application example O H [/ AN 313

pe app P A6 727065 W

= MNIST database written characters di/A2 Y3 RIZ

. . . LGl [7]10 58 [0 3 [&l[]]

= Use CNN architecture with different layers 31119 3 9 [ 33

i : - PR 0257 2094 [/a

Goal: automatic classification of characters A6 84506000

. S, .. . - zl 0] [el 3] 182 [/] 2] 7] (8

3|_:1|.11.1_:1 fea:«:sue ::;pn.- I’ea::ue :;:21].1'5 f-_-a]::;:u]ranp-, [t-an:e::mm output E E @ E @ E @ @

'56——'2——*——“—\%_;—\ 2l 4l 6l (g 07 (8 3] 3

\ —|| |/,-g_ \\ “o {JA;-—ﬁ DI

3 \\ ' = \‘Q\ \W_Fv
N . AN N @

x5 2x2

comvoluhon \ subsampling convoluton X2 \\ ':’ fully \

™, L _suhﬂplui _\-\ -rc-:mected -~ .
[36] A. Rosebrock feature extraction claasiﬁt:ariml [35] M. Nielsen
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CNNs — Principle Local Receptive Fields

= MNIST dataset example

= 28 * 28 pixels modeled as square of neurons in a convolutional net

= Values correspond to the 28 * 28 pixel intensities as inputs

input neurons

0000000000000 0000C0000C0000000
000000000000 0000000CO0CO000000
000000000000 0000000000000000
0000000000000 0000C0000C0000000
000000000000 0000000000000000
0000000000000 0000C00000000000
0000000000000 000000000000000
0000000000000 00000000000000
0000000000000 000000000000000
000000000000 000000000C0000000
000000000000 0000000000000000
000000000000 000000000C0000000
0000000000000 000000000000000
000000000000 0000000000000000
000000000000 0000000000000000
0000000000000 0000C0000C0000000
000000000000 000000000C0000000
000000000000 000C0C00000000000
0000000000000 00000000C0000000
000000000000 0000000000000000
000000000000 0000000000000000
000000000000 0000000000000000
0000000000000 000000000000000
000000000000 0000000000000000

0000 0000000000000 00000
00000000 OOOOOOOOOOOOOOOOOOO
000000000 000000000000 0000
DOOOOOOOOOOOOOOOOOOOOOOOOOOO

(28 * 28 pixel image)

[35] M. Nielsen

input neurons

(red box indicate the local receptive
field for the hidden neuron)

(5 * 5 local connectivity)
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CNNs — Principle Local Receptive Fields & Sliding

= MNIST database example
= Apply stride length =1
= Different configurations possible and depends on application goals
= Creates ‘feature map’ of 24 * 24 neurons (hidden layer)

input neurons input neurons
Bosscecii oo first hidden layer gegsssen oo rst hidden laver
00000 = 00000 =
00000~ 0000~
0000 00000
(28 * 28 pixel image) (24 * 24 feature map) (28 * 28 pixel image) (24 * 24 feature map)

[35] M. Nielsen
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CNNs —Example with an ANN with risk of Overfitting

= MNIST database example
CNN: e.g. 20 feature maps with 5 * 5 (+bias) = 520 weights to learn

Apply ANN that is fully connected between neurons

ANN: fully connected first layer with 28 * 28 = 784 input neurons

ANN: e.g. 15 hidden neurons with 784 * 15 = 11760 weights to learn

hidden layer
8 ne

(eventually lead to overfitting and
much computing time)

input layer
(784 neurons)

[35] M. Nielsen
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CNNs - Principle Shared Weights & Feature Maps

" Approach
= CNNs use same shared weights for each of the 24 * 24 hidden neurons
= Goals: significant reduction of number of parameters (prevent overfitting)
= Example: 5 * 5 receptive field = 25 shared weights + shared bias

= Feature Map
m Detects one local feature

28 x 28 input neurons first hidden layer: 3 x 24 x 24 neurons

—

= E.g. 3: each feature map
is defined by a set of 5 * 5
shared weights and a single
shared bias leading to 24 * 24

= Goal: The network can now
detect 3 different kind of l

(shared weights are also known
to define a kernel or filter)

= Benefit: learned feature being detectable across the entire image
[35] M. Nielsen

features (many more in practice)

Invited Lecture — Parallel Machine Learning & Deep Learning Driven by HPC



CNNs — Principle of Pooling

= ‘Downsampling” Approach
= Usually applied directly after convolutional layers
= |dea is to simplify the information in the output from the convolution

= Take each feature map output from the convolutional layer and
generate a condensed feature map

= E.g. Pooling with 2 * 2 neurons using ‘max-pooling’
= Max-Pooling outputs the maximum activation in the 2 * 2 region

hidden neurons (output from feature map)

max-pooling units

Q0
fele] -0

28 x 28 input neurons 3 x 24 x 24 neurons

— 3 x 12 x 12 neurons

N —

[35] M. Nielsen '
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CNN - Application Example MNIST

= MNIST database example
= Full CNN with the addition of output neurons per class of digits

= Apply ‘fully connected layer”: layer connects every neuron from the
max-pooling outcome layer to every neuron of the 10 out neurons

= Train with backpropagation algorithm (gradient descent), only small
modifications for new layers

28 28 3 x 24 x 2 O] OHZRANZTHE
e O BBENZ2EEEM

iy | O| ed/EZYIBR7R

s O| 2lze 5@ 60

L Re] RelaluivlGlaising s

1l , O’ 02 E% 70747

T Q| BeeHAenanl

— 3| ZUEB RN ZE

m Ol dEezzne6we

o ZHezioEs 3l

(another indicator
that even with

cutting edge technology

machine learning never

[35] M. Nielsen A [=][ UL 2] achieves 100% performance)
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MNIST Dataset — CNN Model

layers.core import Dense, Activation, Flatten

layers.convolutional import Convolution2D, MaxPooling2D

add(Convolution2D (20, kernel_size=5, padding="same", input_shape=input_shape))

.add (MaxPooling2D (pool_size=(2,2), strides=(2,2)))

add(Convolution2D (50, kernel_size=5, border_mode="same"))

from keras.datasets import mnist
from keras.models import Sequential
from keras.
from keras.utils import np_utils
from keras import backend as K
from keras.
from keras.optimizers import SGD, RMSprop, Adam
# model
class CNN:
@staticmethod
def build(input_shape, classes):
model = Sequential()
model.
model. add(Activation("relu"))
model
model.
model.add(Activation("relu"))
model
model. add(Flatten())
model. add(Dense(500))
model. add(Activation("relu"))

model
model.
return

.add(Dense(classes) )

add(Activation("softmax"’
model

[37] A. Gulli et al.

