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Outline
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Outline

 Traditional Machine Learning Models
 Big Data & Machine Learning Introduction
 Supervised & Unsupervised Learning
 Supervised Learning using parallel SVMs
 Parallelization Benefits using Cross-Validation
 Unsupervised Learning using parallel DBSCAN

 Selected Deep Learning Models
 Short Introduction to Deep Learning 
 Role of Accelerators & GPGPUs
 Comparisons Machine Learning & Deep Learning
 Convolutional Neural Networks (CNNs) Models
 Long Short-Term Memory (LSTM) Networks

 Open Challenges & Summary
 Appendix A – E: Selected In-depth Topics
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 Machine Learning requires 
a full university course 
covering topics beyond 
modeling & algorithms like 
statistical learning theory, 
regularization  & 
validation techniques

 Using High Performance 
Computing (HPC) adds 
another level of 
complexity requiring a full 
HPC university course
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Traditional Machine Learning Models
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‘Big Data‘ Motivation: Intertwine HPC & Machine Learning 

 Rapid advances in data collection and 
storage technologies in the last decade
 Extracting useful information is a challenge 

considering ever increasing massive datasets
 Traditional data analysis techniques cannot be 

used in growing cases (e.g. memory, speed, etc.)

 Machine learning / Data Mining is a technology that blends traditional data analysis 
methods with sophisticated algorithms for processing large volumes of data

 Machine Learning / Data Mining is the process of automatically discovering useful 
information in large data repositories ideally following a systematic process

modified from [1] Introduction to Data Mining

 Machine Learning & Statistical Data Mining
 Traditional statistical approaches are still very useful to consider 
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 Link to talk this morning by J. Bungartz – HPC Meets Big Data: Analytics & HPC examples
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HTC

network
interconnection
less important!

Understanding High Performance Computing

 High Performance Computing (HPC) is based on computing resources that enable the efficient use 
of parallel computing techniques through specific support with dedicated hardware such as high 
performance cpu/core interconnections.

 High Throughput Computing (HTC) is based on commonly available computing resources such as 
commodity PCs and small clusters that enable the execution of ‘farming jobs’ without providing a 
high performance interconnection between the cpu/cores.

HPC

network
interconnection
important

focus in this talk
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 Link to talk this morning by J. Bungartz – HPC Meets Big Data: What is HPC & parallel efficiency



PRACE as Persistent pan-European HPC Infrastructure 
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Mission: 
enabling world-class science through 
large scale simulations

Offering: 
HPC resources on leading edge 
capability systems

Resource award: 
through a single and fair pan-
European peer review process for 
open research

HPC
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Before using HPC: Machine Learning Prerequisites

1. Some pattern exists
2. No exact mathematical formula
3. Data exists
 Idea ‘Learning from Data‘

shared with a wide variety
of other disciplines
 E.g. signal processing, 

data mining, etc.

 Challenge: Data is often complex
 Machine learning is a very broad subject and goes from 

very abstract theory to extreme practice (‘rules of thumb’)

Data
Mining

Data
Mining

Applied
Statistics
Applied

Statistics
Data 

Science
Data 

Science

Machine 
Learning
Machine 
Learning
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 Machine Learning is introduced in Appendix A of the slides with a simple classification example
9 / 200

 Link to talk by U. Leser – Web-Scale Domain-Specific Information Extraction: Data Science?!



Examples of Real Data Collections

 Data collection of the earth and environmental science domain
 Different from the known ‘UCI machine learning repository examples‘

[2] PANGAEA data collection
[3] UCI Machine Learning Repository
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(real science datasets examples) (examples for learning & comparisons)

[40] M. Goetz, PhD Thesis, University of Iceland
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Learning Approaches – What means Learning?

 Supervised Learning
 Majority of methods follow this approach in this course
 Example: credit card approval based on previous customer applications

 Unsupervised Learning
 Often applied before other learning  higher level data representation
 Example: Coin recognition in vending machine based on weight and size

 Reinforcement Learning
 Typical ‘human way‘ of learning
 Example: Toddler tries to touch a hot cup of tea (again and again)

 The basic meaning of learning is ‘to use a set of observations to uncover an underlying process‘
 The three different learning approaches are supervised, unsupervised, and reinforcement learning

11 / 200

 This invited lecture focus on supervised and unsupervised learning applications & examples
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Learning Approaches – Supervised Learning

 Each observation of the predictor measurement(s)
has an associated response measurement:
 Input
 Output
 Data

 Goal: Fit a model that relates the response to the predictors
 Prediction: Aims of accurately predicting the response for future 

observations
 Inference: Aims to better understanding the relationship between the 

response and the predictors

 Supervised learning approaches fits a model that related the response to the predictors
 Supervised learning approaches are used in classification algorithms such as SVMs
 Supervised learning works with data = [input, correct output]

[13] An Introduction to Statistical Learning
12 / 200



Learning Approaches – Supervised Learning Example
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petal length (in cm)

(decision boundary)

?

 The labels guide 
our learning 
process like a 
‘supervisor‘ is 
helping us

(N = 100 samples)
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 Full example of this linear perceptron learning model is introduced in Appendix A of the slides

(perceptron model)
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Supervised Learning – Overview & Summary

Unknown Target Function Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

Final Hypothesis

(ideal function)

(final formula)

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

Training Examples

(historical records, groundtruth data, examples)
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Methods Overview – Advanced Example

 Groups of data exist
 New data classified 

to existing groups

Classification

?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

 Statistical data mining methods can be roughly categorized in classification, clustering, or 
regression augmented with various techniques for data exploration, selection, or reduction
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Expected Out-of-Sample Performance for ‘Best Line‘

 The line with a ‘bigger margin‘ seems to be better – but why?
 Intuition: chance is higher that a new point will still be correctly classified
 Fewer hypothesis possible: constrained by sized margin
 Idea: achieving good ‘out-of-sample‘ performance is goal

-1-2-3 1 2 3 4 5 6 7

1

2

-2

-1

(e.g. better performance
compared to PLA technique)

(Question remains:
how we can achieve 
a bigger margin)

(simple line in a linear setup
as intuitive decision boundary)

 Support Vector Machines (SVMs) are mathematically established in Appendix C of the slideset
16 / 200
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Term Support Vector Machines Refined

 Term detailed refinement into ‘three separate techniques’
 Practice: applications mostly use the SVMs with kernel methods

 ‘Maximal margin classifier‘ 
 A simple and intuitive classifier with a ‘best‘ linear class boundary
 Requires that data is ‘linearly separable‘

 ‘Support Vector Classifier‘
 Extension to the maximal margin classifier for non-linearly seperable data
 Applied to a broader range of cases, idea of ‘allowing some error‘

 ‘Support Vector Machines‘  Using Non-Linear Kernel Methods
 Extension of the support vector classifier 
 Enables non-linear class boundaries & via kernels;

 Support Vector Machines (SVMs) are a classification technique developed ~1990
 SVMs perform well in many settings & are considered as one of the best ‘out of the box classifiers‘

[13] An Introduction to Statistical Learning
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[39] Indian Pines dataset
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Remote Sensing Application Example – Indian Pines Dataset
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[16] G. Cavallaro and M. Riedel, et al. , 2015
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Indian Pines Dataset – Preprocessing



Publicly Available Datasets – Open Data

 Indian Pines Dataset Raw and Processed
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[17] Indian Pines Raw and Processed 
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Indian Pines – ‘pure‘ Big Data vs. Feature Engineering

dataset raw (1)

dataset processed (2)

Feature Enhancement & Selection
Kernel Principle Component Analysis (KPCA)
Extended Self-Dual Attribute Profile (ESDAP)
Nonparametric weighted feature extraction (NWFE)

[16] G. Cavallaro and M. Riedel, et al. , 2015
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Review of Open Source Parallel SVM Implementations
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[18] M. Goetz, M. Riedel et al., ‘On Parallel and Scalable Classification and Clustering Techniques for Earth Science 
Datasets’, 6th Workshop on Data Mining in Earth System Science, International Conference of Computational Science
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 Work in progress: Recent related work analysis reveals no new results; evaluations pending…



Parallel and Scalable Machine Learning – piSVM 

 ‘Different kind‘ of parallel algorithms
 Goal is to ‘learn from data‘ instead of modelling/approximate the reality
 Parallel algorithms often useful to reduce ‘overall time for data analysis‘

