
Machine Learning Models using High Performance Computing

Prof. Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland
Research Group Leader, Juelich Supercomputing Centre, Germany

Parallel Machine Learning & Deep Learning Driven by HPC

July 3rd, 2018
4th International Summer School on Big Data & Machine Learning, Leipzig, Germany

Parallel & Scalable Machine Learning

INVITED LECTURE

Juelich Supercomputing Centre: Intertwine Data Analysis/HPC

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Communities
Research
Groups

Simulation Labs

Cross-Sectional Teams Data Life Cycle Labs Exascale co-Design

Facilities

PADC

DEEP-EST
EU PROJECT

Domain-specific
Simulation & Data Labs

Cross-
Sectional

Team Deep
Learning

Modular
Supercomputer

JURECA &
JUWELS

Research Group
High

Productivity
Data Processing

ON4OFF

2 / 200

Outline

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 3 / 200

Outline

 Traditional Machine Learning Models
 Big Data & Machine Learning Introduction
 Supervised & Unsupervised Learning
 Supervised Learning using parallel SVMs
 Parallelization Benefits using Cross-Validation
 Unsupervised Learning using parallel DBSCAN

 Selected Deep Learning Models
 Short Introduction to Deep Learning
 Role of Accelerators & GPGPUs
 Comparisons Machine Learning & Deep Learning
 Convolutional Neural Networks (CNNs) Models
 Long Short-Term Memory (LSTM) Networks

 Open Challenges & Summary
 Appendix A – E: Selected In-depth Topics
Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Machine Learning requires
a full university course
covering topics beyond
modeling & algorithms like
statistical learning theory,
regularization &
validation techniques

 Using High Performance
Computing (HPC) adds
another level of
complexity requiring a full
HPC university course

4 / 200

Traditional Machine Learning Models

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 5 / 200

‘Big Data‘ Motivation: Intertwine HPC & Machine Learning

 Rapid advances in data collection and
storage technologies in the last decade
 Extracting useful information is a challenge

considering ever increasing massive datasets
 Traditional data analysis techniques cannot be

used in growing cases (e.g. memory, speed, etc.)

 Machine learning / Data Mining is a technology that blends traditional data analysis
methods with sophisticated algorithms for processing large volumes of data

 Machine Learning / Data Mining is the process of automatically discovering useful
information in large data repositories ideally following a systematic process

modified from [1] Introduction to Data Mining

 Machine Learning & Statistical Data Mining
 Traditional statistical approaches are still very useful to consider

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 6 / 200

 Link to talk this morning by J. Bungartz – HPC Meets Big Data: Analytics & HPC examples

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

HTC

network
interconnection
less important!

Understanding High Performance Computing

 High Performance Computing (HPC) is based on computing resources that enable the efficient use
of parallel computing techniques through specific support with dedicated hardware such as high
performance cpu/core interconnections.

 High Throughput Computing (HTC) is based on commonly available computing resources such as
commodity PCs and small clusters that enable the execution of ‘farming jobs’ without providing a
high performance interconnection between the cpu/cores.

HPC

network
interconnection
important

focus in this talk

7 / 200

 Link to talk this morning by J. Bungartz – HPC Meets Big Data: What is HPC & parallel efficiency

PRACE as Persistent pan-European HPC Infrastructure

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Mission:
enabling world-class science through
large scale simulations

Offering:
HPC resources on leading edge
capability systems

Resource award:
through a single and fair pan-
European peer review process for
open research

HPC

8 / 200

Before using HPC: Machine Learning Prerequisites

1. Some pattern exists
2. No exact mathematical formula
3. Data exists
 Idea ‘Learning from Data‘

shared with a wide variety
of other disciplines
 E.g. signal processing,

data mining, etc.

 Challenge: Data is often complex
 Machine learning is a very broad subject and goes from

very abstract theory to extreme practice (‘rules of thumb’)

Data
Mining

Data
Mining

Applied
Statistics
Applied

Statistics
Data

Science
Data

Science

Machine
Learning
Machine
Learning

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Machine Learning is introduced in Appendix A of the slides with a simple classification example
9 / 200

 Link to talk by U. Leser – Web-Scale Domain-Specific Information Extraction: Data Science?!

Examples of Real Data Collections

 Data collection of the earth and environmental science domain
 Different from the known ‘UCI machine learning repository examples‘

[2] PANGAEA data collection
[3] UCI Machine Learning Repository

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(real science datasets examples) (examples for learning & comparisons)

[40] M. Goetz, PhD Thesis, University of Iceland
10 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Learning Approaches – What means Learning?

 Supervised Learning
 Majority of methods follow this approach in this course
 Example: credit card approval based on previous customer applications

 Unsupervised Learning
 Often applied before other learning  higher level data representation
 Example: Coin recognition in vending machine based on weight and size

 Reinforcement Learning
 Typical ‘human way‘ of learning
 Example: Toddler tries to touch a hot cup of tea (again and again)

 The basic meaning of learning is ‘to use a set of observations to uncover an underlying process‘
 The three different learning approaches are supervised, unsupervised, and reinforcement learning

11 / 200

 This invited lecture focus on supervised and unsupervised learning applications & examples

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Learning Approaches – Supervised Learning

 Each observation of the predictor measurement(s)
has an associated response measurement:
 Input
 Output
 Data

 Goal: Fit a model that relates the response to the predictors
 Prediction: Aims of accurately predicting the response for future

observations
 Inference: Aims to better understanding the relationship between the

response and the predictors

 Supervised learning approaches fits a model that related the response to the predictors
 Supervised learning approaches are used in classification algorithms such as SVMs
 Supervised learning works with data = [input, correct output]

[13] An Introduction to Statistical Learning
12 / 200

Learning Approaches – Supervised Learning Example

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

petal length (in cm)

(decision boundary)

?

 The labels guide
our learning
process like a
‘supervisor‘ is
helping us

(N = 100 samples)

13 / 200

 Full example of this linear perceptron learning model is introduced in Appendix A of the slides

(perceptron model)

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Supervised Learning – Overview & Summary

Unknown Target Function Elements we
not exactly

(need to) know

Elements we
must and/or

should have and
that might raise
huge demands

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we

derive from
our skillset

‘constants‘
in learning

Final Hypothesis

(ideal function)

(final formula)

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)

‘constants‘
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

Training Examples

(historical records, groundtruth data, examples)

14 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Methods Overview – Advanced Example

 Groups of data exist
 New data classified

to existing groups

Classification

?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

 Statistical data mining methods can be roughly categorized in classification, clustering, or
regression augmented with various techniques for data exploration, selection, or reduction

15 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Expected Out-of-Sample Performance for ‘Best Line‘

 The line with a ‘bigger margin‘ seems to be better – but why?
 Intuition: chance is higher that a new point will still be correctly classified
 Fewer hypothesis possible: constrained by sized margin
 Idea: achieving good ‘out-of-sample‘ performance is goal

-1-2-3 1 2 3 4 5 6 7

1

2

-2

-1

(e.g. better performance
compared to PLA technique)

(Question remains:
how we can achieve
a bigger margin)

(simple line in a linear setup
as intuitive decision boundary)

 Support Vector Machines (SVMs) are mathematically established in Appendix C of the slideset
16 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Term Support Vector Machines Refined

 Term detailed refinement into ‘three separate techniques’
 Practice: applications mostly use the SVMs with kernel methods

 ‘Maximal margin classifier‘
 A simple and intuitive classifier with a ‘best‘ linear class boundary
 Requires that data is ‘linearly separable‘

 ‘Support Vector Classifier‘
 Extension to the maximal margin classifier for non-linearly seperable data
 Applied to a broader range of cases, idea of ‘allowing some error‘

 ‘Support Vector Machines‘  Using Non-Linear Kernel Methods
 Extension of the support vector classifier
 Enables non-linear class boundaries & via kernels;

 Support Vector Machines (SVMs) are a classification technique developed ~1990
 SVMs perform well in many settings & are considered as one of the best ‘out of the box classifiers‘

[13] An Introduction to Statistical Learning

17 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[39] Indian Pines dataset

18 / 200

Remote Sensing Application Example – Indian Pines Dataset

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[16] G. Cavallaro and M. Riedel, et al. , 2015

19 / 200

Indian Pines Dataset – Preprocessing

Publicly Available Datasets – Open Data

 Indian Pines Dataset Raw and Processed

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[17] Indian Pines Raw and Processed

20 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Indian Pines – ‘pure‘ Big Data vs. Feature Engineering

dataset raw (1)

dataset processed (2)

Feature Enhancement & Selection
Kernel Principle Component Analysis (KPCA)
Extended Self-Dual Attribute Profile (ESDAP)
Nonparametric weighted feature extraction (NWFE)

[16] G. Cavallaro and M. Riedel, et al. , 2015

21 / 200

Review of Open Source Parallel SVM Implementations

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[18] M. Goetz, M. Riedel et al., ‘On Parallel and Scalable Classification and Clustering Techniques for Earth Science
Datasets’, 6th Workshop on Data Mining in Earth System Science, International Conference of Computational Science

22 / 200

 Work in progress: Recent related work analysis reveals no new results; evaluations pending…

Parallel and Scalable Machine Learning – piSVM

 ‘Different kind‘ of parallel algorithms
 Goal is to ‘learn from data‘ instead of modelling/approximate the reality
 Parallel algorithms often useful to reduce ‘overall time for data analysis‘

 E.g. Parallel Support Vector Machines (SVMs) Technique
 Data classification algorithm PiSVM using MPI to reduce ‘training time‘
 Example: classification of land cover masses from satellite image data

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[16] G. Cavallaro & M. Riedel et al., ‘On Understanding Big Data Impacts
in Remotely Sensed Image Classification Using Support Vector Machine
Methods’, Journal of Applied Earth Observations and Remote Sensing

23 / 200

 Open source code publicly available at: https://github.com/mricherzhagen/pisvm

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Parallel SVM with MPI Technique – piSVM Implementation

 Original piSVM 1.2 version (2011)
 Open-source and based on libSVM library, C
 Message Passing Interface (MPI)
 New version appeared 2014-10 v. 1.3 (no major improvements)
 Lack of ‘big data‘ support (e.g. memory, layout)

 Tuned scalable parallel piSVM tool 1.2.1
 Highly scalable version maintained by Juelich
 Based on original piSVM 1.2 tool
 Open-source (repository to be created)
 Optimizations: load balancing; MPI collectives

[19] piSVM on SourceForge, 2008

24 / 200

 Open source code publicly available at: https://github.com/mricherzhagen/pisvm

Parallelization Benefit: Lower-Time-To-Solution

 Major speed-ups; ~interactive (<1 min); same accuracy;

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(1) Scenario
‘unprocessed data‘
training time (in min)

(1) Scenario
‘unprocessed data‘
testing time (in min)

‘big data‘ is not always better data

manual & serial activities (in min)

(2) Scenario
‘pre-processed data‘
training time (in min)

(2) Scenario
‘pre-processed data‘
testing time (in min)

[16] G. Cavallaro, M. Riedel, J.A. Benediktsson
et al., Journal of Selected Topics in Applied
Earth Observation and Remote Sensing, 2015

(cf. Importance of feature engineering above)

(aka first level of parallelism)

25 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Validation Technique – Cross-Validation for Model Selection

 Leave-one-out
 N training sessions on

N – 1 points each time

 Leave-more-out
 Break data into number of folds
 N/K training sessions on

N – K points each time
 Example: ‘10-fold cross-valdation‘ with K = N/10 multiple times (N/K)

 10-fold cross validation is mostly applied in practical problems by setting K = N/10 for real data
 Having N/K training sessions on N – K points each leads to long runtimes ( use parallelization)

(generalization to leave k points out at each run)

(dataset)

Training Examples

Training Examples

(leave 1 point out at each run many runs)

1

K-fold

(use 1/10 for validation, use 9/10 for training, then another 1/10 … N/K times)

(fewer training sessions than above)

(involved in training now)(involved in training now) (now is the current example run)

(practice to avoid bias &
contamination: some rest for test

as ‘unseen data‘)

Training Examples

26 / 200

Parallelization Benefits using Cross-Validation & Parameters

 Parallelization benefits are enormous for complex problems
 Enables feasibility to tackle extremely large datasets & high dimensions
 Provides functionality for a high number of classes (e.g. #k SVMs)
 Massive reduction in time  lower time-to-solution – keeping accuracy!