Invited Lecture — Parallel Machine Learning & Deep Learning Driven by HPC

20 Feature
Maps

Input

.add (MaxPooling2D(pool_size=(2,2), strides=(2,2)))

50 Feature
Maps

e

" N
Convolution

J

e

e

Paoling ﬁ | Convolution'l]

Dense Output
Layer




MNIST Dataset — CNN Python Script

# parameters e e .
NB_CLASSES = 10 =  OPTIMIZER: Adam - advanced optimization
NB_EPOCH = 20 ) .
BATCH_SIZE = 128 technique that includes the concept of a
VERBOSE = 1 . o
OPTIMIZER = 'Adam’ Sse momentum (a certain velocity component)
VALIDATION_SPLIT = 0.2 ~ . . .
IMG_ROWS, IMG_COLS = 28, 28 ~ in addition to the acceleration component
INPUT_SHAPE = (1, IMG_ROWS, IMG_COLS) ~ . .
S~ of Stochastic Gradient Descent (SGD)

# dataset 28 x 28 pixels N
(X_train, y_train), (X_test, y_test) = mnist.load_data()\\ ™ Adam Computes individual adaptive
K.set_image_dim_ordering("th") \\\
X_train = X_train.astype('float32"') 1 1
X teot = X oot mememaltioanan ) 3 learning rates for different parameters from
. o estimates of first and second moments of

normalization
X_train /= 255 1
Koot/ aae the gradients
# input convnet = Adam enables faster convergence at the
X_train = X_trainl[:, . is, @, . .
X teot'= X Tooalopo pinewaxis, b cost of more computation and is currently
# data output recommended as the default algorithm to
print(X_train.shape[0], 'train samples')
print(X_test.shape[@], 'test samples') use (Or SGD + Nesterov Momentum)
# convert vectors to binary matrices of classes
Y_train = np_utils.to_categorical(y_train, NB_CLASSES)
Y_test = np_utils.to_categorical(y_test, NB_CLASSES) [38] D. Kingma et al.,
# Simple CNN model ‘Adam: A Methodfor

model = CNN.build(input_shape=INPUT_SHAPE, classes=NB_CLASSES) Stochastic Optimization’
# Compilation
model.compile(loss='categorical_crossentropy', optimizer=0PTIMIZER, metrics=['accuracy'l])

# Fit the model
history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE, validation_split=VALIDATION_SPLIT)

# evaluation

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print('Test score:', score[0])

print('Test accuracy:', score[l])
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MNIST Dataset — CNN Model — Output

[vsc42544@gligar@l deeplearningl$ head KERAS MNIST CMM.oll79880
60000 train samples

1OBE0 test samples

Train on 48000 samples, validate on 12000 samples

Epoch 1/20
128/ 48000 [ ... i i et i et e e ] - ETA: 10:06 - loss: 2.2997 - acc: 0.1250
25/ B0 [ .. e ] - ETA: 7:46 - loss: 2.2578 - acc: 0.1992
3B4/4B000 [ ...t e ] - ETA: 6:58 - loss: 2.2127 - acc: 0.2083
BlZ2/4B000 [ ...t i et e e ] - ETA: 6:35 - loss: 2.1632 - acc: 0.2598
BA0/4B000 [ ...t e ] - ETA: 6:20 - loss: 2.0934 - acc: 0.3234

[vsc42544@gligarfl deeplearning]$ tail KERAS MNIST CNN.oll79880

9824/10000 [ =.] - ETA: Os
S85E/10000 [ =.] - ETA: Os
Sgeg/1o0e0e0 [ =.] - ETA: Os
9920/10000 [ =.] - ETA: Os
9952/106000 [ =.] - ETA: Os
So84/10000 [ =.] - ETA: Os
1OEER/10600 [ 1 - 4ls 4ms/step
€]

Test score: 0.0483192791523

! ast accuracy: [EEE] |
orking directory was /user/scratch/gent/vsc425/vsc42544/KERAS MNIST CNN 1179880 .masterl9.golett.gent.vsc
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Appendix E: RNNs & LSTMs in Keras

O
O 0
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Revisit CNNs vs. RNNs — Different Type of Neural Networks

= CNNs > spatial

= Example: remote sensing application
domain, hyperspectral datasets & images

|Forest |

= Neural network key property:
exploit spatial geometry of inputs

= Approach: Apply convolution & pooling
(height x width x feature) dimensions

= RNNs - temporal @

= Examples: texts, speech, time series datasets

= Neural network key property:
exploit sequential nature of inputs

= Approach: Train a graph of ‘RNN cells’ & each cell performs
the same operation on every element in the given sequence

= RNNs are used to create sequence models whereby the occurrence of an element in the
sequence (e.g. text, speech, time series) is dependent on the elements that appeared before it
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Sequence Models

Sequence models enable various sequence predictions that are inherent different to other
more traditional predictive modeling techniques or supervised learning approaches

In contrast to mathematical sets often used, the ‘sequence’ model imposes an explicit
order on the input/output data that needs to be preserved in training and/or inference

Sequence models are driven by application goals and include sequence prediction,
sequence classification, sequence generation, and sequence-to-sequence prediction

Model Categorization
= Based on different inputs/outputs to/from the sequence models
Practical ‘standard dataset’ perspective

= Often the order of samples is not important

* Training/testing datasets and their samples
have often no explicit order (i.e. ‘sets’)