 E.g. Parallel Support Vector Machines (SVMs) Technique
 Data classification algorithm PiSVM using MPI to reduce ‘training time‘
 Example: classification of land cover masses from satellite image data
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[16] G. Cavallaro & M. Riedel et al., ‘On Understanding Big Data Impacts 
in Remotely Sensed Image Classification Using Support Vector Machine 
Methods’, Journal of Applied Earth Observations and Remote Sensing
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 Open source code publicly available at: https://github.com/mricherzhagen/pisvm
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Parallel SVM with MPI Technique – piSVM Implementation

 Original piSVM 1.2 version (2011)
 Open-source and based on libSVM library, C
 Message Passing Interface (MPI)
 New version appeared 2014-10 v. 1.3 (no major improvements)
 Lack of ‘big data‘ support (e.g. memory, layout)

 Tuned scalable parallel piSVM tool 1.2.1
 Highly scalable version maintained by Juelich
 Based on original piSVM 1.2 tool
 Open-source (repository to be created)
 Optimizations: load balancing; MPI collectives

[19] piSVM on SourceForge, 2008

24 / 200

 Open source code publicly available at: https://github.com/mricherzhagen/pisvm



Parallelization Benefit: Lower-Time-To-Solution

 Major speed-ups; ~interactive (<1 min); same accuracy;
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(1) Scenario 
‘unprocessed data‘
training time (in min)

(1) Scenario 
‘unprocessed data‘
testing time (in min)

‘big data‘ is not always better data

manual & serial activities (in min)

(2) Scenario 
‘pre-processed data‘
training time (in min)

(2) Scenario 
‘pre-processed data‘
testing time (in min)

[16] G. Cavallaro, M. Riedel, J.A. Benediktsson 
et al., Journal of Selected Topics in Applied 
Earth Observation and Remote Sensing, 2015

(cf. Importance of feature engineering above)

(aka first level of parallelism)
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Validation Technique – Cross-Validation for Model Selection

 Leave-one-out
 N training sessions on 

N – 1 points each time

 Leave-more-out
 Break data into number of folds 
 N/K training sessions on 

N – K points each time
 Example: ‘10-fold cross-valdation‘ with K = N/10 multiple times (N/K)

 10-fold cross validation is mostly applied in practical problems by setting K = N/10 for real data
 Having N/K training sessions on N – K points each leads to long runtimes ( use parallelization)

(generalization to leave k points out at each run)

(dataset)

Training Examples

Training Examples

(leave 1 point out at each run many runs)

1

K-fold

(use 1/10 for validation, use 9/10 for training, then another 1/10 … N/K times)

(fewer training sessions than above)

(involved in training now)(involved in training now) (now is the current example run)

(practice to avoid bias &
contamination: some rest for test

as ‘unseen data‘)

Training Examples
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Parallelization Benefits using Cross-Validation & Parameters

 Parallelization benefits are enormous for complex problems
 Enables feasibility to tackle extremely large datasets & high dimensions
 Provides functionality for a high number of classes (e.g. #k SVMs)
 Massive reduction in time  lower time-to-solution – keeping accuracy!
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(1) Scenario ‘unprocessed data‘, 10xCV serial: accuracy (min)

(1) Scenario ‘unprocessed data‘’10xCV parallel: accuracy (min)

First Result: best parameter set from 118.28 min to 4.09 min
Second Result: all parameter sets from ~3 days to ~2 hours

(2) Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

(2) Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

[16] G. Cavallaro, M. Riedel, J.A. Benediktsson et al., Journal of Selected Topics 
in Applied Earth Observation and Remote Sensing, 2015
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[YouTube Lectures] More about parallel SVMs & HPC 
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[20] Morris Riedel, ‘Introduction to Machine Learning Algorithms‘, Invited 
YouTube Lecture, six lectures, University of Ghent, 2017
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Methods Overview – Introduction to Deep Learning

 Groups of data exist
 New data classified 

to existing groups

Classification

?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

 Statistical data mining methods can be roughly categorized in classification, clustering, or 
regression augmented with various techniques for data exploration, selection, or reduction
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Learning Approaches – Unsupervised Learning

 Each observation of the predictor measurement(s)
has no associated response measurement:
 Input
 No output
 Data

 Goal: Seek to understand relationships between the observations
 Clustering analysis: check whether the observations fall into distinct groups

 Challenges 
 No response/output that could supervise our data analysis
 Clustering groups that overlap might be hardly recognized as distinct group

 Unsupervised learning approaches seek to understand relationships between the observations
 Unsupervised learning approaches are used in clustering algorithms such as k-means, etc.
 Unupervised learning works with data = [input, ---]

[13] An Introduction to Statistical Learning
30 / 200
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Learning Approaches – Unsupervised Learning Example

 Lessons learned from practice
 The number of clusters are often

ambiguities / no hard boundaries
[13] An Introduction to Statistical Learning

#
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 Collaboration with Forschungszentrum Juelich - INM-1 Timo Dickscheid & Katrin Amunts

(similarity of clusters might be density related and measurable 
 pick a specific clustering algorithm)



Selected Clustering Methods 

 K-Means Clustering – Centroid based clustering
 Partitions a data set into K distinct clusters (centroids can be artificial)

 K-Medoids Clustering – Centroid based clustering (variation)
 Partitions a data set into K distinct clusters (centroids are actual points)

 Sequential Agglomerative hierarchic nonoverlapping (SAHN)
 Hiearchical Clustering (create tree-like data structure  ‘dendrogram’)

 Clustering Using Representatives (CURE)
 Select representative points / cluster – as far from one another as possible

 Density-based spatial clustering of applications + noise (DBSCAN)
 Assumes clusters of similar density or areas of higher density in dataset

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 32 / 200



DBSCAN Algorithm
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 DBSCAN Algorithm
 Introduced 1996 and most cited clustering algorithm
 Groups number of similar points into clusters of data
 Similarity is defined by a distance measure 

(e.g. euclidean distance)

 Distinct Algorithm Features
 Clusters a variable number of clusters
 Forms arbitrarily shaped clusters (except ‘bow ties‘)
 Identifies inherently also outliers/noise

 Understanding Parameters
 Looks for a similar points within a given search radius 
 Parameter epsilon

 A cluster consist of a given minimum number of points 
 Parameter minPoints

[15] Ester et al.

(MinPoints = 4)

(DR = Density Reachable)

(DDR = Directly Density 
Reachable)
(DC = Density Connected)
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DBSCAN Algorithm – Non-Trivial Example
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Unclustered
Data

Clustered
Data

 DBSCAN forms arbitrarily shaped clusters (except ‘bow ties‘) where other clustering algorithms fail

 Compare K-Means vs. DBSCAN – How would K-Means work?
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[Video] DBSCAN Clustering
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[6] DBSCAN, YouTube Video
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‘Big Data‘ Example – Point Cloud Applications
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 ‘Big Data‘: 3D/4D laser scans
 Captured by robots or drones
 Millions to billion entries
 Inner cities (e.g. Bremen inner city)
 Whole countries (e.g. Netherlands, USA per state)

 Selected Scientific Cases
 Filter noise to better represent real data
 Grouping of objects (e.g. buildings)
 Study level of continous details (complex)
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Open Bremen Dataset using Hierarchical Data Format (HDF)

 Different clusterings of the inner city of Bremen
 Using smart visualizations of the point cloud library (PCL)
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[22] Bremen Dataset

 The Bremen 
Dataset is encoded 
in the HDF5 
parallel file format

 Enables efficient 
parallel I/O in HPC

37 / 200

 Power of parallel I/O in HPC for ‘big data‘ is often underestimated in machine learning community

(read & write : read point
cloud data and assign
cluster – IDs or mark noise)

[49] HDF@ I/O workshop



Review of Open Source Parallel DBSCAN Implementations
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[18] M. Goetz, M. Riedel et al., ‘On Parallel and Scalable Classification and Clustering 
Techniques for Earth Science Datasets’, 6th Workshop on Data Mining in Earth System 
Science, International Conference of Computational Science (ICCS)
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 Work in progress: Spark/MLlib & ~10 DBSCAN codes not so good; other MPI code 2D only, …



HDBSCAN Algorithm Details
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 Parallelization Strategy
 Smart ‘Big Data‘ Preprocessing 

into Spatial Cells (‘indexed‘)
 OpenMP standalone 
 MPI (+ optional OpenMP hybrid)

 Preprocessing Step
 Spatial indexing and redistribution 

according to the point localities
 Data density based chunking of 

computations

 Computational Optimizations
 Caching point neighborhood searches
 Cluster merging based on comparisons instead of zone reclustering