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(1) Scenario ‘unprocessed data‘, 10xCV serial: accuracy (min)

(1) Scenario ‘unprocessed data‘’10xCV parallel: accuracy (min)

First Result: best parameter set from 118.28 min to 4.09 min
Second Result: all parameter sets from ~3 days to ~2 hours

(2) Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

(2) Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

[16] G. Cavallaro, M. Riedel, J.A. Benediktsson et al., Journal of Selected Topics
in Applied Earth Observation and Remote Sensing, 2015

27 / 200

[YouTube Lectures] More about parallel SVMs & HPC

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[20] Morris Riedel, ‘Introduction to Machine Learning Algorithms‘, Invited
YouTube Lecture, six lectures, University of Ghent, 2017

28 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Methods Overview – Introduction to Deep Learning

 Groups of data exist
 New data classified

to existing groups

Classification

?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

 Statistical data mining methods can be roughly categorized in classification, clustering, or
regression augmented with various techniques for data exploration, selection, or reduction

29 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Learning Approaches – Unsupervised Learning

 Each observation of the predictor measurement(s)
has no associated response measurement:
 Input
 No output
 Data

 Goal: Seek to understand relationships between the observations
 Clustering analysis: check whether the observations fall into distinct groups

 Challenges
 No response/output that could supervise our data analysis
 Clustering groups that overlap might be hardly recognized as distinct group

 Unsupervised learning approaches seek to understand relationships between the observations
 Unsupervised learning approaches are used in clustering algorithms such as k-means, etc.
 Unupervised learning works with data = [input, ---]

[13] An Introduction to Statistical Learning
30 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Learning Approaches – Unsupervised Learning Example

 Lessons learned from practice
 The number of clusters are often

ambiguities / no hard boundaries
[13] An Introduction to Statistical Learning

#

31 / 200

 Collaboration with Forschungszentrum Juelich - INM-1 Timo Dickscheid & Katrin Amunts

(similarity of clusters might be density related and measurable
 pick a specific clustering algorithm)

Selected Clustering Methods

 K-Means Clustering – Centroid based clustering
 Partitions a data set into K distinct clusters (centroids can be artificial)

 K-Medoids Clustering – Centroid based clustering (variation)
 Partitions a data set into K distinct clusters (centroids are actual points)

 Sequential Agglomerative hierarchic nonoverlapping (SAHN)
 Hiearchical Clustering (create tree-like data structure  ‘dendrogram’)

 Clustering Using Representatives (CURE)
 Select representative points / cluster – as far from one another as possible

 Density-based spatial clustering of applications + noise (DBSCAN)
 Assumes clusters of similar density or areas of higher density in dataset

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 32 / 200

DBSCAN Algorithm

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 DBSCAN Algorithm
 Introduced 1996 and most cited clustering algorithm
 Groups number of similar points into clusters of data
 Similarity is defined by a distance measure

(e.g. euclidean distance)

 Distinct Algorithm Features
 Clusters a variable number of clusters
 Forms arbitrarily shaped clusters (except ‘bow ties‘)
 Identifies inherently also outliers/noise

 Understanding Parameters
 Looks for a similar points within a given search radius
 Parameter epsilon

 A cluster consist of a given minimum number of points
 Parameter minPoints

[15] Ester et al.

(MinPoints = 4)

(DR = Density Reachable)

(DDR = Directly Density
Reachable)
(DC = Density Connected)

33 / 200

DBSCAN Algorithm – Non-Trivial Example

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Unclustered
Data

Clustered
Data

 DBSCAN forms arbitrarily shaped clusters (except ‘bow ties‘) where other clustering algorithms fail

 Compare K-Means vs. DBSCAN – How would K-Means work?

34 / 200

[Video] DBSCAN Clustering

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[6] DBSCAN, YouTube Video

35 / 200

‘Big Data‘ Example – Point Cloud Applications

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 ‘Big Data‘: 3D/4D laser scans
 Captured by robots or drones
 Millions to billion entries
 Inner cities (e.g. Bremen inner city)
 Whole countries (e.g. Netherlands, USA per state)

 Selected Scientific Cases
 Filter noise to better represent real data
 Grouping of objects (e.g. buildings)
 Study level of continous details (complex)

36 / 200

Open Bremen Dataset using Hierarchical Data Format (HDF)

 Different clusterings of the inner city of Bremen
 Using smart visualizations of the point cloud library (PCL)

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[22] Bremen Dataset

 The Bremen
Dataset is encoded
in the HDF5
parallel file format

 Enables efficient
parallel I/O in HPC

37 / 200

 Power of parallel I/O in HPC for ‘big data‘ is often underestimated in machine learning community

(read & write : read point
cloud data and assign
cluster – IDs or mark noise)

[49] HDF@ I/O workshop

Review of Open Source Parallel DBSCAN Implementations

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[18] M. Goetz, M. Riedel et al., ‘On Parallel and Scalable Classification and Clustering
Techniques for Earth Science Datasets’, 6th Workshop on Data Mining in Earth System
Science, International Conference of Computational Science (ICCS)

38 / 200

 Work in progress: Spark/MLlib & ~10 DBSCAN codes not so good; other MPI code 2D only, …

HDBSCAN Algorithm Details

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Parallelization Strategy
 Smart ‘Big Data‘ Preprocessing

into Spatial Cells (‘indexed‘)
 OpenMP standalone
 MPI (+ optional OpenMP hybrid)

 Preprocessing Step
 Spatial indexing and redistribution

according to the point localities
 Data density based chunking of

computations

 Computational Optimizations
 Caching point neighborhood searches
 Cluster merging based on comparisons instead of zone reclustering

[24] M.Goetz, M. Riedel et al., ‘HPDBSCAN – Highly
Parallel DBSCAN’, MLHPC Workshop at
Supercomputing 2015

#

ε

39 / 200

 Open source code publicly available at: https://bitbucket.org/markus.goetz/hpdbscan

HPDBSCAN – Smart Domain Decomposition Example

 Parallelization Strategy
 Chunk data space equally
 Overlay with hypergrid
 Apply cost heuristic
 Redistribute points (data locality)
 Execute DBSCAN locally
 Merge clusters at chunk edges
 Restore initial order

 Data organization
 Use of HDF5 (stores

noise ID / cluster ID)

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[24] M.Goetz, M. Riedel et al., ‘HPDBSCAN – Highly
Parallel DBSCAN’, MLHPC Workshop at Supercomputing 2015

40 / 200

 Open source code publicly available at: https://bitbucket.org/markus.goetz/hpdbscan

[YouTube Lectures] More about parallel DBSCANs & HPC

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[20] Morris Riedel, ‘Introduction to Machine Learning Algorithms‘, Invited
YouTube Lecture, six lectures, University of Ghent, 2017

41 / 200

Selected Deep Learning Models

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 42 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Methods Overview – Introduction to Deep Learning

 Groups of data exist
 New data classified

to existing groups

Classification

?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

 Statistical data mining methods can be roughly categorized in classification, clustering, or
regression augmented with various techniques for data exploration, selection, or reduction

43 / 200

More Recent HPC Developments: GPU Acceleration

 GPU accelerator architecture example (e.g. NVIDIA card)
 GPUs can have 128 cores on one single GPU chip
 Each core can work with eight threads of instructions
 GPU is able to concurrently execute 128 * 8 = 1024 threads
 Interaction and thus major (bandwidth)

bottleneck between CPU and GPU
is via memory interactions

 E.g. applications
that use matrix –
vector multiplication

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 CPU acceleration means that GPUs accelerate computing due to a massive parallelism with
thousands of threads compared to only a few threads used by conventional CPUs

 GPUs are designed to compute large numbers of floating point operations in parallel

[29] Distributed & Cloud Computing Book

44 / 200

 HPC Impact: Top500 #1 Summit (ORNL) 6 GPUs/node; 1st time more flop/s added by GPUs vs. CPUs

Keras with Tensorflow Backend – GPU Support

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

 The key idea behind the Keras tool is to enable faster experimentation with deep networks
 Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

[30] Keras Python Deep Learning Library

 Tensorflow is an open source library for deep learning models using a flow graph approach
 Tensorflow nodes model mathematical operations and graph edges between the nodes are

so-called tensors (also known as multi-dimensional arrays)
 The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
 Tensorflow work with the high-level deep learning tool Keras in order to create models fast

[31] Tensorflow Deep Learning Framework

[32] A Tour of
Tensorflow

45 / 200

What is a Tensor?

 Meaning
 Multi-dimensional array used in big data analysis often today
 Best understood when comparing it with vectors or matrices

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 46 / 200

(‘tensors flow through the
deep learning networks)

(note: learned weighted connections
often omitted from many deep
learning network visualizations)

[33] Big Data Tips,
What is a Tensor?

 Approach: Prepare data before
 Classical Machine Learning
 Feature engineering
 Dimensionality reduction techniques
 Low number of layers (many layers computationally infeasible in the past)
 Very succesful for speech recognitition (‘state-of-the-art in your phone‘)

(Perceptron model: designed after human brain neuron) (Artificial neural network two layer feed – forward)

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Artificial Neural Network – Feature Engineering & Layers

47 / 200

[Video] Towards Multi-Layer Perceptrons

[34] YouTube Video, Neural Networks – A Simple Explanation

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 48 / 200

Deep Learning Architectures

 Deep Neural Network (DNN)
 ‘Shallow ANN‘ approach with many hidden layers between input/output

 Convolutional Neural Network (CNN, sometimes ConvNet)
 Connectivity pattern between neurons is like animal visual cortex

 Deep Belief Network (DBN)
 Composed of mult iple layers of variables; only connections between layers

 Recurrent Neural Network (RNN)
 ‘ANN‘ but connections form a directed cycle; state and temporal behaviour

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural
Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristica

 Deep Learning needs ‘big data‘ to work well & for high accuracy – works not well on sparse data

49 / 200

Deep Learning – Feature Learning & More Smart Layers

 Approach: Learn Features
 Classical Machine Learning
 (Powerful computing evolved)
 Deep (Feature) Learning

 Very succesful for image recognition and other emerging areas
 Assumption: data was generated by the interactions of many different

factors on different levels (i.e. form a hierarchical representation)
 Organize factors into multiple levels, corresponding to different levels

of abstraction or composition(i.e. first layers do some kind of filtering)
 Challenge: Different learning architectures: varying numbers of layers,

layer sizes & types used to provide different amounts of abstraction

(Example: Parcellation
of cytoarchitectonic

cortical regions
in the human brain)

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 50 / 200

Deep Learning – Feature Learning Benefits

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[25] H. Lee et al.

 Traditional machine learning applied feature engineering
before modeling

 Feature engineering requires expert knowledge, is time-
consuming and a often long manual process, requires
often 90% of the time in applications, and is sometimes
even problem-specific

 Deep Learning enables feature learning promising a
massive time advancement

 More background information about CNN and its key elements are provided in Appendix D
51 / 200

HPC Machine: JSC JURECA System – CLUSTER Module

 Characteristics
 Login nodes with 256 GB

memory per node
 45,216 CPU cores
 1.8 (CPU) + 0.44 (GPU)

Petaflop/s peak performance
 Two Intel Xeon E5-2680 v3 Haswell

CPUs per node: 2 x 12 cores, 2.5 GhZ
 75 compute nodes equipped with two

NVIDIA K80 GPUs (2 x 4992 CUDA cores)

 Architecture & Network
 Based on T-Platforms V-class server architecture
 Mellanox EDR InfiniBand high-speed

network with non-blocking fat tree topology
 100 GiB per second storage connection to JUST

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[48] JURECA HPC System

HPC

 Use our ssh keys to get an
access and use reservation

 Put the private key into
your ./ssh directory (UNIX)

 Use the private key with
your putty tool (Windows)

52 / 200

Deep Learning – Scaling Example on JURECA HPC System

 Simple Image Benchmark on JURECA JSC HPC System
 75 x 2 NVIDIA Tesla K80/node – dual GPU design
 1.2 mio images with 224 x 224 pixels

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Open source tool Horovod enables distributed deep learning with TensorFlow / Keras
 Machine & Deep Learning: speed-up is just secondary goal after 1st goal accuracy
 Speed-up & parallelization good for faster hyperparameter tuning, training, inference
 Third goal is to avoid much feature engineering through ‘feature learning‘

[41] A. Sergeev, M. Del
Balso,’Horovod’, 2018

(absolute number of images per second and relative speedup
normalized to 1 GPU are given)

(setup: TensorFlow 1.4, Python 2.7, CUDA 8, cuDNN 6, Horovod 0.11.2, MVAPICH-2.2-GDR)