Practical ‘sequence dataset’ perspective
= QOrder of samples is important
= Sequence model learning/inference needs this order




Limitations of Feed Forward ANN

= Selected application examples revisited
= Predicting next word in a sentence requires ‘history‘ of previous words
® Translating european in chinese language requires ‘history‘ of context

A O oy O
1 1 W,
Wy,

Hng— v

W3,
X o(n, *(n Wsa
2 2/ 4
W
known < Initially unknown - known

= Traditional feed forward artificial neural networks show limits when a certain ‘history’ is required
= Each Backpropagation forward/backward pass starts a new pass independently from pass before
= The ‘history’ in the data is often a specific type of ‘sequence’ that required another approach
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Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) consists of cyclic connections that enable the neural network to
better model sequence data compared to a traditional feed forward artificial neural network (ANN)

RNNs consists of ‘loops’ (i.e. cyclic connections) that allow for information to persist while training
The repeating RNN model structure is very simple whereby each has only a single layer (e.g. tanh)

tanhx

1of —— —_—

= Selected applications Ve
= Sequence labeling R If"; _—
= Sequence prediction tasks f-{i- @
= E.g. handwriting recognition —/_>/_ R
= E.g.language modeling g;:t::‘a:/_’l)

= Loops / cyclic connections

" Enable to pass information(‘delay’) @ ?
from one step to the :

next iteration \

NEETPPPPIPS PV

= Remember ‘short-term’
data dependencies @
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Unrolled RNN

('delay')@ Q

(unroll the ‘loop’
over t timesteps)

oo

A RNN can be viewed as
multiple copies of the
same network, each
passing a message to a
successor — this gets
clear when ‘unrolling
the RNN loop’

(use backpropagation through
time optimization approach)

..@

NS
N

NS DG
2

\

NEETTPPPTes B

X1 < X, > < Xt+1>
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Unrolled RNN - Role of ‘Delay’ and Nodes in Layers

@ ’ @ @ (output layer)
(‘delay’)

(hidden layer)

(unroll the ‘loop’
over t timesteps)

(missing in ANNs) h, @ (output layer nodes) -
/4{;.5*

‘1' A

Delay [€= @ (hidden layer nodes + activation function tanh)

h 1-1

(input layer)

° (input layer nodes)

noooooooo"

=  RNNs are unrolled programmatically during the training and prediction phase

= |dea of ‘delay’ means feeding back the output of a neural network layer at a specific time t to the
input of the same nerual network layer at time t+1 - establishes something like ‘short memory*
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RNN Model - Simple Example — Predict Next Character

(‘delay’)@ @ @ = Sequence values that
J ‘ are separated by a

significant number of
words (i.e. deep RNN)
(unroll the ‘loop’ leads to the vanishing
over t timesteps) ° ° gradient problem

= Reasoning is that small

(. ( (¢ (! . o
€ 1 | 0 gradients or weights
0.1 0.2 0.2 0.0 with values than 1 are
epege 0.6 0.3 0.2 0.0 o0 Mo
(probabilities) 02 04 0.5 01 multiplied many
0.1 0.1 0.1 0.9 times through the

multiple time steps,
i.e. gradients shrink
asymptotically to zero

= Effect is that weights of
those earlier layers are

1 0 0 0 not changed
(one-hot encoded : : ° ° significantly and the
characters) 0 0 0 0 network will not learn
‘e ‘o e e long-term dependencies
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RNN Example — Data Repository

Folger Digital Texts: Downlead X

o o

¢ o @ folgerdigitaltexts.org/download B ' 110% - @ % Suchen  In @ =

m

Download

Timeless Texts, Cutting-Edge Code: Free downloads of Shakespeare from Folger Digital Texts

Folger Digital Texts is your source for high-quality texts of Shakespeare's plays, sonnets, and poems, whether you are a reader, student, teacher, performer, or digital developer. These texts are free to read online, and we offer
those same great texts free to download. We offer downloadable files in five formats: XML, HTML, PDF, DOC (including or not including line numbers), TXT, and TE| Simple. You are strongly encouraged to visit the About page
before downloading fo find out which type of file is best for your needs.

If you have any questions, concerns, or suggestions, or to join our mailing list, visit our feedback page.

w - -— = — - - e w— = - - L eee—

Filter list by title:

Title Last Updated Download Format

Folger Digital Texts - Complete Set March 14, 2018 XML || HTML | PDF || DOC (wioline #s) | DOC (w line #s) || TXT || TEl Simple
All's Well That Ends Well March 14, 2018 XML || HTML | PDF  DOC (wio w line #s) || TXT || TEI Simple
Anfony and Cleopatra July 31, 2015 XML || HTML | | PDF | DOC (w/ DOC (wine#s) | | TXT || TEl Simple
As You Like It July 31, 2015 XML || HTML || PDF || DOC (wio DOC (w line #s) || TXT || TEI Simple
The Comedy of Errors October 4, 2017 XML || HTML | | PDF | DOC (w pDoc TXT || TEl Simple
Coriolanus July 31, 2015 XML || HTML | PDF | DOC (w/a ir Doc TAT || TEI Simple

Terms of Use | Credits | Feedback

[42] Folger Digital Texts



RNN Example — Language Model Setup

= Typical approach

= Create ‘generative model” to predict the next word given previous words

= Enables to generate text by sampling from the output probabilities
= Build a ‘word-based language model” = can be computational complex

* Simplified model for tutorial

= Reasoning: simpler model and quicker training

Train a ‘character based language model’
on one text of Shakespeare

Take advantage of standard RNN cells

Predict (only) the next character
given 10 previous characters

Use the trained language model
to generate some text in the same style
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(10 characters = prediction)

it turned -> i

t turned i -> n

turned in -> t
turned int -> o
urned into ->
rned into -> a
ned into a ->
ed inte a -> p
d into ap -> i

into a pi -> g

[37] Deep Learning with Keras



RNN Example — Keras Python Script — Preprocessing

future  Import print_function
from keras.layers import Dense, Activation
Trom keras.layers.recurrent import SimpleRNN
Trom keras.models import Sequential
import numpy as np

fin = open("/home
ines = []
for line in fin:
line = line.strip().lower()
line = line.decode(’
if len(line) == 0O:
continue
lines.append(line)
fin.close()

ext = “.join(lines)

chars = set([c for ¢ in text])
nb_chars = len(chars)

charZindex = dict({{c, i) for i, c in enumerate(chars))
indexZchar = dict({i, c) for i, © in enumerate{chars))
N\
N
N\