[24] M.Goetz, M. Riedel et al., ‘HPDBSCAN – Highly 
Parallel DBSCAN’, MLHPC Workshop at 
Supercomputing 2015

#

ε
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 Open source code publicly available at: https://bitbucket.org/markus.goetz/hpdbscan



HPDBSCAN – Smart Domain Decomposition Example

 Parallelization Strategy
 Chunk data space equally
 Overlay with hypergrid
 Apply cost heuristic
 Redistribute points (data locality)
 Execute DBSCAN locally 
 Merge clusters at chunk edges
 Restore initial order

 Data organization
 Use of HDF5 (stores

noise ID / cluster ID)
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[24] M.Goetz, M. Riedel et al., ‘HPDBSCAN – Highly 
Parallel DBSCAN’, MLHPC Workshop at Supercomputing 2015
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 Open source code publicly available at: https://bitbucket.org/markus.goetz/hpdbscan



[YouTube Lectures] More about parallel DBSCANs & HPC 
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[20] Morris Riedel, ‘Introduction to Machine Learning Algorithms‘, Invited 
YouTube Lecture, six lectures, University of Ghent, 2017
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Selected Deep Learning Models
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Methods Overview – Introduction to Deep Learning

 Groups of data exist
 New data classified 

to existing groups

Classification

?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

 Statistical data mining methods can be roughly categorized in classification, clustering, or 
regression augmented with various techniques for data exploration, selection, or reduction
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More Recent HPC Developments: GPU Acceleration

 GPU accelerator architecture example (e.g. NVIDIA card)
 GPUs can have 128 cores on one single GPU chip
 Each core can work with eight threads of instructions
 GPU is able to concurrently execute 128 * 8 = 1024 threads
 Interaction and thus major (bandwidth) 

bottleneck between CPU and GPU 
is via memory interactions

 E.g. applications 
that use matrix –
vector multiplication
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 CPU acceleration means that GPUs accelerate computing due to a massive parallelism with 
thousands of threads compared to only a few threads used by conventional CPUs

 GPUs are designed to compute large numbers of floating point operations in parallel

[29] Distributed & Cloud Computing Book
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 HPC Impact: Top500 #1 Summit (ORNL) 6 GPUs/node; 1st time more flop/s added by GPUs vs. CPUs



Keras with Tensorflow Backend – GPU Support
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 Keras is a high-level deep learning library implemented in Python that works on top of 
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

 The key idea behind the Keras tool is to enable faster experimentation with deep networks
 Created deep learning models run seamlessly on CPU and GPU via low-level frameworks 

[30] Keras Python Deep Learning Library

 Tensorflow is an open source library for deep learning models using a flow graph approach
 Tensorflow nodes model mathematical operations and graph edges between the nodes are 

so-called tensors (also known as multi-dimensional arrays)
 The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
 Tensorflow work with the high-level deep learning tool Keras in order to create models fast

[31] Tensorflow Deep Learning Framework

[32] A Tour of 
Tensorflow
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What is a Tensor?

 Meaning
 Multi-dimensional array used in big data analysis often today
 Best understood when comparing it with vectors or matrices
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(‘tensors flow through the
deep learning networks)

(note: learned weighted connections 
often omitted from many deep 
learning network visualizations)

[33] Big Data Tips, 
What is a Tensor?



 Approach: Prepare data before
 Classical Machine Learning
 Feature engineering
 Dimensionality reduction techniques
 Low number of layers (many layers computationally infeasible in the past)
 Very succesful for speech recognitition (‘state-of-the-art in your phone‘)

(Perceptron model: designed after human brain neuron) (Artificial neural network two layer feed – forward)
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Artificial Neural Network – Feature Engineering & Layers
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[Video] Towards Multi-Layer Perceptrons

[34] YouTube Video, Neural Networks – A Simple Explanation

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 48 / 200



Deep Learning Architectures

 Deep Neural Network (DNN)
 ‘Shallow ANN‘ approach with many hidden layers between input/output

 Convolutional Neural Network (CNN, sometimes ConvNet)
 Connectivity pattern between neurons is like animal visual cortex

 Deep Belief Network (DBN)
 Composed of mult iple layers of variables; only connections between layers

 Recurrent Neural Network (RNN)
 ‘ANN‘ but connections form a directed cycle; state and temporal behaviour
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 Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural 
Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristica

 Deep Learning needs ‘big data‘ to work well & for high accuracy – works not well on sparse data
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Deep Learning – Feature Learning & More Smart Layers

 Approach: Learn Features
 Classical Machine Learning
 (Powerful computing evolved)
 Deep (Feature) Learning  

 Very succesful for image recognition and other emerging areas
 Assumption: data was generated by the interactions of many different 

factors on different levels (i.e. form a hierarchical representation)
 Organize factors into multiple levels, corresponding to different levels 

of abstraction or composition(i.e. first layers do some kind of filtering)
 Challenge: Different learning architectures: varying numbers of layers, 

layer sizes & types used to provide different amounts of abstraction

(Example: Parcellation 
of cytoarchitectonic

cortical regions
in the human brain)
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Deep Learning – Feature Learning Benefits
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[25] H. Lee et al.

 Traditional machine learning applied feature engineering 
before modeling

 Feature engineering requires expert knowledge, is time-
consuming and a often long manual process, requires 
often 90% of the time in applications, and is sometimes 
even problem-specific

 Deep Learning enables feature learning promising a 
massive time advancement

 More background information about CNN and its key elements are provided in Appendix D
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HPC Machine: JSC JURECA System – CLUSTER Module

 Characteristics
 Login nodes with 256 GB

memory per node
 45,216 CPU cores
 1.8 (CPU) + 0.44 (GPU) 

Petaflop/s peak performance
 Two Intel Xeon E5-2680 v3 Haswell

CPUs per node: 2 x 12 cores, 2.5 GhZ
 75 compute nodes equipped with two 

NVIDIA K80 GPUs (2 x 4992 CUDA cores)

 Architecture & Network
 Based on T-Platforms V-class server architecture
 Mellanox EDR InfiniBand high-speed

network with non-blocking fat tree topology
 100 GiB per second storage connection to JUST
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[48] JURECA HPC System

HPC

 Use our ssh keys to get an 
access and use reservation

 Put the private key into 
your ./ssh directory (UNIX)

 Use the private key with 
your putty tool (Windows)
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Deep Learning – Scaling Example on JURECA HPC System

 Simple Image Benchmark on JURECA JSC HPC System 
 75 x 2 NVIDIA Tesla K80/node – dual GPU design
 1.2 mio images with 224 x 224 pixels
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 Open source tool Horovod enables distributed deep learning with TensorFlow / Keras 
 Machine & Deep Learning: speed-up is just secondary goal after 1st goal accuracy
 Speed-up & parallelization good for faster hyperparameter tuning, training, inference
 Third goal is to avoid much feature engineering through ‘feature learning‘ 

[41] A. Sergeev, M. Del 
Balso,’Horovod’, 2018

(absolute number of images per second and relative speedup
normalized to 1 GPU are given)

(setup: TensorFlow 1.4, Python 2.7, CUDA 8, cuDNN 6, Horovod 0.11.2, MVAPICH-2.2-GDR)
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Deep Learning – Key Properties & Application Areas

 Application before modeling data with other models (e.g. SVM)
 Create better data representations and create deep learning models to 

learn these data representations from large-scale unlabeled data

 Application areas
 Computer vision
 Automatic speech recognition
 Natural language processing
 Bioinformatics
 …
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 In Deep Learning networks are many layers between the input and output layers enabling multiple 
processing layers that are composed of multiple linear and non-linear transformations

 Layers are not (all) made of neurons (but it helps to think about this analogy to understand them)
 Deep Learning performs (unsupervised) learning of multiple levels of features whereby higher 

level features are derived from lower level features and thus form a hierarchical representation 

(Deep Learning is often characterized as ‘buzzword‘)

(Deep Learning is often ‘just‘ called 
rebranding of traditional neural networks)

(hierarchy from low level to high level features)
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CNN Architecture for Application – Land Cover Classification
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 Classify pixels in a hyperspectral remote sensing image having groundtruth/labels available
 Created CNN architecture for a specific hyperspectral land cover type classification problem 
 Used dataset of Indian Pines (compared to other approaches) using all labelled pixels/classes
 Performed no manual feature engineering to obtain good results (aka accuracy)

[26] J. Lange, G. Cavallaro, M. Riedel, et al. , IGARSS 2018
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Comparison: Traditional Machine Learning vs. Deep Learning