53 / 200

Deep Learning – Key Properties & Application Areas

 Application before modeling data with other models (e.g. SVM)
 Create better data representations and create deep learning models to

learn these data representations from large-scale unlabeled data

 Application areas
 Computer vision
 Automatic speech recognition
 Natural language processing
 Bioinformatics
 …

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 In Deep Learning networks are many layers between the input and output layers enabling multiple
processing layers that are composed of multiple linear and non-linear transformations

 Layers are not (all) made of neurons (but it helps to think about this analogy to understand them)
 Deep Learning performs (unsupervised) learning of multiple levels of features whereby higher

level features are derived from lower level features and thus form a hierarchical representation

(Deep Learning is often characterized as ‘buzzword‘)

(Deep Learning is often ‘just‘ called
rebranding of traditional neural networks)

(hierarchy from low level to high level features)
54 / 200

CNN Architecture for Application – Land Cover Classification

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Classify pixels in a hyperspectral remote sensing image having groundtruth/labels available
 Created CNN architecture for a specific hyperspectral land cover type classification problem
 Used dataset of Indian Pines (compared to other approaches) using all labelled pixels/classes
 Performed no manual feature engineering to obtain good results (aka accuracy)

[26] J. Lange, G. Cavallaro, M. Riedel, et al. , IGARSS 2018
55 / 200

Comparison: Traditional Machine Learning vs. Deep Learning

 Traditional Methods
 C MPI-based Support Vector Machine (SVM)
 Substantial manual feature engineering
 10-fold cross-validation for model selection
 Achieved 77,02 % accuracy

(subsambled classes of 52 classes)

 Convolutional Neural
Networks (CNNs)
 Python/TensorFlow/Keras
 Automated feature learning
 Achieved 84,40 % accuracy

on all 58 classes
 Warning: optimistic bias –

careful data sampling vs. ‘big data‘!
Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[26] J. Lange, G. Cavallaro,
M. Riedel, et al. , 2018

56 / 200

Deep Learning Architectures – Revisited

 Deep Neural Network (DNN)
 ‘Shallow ANN‘ approach with many hidden layers between input/output

 Convolutional Neural Network (CNN, sometimes ConvNet)
 Connectivity pattern between neurons is like animal visual cortex

 Deep Belief Network (DBN)
 Composed of mult iple layers of variables; only connections between layers

 Recurrent Neural Network (RNN)
 ‘ANN‘ but connections form a directed cycle; state and temporal behaviour

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural
Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristica

 Deep Learning needs ‘big data‘ to work well & for high accuracy – works not well on sparse data

57 / 200

Revisit CNNs vs. RNNs – Different Type of Neural Networks

 CNNs  Spatial
 Example: remote sensing application

domain, hyperspectral datasets
 Neural network key property:

exploit spatial geometry of inputs
 Approach: Apply convolution & pooling

(height x width x feature) dimensions

 RNNs  Temporal
 Examples: texts, speech, time series datasets
 Neural network key property:

exploit sequential nature of inputs
 Approach: Train a graph of ‘RNN cells‘ & each cell performs

the same operation on every element in the given sequence

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 RNNs are used to create sequence models whereby the occurrence of an element in the
sequence (e.g. text, speech, time series) is dependent on the elements that appeared before it

ht

RNN model

Xt

58 / 200

Sequence Models

 Model Categorization
 Based on different inputs/outputs to/from the sequence models

 Practical ‘standard dataset‘ perspective
 Often the order of samples is not important
 Training/testing datasets and their samples

have often no explicit order (i.e. ‘sets‘)

 Practical ‘sequence dataset‘ perspective
 Order of samples is important: sequence learning/inference needs order

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Sequence models enable various sequence predictions that are inherent different to other
more traditional predictive modeling techniques or supervised learning approaches

 In contrast to mathematical sets often used, the ‘sequence‘ model imposes an explicit
order on the input/output data that needs to be preserved in training and/or inference

 Sequence models are driven by application goals and include sequence prediction,
sequence classification, sequence generation, and sequence-to-sequence prediction

 More background information about RNNs & LSTMs is in the Appendix E in this slideset
59 / 200

Recurrent Neural Network (RNN)

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 A Recurrent Neural Network (RNN) consists of cyclic connections that enable the neural network to
better model sequence data compared to a traditional feed forward artificial neural network (ANN)

 RNNs consists of ‘loops‘ (i.e. cyclic connections) that allow for information to persist while training
 The repeating RNN model structure is very simple whereby each has only a single layer (e.g. tanh)

tanh

Xt

ht

 Selected applications
 Sequence labeling
 Sequence prediction tasks
 E.g. handwriting recognition
 E.g. language modeling

 Loops / cyclic connections
 Enable to pass information

from one step to the
next iteration

 Remember ‘short-term‘
data dependencies

ht

RNN model

Xt

(‘delay’)

(‘delay’
from t-1)

60 / 200

RNN Model – Simple Example – Predict Next Character

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

0.1
- 0.7
0.6

1
0
0
0

‘h‘

0.1
0.6
0.2
0.1

‘e‘

- 0.4
0.8
1.2

0
1
0
0

‘e‘

0.2
0.3
0.4
0.1

‘l‘

0.7
- 1.2
0.2

0
0
1
0

‘l‘

0.2
0.2
0.5
0.1

‘l‘

0.7
- 1.2
0.2

0
0
1
0

‘l‘

0.0
0.0
0.1
0.9

‘o‘

…

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

(probabilities)

(one-hot encoded
characters)

(‘delay’)  Sequence values that
are separated by a
significant number of
words (i.e. deep RNN)
leads to the vanishing
gradient problem

 Reasoning is that small
gradients or weights
with values than 1 are
multiplied many
times through the
multiple time steps,
i.e. gradients shrink
asymptotically to zero

 Effect is that weights of
those earlier layers are
not changed
significantly and the
network will not learn
long-term dependencies

61 / 200

Long Short Term Memory (LSTM) Model

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Long Short Term Memory (LSTM) networks are a
special kind of Recurrent Neural Networks (RNNs)

 LSTMs learn long-term dependencies in data by
remembering information for long periods of time

 The LSTM chain structure consists of four neural
network layers interacting in a specific way

x +

tanh

x

ℴℴ ℴ x

tanh

xt

ht

x +

tanh

x

ℴℴ ℴ x

tanh

Xt+1

Ht+1

x +

tanh

x

ℴℴ ℴ x

tanh

Xt-1

Ht-1
(each line carries
an entire vector)

ht

LSTM model

xt (uses sigmoid ℴ)

62 / 200

(weight
matrix)

(weight matrix)

LSTM Model – Memory Cell & Cell State

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 LSTM introduce a ‘memory cell‘ structure into the underlying basic RNN architecture using four key
elements: an input gate, a neuron with self-current connection, a forget gate, and an output gate

 The data in the LSTM memory cell flows straight down the chain with some linear interactions (x,+)
 The cell state st can be different at each of the LSTM model steps & modified with gate structures
 Linear interactions of the cell state are pointwise multiplication (x) and pointwise addition (+)
 In order to protect and control the cell state st three different types of gates exist in the structure

tanh

x

ℴℴ ℴ x

tanh

xt

ht

tanh

x

ℴℴ ℴ x

tanh

Xt+1

Ht+1

tanh

x

ℴℴ ℴ x

tanh

Xt-1

Ht-1
(each line carries
an entire vector)

x + x +x +
st

63 / 200

Deep Learning for Sequence Data: Long Short-Term Memory

 Standard LSTM

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 LSTM models work quite well to
predict power but needs to be
trained and tuned for different
power stations

 Observing that some peaks can not
be ‘learned‘ although robust model

 Requires much longer time to train
(i.e. more HPC time or GPUs/node)

64 / 200

Different Useful LSTM Models – Stacked LSTMs

 E.g. predicting electricity
consumption / customer
 Stacked LSTM cells
 Periodic elements can

take advantage of state
 Needs to be carefully tuned
 Requires through use of

state more computing

 E.g. damped sine
wave prediction
 Stacked LSTM cells since

again periodic character
 Depending on wave

the pattern might be
not able to be detected w/o LSTMs

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 65 / 200

[YouTube Lectures] More about Deep Learning & HPC

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[21] Morris Riedel, ‘Deep Learning - Using a Convolutional Neural Network‘,
Invited YouTube Lecture, six lectures, University of Ghent, 2017

66 / 200

[Video] Deep Learning ‘Revolution‘

[27] The Deep Learning Revolution, YouTube

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 67 / 200

Open Challenges & Summary

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 68 / 200

Number of Parameters – Challenges on the Horizon

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Blue: correctly classified
Red: incorrectly classified

[26] J. Lange, G. Cavallaro,
M. Riedel, et al. , IGARSS 2018

 Using Python with TensorFlow & Keras easily enables changes in hyper-parameter tuning
 Various runs on different topologies add up to computational demand of GPUs
 Need for HPC machines with good GPUs and good deep learning software stacks required
 Key challenge remains in the number of parameters for deep learning networks & configuration

 Link to ISC 2018 Machine Learning Track Keynote by Frank Hutter about hyper-parameter problems
69 / 200

DEEP Projects & Partners

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 DEEP
 Dynamic Exascale

Entry Platform

 3 EU Exascale projects
DEEP
DEEP-ER
DEEP-EST

 27 partners
Coordinated by JSC

 EU-funding: 30 M€
JSC-part > 5,3 M€

 Nov 2011 – Jun 2020
[28] DEEP-EST EU Project

70 / 200

DEEP-EST EU Project & Modular Supercomputing

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

GPU Module Many-core BoosterCluster
Module

BN

BN

BN

BN

BN BN

BN

BN

BN

CN

CN

Data Analytics
Module

DN

Network Attached
Memory Module

NAM NAM

Array
Databases

(e.g.
Rasdaman,

SciDB)

Storage
Module

GN

GN

GN

GN

GN GN

DiskDiskDisk Disk

Intel
Nervana &

Neon

DN

 ML
Training

 Deep
learning

 Datasets
 Models

 Deep
learning

 ML Testing,
 Inference

 ‘Big data‘ /
parallel I/O

71 / 200

 Transfer
Learning

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

General Purpose Cluster

File
Server
GPFS,
Lustre

IBM Power 6
JUMP, 9 TFlop/s

IBM Blue Gene/P
JUGENE, 1 PFlop/s

HPC-FF
100 TFlop/s

JUROPA
200 TFlop/s

IBM Blue Gene/Q
JUQUEEN (2012)
5.9 PFlop/s

IBM Blue Gene/L
JUBL, 45 TFlop/s

IBM Power 4+
JUMP (2004), 9 TFlop/s

Highly scalable

Hierarchical
Storage Server

JUWELS Scalable
Module (2019/20)
50+ PFlop/s

JUWELS Cluster
Module (2018)
12 PFlop/s

JURECA Cluster (2015)
2.2 PFlop/s

JURECA Booster (2017)
5 PFlop/s

72 / 200

Summary

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Mindset
 Think traditional machine learning still relevant for deep learning
 Using interpreted languages like Python is ‘modus operandi‘
 Selected new specific deep learning methods (CNN, LSTM, etc.)