= Import necessary
modules, e.g.
SimpleRNN for a
simple RNN cell, or
Dense for a fully
connected layer

=  Preprocessing of
original files that
e.g. contain line
breaks, non-ASCII
characters, capital
characters; Result
is variable text
with ‘cleaned text’

=  Create lookup
tables for
characters per
index & vice versa

= Character-level RNN: vocabulary is the set of characters that occur

in the text - use index of character instead of a character itself [37] Deep Learning with Keras




RNN Example — Keras Python Script — Input & Label Texts

i : = Task: Predict (only)
SEQLEN = 10

STEP — the next character
input_chars = _ given 10 previous
label_chars = [] characters 2
for i in range(0, len(text) - SEQLEN, STEP): _
input chars.append(text[i:i + SEQLEN]) SEQLEN =10,
label chars.append(text[i + SEQLEN]) STEP=1

=  Moving step-wise
through text by
STEP=1 number of
characters &
extract span of text

X np.zeros((len(input_chars), SEQLEN, nb chars), dtype=np.bool) with size
y = np.zeros((len(input chars), nb chars), dtype=np.bool) _
for i, input char in enumerate(input chars): SEQLEN=10
for j, ch in enumerate(input_char): it turned -> i
X[1i, j, char2index[ch]] =1 t turned i -> n

turned in -> t

(input Chars turned int -> o
- urned into ->

y[i, char2index[label chars[i]]]

. - . 9 rned into -> a
= Each row of input to the RNN corresponds to one of the input texts label chars) ned into a ->
- ed into a -> p
= SEQLEN characters input; vocabulary size = nb_chars (set of different dintoap -> i

into a pi -> g

characters in text) 2 one-hot encoded vector of size (nb_chars) . )
[37] Deep Learning with Keras




RNN Example — Modelling & Decisions
Ly P 7 |

(unroll the ‘loop’ |
over t timesteps) e ° -6

2 4 6
0 0 1 1] . 0.0 . P
(good loss 0 o o o (output/label: o0 (mternal-deasmn
. 1 0 0 0 one-hot encoded |,;| normalizes the
function for . . ]
. 0 1 0 1 vector of size 09| emitted scores to
categorical o
nb_chars) probabilities
output v vi
-> categorical usually via
softmax)

cross-entropy
loss function)

(each row in input is
2D tensor

: . } 1 0 0 0
(input: one-hot 0 1 0 0 SEQLEN x nb_chars)
encoded 0 0 1 1
vector of size 0 0 0 0
nb_chars) \ }

!

(input: SEQLEN)
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RNN Example — Keras Python Script — Model & Parameter

HIDDEN SIZE = 128
BATCH SIZE = 12
NUM_ITERATIONS = 25
NUM_EPOCHS PER ITERATION = 1
NUM_PREDS PER EPOCH = 106

model = Sequential()
model .add (SimpleRNN(HIDDEN SIZE, return_sequences=False,
input shape=(SEQLEN, nb chars),
unroll=True))
mogeL.aua(vense(no_cnars))
model.add(Activation("softmax"))

model.compile(loss="categorical crossen , optimizer="rmsprop")

Hyperparameter
HIDDEN_SIZE=128
means output
dimension of size
128 for ok text;
parameter by
experimentation

{

= Adding a Dense layer of size nb_chars & activation function ‘softmax
(emits scores for each of the characters in vocabulary—=> probabilities)

= __Use optimizer ‘rmsprop‘ with ‘categorical_crossentropy‘ loss function

Sequential model
adding first a
SimpleRNN layer
of size 128,
return_sequences
= False means
single character as
output/label not a
‘sequence of
characters’, input
tensor is SEQLEN x
nb_chars; unroll =
True - performance




RNN Example — Keras Model & Activation Functions

it turned -> i
t turned i =-> n
turned in -> t
turned int -> o
urned into ->

(iterations) rned into -> a

ed into a -> p

d into ap -> 1
into api -> g

O

o

Q
<

L] o
P
woeoocccced®

(input layer nodes)
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ned inte a -> -6

(internal decision
normalizes the
emitted scores to
probabilities
usually via
softmax)

(Dense layer with ‘number of characters’ as nodes +
‘softmax’ activation function as output layer nodes)

(SimpleRNN layer with 128 hidden nodes with
default hyperbolic tangent as activation function,

i.e. values squashed between 1 and -1)

tanhx
10F

0sF




RNN Example — Keras Python Script — Training Process

for iteration in range(NUM _ITERATIONS):
print(“=" * 50}
print(“Iteration #: %d" % (iteration))
model.fit(X, vy, batch size=BATCH SIZE, epochs=NUM EPOCHS PER ITERATION)
test idx = np.random.randint(len{input chars))
test chars = input chars[test_idx]
print(“Generating from seed: %s" % (test chars))
print(test _chars, end="")
for i in range(NUM_PREDS PER EPOCH):
Xtest = np.zeros((1l, SEQLEN, nb chars))
for i, ch in enumerate(test chars):
HNtest[0, i, charZindex[ch]] =1
pred = model.predict(Xtest, verbose=0)[0]
ypred = indexZchar[np.argmax(pred)]
print{ypred, end="")

test chars = test chars[l:] + ypred
print()

= Cf. supervised learning process (day one)
= Labels existing (not in this unsupervised example)
= Train model for fixed number of epochs

= Evaluate model against test dataset
[37] Deep Learning with Keras

Train model for
epochs = 1 since no
labelled dataset
and then testing;
training for 25
iterations 2
NUM_ITERATIONS;
aka training for 25
epochs/iterations