 Traditional Methods
 C MPI-based Support Vector Machine (SVM)
 Substantial manual feature engineering
 10-fold cross-validation for model selection
 Achieved 77,02 % accuracy

(subsambled classes of 52 classes)

 Convolutional Neural
Networks (CNNs)
 Python/TensorFlow/Keras
 Automated feature learning
 Achieved 84,40 % accuracy 

on all 58 classes
 Warning: optimistic bias –

careful data sampling vs. ‘big data‘!
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[26] J. Lange, G. Cavallaro, 
M. Riedel, et al. , 2018
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Deep Learning Architectures – Revisited 

 Deep Neural Network (DNN)
 ‘Shallow ANN‘ approach with many hidden layers between input/output

 Convolutional Neural Network (CNN, sometimes ConvNet)
 Connectivity pattern between neurons is like animal visual cortex

 Deep Belief Network (DBN)
 Composed of mult iple layers of variables; only connections between layers

 Recurrent Neural Network (RNN)
 ‘ANN‘ but connections form a directed cycle; state and temporal behaviour
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 Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural 
Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristica

 Deep Learning needs ‘big data‘ to work well & for high accuracy – works not well on sparse data
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Revisit CNNs vs. RNNs – Different Type of Neural Networks

 CNNs  Spatial
 Example: remote sensing application 

domain, hyperspectral datasets
 Neural network key property: 

exploit spatial geometry of inputs
 Approach:  Apply convolution & pooling 

(height x width x feature) dimensions

 RNNs  Temporal
 Examples: texts, speech, time series datasets
 Neural network key property:

exploit sequential nature of inputs
 Approach: Train a graph of ‘RNN cells‘ & each cell performs 

the same operation on every element in the given sequence
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 RNNs are used to create sequence models whereby the occurrence of an element in the 
sequence (e.g. text, speech, time series) is dependent on the elements that appeared before it

ht

RNN model

Xt
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Sequence Models

 Model Categorization
 Based on different inputs/outputs to/from the sequence models

 Practical ‘standard dataset‘ perspective
 Often the order of samples is not important
 Training/testing datasets and their samples 

have often no explicit order (i.e. ‘sets‘)

 Practical ‘sequence dataset‘ perspective
 Order of samples is important: sequence learning/inference needs order
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 Sequence models enable various sequence predictions that are inherent different to other 
more traditional predictive modeling techniques or supervised learning approaches

 In contrast to mathematical sets often used, the ‘sequence‘ model imposes an explicit 
order on the input/output data that needs to be preserved in training and/or inference

 Sequence models are driven by application goals and include sequence prediction, 
sequence classification, sequence generation, and sequence-to-sequence prediction

 More background information about RNNs & LSTMs is in the Appendix E in this slideset
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Recurrent Neural Network (RNN)
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 A Recurrent Neural Network (RNN) consists of cyclic connections that enable the neural network to 
better model sequence data compared to a traditional feed forward artificial neural network (ANN)

 RNNs consists of ‘loops‘ (i.e. cyclic connections) that allow for information to persist while training
 The repeating RNN model structure is very simple whereby each has only a single layer (e.g. tanh)

tanh

Xt

ht

 Selected applications
 Sequence labeling
 Sequence prediction tasks
 E.g. handwriting recognition 
 E.g. language modeling

 Loops / cyclic connections
 Enable to pass information 

from one step to the
next iteration

 Remember ‘short-term‘
data dependencies

ht

RNN model

Xt

(‘delay’)

(‘delay’
from t-1)
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RNN Model – Simple Example – Predict Next Character 
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…

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

(probabilities)

(one-hot encoded
characters)

(‘delay’)  Sequence values that 
are separated by a 
significant number of 
words (i.e. deep RNN) 
leads to the vanishing 
gradient problem

 Reasoning is that small 
gradients or weights 
with values than 1 are 
multiplied many
times through the
multiple time steps,
i.e. gradients shrink
asymptotically to zero

 Effect is that weights of 
those earlier layers are 
not changed 
significantly and the 
network will not learn 
long-term dependencies
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Long Short Term Memory (LSTM) Model
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 Long Short Term Memory (LSTM) networks are a 
special kind of Recurrent Neural Networks (RNNs)

 LSTMs learn long-term dependencies in data by 
remembering information for long periods of time

 The LSTM chain structure consists of four neural 
network layers interacting in a specific way

x +

tanh

x

ℴℴ ℴ x

tanh

xt

ht

x +

tanh

x

ℴℴ ℴ x

tanh

Xt+1

Ht+1

x +

tanh

x

ℴℴ ℴ x

tanh

Xt-1

Ht-1
(each line carries
an entire vector)

ht

LSTM model

xt (uses sigmoid ℴ)
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LSTM Model – Memory Cell & Cell State
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 LSTM introduce a ‘memory cell‘ structure into the underlying basic RNN architecture using four key 
elements: an input gate, a neuron with self-current connection, a forget gate, and an output gate

 The data in the LSTM memory cell flows straight down the chain with some linear interactions (x,+)
 The cell state st can be different at each of the LSTM model steps & modified with gate structures
 Linear interactions of the cell state are pointwise multiplication (x) and pointwise addition (+)
 In order to protect and control the cell state st three different types of gates exist in the structure

tanh

x

ℴℴ ℴ x

tanh

xt

ht

tanh

x

ℴℴ ℴ x

tanh

Xt+1

Ht+1

tanh

x

ℴℴ ℴ x

tanh

Xt-1

Ht-1
(each line carries
an entire vector)

x + x +x +
st
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Deep Learning for Sequence Data: Long Short-Term Memory

 Standard LSTM
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 LSTM models work quite well to 
predict power but needs to be 
trained and tuned for different 
power stations

 Observing that some peaks can not 
be ‘learned‘ although robust model

 Requires much longer time to train 
(i.e. more HPC time or GPUs/node)
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Different Useful LSTM Models – Stacked LSTMs

 E.g. predicting electricity
consumption / customer
 Stacked LSTM cells
 Periodic elements can

take advantage of state
 Needs to be carefully tuned
 Requires through use of

state more computing

 E.g. damped sine
wave prediction
 Stacked LSTM cells since

again periodic character
 Depending on wave

the pattern might be
not able to be detected w/o LSTMs
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[YouTube Lectures] More about Deep Learning & HPC
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[21] Morris Riedel, ‘Deep Learning - Using a Convolutional Neural Network‘, 
Invited YouTube Lecture, six lectures, University of Ghent, 2017
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[Video] Deep Learning ‘Revolution‘

[27] The Deep Learning Revolution, YouTube
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Open Challenges & Summary
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Number of Parameters – Challenges on the Horizon
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Blue: correctly classified
Red: incorrectly classified

[26] J. Lange, G. Cavallaro, 
M. Riedel, et al. , IGARSS 2018

 Using Python with TensorFlow & Keras easily enables changes in hyper-parameter tuning
 Various runs on different topologies add up to computational demand of GPUs
 Need for HPC machines with good GPUs and good deep learning software stacks required
 Key challenge remains in the number of parameters for deep learning networks & configuration

 Link to ISC 2018 Machine Learning Track Keynote by Frank Hutter about hyper-parameter problems
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DEEP Projects & Partners
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 DEEP
 Dynamic Exascale 

Entry Platform 

 3 EU Exascale projects
DEEP 
DEEP-ER
DEEP-EST

 27 partners
Coordinated by JSC

 EU-funding: 30 M€
JSC-part > 5,3 M€

 Nov 2011 – Jun 2020
[28] DEEP-EST EU Project
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DEEP-EST EU Project & Modular Supercomputing
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GPU Module Many-core BoosterCluster 
Module

BN

BN

BN

BN

BN BN

BN

BN

BN

CN

CN

Data Analytics 
Module

DN

Network Attached 
Memory Module

NAM NAM

Array 
Databases

(e.g. 
Rasdaman, 

SciDB)

Storage 
Module

GN

GN

GN

GN

GN GN

DiskDiskDisk Disk

Intel
Nervana & 

Neon

DN

 ML 
Training

 Deep
learning

 Datasets
 Models

 Deep
learning

 ML Testing,
 Inference

 ‘Big data‘ /
parallel I/O
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General Purpose Cluster

File 
Server
GPFS, 
Lustre

IBM Power 6 
JUMP, 9 TFlop/s

IBM Blue Gene/P
JUGENE, 1 PFlop/s

HPC-FF
100 TFlop/s

JUROPA
200 TFlop/s

IBM Blue Gene/Q
JUQUEEN (2012)
5.9 PFlop/s

IBM Blue Gene/L
JUBL, 45 TFlop/s

IBM Power 4+
JUMP (2004), 9 TFlop/s

Highly scalable

Hierarchical
Storage Server

JUWELS Scalable
Module (2019/20)
50+ PFlop/s

JUWELS Cluster 
Module (2018)
12 PFlop/s

JURECA Cluster (2015)
2.2 PFlop/s

JURECA Booster (2017)
5 PFlop/s
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Summary
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 Mindset
 Think traditional machine learning still relevant for deep learning
 Using interpreted languages like Python is ‘modus operandi‘
 Selected new specific deep learning methods (CNN, LSTM, etc.)