 Skillset
 Basic knowledge of machine learning required for deep learning
 Validation (i.e. model selection) and regularization still valid(!)
 Many job offers for specialists in machine/deep learning & HPC

 Toolset
 Parallel versions of machine learning methods exist (piSVM, HPDBSCAN)
 Python, Tensorflow & Keras often used for deep learning
 Explore technology trends, e.g. specific chips for deep learning

73 / 200

 Challenges: intertwine physical models with machine learning & finding good hyperparameters

Lecture Bibliography

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 74 / 200

Lecture Bibliography (1)

 [1] Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Addison Wesley, ISBN
0321321367, English, ~769 pages, 2005

 [2] PANGAEA Data Collection, Data Publisher for Earth & Environmental Science,
Online: http://www.pangaea.de/

 [3] UCI Machine Learning Repository,
Online: http://archive.ics.uci.edu/ml/datasets.html

 [4] Species Iris Group of North America Database,
Online: http://www.signa.org

 [5] UCI Machine Learning Repository Iris Dataset,
Online: https://archive.ics.uci.edu/ml/datasets/Iris

 [6] Wikipedia ‘Sepal‘,
Online: https://en.wikipedia.org/wiki/Sepal

 [7] Rattle Library for R,
Online: http://rattle.togaware.com/

 [8] F. Rosenblatt, ‘The Perceptron--a perceiving and recognizing automaton’,
Report 85-460-1, Cornell Aeronautical Laboratory, 1957

 [9] Rosenblatt,’The Perceptron: A probabilistic model for information storage and orgainzation in the brain’,
Psychological Review 65(6), pp. 386-408, 1958

 [10] PLA Algorithm, YouTube Video, Online:
 [11] C. Shearer, CRISP-DM model, Journal Data Warehousing, 5:13
 [12] Pete Chapman, ‘CRISP-DM User Guide’, 1999,

Online: http://lyle.smu.edu/~mhd/8331f03/crisp.pdf

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 75 / 200

Lecture Bibliography (2)

 [13] An Introduction to Statistical Learning with Applications in R, Online:
http://www-bcf.usc.edu/~gareth/ISL/index.html

 [14] B2Share, ‘Iris Dataset LibSVM Format Preprocessing‘,
Online: https://b2share.eudat.eu/records/37fb24847a73489a9c569d7033ad0238

 [15] Udacity, ‘Overfitting‘,
Online: https://www.youtube.com/watch?v=CxAxRCv9WoA

 [16] G. Cavallaro, M. Riedel, M. Richerzhagen, J. A. Benediktsson and A. Plaza, "On Understanding Big Data
Impacts in Remotely Sensed Image Classification Using Support Vector Machine Methods," in the IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 10, pp. 4634-4646, Oct. 2015.

 [17] Indian Pines Raw and Processed
Online: http://hdl.handle.net/11304/9ec5eac8-61b4-4617-ae1c-1f8c8cd3cd74

 [18] M. Goetz, M. Riedel et al.,’ On Parallel and Scalable Classification and Clustering Techniques for Earth
Science Datasets’ 6th Workshop on Data Mining in Earth System Science, Proceedings of the International
Conference of Computational Science (ICCS), Reykjavik,
Online: http://www.proceedings.com/26605.html

 [19] Original piSVM tool,
Online: http://pisvm.sourceforge.net/

 [20] Morris Riedel, ‘Introduction to Machine Learning Algorithms‘, Invited YouTube Lecture, six lectures
University of Ghent, 2017
Online: https://www.youtube.com/watch?v=KgiuUZ3WeP8&list=PLrmNhuZo9sgbcWtMGN0i6G9HEvh08JG0J

 [21] Morris Riedel, ‘Deep Learning - Using a Convolutional Neural Network‘, Invited YouTube Lecture, six lectures
University of Ghent, 2017
Online: https://www.youtube.com/watch?v=gOL1_YIosYk&list=PLrmNhuZo9sgZUdaZ-f6OHK2yFW1kTS2qF

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 76 / 200

Lecture Bibliography (3)

 [22] B2SHARE, ‘HPDBSCAN Benchmark test files’,
Online: http://hdl.handle.net/11304/6eacaa76-c275-11e4-ac7e-860aa0063d1f

 [23] Ester, Martin, et al. "A density-based algorithm for discoveringclusters in large spatial databases with noise."
Kdd. Vol. 96. 1996.

 [24] M.Goetz, M. Riedel et al.,‘HPDBSCAN – Highly Parallel DBSCAN‘, MLHPC Workshop at Supercomputing 2015,
Online: https://dl.acm.org/citation.cfm?id=2834894

 [25] H. Lee et al., ‘Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical
Representations’, Proceedings of the 26th annual International Conference on Machine Learning (ICML), ACM,
2009

 [26] J. Lange, G. Cavallaro, M. Goetz, E. Erlingsson, M. Riedel, ‘The Influence of Sampling Methods on Pixel-Wise
Hyperspectral Image Classification with 3D Convolutional Neural Networks’, Proceedings of the IGARSS 2018
Conference, to appear

 [27] YouTube Video, ‘The Deep Learning Revolution’,
Online: https://www.youtube.com/watch?v=Dy0hJWltsyE

 [28] DEEP-EST EU Project,
Online: http://www.deep-projects.eu/

 [29] K. Hwang, G. C. Fox, J. J. Dongarra, ‘Distributed and Cloud Computing’, Book,
Online: http://store.elsevier.com/product.jsp?locale=en_EU&isbn=9780128002049

 [30] Keras Python Deep Learning Library,
Online: https://keras.io/

 [31] Tensorflow Deep Learning Framework,
Online: https://www.tensorflow.org/

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 77 / 200

Lecture Bibliography (4)

 [32] A Tour of Tensorflow,
Online: https://arxiv.org/pdf/1610.01178.pdf

 [33] Big Data Tips, ‘What is a Tensor?‘,
Online: http://www.big-data.tips/what-is-a-tensor

 [34] YouTube Video, ’Neural Networks, A Simple Explanation’,
Online: http://www.youtube.com/watch?v=gcK_5x2KsLA

 [35] M. Nielsen, ‘Neural Networks and Deep Learning‘,
Online: http://neuralnetworksanddeeplearning.com/

 [36] A. Rosebrock, ‘Get off the deep learning bandwagon and get some perspective‘, Online:
http://www.pyimagesearch.com/2014/06/09/get-deep-learning-bandwagon-get-perspective/

 [37] A. Gulli and S. Pal, ‘Deep Learning with Keras‘ Book, ISBN-13 9781787128422, 318 pages,
Online: https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

 [38] D. Kingma and Jimmy Ba, ‘Adam: A Method for Stochastic Optimization‘,
Online: https://arxiv.org/abs/1412.6980

 [39] Indian Pines dataset: 220 Band AVIRIS Hyperspectral Image
Online: https://purr.purdue.edu/publications/1947/1

 [40] Markus Goetz, PhD Thesis University of Iceland, ‘Scalable Data Analysis in High Performance Computing‘,
Online:
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwilv6jDjYLcAhWwsaQKHTTEB7QQFgg9
MAM&url=https%3A%2F%2Fopinvisindi.is%2Fbitstream%2Fhandle%2F20.500.11815%2F472%2Fthesis.pdf%3Fsequence%3D1%26isAllowed%3
Dy&usg=AOvVaw2Rs3jgLDQ4PU4SY24fImvQ

 [41] A. Sergeev, M. Del Balso‚‘Horovod: fast and easy distributed deep learning in TensorFlow’, 2018
Online: https://arxiv.org/abs/1802.05799

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 78 / 200

Lecture Bibliography (5)

 [42] Timeless Texts, Cutting-Edge Code: Free downloads of Shakespeare from Folger Digital Texts,
Online: http://www.folgerdigitaltexts.org/download/

 [43] A. Karpathy and F. Li, ‘Deep Visual-Semantic Alignments for Generating Image Descriptions’, Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2015,
Online: https://cs.stanford.edu/people/karpathy/cvpr2015.pdf

 [44] Adventures in Machine Learning, Keras LSTM tutorial,
Online: http://adventuresinmachinelearning.com/keras-lstm-tutorial/

 [45] Kaggle, ‘UMICH SI650 – Sentiment Classification‘,
Online: https://www.kaggle.com/c/si650winter11

 [46] YouTube Video, ‘Recurrent Neural Networks - Ep. 9 (Deep Learning SIMPLIFIED)’,
Online: https://www.youtube.com/watch?v=_aCuOwF1ZjU&t=7s

 [47] YouTube Video‚‘Sequence Models and the RNN API (TensorFlow Dev Summit 2017)‘,
Online: https://www.youtube.com/watch?v=RIR_-Xlbp7s

 [48] JURECA HPC System @ JSC,
Online: http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html

 [49] Michael Stephan,‘Portable Parallel IO - ‘Handling large datasets in heterogeneous parallel environments‘,
Online: http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/parallelio-2014/parallel-io-hdf5.pdf?__blob=publicationFile

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 79 / 200

Appendix A: Introduction to Machine Learning

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 80 / 200

Methods Overview

 Groups of data exist
 New data classified

to existing groups

Classification

?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

 Machine learning methods can be roughly categorized in classification, clustering, or regression
augmented with various techniques for data exploration, selection, or reduction

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 81 / 200

(flowers of type ‘IRIS Setosa‘)

Simple Application Example: Classification of a Flower

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[4] Image sources: Species Iris Group of
North America Database, www.signa.org

(flowers of type ‘IRIS Virginica‘)

(what type of flower is this?)

 Groups of data exist
 New data classified

to existing groups

?

(1) Problem Understanding Phase

82 / 200

The Learning Problem in the Example

Learning problem: A prediction task
 Determine whether a new Iris flower

sample is a “Setosa” or “Virginica”
 Binary (two class) classification problem
 What attributes about the data help?
Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[4] Image sources: Species Iris Group of North America Database, www.signa.org

(flowers of type ‘IRIS Setosa‘) (flowers of type ‘IRIS Virginica‘)

(what type of flower is this?)
83 / 200

Feasibility of Machine Learning in this Example

1. Some pattern exists:
 Believe in a ‘pattern with ‘petal length‘ &

‘petal width‘ somehow influence the type

2. No exact mathematical formula
 To the best of our knowledge there is no

precise formula for this problem

3. Data exists
 Data collection from UCI Dataset „Iris“
 150 labelled samples (aka ‘data points‘)
 Balanced: 50 samples / class

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[6] UCI Machine Learning
Repository Iris Dataset

[5] Image source: Wikipedia, Sepal

(2) Data Understanding Phase

 sepal length in cm
 sepal width in cm
 petal length in cm
 petal width in cm
 class: Iris Setosa, or

Iris Versicolour, or
Iris Virginica

(four data attributes for each
sample in the dataset)

(one class label for each
sample in the dataset)

84 / 200

Understanding the Data – Check Metadata

 First: Check metadata if available
 Example: Downloaded iris.names includes metadata about data

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[6] UCI Machine Learning Repository Iris Dataset

…
(author, source, or creator)

(Subject, title, or context)

(number of samples, instances)

(metadata is not always available in practice)

(attribute information)

(detailed attribute
information)

(detailed attribute
information)

85 / 200

Understanding the Data – Check Table View

 Second: Check table view of the dataset with some samples
 E.g. Using a GUI like ‘Rattle‘ (library of R), or Excel in Windows, etc.
 E.g. Check the first row if there is header information or if is a sample

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 sepal length in cm
 sepal width in cm
 petal length in cm
 petal width in cm
 class: Iris Setosa, or

Iris Versicolour, or
Iris Virginica

(four data attributes for each
sample in the dataset)

(one class label for each
sample in the dataset)

(careful first sample taken as header,
resulting in only 149 data samples)

[7] Rattle Library for R
86 / 200

Preparing the Data – Corrected Header

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(3) Data Preparation Phase

(correct header information, resulting in 150 data samples)

(correcting the header is not always necessary,
or can be automated, e.g. in Rattle)

87 / 200

Preparing the Data – Remove Third Class Samples

 Data preparation means to prepare our data for our problem
 In practice the whole dataset is rarely needed to solve one problem
 E.g. apply several sampling strategies (but be aware of class balance)

 Recall: Our learning problem
 Determine whether a new Iris flower sample is a “Setosa” or “Virginica”
 Binary (two class) classification problem : ‘Setosa‘ or ‘Virginica‘

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(three class problem with
N = 150 samples including
Iris Versicolour)

(remove Versicolour class
samples from dataset)

(wo class problem with
N = 100 samples excluding
Iris Versicolour)

(export or save dataset
to iris-twoclass.data)

88 / 200

Preparing the Data – Feature Selection Process

 Data preparation means to prepare our data for our problem
 In practice the whole dataset is rarely needed to solve one problem
 E.g. perform feature selection (aka remove not needed attributes)

 Recall: Our believed pattern in the data
 A ‘pattern with ‘petal length‘ & ‘petal width‘ somehow influence the type

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(N = 100 samples with 4 attributes and 1 class label)

 sepal length in cm
 sepal width in cm
 petal length in cm
 petal width in cm
 class: Iris Setosa, or

Iris Versicolour, or
Iris Virginica

(N = 100 samples with 2 attributes and 1 class label)

 petal length in cm
 petal width in cm
 class: Iris Setosa, or

Iris Versicolour, or
Iris Virginica

(export or save dataset
to iris-twoclass-twoattr.data)

89 / 200

 Different samples of the original Iris dataset
 Created for linear seperability and non-linear seperability

Iris Dataset – Open Data

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[14] Iris Dataset

90 / 200

Check Preparation Phase: Plotting the Data

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(Recall: we believed in a ‘pattern‘ with ‘petal length‘
& ‘petal width‘ somehow influence the flower type)

(attributes with d=2)

(x1 is petal length,
x2 is petal width)

(what about the class labels?)