Test: generate a
character from
model given a
random input;
dropping the first
character from the
input & append
the predicted
character from our
previous run &
generate another
character (100 x)




RNN Example — Submit Script

" Job submit script

= Specify good name for the job

= Allocate GPUs
for deep learning job

= Specify job queue

m Restore module
environment with
all dependencies

= Use python with
rnn-example.py script

= Use sbatch

= Use jO bscri pt KERASSCRIPT=/homea/hpclab/train@81/tools/rnn/rnn-example.py

module restore dl_tutorial

python SKERASSCRIP




RNN Example — Output Interpretation

» Challenge: unsupervised learning problem
= Check output with ‘more out.txt
= |dea: string gives us an indication of the quality of the model

= More epochs/iterations = better quality of the model

97920,/101872 : ETA: Os - loss: 2.5135 (learned well to
99534/1018 ?’ - ETA: Os - loss: 2.5090
101245/101872 - ETA: 0s - loss: 2.5046 T :
101872/101872 12s 117us/step - loss: 2.5029 first iteration but
Generating frcm seed: but this no coherent

but this the the the the the the the the the the the the the the the the the the thoughts = still

spell compared to

Iteration #: 1 interesting since
Epoch 1/1 no word concept)

99968,/101872 - - ETA: 85 - loss: 1.5870
1@1532fl“13?_ - - ETA: 05 - loss: 1.5873
101872/101872 - 35 30us/step - loss: 1.5871
ienerating frﬂm seed: eeks when

eeks when the did the pronor me the cantant in the with the dines and the servant he childred macbeth

ITteration #: 23
poch 1/1




Different Useful LSTM Models

= Standard LSTM

= Memory cells with single LSTM layer; used in simple network structures

= Stacked LSTM

= LSTM layers are stacked one on top of another; creating deep networks

= CNNLSTM

= CNNs to learn features (e.g. images); LSTM for image sequences

" Encoder-Decoder LSTM
= One LSTM network = encode input; one LSTM network = decode output

= Bidirectional LSTM

= |nput sequences are presented and learned both forward & backwards
= Generative LSTM

= LSTMs learn the inherent structure relationship in input sequences;
then generate new plausible sequences
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Long Short-Term Memory (LSTM) Models

= Specific type of Recurrent Neural Network (RNN)

= Different to techniques like standard Artificial Neural Networks (ANNs) or
Convolutional Neural Networks (CNNs)

= Solving certain limits of ANNs through RNNs design
= RNNs offer short-term memory — LSTMs add ‘long-term’ capabilities
= |dea: improved performance through ‘more memory‘ (cp. HPC?!)

» Designed specifically for sequence prediction problems
= World-class results in complex problem domains & applications
= E.g.language translation, automatic image captioning, text generation

[43] A. Karpathy & F. Li, ‘Deep Visual-Semantic Alignments for Generating Image Descriptions’
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Unrolled RNN - Revisited

{

-
-0
-0

)

(unroll the ‘loop’
over t timesteps)

4

A RNN can be viewed as
multiple copies of the
same network, each
passing a message to a
successor — this gets
clear when ‘unrolling
the RNN loop’

(use backpropagation through
time optimization approach)

..@

..@

\

-

NS
N

NS DG
2

e

NEETTPPPTes B

X1 < X, > < Xt+1>
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Long Short Term Memory (LSTM) Model

= Long Short Term Memory (LSTM) networks are a
special kind of Recurrent Neural Networks (RNNs)

. =  LSTMs learn long-term dependencies in data by
remembering information for long periods of time
=  The LSTM chain structure consists of four neural

network layers interacting in a specific way

e

0
o

(each line carries
an entire vector)

tanh

Xt- 1
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1 1 J
2 4 6

(uses sigmoid ¢)

tanh

ST B




LSTM Model — Memory Cell & Cell State

LSTM introduce a ‘memory cell’ structure into the underlying basic RNN architecture using four key
elements: an input gate, a neuron with self-current connection, a forget gate, and an output gate

The data in the LSTM memory cell flows straight down the chain with some linear interactions (x,+)
The cell state s, can be different at each of the LSTM model steps & modified with gate structures
Linear interactions of the cell state are pointwise multiplication (x) and pointwise addition (+)

In order to protect and control the cell state s, three different types of gates exist in the structure




Computing of LSTM Cell — Step 1-2

1. New x, input together with the output from cell h,, ,
are squashed via a tanh layer “3“?‘//--—

=  Qutputs between-1and 1

2. New x, input together with

the output from cell h, ,
is passed through the ‘input gate’

= Layer of sigmoid activated nodes whose

output is multiplied by squashed input
i=o(b +z,U +hy (V7

A1

1

- 0.5
L )/

-6 -4 =2 0

(uses sigmoid ¢)

1
2

1
4

J
6

[44] Adventures in
Machine Learning

-

ht-l #

tanh

SETT PP Y

(gate sigmoid ¢ can act to ‘switch
off’ any elments of the input vector
that are not required)

Xy

g = tanh(b? + z,U9 + hy 1V7)

goi

(sigmoid function outputs values between 0 and 1, weights connecting the
input to these nodes can be trained to output values close to zero to ‘switch
off’ certain input values — or outputs close to 1 to ‘pass through’)
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Computing of LSTM Cell — Step 3

3. Internal state / forget gate 7=c@' +207 +h V)

= LSTM cells have internal cell state s,

[44] Adventures in
= ‘Delay’—lagged one time step: s, , Machine Learning
= Added to the input data to create st =8 10f+goi
an effective ‘layer of recurrence’
o S Sa I
=  Addition instead of ‘usual’ multiplication = - >
reduces risk of vanishing gradients tanh :
= The connection to cell state is carefully :
. . . '
controllgd by a .forget gate with sigmoid |
(works like the input gate) ) ,

1
ﬁ (gate sigmoid ¢ can act to ‘switch
. ! off’ any elments of the cell state to

steer what variables should be
remembered or forgotten)
*IG -4 *IZ "0 ; tlt (IS
(uses sigmoid ¢)
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Computing of LSTM Cell — Step 4