 Skillset
 Basic knowledge of machine learning required for deep learning
 Validation (i.e. model selection) and regularization still valid(!)
 Many job offers for specialists in machine/deep learning & HPC

 Toolset
 Parallel versions of machine learning methods exist (piSVM, HPDBSCAN)
 Python, Tensorflow & Keras often used for deep learning
 Explore technology trends, e.g. specific chips for deep learning
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Appendix A: Introduction to Machine Learning
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Methods Overview

 Groups of data exist
 New data classified 

to existing groups

Classification

?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

 Machine learning methods can be roughly categorized in classification, clustering, or regression 
augmented with various techniques for data exploration, selection, or reduction
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(flowers of type ‘IRIS Setosa‘)

Simple Application Example: Classification of a Flower
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[4] Image sources: Species Iris Group of 
North America Database, www.signa.org  

(flowers of type ‘IRIS Virginica‘)

(what type of flower is this?)

 Groups of data exist
 New data classified 

to existing groups

?

(1) Problem Understanding Phase
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The Learning Problem in the Example

Learning problem: A prediction task
 Determine whether a new Iris flower 

sample is a “Setosa” or “Virginica”
 Binary (two class) classification problem
 What attributes about the data help?
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[4] Image sources: Species Iris Group of North America Database, www.signa.org  

(flowers of type ‘IRIS Setosa‘) (flowers of type ‘IRIS Virginica‘)

(what type of flower is this?)
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Feasibility of Machine Learning in this Example

1. Some pattern exists: 
 Believe in a ‘pattern with ‘petal length‘ & 

‘petal width‘ somehow influence the type

2. No exact mathematical formula
 To the best of our knowledge there is no 

precise formula for this problem

3. Data exists
 Data collection from UCI Dataset „Iris“
 150 labelled samples (aka ‘data points‘)
 Balanced: 50 samples / class
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[6] UCI Machine Learning 
Repository Iris Dataset

[5] Image source: Wikipedia, Sepal

(2) Data Understanding Phase

 sepal length in cm
 sepal width in cm
 petal length in cm
 petal width in cm
 class: Iris Setosa, or

Iris Versicolour,  or
Iris Virginica

(four data attributes for each
sample in the dataset)

(one class label for each
sample in the dataset)
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Understanding the Data – Check Metadata

 First: Check metadata if available
 Example: Downloaded  iris.names includes metadata about data
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[6] UCI Machine Learning Repository Iris Dataset

…
(author, source, or creator)

(Subject, title, or context)

(number of samples, instances)

(metadata is not always available in practice)

(attribute information)

(detailed attribute 
information)

(detailed attribute 
information)
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Understanding the Data – Check Table View

 Second: Check table view of the dataset with some samples
 E.g. Using a GUI like ‘Rattle‘ (library of R), or Excel in Windows, etc.
 E.g. Check the first row if there is header information or if is a sample
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 sepal length in cm
 sepal width in cm
 petal length in cm
 petal width in cm
 class: Iris Setosa, or

Iris Versicolour,  or
Iris Virginica

(four data attributes for each
sample in the dataset)

(one class label for each
sample in the dataset)

(careful first sample taken as header,
resulting in only 149 data samples)

[7] Rattle Library for R
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Preparing the Data – Corrected Header
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(3) Data Preparation Phase

(correct header information, resulting in 150 data samples)

(correcting the header is not always necessary,
or can be automated, e.g. in Rattle)
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Preparing the Data – Remove Third Class Samples

 Data preparation means to prepare our data for our problem
 In practice the whole dataset is rarely needed to solve one problem
 E.g. apply several sampling strategies (but be aware of class balance)

 Recall: Our learning problem
 Determine whether a new Iris flower sample is a “Setosa” or “Virginica”
 Binary (two class) classification problem : ‘Setosa‘ or ‘Virginica‘
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(three class problem with
N = 150 samples including
Iris Versicolour)

(remove Versicolour class
samples from dataset)

(wo class problem with
N = 100 samples excluding
Iris Versicolour)

(export or save dataset
to iris-twoclass.data)
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Preparing the Data – Feature Selection Process

 Data preparation means to prepare our data for our problem
 In practice the whole dataset is rarely needed to solve one problem
 E.g. perform feature selection (aka remove not needed attributes)

 Recall: Our believed pattern in the data
 A ‘pattern with ‘petal length‘ & ‘petal width‘ somehow influence the type
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(N = 100 samples with 4 attributes and  1 class label)

 sepal length in cm
 sepal width in cm
 petal length in cm
 petal width in cm
 class: Iris Setosa, or

Iris Versicolour, or
Iris Virginica

(N = 100 samples with 2 attributes and  1 class label)

 petal length in cm
 petal width in cm
 class: Iris Setosa, or

Iris Versicolour,  or
Iris Virginica

(export or save dataset
to iris-twoclass-twoattr.data)
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 Different samples of the original Iris dataset
 Created for linear seperability and non-linear seperability

Iris Dataset – Open Data
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[14] Iris Dataset
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Check Preparation Phase: Plotting the Data
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(Recall: we believed in a ‘pattern‘ with ‘petal length‘ 
& ‘petal width‘ somehow influence the flower type)

(attributes with d=2)

(x1 is petal length,
x2 is petal width)

(what about the class labels?)

(N = 100 samples)
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Check Preparation Phase: Class Labels
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(still no machine learning so far)

(N = 100 samples)
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Linearly Seperable Data & Linear Decision Boundary
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(decision boundary)

(4) Modelling Phase

?

 The data is 
linearly seperable
(rarely in practice)

 A line becomes a
decision boundary
to determine if a 
new data point is 
class red/green
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Separating Line & Mathematical Notation

 Data exploration results
 A line can be crafted between the classes since linearly seperable data
 All the data points representing Iris-setosa will be below the line 
 All the data points representing Iris-virginica will be above the line

 More formal mathematical notation
 Input:
 Output: class +1 (Iris-virginica) or class -1 (Iris-setosa)
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(decision boundary)

(attributes of flowers)

Iris-virginica if

Iris-setosa if

(compact notation)

(wi and threshold are
still unknown to us)
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Separating Line & ‘Decision Space‘ Example

modified from [13] An Introduction to Statistical Learning

(equation of a line)

(decision boundary)

(all points Xi on this line
have to satisfy this equation)
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A Simple Linear Learning Model – The Perceptron
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 Human analogy in learning
 Human brain consists of nerve cells called neurons
 Human brain learns by changing the strength of neuron connections (wi)

upon repeated stimulation by the same impulse (aka a ‘training phase‘)
 Training a perceptron model means adapting the weights wi

 Done until they fit input-output relationships of the given ‘training data‘

(representing the threshold)

(training data)

(modelled as
bias term)

d
(dimension of features)

(activation
function,
+1 or -1) (the signal)

[8] F. Rosenblatt, 1957
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Perceptron – Example of a Boolean Function

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

(training data)

(trained perceptron model)

(training phase)

 Output node interpretation
 More than just the weighted sum of the inputs – threshold (aka bias)
 Activation function sign (weighted sum): takes sign of the resulting sum

(e.g. consider sample #3,
sum is positive (0.2)  +1)

(e.g. consider sample #6,
sum is negative (-0.1)  -1)
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Summary Perceptron & Hypothesis Set h(x)

 When: Solving a linear classification problem
 Goal: learn a simple value (+1/-1) above/below a certain threshold
 Class label renamed: Iris-setosa = -1 and Iris-virginica = +1

 Input:

 Linear formula
 All learned formulas are different hypothesis for the given problem
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[8] F. Rosenblatt, 1957

(parameters that define
one hypothesis vs. another)

(red parameters correspond
to the redline in graphics)

(attributes in one dataset)

(take attributes and give them different weights – think of ‘impact of the attribute‘)

(each green space and
blue space are regions
of the same class label
determined by sign
function)

(but question remains: how do
we actually learn wi and threshold?)
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Perceptron Learning Algorithm – Understanding Vector W

 When: If we believe there is a linear pattern to be detected
 Assumption: Linearly seperable data (lets the algorithm converge)
 Decision boundary: perpendicular vector wi fixes orientation of the line

 Possible via simplifications since 
we also need to learn the threshold:
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(vector notation, using T = transpose)wi

(equivalent dotproduct notation)

(all notations are equivalent and result is a scalar from which we derive the sign)[9] Rosenblatt, 1958

(points on the decision 
boundary satisfy this equation)
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Understanding the Dot Product – Example & Interpretation

 ‘Dot product‘
 Given two vectors
 Multiplying corresponding components of the vector
 Then adding the resulting products
 Simple example:  
 Interesting: Dot product of two vectors is a scalar

 ‘Projection capabilities of Dot product‘ (simplified)
 Orthogonal projection of vector      in the direction of vector 

 Normalize using length of vector
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(a scalar!)