(N = 100 samples)

91 / 200

Check Preparation Phase: Class Labels

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(still no machine learning so far)

(N = 100 samples)

92 / 200

Linearly Seperable Data & Linear Decision Boundary

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(decision boundary)

(4) Modelling Phase

?

 The data is
linearly seperable
(rarely in practice)

 A line becomes a
decision boundary
to determine if a
new data point is
class red/green

93 / 200

(N = 100 samples)

Separating Line & Mathematical Notation

 Data exploration results
 A line can be crafted between the classes since linearly seperable data
 All the data points representing Iris-setosa will be below the line
 All the data points representing Iris-virginica will be above the line

 More formal mathematical notation
 Input:
 Output: class +1 (Iris-virginica) or class -1 (Iris-setosa)

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(decision boundary)

(attributes of flowers)

Iris-virginica if

Iris-setosa if

(compact notation)

(wi and threshold are
still unknown to us)

94 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Separating Line & ‘Decision Space‘ Example

modified from [13] An Introduction to Statistical Learning

(equation of a line)

(decision boundary)

(all points Xi on this line
have to satisfy this equation)

95 / 200

A Simple Linear Learning Model – The Perceptron

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Human analogy in learning
 Human brain consists of nerve cells called neurons
 Human brain learns by changing the strength of neuron connections (wi)

upon repeated stimulation by the same impulse (aka a ‘training phase‘)
 Training a perceptron model means adapting the weights wi

 Done until they fit input-output relationships of the given ‘training data‘

(representing the threshold)

(training data)

(modelled as
bias term)

d
(dimension of features)

(activation
function,
+1 or -1) (the signal)

[8] F. Rosenblatt, 1957

96 / 200

Perceptron – Example of a Boolean Function

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(training data)

(trained perceptron model)

(training phase)

 Output node interpretation
 More than just the weighted sum of the inputs – threshold (aka bias)
 Activation function sign (weighted sum): takes sign of the resulting sum

(e.g. consider sample #3,
sum is positive (0.2)  +1)

(e.g. consider sample #6,
sum is negative (-0.1)  -1)

97 / 200

Summary Perceptron & Hypothesis Set h(x)

 When: Solving a linear classification problem
 Goal: learn a simple value (+1/-1) above/below a certain threshold
 Class label renamed: Iris-setosa = -1 and Iris-virginica = +1

 Input:

 Linear formula
 All learned formulas are different hypothesis for the given problem

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[8] F. Rosenblatt, 1957

(parameters that define
one hypothesis vs. another)

(red parameters correspond
to the redline in graphics)

(attributes in one dataset)

(take attributes and give them different weights – think of ‘impact of the attribute‘)

(each green space and
blue space are regions
of the same class label
determined by sign
function)

(but question remains: how do
we actually learn wi and threshold?)

98 / 200

Perceptron Learning Algorithm – Understanding Vector W

 When: If we believe there is a linear pattern to be detected
 Assumption: Linearly seperable data (lets the algorithm converge)
 Decision boundary: perpendicular vector wi fixes orientation of the line

 Possible via simplifications since
we also need to learn the threshold:

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(vector notation, using T = transpose)wi

(equivalent dotproduct notation)

(all notations are equivalent and result is a scalar from which we derive the sign)[9] Rosenblatt, 1958

(points on the decision
boundary satisfy this equation)

99 / 200

Understanding the Dot Product – Example & Interpretation

 ‘Dot product‘
 Given two vectors
 Multiplying corresponding components of the vector
 Then adding the resulting products
 Simple example:
 Interesting: Dot product of two vectors is a scalar

 ‘Projection capabilities of Dot product‘ (simplified)
 Orthogonal projection of vector in the direction of vector

 Normalize using length of vector

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(a scalar!)

(projection)

(our example)

 Dot Products are important in machine learning, e.g. in Support Vector Machines, see Appendix C
100 / 200

Perceptron Learning Algorithm – Learning Step

 Iterative Method using (labelled) training data

1. Pick one misclassified
training point where:

2. Update the weight vector:

 Terminates when there are
no misclassified points

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(a) adding a vector or
(b) subtracting a vector

x

w + yx

w

y = +1

y = -1

x

w – yx

w

(converges only with linearly seperable data)

(one point at a time is picked)

(a)

(b)

(yn is either +1 or -1)

101 / 200

[Video] Perceptron Learning Algorithm

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[10] PLA Video

102 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Systematic Process to Support Learning From Data

 Systematic data analysis guided by a ‘standard process‘
 Cross-Industry Standard Process for Data Mining (CRISP-DM)

 Lessons Learned from Practice
 Go back and forth between

the different six phases
[11] C. Shearer, CRISP-DM model,
Journal Data Warehousing, 5:13

 A data mining project is
guided by these six phases:
(1) Problem Understanding;
(2) Data Understanding;
(3) Data Preparation;
(4) Modeling;
(5) Evaluation;
(6) Deployment

 A more detailed description of all six CRISP-DM phases is in the Appendix B of the slideset

(learning
takes place)

103 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Machine Learning & Data Mining Tasks in Applications

 Predictive Tasks
 Predicts the value of an attribute based on values of other attributes
 Target/dependent variable: attribute to be predicted
 Explanatory/independent variables: attributed used for making predictions
 E.g. predicting the species of a flower based on characteristics of a flower

 Descriptive Tasks
 Derive patterns that summarize the underlying relationships in the data
 Patterns here can refer to correlations, trends, trajectories, anomalies
 Often exploratory in nature and frequently require postprocessing
 E.g. credit card fraud detection with unusual transactions for owners

[1] Introduction to Data Mining

 Machine learning tasks can be divided into two major categories: Predictive and Descriptive Tasks

104 / 200

Predicting Task: Obtain Class of a new Flower ‘Data Point‘

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(decision boundary)

(4) Modelling Phase

?

[4] Image sources: Species Iris Group of North America Database, www.signa.org
105 / 200

(N = 100 samples)

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Summary Terminologies & Different Dataset Elements

 Target Function
 Ideal function that ‘explains‘ the data we want to learn

 Labelled Dataset (samples)
 ‘in-sample‘ data given to us:

 Learning vs. Memorizing
 The goal is to create a system that works well ‘out of sample‘
 In other words we want to classify ‘future data‘ (ouf of sample) correct

 Dataset Part One: Training set
 Used for training a machine learning algorithms
 Result after using a training set: a trained system

 Dataset Part Two: Test set
 Used for testing whether the trained system might work well
 Result after using a test set: accuracy of the trained model

(5) Evaluation Phase

(4) Modelling Phase

106 / 200

Model Evaluation – Training and Testing Phases

 Different Phases in Learning
 Training phase is a hypothesis search
 Testing phase checks if we are on right track

(once the hypothesis clear)

 Work on ‘training examples‘
 Create two disjoint datasets
 One used for training only

(aka training set)
 Another used for testing only

(aka test set)
 Exact seperation is rule of thumb per use case (e.g. 10 % training, 90% test)
 Practice: If you get a dataset take immediately test data away

(‘throw it into the corner and forget about it during modelling‘)
 Reasoning: Once we learned from training data it has an ‘optimistic bias‘

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(e.g. student exam training on examples to
get Ein ‚down‘, then test via exam)

Training Examples

(historical records, groundtruth data, examples)

(5) Evaluation Phase

‘test set’‘training set’

(4) Modelling Phase

107 / 200

Model Evaluation – Testing Phase & Confusion Matrix

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Model is fixed
 Model is just used with the testset
 Parameter wi are set and we have a linear decision function

 Evaluation of model performance
 Counts of test records that are incorrectly predicted
 Counts of test records that are correctly predicted
 E.g. create confusion matrix for a two class problem

(5) Evaluation Phase

Counting per sample Predicted Class

Class = 1 Class = 0

Actual
Class

Class = 1 f11 f10

Class = 0 f01 f00

(serves as a basis for further performance metrics usually used)

108 / 200

Model Evaluation – Testing Phase & Performance Metrics

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Accuracy (usually in %)

 Error rate

 If model evaluation is satisfactory:

(5) Evaluation PhaseCounting per sample Predicted Class

Class = 1 Class = 0

Actual
Class

Class = 1 f11 f10

Class = 0 f01 f00

(6) Deployment Phase

(100% accuracy in learning often
points to problems using machine
learning methos in practice)

109 / 200

Non-linearly Seperable Data in Practice – Which model?

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

?

(4) Modelling Phase

(linear decision boundary)

(non-linear decision boundary)

(lessons learned from practice: requires soft-thresholds to allow
for some errors being overall better for new data
 Occams razor – ‘simple model better‘)

(lessons learned from practice: requires
non-linear decision boundaries)

(resampled, again
N = 100 samples)

110 / 200

Key Challenges: Why is it not so easy in practice?

 Scalability
 Gigabytes, Terabytes, and Petabytes datasets that fit not into memory
 E.g. algorithms become necessary with out-of-core/CPU strategies

 High Dimensionality
 Datasets with hundreds or thousand attributes become available
 E.g. bioinformatics with gene expression data with thousand of features

 Heterogenous and Complex Data
 More complex data objects emerge and unstructured data sets
 E.g. Earth observation time-series data across the globe

 Data Ownership and Distribution
 Distributed datasets are common (e.g. security and transfer challenges)

 Key challenges faced when doing traditional data analysis and machine learning are scalability,
high dimensionality of datasets, heterogenous and complex data, data ownership & distribution

 Combat ‘overfitting‘ is the key challenge in machine learning using validation & regularization
Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 111 / 200

Prevent Overfitting for better ‘ouf-of-sample‘ generalization

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[15] Stop Overfitting, YouTube

112 / 200

Appendix B: CRISP-DM Process

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 113 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Summary: Systematic Process

 Systematic data analysis guided by a ‘standard process‘
 Cross-Industry Standard Process for Data Mining (CRISP-DM)

 Lessons Learned from Practice
 Go back and forth between

the different six phases
[11] C. Shearer, CRISP-DM model,
Journal Data Warehousing, 5:13

 A data mining project is
guided by these six phases:
(1) Problem Understanding;
(2) Data Understanding;
(3) Data Preparation;
(4) Modeling;
(5) Evaluation;
(6) Deployment

114 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

1 – Problem (Business) Understanding

 Task A – Determine Business Objectives
 Background, Business Objectives, Business Success Criteria

 Task B – Situation Assessment
 Inventory of Resources, Requirements, Assumptions, and Contraints
 Risks and Contingencies, Terminology, Costs & Benefits

 Task C – Determine Data Mining Goal
 Data Mining Goals and Success Criteria

 Task D – Produce Project Plan
 Project Plan
 Initial Assessment of Tools & Techniques

[12] CRISP-DM User Guide

 The Business Understanding phase consists of four distinct tasks: (A) Determine Business
Objectives; (B) Situation Assessment; (C) Determine Data Mining Goal; (D) Produce Project Plan

115 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

2 – Data Understanding

 Task A – Collect Initial Data
 Initial Data Collection Report

 Task B – Describe Data
 Data Description Report

 Task C – Explore Data
 Data Exploration Report

 Task D – Verify Data Quality
 Data Quality Report

 The Data Understanding phase consists of four distinct tasks:
(A) Collect Initial Data; (B) Describe Data; (C) Explore Data; (D) Verify Data Quality

[12] CRISP-DM User Guide

116 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

3 – Data Preparation

 Task A – Data Set
 Data set description

 Task B – Select Data
 Rationale for inclusion / exclusion

 Task C – Clean Data
 Data cleaning report

 Task D – Construct Data
 Derived attributes, generated records

 Task E – Integrate Data
 Merged data

 Task F – Format Data
 Reformatted data

 The Data Preparation phase consists of six distinct tasks: (A) Data Set; (B) Select Data;
(C) Clean Data; (D) Construct Data; (E) Integrate Data; (F) Format Data

[12] CRISP-DM User Guide

117 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

4 – Modeling

 Task A – Select Modeling Technique
 Modeling assumption, modeling technique

 Task B – Generate Test Design
 Test design

 Task C – Build Model
 Parameter settings, models, model description

 Task D – Assess Model
 Model assessment, revised parameter settings

 The Data Preparation phase consists of four distinct tasks: (A) Select Modeling
Technique; (B) Generate Test Design; (C) Build Model; (D) Assess Model;

[12] CRISP-DM User Guide

118 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

5 – Evaluation

 Task A – Evaluate Results
 Assessment of data mining results w.r.t. business success criteria
 List approved models

 Task B – Review Process
 Review of Process

 Task C – Determine Next Steps
 List of possible actions, decision

 The Data Preparation phase consists of three distinct tasks: (A) Evaluate Results;
(B) Review Process; (C) Determine Next Steps

[12] CRISP-DM User Guide

119 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

6 – Deployment

 Task A – Plan Deployment
 Establish a deployment plan

 Task B – Plan Monitoring and Maintenance
 Create a monitoring and maintenance plan

 Task C – Product Final Report
 Create final report and provide final presentation

 Task D – Review Project
 Document experience, provide documentation

 The Data Preparation phase consists of three distinct tasks: (A) Plan Deployment;
(B) Plan Monitoring and Maintenance; (C) Produce Final Report; (D) Review Project

[12] CRISP-DM User Guide

120 / 200

Appendix C: Geometric Interpretation of SVMs & Kernels

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 121 / 200

Geometric SVM Interpretation and Setup (1)

 Think ‘simplified coordinate system‘ and use ‘Linear Algebra‘
 Many other samples are removed (red and green not SVs)
 Vector of ‘any length‘ perpendicular to the decision boundary
 Vector points to an unknown quantity (e.g. new sample to classify)
 Is on the left or right side of the decision boundary?