4. Output layer & output gate o=o( +zU°+h 1v?)

= Qutput layer with tanh squashing function

.
-2

/
- -10k

[44] Adventures in
— Machine Learning

-4

- ' >
]
. : ]
=  Qutputis controlled via output gate ]
L . L . ]
with sigmoid activation function ]
]
- ]
]
(gate sigmoid ¢ can learn to —p>
determine which values are

05 ] ! |
)/ allowed as an output from the cell)

-6 -4 =2 0 2 4 6
(uses sigmoid ¢)

hi = tanh(s;) o o
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Low-Level Tools — Tensorflow

= Tensorflow is an open source library for deep learning models using a flow graph approach

= Tensorflow nodes model mathematical operations and graph edges between the nodes are

so-called tensors (also known as multi-dimensional arrays)

= The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)

= Tensorflow work with the high-level deep learning tool Keras in order to create models fast

=  LSTM models are created using tensors & graphs and there are LSTM package contributions

[31] Tensorflow Deep Learning Framework

lstm = rnn_celﬂ.BasicLSTMCell(1stm_size, state_is_tuple:False)l

\

stacked lstm = rnn cell.MultiRNNCell ([lstm] * number_of_layers,\

state is tuple=False) ‘
\

initial state = state = stacked lstm.zero state(batch size, tf.f‘oat32)
\

for i in range(num steps):

# The value of state is updated \ -
# after processing each batch of words. \
output, state = stacked lstm(words[:, i], state) [ |

# The rest of the code.
#

final state = s

The class
BasicLSTMCell()
offers a simple
LSTM Cell
implementation
in Tensorflow




High-level Tools — Keras

= Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

= The key idea behind the Keras tool is to enable faster experimentation with deep networks
= Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

keras.layers.LSTM(

units,
activation="'tanh',

recurrent activation='hard sigmoid',
use bias=True,

kernel initializer='glorot uniform',
recurrent initializer='orthogonal',
bias initializer='zeros',

unit forget bias=True,

kernel regularizer=None,

recurrent regularizer=None,

bias regularizer=None,

activity regularizer=None,

kernel constraint=None,

recurrent constraint=None,

bias constraint=None,

dropout=0.0, ...)

K e r a S [30] Keras Python Deep Learning Library

Tool Keras supports the LSTM
model via keras.layers.LSTM()
that offers a wide variety of
configuration options




LSTM Example — Data Repository

(o} Competitions Datasets Kernels Discussion Learn

UMICH SI650 - Sentiment Classification

This is an in-class contest hosted by University of Michigan SI650 (Information Retrieval)

28 teams years ago
Overview Data Leaderboard Rules Team My Submissions
Overview
Description This is a text classification task - sentiment classification. Every document (a line in the data file) is a
o sentence extracted from social media (blogs). Your goal is to classify the sentiment of each sentence into

"positive” or "negative”.

The training data contains 7086 sentences. already labeled with 1 (positive sentiment) or O (negative
sentiment). The test data contains 33052 sentences that are unlabeled. The submission should be a .Ixt
file with 33052 lines. In each line, there should be exactly one integer. 0 or 1, according to your
classification results.

You can make 5 submissions per day. Once you submit your results, you will get an accuracy score
computed based on 20% of the test data. This score will position you somewhere on the leaderboard.
Once the competition ends. you will see the final accuracy computed based on 100%% of the test data. The
evaluation metric is the inverse of the the mis-classification error - so the higher the better.

You can use any classifiers, any features, and either supervised or semi-supervised methods. Be creative
in both the methods and the usernames you select!

[45] Kaggle, UMICH S1650 — Sentiment Classification Data
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LSTM Example — Dataset & Application

= Sentiment analysis (many-to-one RNN topology)
" |nput: sentence as sequence of words (i.e. movie ratings texts)
= Qutput: Sentiment value (positive/negative movie rating)
= Application was a former competition (i.e. Kaggle platform overall idea)
= @Goal: Create LSTM network that will learn to predict a correct sentiment

= Small dataset example for tutorial: training & test data available
= Training samples: 7086 short sentences (labelled) [~440 KB]
= Test samples: 33052 short sentences[~1.94 MB]
= Format: label & tab seperated sentence
= https://www.kaggle.com/c/si650winter11/data

Training data: 7086 lines. [45] Kaggle, UMICH S1650 —
Format: 1|0 (tab) sentence Sentiment Classification Data

Test data: 33052 lines, each contains one sentence.
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LSTM Example — Dataset Exploration

Jhomea/hpclab/train®@l/data/sentiments
[train @jrle4 sentiments]$ 1s -al

drwxr-xr-x trainB@1 hpclab

drwxr-xr-x 12 train hpclab .-

-rw-r--r-- 1 train hpclab 206 5 16 : testdata.txt
-rw-r--r-- 1 train@@l1 hpclab 447540 16:16 training-original.txt
-rw-r--r-- 1 train@0l hpclab 447540 06:10 training.txt

2
2

-bash-4.2% head training.txt

[

The Da Vinci Code book is just awesome.

this was the first clive cussler i've ever read, but even books like Relic, and Da Vinci code were more plausible than this.
i liked the Da Vinci Code a lot.

i liked the Da Vinci C a lot.

I liked the Da Vinci Code but it ultimatly didn't seem to hold it's own.

that's not even an e ration ) and at midnight we went to Wal-Mart to buy the Da Vinci Code, which is amazing of course.
I loved the Da Vinci , but now I want something better and different!..

i thought da vinci code was great, same with kite runner.

The Da Vinci Code is actually a good movie...

I thought the Da Vinci Code was a pretty good book.

(labelled training dataset)

-bash-4

.2% head testdata.txt

" I don't care what anyone says, I like Hillary Clinton.
nave an awesome time at purdue!..

ep, I'm still in London, which is pretty awesome: P Remind me to post the million and one pictures that I took when I get back to Markham!...
ave to say, I hate Paris Hilton's behavior but I do think she's kinda cute..
i will love the lakers.