(projection)

(our example)

 Dot Products are important in machine learning, e.g. in Support Vector Machines, see Appendix C
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Perceptron Learning Algorithm – Learning Step

 Iterative Method using (labelled) training data 

1. Pick one misclassified 
training point where:

2. Update the weight vector: 

 Terminates when there are 
no misclassified points
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(a) adding a vector  or
(b) subtracting a vector

x

w + yx

w

y = +1

y = -1

x

w – yx 

w

(converges only with linearly seperable data)

(one point at a time is picked)

(a)

(b)

(yn is either +1 or -1)
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[Video] Perceptron Learning Algorithm
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[10] PLA Video
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Systematic Process to Support Learning From Data

 Systematic data analysis guided by a ‘standard process‘
 Cross-Industry Standard Process for Data Mining (CRISP-DM)

 Lessons Learned from Practice
 Go back and forth between 

the different six phases 
[11] C. Shearer, CRISP-DM model, 
Journal Data Warehousing, 5:13

 A data mining project is 
guided by these six phases: 
(1) Problem Understanding; 
(2) Data Understanding; 
(3) Data Preparation; 
(4) Modeling; 
(5) Evaluation; 
(6) Deployment

 A more detailed description of all six CRISP-DM phases is in the Appendix B of the slideset

(learning
takes place)
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Machine Learning & Data Mining Tasks in Applications

 Predictive Tasks
 Predicts the value of an attribute based on values of other attributes
 Target/dependent variable: attribute to be predicted
 Explanatory/independent variables: attributed used for making predictions
 E.g. predicting the species of a flower based on characteristics of a flower

 Descriptive Tasks
 Derive patterns  that summarize the underlying relationships in the data
 Patterns here can refer to correlations, trends, trajectories, anomalies
 Often exploratory in nature and frequently require postprocessing
 E.g. credit card fraud detection with unusual transactions for owners

[1] Introduction to Data Mining

 Machine learning tasks can be divided into two major categories: Predictive and Descriptive Tasks
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Predicting Task: Obtain Class of a new Flower ‘Data Point‘ 
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(decision boundary)

(4) Modelling Phase

?

[4] Image sources: Species Iris Group of North America Database, www.signa.org  
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Summary  Terminologies & Different Dataset Elements

 Target Function
 Ideal function that ‘explains‘ the data we want to learn

 Labelled Dataset (samples)
 ‘in-sample‘ data given to us: 

 Learning vs. Memorizing
 The goal is to create a system that works well ‘out of sample‘ 
 In other words we want to classify ‘future data‘ (ouf of sample) correct

 Dataset Part One: Training set
 Used for training a machine learning algorithms
 Result after using a training set: a trained system

 Dataset Part Two: Test set
 Used for testing whether the trained system might work well 
 Result after using a test set: accuracy of the trained model

(5) Evaluation Phase

(4) Modelling Phase
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Model Evaluation – Training and Testing Phases

 Different Phases in Learning
 Training phase is a hypothesis search
 Testing phase checks if we are on right track

(once the hypothesis clear)

 Work on ‘training examples‘
 Create two disjoint datasets
 One used for training only

(aka training set)
 Another used for testing only

(aka test set)
 Exact seperation is rule of thumb per use case (e.g. 10 % training, 90% test)
 Practice: If you get a dataset take immediately test data away

(‘throw it into the corner and forget about it during modelling‘)
 Reasoning: Once we learned from training data it has an ‘optimistic bias‘
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(e.g. student exam training on examples to 
get Ein ‚down‘, then test via exam)

Training Examples

(historical records, groundtruth data, examples)

(5) Evaluation Phase

‘test set’‘training set’

(4) Modelling Phase
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Model Evaluation – Testing Phase & Confusion Matrix
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 Model is fixed
 Model is just used with the testset
 Parameter wi are set and we have a linear decision function

 Evaluation of model performance
 Counts of test records that are incorrectly predicted
 Counts of test records that are correctly predicted
 E.g. create confusion matrix for a two class problem

(5) Evaluation Phase

Counting per sample Predicted Class

Class = 1 Class = 0

Actual 
Class

Class = 1 f11 f10

Class = 0 f01 f00

(serves as a basis for further performance metrics usually used)
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Model Evaluation – Testing Phase & Performance Metrics
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 Accuracy (usually in %)

 Error rate

 If model evaluation is satisfactory: 

(5) Evaluation PhaseCounting per sample Predicted Class

Class = 1 Class = 0

Actual 
Class

Class = 1 f11 f10

Class = 0 f01 f00

(6) Deployment Phase

(100% accuracy in learning often
points to problems using machine 
learning methos in practice)

109 / 200



Non-linearly Seperable Data in Practice – Which model?
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?

(4) Modelling Phase

(linear decision boundary)

(non-linear decision boundary)

(lessons learned from practice: requires soft-thresholds to allow 
for some errors being overall better for new data 
 Occams razor – ‘simple model better‘)

(lessons learned from practice: requires 
non-linear decision boundaries)

(resampled, again
N = 100 samples)
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Key Challenges: Why is it not so easy in practice?

 Scalability
 Gigabytes, Terabytes, and Petabytes datasets that fit not into memory
 E.g. algorithms become necessary with out-of-core/CPU strategies

 High Dimensionality
 Datasets with hundreds or thousand attributes become available
 E.g. bioinformatics with gene expression data with thousand of features

 Heterogenous and Complex Data
 More complex data objects emerge and unstructured data sets
 E.g. Earth observation time-series data across the globe

 Data Ownership and Distribution
 Distributed datasets are common (e.g. security and transfer challenges)

 Key challenges faced when doing traditional data analysis and machine learning are scalability, 
high dimensionality of datasets, heterogenous and complex data, data ownership & distribution

 Combat ‘overfitting‘ is the key challenge in machine learning using validation & regularization 
Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC 111 / 200



Prevent Overfitting for better ‘ouf-of-sample‘ generalization
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[15] Stop Overfitting, YouTube
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Appendix B: CRISP-DM Process
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Summary: Systematic Process

 Systematic data analysis guided by a ‘standard process‘
 Cross-Industry Standard Process for Data Mining (CRISP-DM)

 Lessons Learned from Practice
 Go back and forth between 

the different six phases 
[11] C. Shearer, CRISP-DM model, 
Journal Data Warehousing, 5:13

 A data mining project is 
guided by these six phases: 
(1) Problem Understanding; 
(2) Data Understanding; 
(3) Data Preparation; 
(4) Modeling; 
(5) Evaluation; 
(6) Deployment
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1 – Problem (Business) Understanding

 Task A – Determine Business Objectives
 Background, Business Objectives, Business Success Criteria

 Task B – Situation Assessment
 Inventory of Resources, Requirements, Assumptions, and Contraints
 Risks and Contingencies, Terminology, Costs & Benefits

 Task C – Determine Data Mining Goal
 Data Mining Goals and Success Criteria

 Task D – Produce Project Plan
 Project Plan
 Initial Assessment of Tools & Techniques

[12] CRISP-DM User Guide

 The Business Understanding phase consists of four distinct tasks: (A) Determine Business 
Objectives; (B) Situation Assessment; (C) Determine Data Mining Goal; (D) Produce Project Plan
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2 – Data Understanding

 Task A – Collect Initial Data
 Initial Data Collection Report

 Task B – Describe Data
 Data Description Report

 Task C – Explore Data
 Data Exploration Report

 Task D – Verify Data Quality
 Data Quality Report

 The Data Understanding phase consists of four distinct tasks: 
(A) Collect Initial Data; (B) Describe Data; (C) Explore Data; (D) Verify Data Quality