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

--

-- ++

++

--

--

 Dot product
 With takes the projection on the
 Depending on where projection is it is

left or right from the decision boundary
 Simple transformation brings decison rule:

means
 (given that b and are unknown to us)

(projection)

++1

(constraints are not enough to fix particular b or w,
need more constraints to calculate b or w)

++

122 / 200

Geometric SVM Interpretation and Setup (2)

 Creating our constraints to get b or computed
 First constraint set for positive samples
 Second constraint set for negative samples
 For mathematical convenience introduce variables (i.e. labelled samples)

for and for

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

--

--

--

(projection)

++
--

++ --

 Multiply equations by
 Positive samples:
 Negative samples:
 Both same due to and

(brings us mathematical convenience often quoted)

(additional constraints just for support vectors itself helps)

2

++

++

123 / 200

Geometric SVM Interpretation and Setup (3)

 Determine the ‘width of the margin‘
 Difference between positive and negative SVs:
 Projection of onto the vector
 The vector is a normal vector, magnitude is

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

--

--

++

-- ++

(projection)

 Unit vector is helpful for ‘margin width‘
 Projection (dot product) for margin width:

 When enforce constraint:

(unit vector)

(Dot product of two vectors is a scalar, here the width of the margin)

2

++
--

3

124 / 200

Constrained Optimization Steps SVM (1)

 Use ‘constraint optimization‘ of mathematical toolkit

 Idea is to ‘maximize the width‘ of the margin:

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

--

--

++

-- ++

(projection)

(drop the constant
2 is possible here)

(equivalent)

(equivalent for max)

(mathematical
convenience) 3

 Next: Find the extreme values
 Subject to constraints

2

125 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (2)

 Use ‘Lagrange Multipliers‘ of mathematical toolkit
 Established tool in ‘constrained optimization‘ to find function extremum
 ‘Get rid‘ of constraints by using Lagrange Multipliers 4

 Introduce a multiplier for each constraint

 Find derivatives for extremum & set 0
 But two unknowns that might vary
 First differentiate w.r.t.
 Second differentiate w.r.t.

2

(interesting: non zero for support vectors, rest zero)

(derivative gives the gradient, setting 0 means extremum like min)
126 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (3)

 Lagrange gives:

 First differentiate w.r.t

 Simple transformation brings:

 Second differentiate w.r.t.

(i.e. vector is linear sum of samples)

(recall: non zero for support vectors, rest zero  even less samples)

5

5

(derivative gives the
gradient, setting 0 means
extremum like min)

127 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (4)

 Lagrange gives:

 Find minimum
 Quadratic optimization problem
 Take advantage of 5

(plug into)

(b constant
in front sum)

5

128 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (5)

 Rewrite formula:

(was 0)

(the same)

6

(results in)

 Equation to be solved by some
quadratic programming package

(optimization
depends only on dot
product of samples)

129 / 200

++1

(decision rule also
depends on
dotproduct)

++

Use of SVM Classifier to Perform Classification

 Use findings for decision rule

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

-- ++

--

--

(projection)

++

5

130 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM & Dot Product

 Rewrite formula:

(was 0)

(the same)

6

(results in)

 Equation to be solved by some
quadratic programming package

(optimization
depends only on dot
product of samples)

131 / 200

 Dotproduct enables nice more elements
 E.g. consider non linearly seperable data
 Perform non-linear transformation of the

samples into another space (work on features)

6

(optimization
depends only on dot
product of samples)

(for decision rule
above too)

(in optimization)

++1

(decision rule also
depends on
dotproduct)

++

Kernel Methods & Dot Product Dependency

 Use findings for decision rule

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

-- ++

--

--

(projection)

++

5

(trusted Kernel
avoids to know Phi)7(kernel trick is

substitution)
132 / 200

Appendix D: Convolutional Neural Networks in Keras

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 133 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Solution Tools: Artificial Neural Network Learning Model

Elements we
not exactly

(need to) know

Training Examples

Elements we
must and/or

should have and
that might raise
huge demands

for storage

Final Hypothesis

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we

derive from
our skillset

‘constants‘
in learning

(ideal function)

(historical records, groundtruth data, examples)

(final formula)

(Artificial Neural Networks - ANNs)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Backpropagation)

‘constants‘
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

134 / 200

ANN – Handwritten Character Recognition MNIST Dataset

 Metadata
 Subset of a larger dataset from US National Institute of Standards (NIST)
 Handwritten digits including corresponding labels with values 0 to 9
 All digits have been size-normalized to 28 * 28 pixels

and are centered in a fixed-size image for direct processing
 Not very challenging dataset, but good for experiments / tutorials

 Dataset Samples
 Labelled data (10 classes)
 Two separate files

for training and test
 60000 training samples (~47 MB)
 10000 test samples (~7.8 MB)

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 135 / 200

MNIST Dataset for the Tutorial

 When working with the dataset
 Dataset is not in any standard image format like jpg, bmp, or gif
 File format not known to a graphics viewer
 One needs to write typically a small program to read and work for them
 Data samples are stored in a simple file format that is designed for

storing vectors and multidimensional matrices
 The pixels of the handwritten digit images are organized row-wise with

pixel values ranging from 0 (white background) to 255 (black foreground)
 Images contain grey levels as a result of an anti-aliasing technique used

by the normalization algorithm that generated this dataset.

 Available already for the tutorial
 Part of the Tensorflow tutorial package and Keras tutorial package

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 136 / 200

MNIST Dataset for the Tutorial

 When working with the dataset
 Dataset is not in any standard image format like jpg, bmp, or gif
 One needs to write typically a small program to read and work for them
 Data samples are stored in a simple file format that is designed for

storing vectors and multidimensional matrices (here numpy binary files)
 The pixels of the handwritten digit images are organized row-wise with

pixel values ranging from 0 (white background) to 255 (black foreground)
 Images contain grey levels as a result of an anti-aliasing technique used

by the normalization algorithm that generated this dataset.

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 137 / 200

MNIST Dataset – Exploration – One Character Encoding

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 138 / 200

MNIST Dataset – Exploration Script Training

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Loading MNIST training
datasets (X) with labels
(Y) stored in a binary
numpy format

 Format is 28 x 28 pixel
values with grey level
from 0 (white
background) to 255
(black foreground)

 Small helper function
that prints row-wise one
‘hand-written‘ character
with the grey levels
stored in training dataset

 Should reveal the nature
of the number (aka label)

 Loop of the training dataset and the testing dataset (e.g. first 10 characters as shown here)
 At each loop interval the ‘hand-written‘ character (X) is printed in ‘matrix notation‘ & label (Y)

139 / 200

MNIST Dataset – Exploration – Selected Training Samples

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 140 / 200

ANN –MNIST Dataset – Parameters & Data Normalization

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 NB_CLASSES: 10 Class Problem
 NB_EPOCH: number of times the model is

exposed to the training set – at each
iteration the optimizer adjusts the weights
so that the objective function is minimized

 BATCH_SIZE: number of training instances
taken into account before the optimizer
performs a weight update

 OPTIMIZER: Stochastic Gradient Descent
(‘SGD‘) – only one training sample/iteration

 Data load shuffled between
training and testing set

 Data preparation, e.g. X_train is
60000 samples / rows of 28 x 28
pixel values that are reshaped in
60000 x 784 including type
specification (i.e. float32)

 Data normalization: divide by
255 – the max intensity value
to obtain values in range [0,1]

141 / 200

ANN – MNIST Dataset – A Simple Model

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Dense() represents a
fully connected layer
used in ANNs that
means that each
neuron in a layer is
connected to all
neurons located in
the previous layer

 The Sequential()
Keras model is a
linear pipeline (aka
‘a stack‘) of various
neural network layers
including Activation
functions of different
types (e.g. softmax)

 The non-linear Activation function
‘softmax‘ represents a generalization of
the sigmoid function – it squashes an n-
dimensional vector of arbitrary real
values into a n-dimenensional vector of
real values in the range of 0 and 1 – here
it aggregates 10 answers provided by
the Dense layer with 10 neurons

 Loss function is a multiclass logarithmic
loss: target is ti,j and prediction is pi,j

142 / 200

ANN – MNIST Dataset – Job Script

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 143 / 200

ANN – MNIST Dataset – A Simple Model – Output

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 144 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Solution Tools: Convolutional Networks Learning Model

Elements we
not exactly

(need to) know

Training Examples

Elements we
must and/or

should have and
that might raise
huge demands

for storage

Final Hypothesis

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we

derive from
our skillset

‘constants‘
in learning

(ideal function)

(historical records, groundtruth data, examples)

(final formula)

(Convolutional Neural Networks)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Backpropagation – modified layers)

‘constants‘
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

145 / 200

CNNs – Basic Principles

 Simple application example
 MNIST database written characters
 Use CNN architecture with different layers
 Goal: automatic classification of characters

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Convolutional Neural Networks (CNNs/ConvNets) implement a connectivity pattner between
neurons inspired by the animal visual cortex and use several types of layers (convolution, pooling)

 CNN key principles are local receptive fields, shared weights, and pooling (or down/sub-sampling)
 CNNs are optimized to take advantage of the spatial structure of the data

[36] A. Rosebrock
[35] M. Nielsen

146 / 200

CNNs – Principle Local Receptive Fields

 MNIST dataset example
 28 * 28 pixels modeled as square of neurons in a convolutional net
 Values correspond to the 28 * 28 pixel intensities as inputs

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[35] M. Nielsen

(‘little window‘ on
the input pixels)

(red box indicate the local receptive
field for the hidden neuron)

(28 * 28 pixel image) (5 * 5 local connectivity)

147 / 200

CNNs – Principle Local Receptive Fields & Sliding

 MNIST database example
 Apply stride length = 1
 Different configurations possible and depends on application goals
 Creates ‘feature map‘ of 24 * 24 neurons (hidden layer)

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[35] M. Nielsen

(28 * 28 pixel image) (24 * 24 feature map) (28 * 28 pixel image) (24 * 24 feature map)

148 / 200

CNNs –Example with an ANN with risk of Overfitting

 MNIST database example
 CNN: e.g. 20 feature maps with 5 * 5 (+bias) = 520 weights to learn
 Apply ANN that is fully connected between neurons
 ANN: fully connected first layer with 28 * 28 = 784 input neurons
 ANN: e.g. 15 hidden neurons with 784 * 15 = 11760 weights to learn

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[35] M. Nielsen

(eventually lead to overfitting and
much computing time)

149 / 200

CNNs – Principle Shared Weights & Feature Maps

 Approach
 CNNs use same shared weights for each of the 24 * 24 hidden neurons
 Goals: significant reduction of number of parameters (prevent overfitting)
 Example: 5 * 5 receptive field  25 shared weights + shared bias

 Feature Map
 Detects one local feature
 E.g. 3: each feature map

is defined by a set of 5 * 5
shared weights and a single
shared bias leading to 24 * 24

 Goal: The network can now
detect 3 different kind of
features

 Benefit: learned feature being detectable across the entire image

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(shared weights are also known
to define a kernel or filter)

[35] M. Nielsen

(many more in practice)