'm so glad I love Paris Hilton, too, or this would be excruciating.

i lik

MIT though, esp their little info book(
jefore I left Missouri, I thought London was going to be so good and cool and fun and a really great experience and I was really excited.
still like Tom Cruise.

(testing dataset)



LSTM Example — Keras Python Script — Preprocessing

m keras.layers.core import Activation, Dense, Dropout, SpatialDropoutlD

om keras.layers.embeddings import Embedding " Import necessary
1 keras.layers.recurrent 1 t LSTM modules, e.g.

: ke ras .m::._::ie1j5 _'_"::-:;-r? Suquurjtlal ) LSTM for a simple
m keras.preprocessing import seguence

1 sklearn.model_selection import train_test split LSTM cell, or
t collections Dense for a fully

t matplotlib.pyplot as plt
 nltk connected layer

C numpy as np = Import good
"L 05

sklearn model
selection tools

nltk.download( 'punkt"') -
=  Import numpy for

as helper tool

= Natural Language
Toolkit (NLTK) is

/homea/hpclab/trainffl/data/sentiments fOf buﬂdmg Python
[trainB@l@jr104 sentiments]$ 1s -al programs Working
2 trainBfl hpclab 512 96133 . on human

drwxr-xr-x 12 train@@l hpclab 55 ..
-rw-r--r-- 1 train@@l hpclab 203334! p6:44 testdata.txt Ianguage datasets

-Tw-r--r-- 1 train@@l hpclab 447546 P6:16 training-original.txt (punkt is tokenizer)
-rw-r--r-- 1 train@@1 hpclab ! 06:10 training.txt

[37] Deep Learning with Keras



LSTM Example — Keras Python Script — Vocabulary Setup

_ t " Perform
maxlen 0
word freqs collections.Counter() exploratory
num_recs = 0 - analysis in order to

ftrain open(os.path.join(DATA DIR, “"training.txt"), .
for 1ine in ftrain: find out the
label, sentence = line.strip().split('\t") number of unique
words = nltk.word tokenize(sentence.decode("ascii", .
if len{words) = maxlen: words in the whole
maxlen = len{words) corpus & how

for word in words: ) many words are
word freqs[word] += 1

num_recs += 1 roughly in each
ftrain.close() sentence

MAX_FEATURES = 2000 = Exploration reveals
MAX_SENTENCE LENGTH = maxlen: 42 &

len(word_freqs):

vocab _size = min(MAX FEATURES, len{word fregs)) + 2 2313
word2index = {x[0]: i+2 for i, x in
enumerate(word fregs.most common(MAX FEATURES))} =  Number of words
wordZindex["PAD"] = 0O .
word2index["UNK"] = I In sentence
indexZword = {v:k f:jr k, v in wordZindex.items ()} (maxlen) enables a
—— - fixed sequence
= Creating indices index2word and vice versa length & PAD = 0;
)

[37] Deep Learning with Keras

=  Qut of vocabulary means UNK (unknown) truncate long ones




LSTM Example — Keras Python Script — Indices & Padding

x np.empty((num_recs, ),
W np.zeros((num _recs, ))
i 4]
ftrain = open(os.path.join(DATA DIR, "training.txt
for line in ftrain:
label, sentence = line.strip().split({'\t")
words = nltk.word tokenize(sentence.decode("ascii”,
seqs = [1]
for word in words:
if wordZ2index.has key(word):
seqs.append(word2index[word])
else:
seqs.append(word2index[ "UNK"])
X[i] = seqs
y[i] = int(label)
i += 1
ftrain.close()

dtype=Llist)

X = sequence.pad sequences(X, maxlen=MAX SENTENCE LENGTH)

Xtrain, Xtest, ytrain, ytest = train_test split(X, vy,
test size=0.2, random state=42)

S
N

Convert input
sentences from the
training data to
word index
sequences and add
unknown ones as
UNK in index

Perform padding
to the maximum
sentence length
(40)

Labels are binary
(positive/negative
sentiment) and do
not need padding

= Split between training & testing set (ratio rule of thumb 80:20)

[37] Deep Learning with Keras

= There is another test set put aside for nicely checking out-of-sample




LSTM Example — Modelling & Decisions
Ly P 7

(unroll the ‘loop’
over t timesteps)

> =

(input for each row is a sequence of word indices —
sequence length is given by MAX_SENTENCE_LENGTH)

(tensor layout: None X MAX_SENTENCE_LENGTH X 1) (tensor dimensions: first is None =

(None, MAX_SENTENCE_LENGTH, 1) indicate that the batch size is currently unknown,

‘ i l l l l i.e. number of records fed to the network 2>
defined in runtime using BATCH_SIZE parameter)

Embedding

(tensor fed to embedding layer 2>

weights are initialized with small random values & learned
i.e. layer transforms the tensor to a shape of

None X MAX_SENTENCE_LENGTH X EMBEDDING_SIZE)

(None, MAX_SENTEMNCE_LENGTH, EMBEDDING_SIZH

LSTM

(output of LSTM is the tensor

None X HIDDEN_LAYER_SIZE, because last tensor can be defined
as return_sequences = False = we just need 0/1 output)

(Mone, HIDDEN_LAYER_SIZE)

Dense

(Dense layer with Sigmoid activation function 2>
0 — negative review / 1 positive review)

(Mone, 0/1)

modified from [37] Deep Learning with Keras
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LSTM Example — Keras Python Script — Model & Parameter

EMBEDDING SIZE = 1
HIDDEN LAYER SIZE = 64
BATCH SIZE 32

NUM EPOCHS

model = Sequential()

model.add(Embedding(vocab size, EMBEDDING SIZE,
input_length=MAX_ SENTENCE_ LENGTH))
model.add(SpatialDropoutlD(Dropout(®.2)))
model.add(LSTM(HIDDEN LAYER SIZE, dropout=0.2, recurrent dropout=60.2))

Hyperparameters
embedding=128;
hidden layers=64;
parameter by
experimentation

model.add(Dense(1)) \
model . add{Activation("sigmoic \
mﬂdel.Eﬂmpile{IGSSZ'ﬁﬂﬂary_f'“::“*t'jjy', optimizer="adam", \
metrics=["accuracy"”]) \
— \
(None, MAX_SENTENCE_LENGTH, 1) ———— |‘
| T g | = All hyperparameters are tuned {
Embedding experimentally over many runs
(None, MAX_SENTENCE_LENGTH, EMBEDDING_SIZH .