[12] CRISP-DM User Guide
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3 – Data Preparation

 Task A – Data Set
 Data set description

 Task B – Select Data
 Rationale for inclusion / exclusion

 Task C – Clean Data
 Data cleaning report

 Task D – Construct Data
 Derived attributes, generated records

 Task E – Integrate Data
 Merged data

 Task F – Format Data
 Reformatted data

 The Data Preparation phase consists of six distinct tasks: (A) Data Set; (B) Select Data; 
(C) Clean Data; (D) Construct Data; (E) Integrate Data; (F) Format Data

[12] CRISP-DM User Guide
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4 – Modeling

 Task A – Select Modeling Technique
 Modeling assumption, modeling technique

 Task B – Generate Test Design
 Test design

 Task C – Build Model
 Parameter settings, models, model description

 Task D – Assess Model
 Model assessment, revised parameter settings

 The Data Preparation phase consists of four distinct tasks: (A) Select Modeling 
Technique; (B) Generate Test Design; (C) Build Model; (D) Assess Model; 

[12] CRISP-DM User Guide
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5 – Evaluation

 Task A – Evaluate Results
 Assessment of data mining results w.r.t. business success criteria
 List approved models

 Task B – Review Process
 Review of Process

 Task C – Determine Next Steps
 List of possible actions, decision

 The Data Preparation phase consists of three distinct tasks: (A) Evaluate Results; 
(B) Review Process; (C) Determine Next Steps

[12] CRISP-DM User Guide
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6 – Deployment

 Task A – Plan Deployment
 Establish a deployment plan

 Task B – Plan Monitoring and Maintenance
 Create a monitoring and maintenance plan

 Task C – Product Final Report
 Create final report and provide final presentation

 Task D – Review Project
 Document experience, provide documentation

 The Data Preparation phase consists of three distinct tasks: (A) Plan Deployment; 
(B) Plan Monitoring and Maintenance; (C) Produce Final Report; (D) Review Project

[12] CRISP-DM User Guide
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Appendix C: Geometric Interpretation of SVMs & Kernels
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Geometric SVM Interpretation and Setup (1)

 Think ‘simplified coordinate system‘ and use ‘Linear Algebra‘
 Many other samples are removed (red and green not SVs)
 Vector        of ‘any length‘ perpendicular to the decision boundary
 Vector     points to an unknown quantity (e.g. new sample to classify)
 Is      on the left or right side of the decision boundary?
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--

-- ++

++

--

--

 Dot product
 With      takes the projection on the 
 Depending on where projection is it is 

left or right from the decision boundary
 Simple transformation brings decison rule:

means 
 (given that b and         are unknown to us)

(projection)

++1

(constraints are not enough to fix particular b or w,
need more constraints to calculate b or w)

++
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Geometric SVM Interpretation and Setup (2)

 Creating our constraints to get b or       computed
 First constraint set for positive samples
 Second constraint set for negative samples 
 For mathematical convenience introduce variables (i.e. labelled samples)

for           and                      for 
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--

--

--

(projection)

++
--

++ --

 Multiply equations by 
 Positive samples: 
 Negative samples: 
 Both same due to                   and 

(brings us mathematical convenience often quoted)

(additional constraints just for support vectors itself helps)

2

++

++
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Geometric SVM Interpretation and Setup (3)

 Determine the ‘width of the margin‘
 Difference between positive and negative SVs:
 Projection of                       onto the vector 
 The vector        is a normal vector, magnitude is 

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

--

--

++

-- ++

(projection)

 Unit vector is helpful for ‘margin width‘
 Projection (dot product) for margin width:

 When enforce constraint: 

(unit vector)

(Dot product of two vectors is a scalar, here the width of the margin)

2

++
--

3
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Constrained Optimization Steps SVM (1)

 Use ‘constraint optimization‘ of mathematical toolkit

 Idea is to ‘maximize the width‘ of the margin: 
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--

--

++

-- ++

(projection)

(drop the constant 
2 is possible here)

(equivalent)

(equivalent for max)

(mathematical
convenience) 3

 Next: Find the extreme values
 Subject to constraints

2
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (2)

 Use ‘Lagrange Multipliers‘ of mathematical toolkit
 Established tool in ‘constrained optimization‘ to find function extremum
 ‘Get rid‘ of constraints by using Lagrange Multipliers 4

 Introduce a multiplier for each constraint

 Find derivatives for extremum & set 0
 But two unknowns that might vary
 First differentiate w.r.t. 
 Second differentiate w.r.t. 

2

(interesting: non zero for support vectors, rest zero)

(derivative gives the gradient, setting 0 means extremum like min)
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (3)

 Lagrange gives: 

 First differentiate w.r.t      

 Simple transformation brings:

 Second differentiate w.r.t. 

(i.e. vector is linear sum of samples)

(recall: non zero for support vectors, rest zero  even less samples)

5

5

(derivative gives the 
gradient, setting 0 means 
extremum like min)
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (4)

 Lagrange gives: 

 Find minimum
 Quadratic optimization problem
 Take advantage of 5

(plug into)

(b constant
in front sum)

5
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (5)

 Rewrite formula: 

(was 0)

(the same)

6

(results in)

 Equation to be solved by some 
quadratic programming package

(optimization 
depends only on dot 
product of samples)

129 / 200



++1

(decision rule also
depends on 
dotproduct)

++

Use of SVM Classifier to Perform Classification

 Use findings for decision rule
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-- ++

--

--

(projection)

++

5
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM & Dot Product

 Rewrite formula: 

(was 0)

(the same)

6

(results in)

 Equation to be solved by some 
quadratic programming package

(optimization 
depends only on dot 
product of samples)
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 Dotproduct enables nice more elements
 E.g. consider non linearly seperable data
 Perform non-linear transformation        of the 

samples into another space (work on features)

6

(optimization 
depends only on dot 
product of samples)

(for decision rule 
above too)

(in optimization)

++1

(decision rule also
depends on 
dotproduct)

++

Kernel Methods & Dot Product Dependency

 Use findings for decision rule
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-- ++

--

--

(projection)

++

5

(trusted Kernel
avoids to know Phi)7(kernel trick is 

substitution)
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Appendix D: Convolutional Neural Networks in Keras
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Solution Tools: Artificial Neural Network Learning Model

Elements we 
not exactly

(need to) know 

Training Examples

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Final Hypothesis

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

(ideal function)

(historical records, groundtruth data, examples)

(final formula)

(Artificial Neural Networks - ANNs)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Backpropagation)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise
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ANN – Handwritten Character Recognition MNIST Dataset

 Metadata
 Subset of a larger dataset from US National Institute of Standards (NIST)
 Handwritten digits including corresponding labels with values 0 to 9 
 All digits have been size-normalized to 28 * 28 pixels 

and are centered in a fixed-size image for direct processing
 Not very challenging dataset, but good for experiments / tutorials

 Dataset Samples
 Labelled data (10 classes)
 Two separate files 

for training and test
 60000 training samples (~47 MB) 
 10000 test samples (~7.8 MB)
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MNIST Dataset for the Tutorial

 When working with the dataset 
 Dataset is not in any standard image format like jpg, bmp, or gif
 File format not known to a graphics viewer 
 One needs to write typically a small program to read and work for them
 Data samples are stored in a simple file format that is designed for 

storing vectors and multidimensional matrices
 The pixels of the handwritten digit images are organized row-wise with 

pixel values ranging from 0 (white background) to 255 (black foreground)
 Images contain grey levels as a result of an anti-aliasing technique used 

by the normalization algorithm that generated this dataset.