150 / 200

CNNs – Principle of Pooling

 ‘Downsampling‘ Approach
 Usually applied directly after convolutional layers
 Idea is to simplify the information in the output from the convolution
 Take each feature map output from the convolutional layer and

generate a condensed feature map
 E.g. Pooling with 2 * 2 neurons using ‘max-pooling‘
 Max-Pooling outputs the maximum activation in the 2 * 2 region

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[35] M. Nielsen
151 / 200

CNN – Application Example MNIST

 MNIST database example
 Full CNN with the addition of output neurons per class of digits
 Apply ‘fully connected layer‘: layer connects every neuron from the

max-pooling outcome layer to every neuron of the 10 out neurons
 Train with backpropagation algorithm (gradient descent), only small

modifications for new layers

 Approach works, except for some bad
training and test examples

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(another indicator
that even with

cutting edge technology
machine learning never

achieves 100% performance)[35] M. Nielsen
152 / 200

MNIST Dataset – CNN Model

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[37] A. Gulli et al.
153 / 200

MNIST Dataset – CNN Python Script

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 OPTIMIZER: Adam - advanced optimization
technique that includes the concept of a
momentum (a certain velocity component)
in addition to the acceleration component
of Stochastic Gradient Descent (SGD)

 Adam computes individual adaptive
learning rates for different parameters from
estimates of first and second moments of
the gradients

 Adam enables faster convergence at the
cost of more computation and is currently
recommended as the default algorithm to
use (or SGD + Nesterov Momentum)

[38] D. Kingma et al.,
‘Adam: A Method for
Stochastic Optimization’

154 / 200

MNIST Dataset – CNN Model – Output

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 155 / 200

Appendix E: RNNs & LSTMs in Keras

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 156 / 200

Revisit CNNs vs. RNNs – Different Type of Neural Networks

 CNNs  spatial
 Example: remote sensing application

domain, hyperspectral datasets & images
 Neural network key property:

exploit spatial geometry of inputs
 Approach: Apply convolution & pooling

(height x width x feature) dimensions

 RNNs  temporal
 Examples: texts, speech, time series datasets
 Neural network key property:

exploit sequential nature of inputs
 Approach: Train a graph of ‘RNN cells‘ & each cell performs

the same operation on every element in the given sequence

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 RNNs are used to create sequence models whereby the occurrence of an element in the
sequence (e.g. text, speech, time series) is dependent on the elements that appeared before it

ht

RNN model

Xt

157 / 200

Sequence Models

 Model Categorization
 Based on different inputs/outputs to/from the sequence models

 Practical ‘standard dataset‘ perspective
 Often the order of samples is not important
 Training/testing datasets and their samples

have often no explicit order (i.e. ‘sets‘)

 Practical ‘sequence dataset‘ perspective
 Order of samples is important
 Sequence model learning/inference needs this order

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Sequence models enable various sequence predictions that are inherent different to other
more traditional predictive modeling techniques or supervised learning approaches

 In contrast to mathematical sets often used, the ‘sequence‘ model imposes an explicit
order on the input/output data that needs to be preserved in training and/or inference

 Sequence models are driven by application goals and include sequence prediction,
sequence classification, sequence generation, and sequence-to-sequence prediction

158 / 200

Limitations of Feed Forward ANN

 Selected application examples revisited
 Predicting next word in a sentence requires ‘history‘ of previous words
 Translating european in chinese language requires ‘history‘ of context

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Traditional feed forward artificial neural networks show limits when a certain ‘history‘ is required
 Each Backpropagation forward/backward pass starts a new pass independently from pass before
 The ‘history‘ in the data is often a specific type of ‘sequence‘ that required another approach

X1

X2

y

w31

w41

w32

w42

w54

w53

n2

n1 n3

n4

n5

known known Initially unknown 

159 / 200

Recurrent Neural Network (RNN)

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 A Recurrent Neural Network (RNN) consists of cyclic connections that enable the neural network to
better model sequence data compared to a traditional feed forward artificial neural network (ANN)

 RNNs consists of ‘loops‘ (i.e. cyclic connections) that allow for information to persist while training
 The repeating RNN model structure is very simple whereby each has only a single layer (e.g. tanh)

tanh

Xt

ht

 Selected applications
 Sequence labeling
 Sequence prediction tasks
 E.g. handwriting recognition
 E.g. language modeling

 Loops / cyclic connections
 Enable to pass information

from one step to the
next iteration

 Remember ‘short-term‘
data dependencies

ht

RNN model

Xt

(‘delay’)

(‘delay’
from t-1)

160 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

tanh

Xt-1

ht-1

tanh

Xt

ht

tanh

Xt+1

ht+1

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

Unrolled RNN
 A RNN can be viewed as

multiple copies of the
same network, each
passing a message to a
successor – this gets
clear when ‘unrolling
the RNN loop’

(use backpropagation through
time optimization approach)

(‘delay’)

161 / 200

Unrolled RNN – Role of ‘Delay‘ and Nodes in Layers

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

(‘delay’)
(output layer)

(input layer)

(hidden layer)

x1

tanh

h1

Delay
h1-1

x2

tanh

h2 (output layer nodes)

(input layer nodes)

(hidden layer nodes + activation function tanh)

 RNNs are unrolled programmatically during the training and prediction phase
 Idea of ‘delay‘ means feeding back the output of a neural network layer at a specific time t to the

input of the same nerual network layer at time t+1  establishes something like ‘short memory‘

(missing in ANNs)

162 / 200

RNN Model – Simple Example – Predict Next Character

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

0.1
- 0.7
0.6

1
0
0
0

‘h‘

0.1
0.6
0.2
0.1

‘e‘

- 0.4
0.8
1.2

0
1
0
0

‘e‘

0.2
0.3
0.4
0.1

‘l‘

0.7
- 1.2
0.2

0
0
1
0

‘l‘

0.2
0.2
0.5
0.1

‘l‘

0.7
- 1.2
0.2

0
0
1
0

‘l‘

0.0
0.0
0.1
0.9

‘o‘

…

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

(probabilities)

(one-hot encoded
characters)

(‘delay’)  Sequence values that
are separated by a
significant number of
words (i.e. deep RNN)
leads to the vanishing
gradient problem

 Reasoning is that small
gradients or weights
with values than 1 are
multiplied many
times through the
multiple time steps,
i.e. gradients shrink
asymptotically to zero

 Effect is that weights of
those earlier layers are
not changed
significantly and the
network will not learn
long-term dependencies

163 / 200

RNN Example – Data Repository

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[42] Folger Digital Texts

164 / 200

RNN Example – Language Model Setup

 Typical approach
 Create ‘generative model’ to predict the next word given previous words
 Enables to generate text by sampling from the output probabilities
 Build a ‘word-based language model’ can be computational complex

 Simplified model for tutorial
 Reasoning: simpler model and quicker training
 Train a ’character based language model’

on one text of Shakespeare
 Take advantage of standard RNN cells
 Predict (only) the next character

given 10 previous characters
 Use the trained language model

to generate some text in the same style

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[37] Deep Learning with Keras

(10 characters  prediction)

165 / 200

RNN Example – Keras Python Script – Preprocessing

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Import necessary
modules, e.g.
SimpleRNN for a
simple RNN cell, or
Dense for a fully
connected layer

 Preprocessing of
original files that
e.g. contain line
breaks, non-ASCII
characters, capital
characters; Result
is variable text
with ‘cleaned text’

 Create lookup
tables for
characters per
index & vice versa Character-level RNN: vocabulary is the set of characters that occur

in the text  use index of character instead of a character itself [37] Deep Learning with Keras
166 / 200

RNN Example – Keras Python Script – Input & Label Texts

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Task: Predict (only)
the next character
given 10 previous
characters 
SEQLEN = 10,
STEP=1

 Moving step-wise
through text by
STEP=1 number of
characters &
extract span of text
with size
SEQLEN=10

 Each row of input to the RNN corresponds to one of the input texts
 SEQLEN characters input; vocabulary size = nb_chars (set of different

characters in text)  one-hot encoded vector of size (nb_chars)
[37] Deep Learning with Keras

(input_chars


label_chars)

167 / 200

RNN Example – Modelling & Decisions

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

0.1
- 0.7
0.6

1
0
0
0

- 0.4
0.8
1.2

0
1
0
0

0.7
- 1.2
0.2

0
0
1
0

0.7
- 1.2
0.2

0
0
1
0

0
0
0
1

…

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

(input: one-hot
encoded

vector of size
nb_chars)

(input: SEQLEN)

(each row in input is
2D tensor

SEQLEN x nb_chars)

(output/label:
one-hot encoded

vector of size
nb_chars)

0.0
0.0
0.1
0.9

(internal decision
normalizes the

emitted scores to
probabilities
usually via
softmax)

(good loss
function for
categorical
output
 categorical
cross-entropy
loss function)

1
0
0
0

0
0
0
1

0
0
1
0

168 / 200

RNN Example – Keras Python Script – Model & Parameter

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Hyperparameter
HIDDEN_SIZE=128
means output
dimension of size
128 for ok text;
parameter by
experimentation

 Sequential model
adding first a
SimpleRNN layer
of size 128,
return_sequences
= False means
single character as
output/label not a
‘sequence of
characters’, input
tensor is SEQLEN x
nb_chars; unroll =
True - performance

 Adding a Dense layer of size nb_chars & activation function ‘softmax‘
(emits scores for each of the characters in vocabulary probabilities)

 Use optimizer ‘rmsprop‘ with ‘categorical_crossentropy‘ loss function
169 / 200

RNN Example – Keras Model & Activation Functions

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

x1

tanh

h1

Delay
h1-1

x2

tanh

h2 (Dense layer with ‘number of characters’ as nodes +
‘softmax’ activation function as output layer nodes)

(input layer nodes)

(SimpleRNN layer with 128 hidden nodes with
default hyperbolic tangent as activation function,
i.e. values squashed between 1 and -1)

(internal decision
normalizes the

emitted scores to
probabilities
usually via
softmax)(iterations)

170 / 200

RNN Example – Keras Python Script – Training Process

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Train model for
epochs = 1 since no
labelled dataset
and then testing;
training for 25
iterations 
NUM_ITERATIONS;
aka training for 25
epochs/iterations

 Cf. supervised learning process (day one)
 Labels existing (not in this unsupervised example)
 Train model for fixed number of epochs
 Evaluate model against test dataset

 Test: generate a
character from
model given a
random input;
dropping the first
character from the
input & append
the predicted
character from our
previous run &
generate another
character (100 x)

[37] Deep Learning with Keras

RNN Example – Submit Script

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Job submit script
 Specify good name for the job
 Allocate GPUs

for deep learning job
 Specify job queue
 Restore module

environment with
all dependencies

 Use python with
rnn-example.py script

 Use sbatch
 Use jobscript

172 / 200

RNN Example – Output Interpretation

 Challenge: unsupervised learning problem
 Check output with ‘more out.txt‘
 Idea: string gives us an indication of the quality of the model
 More epochs/iterations  better quality of the model

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(learned well to
spell compared to
first iteration but
no coherent
thoughts  still
interesting since
no word concept)

173 / 200

Different Useful LSTM Models

 Standard LSTM
 Memory cells with single LSTM layer; used in simple network structures

 Stacked LSTM
 LSTM layers are stacked one on top of another; creating deep networks

 CNN LSTM
 CNNs to learn features (e.g. images); LSTM for image sequences

 Encoder-Decoder LSTM
 One LSTM network  encode input; one LSTM network  decode output

 Bidirectional LSTM
 Input sequences are presented and learned both forward & backwards

 Generative LSTM
 LSTMs learn the inherent structure relationship in input sequences;

then generate new plausible sequences

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 174 / 200

Long Short-Term Memory (LSTM) Models

 Specific type of Recurrent Neural Network (RNN)
 Different to techniques like standard Artificial Neural Networks (ANNs) or

Convolutional Neural Networks (CNNs)
 Solving certain limits of ANNs through RNNs design
 RNNs offer short-term memory – LSTMs add ‘long-term‘ capabilities
 Idea: improved performance through ‘more memory‘ (cp. HPC?!)