Compile model using binary
cross-entropy loss function good
for a binary model used here

LSTM

(None, HIDDEN_LAYER_SIZE)

=  Use of Adam optimizer as good
general purpose optimizer

Dense

[37] Deep Learning with Keras

(None, 0/1)

Create first
embedding layer with
input tensor None X
maximum sentence
length X 1

Add regularizer
SpatialDropoutlD

Add LSTM cell with
hidden layer size 64
with regularizers
dropout and
recurrent_dropout

Add Dense layer and
Sigmoid activation




LSTM Example — Keras Python Script — Train & Evaluate

story = model.fit(Xtrain, ytrain, batch size=BATCH 5IZE, epochs=NUM EPOCHS,
validation data=(Xtest, ytest))

score, acc = model.evaluate(Xtest, ytest, batch size=BATCH SIZE)
print(“Test score: %.3T, %.3T" % (score, acc))
for i in range(5):

idx = np.random.randint(len(Xtest))

xtest = Xtest[idx].reshape(l,40)

ylabel = ytest[idx]

ypred = model.predict(xtest)[O0][0]

sent = " ".join([index2word[x] for x in xtest[0].tolist() if x !'= 0©O])

print("%.0ft %dt %s" % (ypred, ylabel, sent))

accuracy:

= Supervised learning process
= Labels existing (not in this unsupervised example)
= Train model for fixed number of epochs

= Evaluate model against test dataset (splitted training)

Train the LSTM
network for 10
epochs
(NUM_EPOCHS) &
with batch size 32

Perform validation
at each epoch
using test data

e —

Evaluate model
against the full test
set showing score
and accuracy

Show the LSTM
prediction with
pick of a few
random sentences
from the test set
(predicted label,
label & actual
sentence




LSTM Example — Submit Script (JURECA)

" Job submit script

= Specify good name
for the job

= Allocate GPUs for
deep learning job

= Specify job queue

m Restore module
environment with
all dependencies

KERASSCRIPT=/homea/hpclab/trainf@l/tools/1stm/1stm-example.py

module restore dl tutorial

= Use python with
Istm-example.py script python SKERASSCRIPT

= Use sbatch
= Use job script



LSTM Example — Output Interpretation

= Supervised learning problem
= Check output with ‘more out.txt
= |dea: predicted sentiment should be closed to sentiment labels

* More epochs/iterations = better quality of the model (learned well
compared to

first iteration 2>
rain on 5668 samples, validate on 1418 samples one can observe
Epoch 1/10 loss decrease and
32/5668 : 35:08 - loss: 0.6938 - acc: 0.4638 Increasein
64/5668 : 17:36 - loss: 0.6927 - acc: 0.5312 accuracy over
96/5668 : 11:45 - loss: ©.6911 - acc: 0.5625 multiple epochs)

5664/5668 . ETA: 0s - loss: 0.0815 - acc: ©.9995
5668/5668 155 3ms/step - loss: 0.0015 - acc: ©.9995 - val loss: 0.08845 - val _acc: 0.9718
Epoch 10/10

32/56682 ETA: 13s loss: ©.0697 - acc: 0.9638
64/5668 ETA: 13s loss: 0.0353 - acc: 0.9844
96/5668 ETA: 13s loss: 0.0240 - acc: 0.9896

est score: 0.072, accuracy: ©0.980
1t the people who are worth it know how much i love the da vinci code
1t anyway , thats why i love *° brokeback mountain
Ot the da vinci code sucked
Bt this quiz sucks and harry potter sucks ok bye..
1t because i would like to make friends who like the same things i like




LSTM Example — Model Evaluation

= Selected plots (e.g. for papers)
= E.g. matplotlib & pyplot can be used to create simple graphs

Accuracy

100
0.98 |
0.96 |
094
092 /

0.90 i Tra.ln _ |
033/ — Validation (]
0.86

0

1 2 3 B 5 B T B 9
0.35

Ehatting — Train

0.25 |\ St g b
020 | \ — Validation ||

015\
0.10 | -

0.05 | —a — ——

0.00
0

[37] Deep Learning with Keras
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Different Useful LSTM Models — Many other Applications

= Standard LSTM

= Memory cells with single LSTM layer; used in simple network structures

= Stacked LSTM

= LSTM layers are stacked one on top of another; creating deep networks

CNN LSTM

= CNNs to learn features (e.g. images); LSTM for image sequences

" Encoder-Decoder LSTM

= One LSTM network = encode input; one LSTM network = decode output
= Bidirectional LSTM

" |nput sequences are presented and learned both forward & backwards

" Generative LSTM

= LSTMs learn the inherent structure relationship in input sequences;
then generate new plausible sequences
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Tensorflow — LSTM Google Translate Example & GPUs

= Use of 2 LSTM networks in a stacked manner

= Called ‘sequence-2-sequence’ model
= Encoder network

ENCODER Translated Text

j | ‘r"e]s._1 wrl'l’?l:'sj | u‘??_} <END> \

rllI|JlI

= Decoder network

= Needs context of sentence | -'-D'i {5 ;@;{u 13
(memory) for translation ‘

il
=
it
N

Original Text DECODER

[47] Sequence Models LT
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[Video] RNN & LSTM

SOLUTION
Gating units - LSTM, GRU

[}
o
S =
p— |
a g
=
g
© N
a"m
L ==
o 3
:m
17y ]
o
o o
(p =]
o L
S 4
o o
3 o
|—3
mo
—_—t
= o
0
W o
m C
9 o
ﬂ__1
D
]

[46] Recurrent Neural Networks, YouTube
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