 Designed specifically for sequence prediction problems
 World-class results in complex problem domains & applications
 E.g. language translation, automatic image captioning, text generation

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[43] A. Karpathy & F. Li, ‘Deep Visual-Semantic Alignments for Generating Image Descriptions’
175 / 200

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

tanh

Xt-1

ht-1

tanh

Xt

ht

tanh

Xt+1

ht+1

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

Unrolled RNN – Revisited
 A RNN can be viewed as

multiple copies of the
same network, each
passing a message to a
successor – this gets
clear when ‘unrolling
the RNN loop’

(use backpropagation through
time optimization approach)

176 / 200

Long Short Term Memory (LSTM) Model

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Long Short Term Memory (LSTM) networks are a
special kind of Recurrent Neural Networks (RNNs)

 LSTMs learn long-term dependencies in data by
remembering information for long periods of time

 The LSTM chain structure consists of four neural
network layers interacting in a specific way

x +

tanh

x

ℴℴ ℴ x

tanh

xt

ht

x +

tanh

x

ℴℴ ℴ x

tanh

Xt+1

Ht+1

x +

tanh

x

ℴℴ ℴ x

tanh

Xt-1

Ht-1
(each line carries
an entire vector)

ht

LSTM model

xt (uses sigmoid ℴ)

177 / 200

LSTM Model – Memory Cell & Cell State

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 LSTM introduce a ‘memory cell‘ structure into the underlying basic RNN architecture using four key
elements: an input gate, a neuron with self-current connection, a forget gate, and an output gate

 The data in the LSTM memory cell flows straight down the chain with some linear interactions (x,+)
 The cell state st can be different at each of the LSTM model steps & modified with gate structures
 Linear interactions of the cell state are pointwise multiplication (x) and pointwise addition (+)
 In order to protect and control the cell state st three different types of gates exist in the structure

tanh

x

ℴℴ ℴ x

tanh

xt

ht

tanh

x

ℴℴ ℴ x

tanh

Xt+1

Ht+1

tanh

x

ℴℴ ℴ x

tanh

Xt-1

Ht-1
(each line carries
an entire vector)

x + x +x +
st

178 / 200

Computing of LSTM Cell – Step 1-2

1. New xt input together with the output from cell hht-1
are squashed via a tanh layer
 Outputs between -1 and 1

2. New xt input together with
the output from cell hht-1
is passed through the ‘input gate‘
 Layer of sigmoid activated nodes whose

output is multiplied by squashed input

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

x +

tanh

x

ℴℴ ℴ x

tanh

xt

ht

12

(uses sigmoid ℴ)

(gate sigmoid ℴ can act to ‘switch
off’ any elments of the input vector
that are not required)

(sigmoid function outputs values between 0 and 1, weights connecting the
input to these nodes can be trained to output values close to zero to ‘switch
off’ certain input values – or outputs close to 1 to ‘pass through’)

[44] Adventures in
Machine Learning

ht-1

179 / 200

Computing of LSTM Cell – Step 3

3. Internal state / forget gate
 LSTM cells have internal cell state st

 ‘Delay‘ – lagged one time step: st-1

 Added to the input data to create
an effective ‘layer of recurrence‘

 Addition instead of ‘usual‘ multiplication
reduces risk of vanishing gradients

 The connection to cell state is carefully
controlled by a forget gate with sigmoid
(works like the input gate)

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

x +

tanh

x

ℴℴ ℴ x

tanh

xt

ht

12

st-1

3

3

(uses sigmoid ℴ)

(gate sigmoid ℴ can act to ‘switch
off’ any elments of the cell state to
steer what variables should be
remembered or forgotten)

[44] Adventures in
Machine Learning

180 / 200

Computing of LSTM Cell – Step 4

4. Output layer & output gate
 Output layer with tanh squashing function

 Output is controlled via output gate
with sigmoid activation function

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

x +

tanh

x

ℴℴ ℴ x

tanh

xt

ht

12

3

3 4

4

(uses sigmoid ℴ)

(gate sigmoid ℴ can learn to
determine which values are
allowed as an output from the cell)

[44] Adventures in
Machine Learning

181 / 200

...

lstm = rnn_cell.BasicLSTMCell(lstm_size, state_is_tuple=False)

...
stacked_lstm = rnn_cell.MultiRNNCell([lstm] * number_of_layers,

state_is_tuple=False)
...
initial_state = state = stacked_lstm.zero_state(batch_size, tf.float32)

for i in range(num_steps):
The value of state is updated
after processing each batch of words.
output, state = stacked_lstm(words[:, i], state)

The rest of the code.
...

final_state = s

Low-Level Tools – Tensorflow

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Tensorflow is an open source library for deep learning models using a flow graph approach
 Tensorflow nodes model mathematical operations and graph edges between the nodes are

so-called tensors (also known as multi-dimensional arrays)
 The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
 Tensorflow work with the high-level deep learning tool Keras in order to create models fast
 LSTM models are created using tensors & graphs and there are LSTM package contributions

[31] Tensorflow Deep Learning Framework

 The class
BasicLSTMCell()
offers a simple
LSTM Cell
implementation
in Tensorflow

182 / 200

High-level Tools – Keras

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[30] Keras Python Deep Learning Library

 Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

 The key idea behind the Keras tool is to enable faster experimentation with deep networks
 Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

keras.layers.LSTM(units,
activation='tanh',

recurrent_activation='hard_sigmoid',

use_bias=True,

kernel_initializer='glorot_uniform',

recurrent_initializer='orthogonal',

bias_initializer='zeros',

unit_forget_bias=True,

kernel_regularizer=None,

recurrent_regularizer=None,

bias_regularizer=None,

activity_regularizer=None,

kernel_constraint=None,

recurrent_constraint=None,

bias_constraint=None,

dropout=0.0, ...)

 Tool Keras supports the LSTM
model via keras.layers.LSTM()
that offers a wide variety of
configuration options

183 / 200

LSTM Example – Data Repository

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[45] Kaggle, UMICH SI650 – Sentiment Classification Data

184 / 200

LSTM Example – Dataset & Application

 Sentiment analysis (many-to-one RNN topology)
 Input: sentence as sequence of words (i.e. movie ratings texts)
 Output: Sentiment value (positive/negative movie rating)
 Application was a former competition (i.e. Kaggle platform overall idea)
 Goal: Create LSTM network that will learn to predict a correct sentiment

 Small dataset example for tutorial: training & test data available
 Training samples: 7086 short sentences (labelled) [~440 KB]
 Test samples: 33052 short sentences[~1.94 MB]
 Format: label & tab seperated sentence
 https://www.kaggle.com/c/si650winter11/data

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[45] Kaggle, UMICH SI650 –
Sentiment Classification Data

185 / 200

LSTM Example – Dataset Exploration

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(labelled training dataset)

(testing dataset)
186 / 200

LSTM Example – Keras Python Script – Preprocessing

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Import necessary
modules, e.g.
LSTM for a simple
LSTM cell, or
Dense for a fully
connected layer

 Import good
sklearn model
selection tools

 Import numpy for
as helper tool

[37] Deep Learning with Keras

 Natural Language
Toolkit (NLTK) is
for building Python
programs working
on human
language datasets
(punkt is tokenizer)

 Location for labeled training data and testset data

187 / 200

LSTM Example – Keras Python Script – Vocabulary Setup

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Perform
exploratory
analysis in order to
find out the
number of unique
words in the whole
corpus & how
many words are
roughly in each
sentence

[37] Deep Learning with Keras

 Exploration reveals
maxlen: 42 &
len(word_freqs):
2313

 Number of words
in sentence
(maxlen) enables a
fixed sequence
length & PAD = 0;
truncate long ones

 Creating indices index2word and vice versa
 Out of vocabulary means UNK (unknown)

188 / 200

LSTM Example – Keras Python Script – Indices & Padding

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Convert input
sentences from the
training data to
word index
sequences and add
unknown ones as
UNK in index

[37] Deep Learning with Keras

 Perform padding
to the maximum
sentence length
(40)

 Labels are binary
(positive/negative
sentiment) and do
not need padding

 Split between training & testing set (ratio rule of thumb 80:20)
 There is another test set put aside for nicely checking out-of-sample

189 / 200

LSTM Example – Modelling & Decisions

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

ht

LSTM model

xt

(unroll the ‘loop’
over t timesteps)

h0

LSTM model

x0

h1

LSTM model

x1

…

(Dense layer with Sigmoid activation function 
0 – negative review / 1 positive review)

(input for each row is a sequence of word indices –
sequence length is given by MAX_SENTENCE_LENGTH)

modified from [37] Deep Learning with Keras

(tensor dimensions: first is None 
indicate that the batch size is currently unknown,

i.e. number of records fed to the network 
defined in runtime using BATCH_SIZE parameter)

(tensor layout: None X MAX_SENTENCE_LENGTH X 1)

(tensor fed to embedding layer 
weights are initialized with small random values & learned

i.e. layer transforms the tensor to a shape of
None X MAX_SENTENCE_LENGTH X EMBEDDING_SIZE)

(output of LSTM is the tensor
None X HIDDEN_LAYER_SIZE, because last tensor can be defined
as return_sequences = False  we just need 0/1 output)

190 / 200

LSTM Example – Keras Python Script – Model & Parameter

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Hyperparameters
embedding=128;
hidden layers=64;
parameter by
experimentation

 Create first
embedding layer with
input tensor None X
maximum sentence
length X 1

 Add regularizer
SpatialDropout1D

 Add LSTM cell with
hidden layer size 64
with regularizers
dropout and
recurrent_dropout

 Add Dense layer and
Sigmoid activation

 All hyperparameters are tuned
experimentally over many runs

 Compile model using binary
cross-entropy loss function good
for a binary model used here

 Use of Adam optimizer as good
general purpose optimizer

[37] Deep Learning with Keras
191 / 200

LSTM Example – Keras Python Script – Train & Evaluate

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Train the LSTM
network for 10
epochs
(NUM_EPOCHS) &
with batch size 32

 Perform validation
at each epoch
using test data

 Evaluate model
against the full test
set showing score
and accuracy

 Show the LSTM
prediction with
pick of a few
random sentences
from the test set
(predicted label,
label & actual
sentence

 Supervised learning process
 Labels existing (not in this unsupervised example)
 Train model for fixed number of epochs
 Evaluate model against test dataset (splitted training)

192 / 200

LSTM Example – Submit Script (JURECA)

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Job submit script
 Specify good name

for the job
 Allocate GPUs for

deep learning job
 Specify job queue
 Restore module

environment with
all dependencies

 Use python with
lstm-example.py script

 Use sbatch
 Use job script

193 / 200

LSTM Example – Output Interpretation

 Supervised learning problem
 Check output with ‘more out.txt‘
 Idea: predicted sentiment should be closed to sentiment labels
 More epochs/iterations  better quality of the model

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(learned well
compared to
first iteration 
one can observe
loss decrease and
increase in
accuracy over
multiple epochs)

194 / 200

LSTM Example – Model Evaluation

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[37] Deep Learning with Keras

 Selected plots (e.g. for papers)
 E.g. matplotlib & pyplot can be used to create simple graphs

195 / 200

Different Useful LSTM Models – Many other Applications

 Standard LSTM
 Memory cells with single LSTM layer; used in simple network structures

 Stacked LSTM
 LSTM layers are stacked one on top of another; creating deep networks

 CNN LSTM
 CNNs to learn features (e.g. images); LSTM for image sequences

 Encoder-Decoder LSTM
 One LSTM network  encode input; one LSTM network  decode output

 Bidirectional LSTM
 Input sequences are presented and learned both forward & backwards

 Generative LSTM
 LSTMs learn the inherent structure relationship in input sequences;

then generate new plausible sequences

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 196 / 200

Tensorflow – LSTM Google Translate Example & GPUs

 Use of 2 LSTM networks in a stacked manner
 Called ‘sequence-2-sequence‘ model
 Encoder network
 Decoder network
 Needs context of sentence

(memory) for translation

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

[47] Sequence Models

197 / 70

[Video] RNN & LSTM

[46] Recurrent Neural Networks, YouTube

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 198 / 200

Acknowledgements – Membery of my HPDP Research Group

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Thesis
Completed

PD Dr.
G. Cavallaro

Dr. M. Goetz
(now KIT)

Thesis
Completed

Senior PhD
Student A.S. Memon

Senior PhD
Student M.S. Memon

MSc M.
Richerzhagen,

now other group

Thesis
Completed

MSc
P. Glock

(now INM-1)

DEEP
Learning
Startup

MSc
C. Bodenstein

(now Soccerwatch.tv)

PhD Student
E. Erlingsson

PhD Student
C. Bakarat

Starting
in Fall
2018

MSc Student
G.S. Guðmundsson
(Landsverkjun)

199 / 200

200 / 200Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

Slides Available at http://www.morrisriedel.de/talks