 Available already for the tutorial
 Part of the Tensorflow tutorial package and Keras tutorial package
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MNIST Dataset for the Tutorial

 When working with the dataset 
 Dataset is not in any standard image format like jpg, bmp, or gif
 One needs to write typically a small program to read and work for them
 Data samples are stored in a simple file format that is designed for 

storing vectors and multidimensional matrices (here numpy binary files)
 The pixels of the handwritten digit images are organized row-wise with 

pixel values ranging from 0 (white background) to 255 (black foreground)
 Images contain grey levels as a result of an anti-aliasing technique used 

by the normalization algorithm that generated this dataset.
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MNIST Dataset – Exploration – One Character Encoding 
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MNIST Dataset – Exploration Script Training
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 Loading MNIST training 
datasets (X) with labels 
(Y) stored in a binary 
numpy format

 Format is 28 x 28 pixel 
values with grey level 
from 0 (white 
background) to 255 
(black foreground)

 Small helper function 
that prints row-wise one 
‘hand-written‘ character 
with the grey levels 
stored in training dataset

 Should reveal the nature 
of the number (aka label)

 Loop of the training dataset and the testing dataset (e.g. first 10 characters as shown here)
 At each loop interval the ‘hand-written‘ character (X) is printed in ‘matrix notation‘ & label (Y)
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MNIST Dataset – Exploration – Selected Training Samples
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ANN –MNIST Dataset – Parameters & Data Normalization
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 NB_CLASSES: 10 Class Problem 
 NB_EPOCH: number of times the model is 

exposed to the training set – at each 
iteration the optimizer adjusts the weights 
so that the objective function is minimized

 BATCH_SIZE: number of training instances 
taken into account before the optimizer 
performs a weight update

 OPTIMIZER: Stochastic Gradient Descent 
(‘SGD‘) – only one training sample/iteration

 Data load shuffled between 
training and testing set

 Data preparation, e.g. X_train is 
60000 samples / rows of 28 x 28 
pixel values that are reshaped in 
60000 x 784 including type 
specification (i.e. float32)

 Data normalization: divide by 
255 – the max intensity value
to obtain values in range [0,1]
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ANN – MNIST Dataset – A Simple Model
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 Dense() represents a 
fully connected layer 
used in ANNs that 
means that each 
neuron in a layer is 
connected to all 
neurons located in 
the previous layer

 The Sequential() 
Keras model is a 
linear  pipeline (aka 
‘a stack‘) of various 
neural network layers 
including Activation 
functions of different 
types (e.g. softmax)

 The non-linear Activation function 
‘softmax‘ represents a generalization of 
the sigmoid function – it squashes an n-
dimensional vector of arbitrary real 
values into a n-dimenensional vector of 
real values in the range of 0 and 1 – here 
it aggregates 10 answers provided by 
the Dense layer with 10 neurons

 Loss function is a multiclass logarithmic 
loss: target is ti,j and prediction is pi,j
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ANN – MNIST Dataset – Job Script
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ANN – MNIST Dataset – A Simple Model – Output 
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Solution Tools: Convolutional Networks Learning Model

Elements we 
not exactly

(need to) know 

Training Examples

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Final Hypothesis

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

(ideal function)

(historical records, groundtruth data, examples)

(final formula)

(Convolutional Neural Networks)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Backpropagation – modified layers)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise
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CNNs – Basic Principles

 Simple application example
 MNIST database written characters
 Use CNN architecture with different layers
 Goal: automatic classification of characters
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 Convolutional Neural Networks (CNNs/ConvNets) implement a connectivity pattner between 
neurons inspired by the animal visual cortex and use several types of layers (convolution, pooling)

 CNN key principles are local receptive fields, shared weights, and pooling (or down/sub-sampling)
 CNNs are optimized to take advantage of the spatial structure of the data

[36] A. Rosebrock
[35] M. Nielsen
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CNNs – Principle Local Receptive Fields 

 MNIST dataset example
 28 * 28 pixels modeled as square of neurons in a convolutional net
 Values correspond to the 28 * 28 pixel intensities as inputs
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[35] M. Nielsen

(‘little window‘ on 
the input pixels)

(red box indicate the local receptive 
field for the hidden neuron)

(28 * 28 pixel image) (5 * 5 local connectivity)
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CNNs – Principle Local Receptive Fields & Sliding

 MNIST database example
 Apply stride length = 1 
 Different configurations possible and depends on application goals
 Creates ‘feature map‘ of 24 * 24 neurons (hidden layer)
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[35] M. Nielsen

(28 * 28 pixel image) (24 * 24 feature map) (28 * 28 pixel image) (24 * 24 feature map)
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CNNs –Example with an ANN with risk of Overfitting

 MNIST database example
 CNN: e.g. 20 feature maps with 5 * 5 (+bias) = 520 weights to learn
 Apply ANN that is fully connected between neurons
 ANN: fully connected first layer with 28 * 28 = 784 input neurons
 ANN: e.g. 15 hidden neurons with 784 * 15 = 11760 weights to learn
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[35] M. Nielsen

(eventually lead to overfitting and
much computing time)
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CNNs – Principle Shared Weights & Feature Maps

 Approach
 CNNs use same shared weights for each of the 24 * 24 hidden neurons
 Goals: significant reduction of number of parameters (prevent overfitting)
 Example: 5 * 5 receptive field  25 shared weights + shared bias

 Feature Map 
 Detects one local feature
 E.g. 3: each feature map

is defined by a set of 5 * 5
shared weights and a single
shared bias leading to 24 * 24

 Goal: The network can now
detect 3 different kind of
features

 Benefit: learned feature being detectable across the entire image
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(shared weights are also known 
to define a kernel or filter)

[35] M. Nielsen

(many more in practice)
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CNNs – Principle of Pooling 

 ‘Downsampling‘ Approach
 Usually applied directly after convolutional layers
 Idea is to simplify the information in the output from the convolution
 Take each feature map output from the convolutional layer and 

generate a condensed feature map
 E.g. Pooling with 2 * 2 neurons using ‘max-pooling‘
 Max-Pooling outputs the maximum activation in the 2 * 2 region
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[35] M. Nielsen
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CNN – Application Example MNIST

 MNIST database example
 Full CNN with the addition of output neurons per class of digits
 Apply ‘fully connected layer‘: layer connects every neuron from the 

max-pooling outcome layer to every neuron of the 10 out neurons
 Train with backpropagation algorithm (gradient descent), only small 

modifications for new layers

 Approach works, except for some bad
training and test examples
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(another indicator
that even with

cutting edge technology
machine learning never 

achieves 100% performance)[35] M. Nielsen
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MNIST Dataset – CNN Model
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[37] A. Gulli et al.
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MNIST Dataset – CNN Python Script
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 OPTIMIZER: Adam - advanced optimization 
technique that includes the concept of a 
momentum (a certain velocity component) 
in addition to the acceleration component 
of Stochastic Gradient Descent (SGD)

 Adam computes individual adaptive 
learning rates for different parameters from 
estimates of first and second moments of 
the gradients

 Adam enables faster convergence at the 
cost of more computation and is currently 
recommended as the default algorithm to 
use (or SGD + Nesterov Momentum)

[38] D. Kingma et al., 
‘Adam: A Method for 
Stochastic Optimization’
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MNIST Dataset – CNN Model – Output 
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Appendix E: RNNs & LSTMs in Keras
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Revisit CNNs vs. RNNs – Different Type of Neural Networks

 CNNs  spatial
 Example: remote sensing application 

domain, hyperspectral datasets & images
 Neural network key property: 

exploit spatial geometry of inputs
 Approach:  Apply convolution & pooling 

(height x width x feature) dimensions

 RNNs  temporal
 Examples: texts, speech, time series datasets
 Neural network key property:

exploit sequential nature of inputs
 Approach: Train a graph of ‘RNN cells‘ & each cell performs 

the same operation on every element in the given sequence
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 RNNs are used to create sequence models whereby the occurrence of an element in the 
sequence (e.g. text, speech, time series) is dependent on the elements that appeared before it

ht

RNN model

Xt
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Sequence Models

 Model Categorization
 Based on different inputs/outputs to/from the sequence models

 Practical ‘standard dataset‘ perspective
 Often the order of samples is not important
 Training/testing datasets and their samples 

have often no explicit order (i.e. ‘sets‘)

 Practical ‘sequence dataset‘ perspective
 Order of samples is important
 Sequence model learning/inference needs this order

Invited Lecture – Parallel Machine Learning & Deep Learning Driven by HPC

 Sequence models enable various sequence predictions that are inherent different to other 
more traditional predictive modeling techniques or supervised learning approaches

 In contrast to mathematical sets often used, the ‘sequence‘ model imposes an explicit 
order on the input/output data that needs to be preserved in training and/or inference

 Sequence models are driven by application goals and include sequence prediction, 
sequence classification, sequence generation, and sequence-to-sequence prediction
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Limitations of Feed Forward ANN

 Selected application examples revisited
 Predicting next word in a sentence requires ‘history‘ of previous words
 Translating european in chinese language requires ‘history‘ of context
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 Traditional feed forward artificial neural networks show limits when a certain ‘history‘ is required
 Each Backpropagation forward/backward pass starts a new pass independently from pass before
 The ‘history‘ in the data is often a specific type of ‘sequence‘ that required another approach

X1

X2

y

w31

w41

w32

w42

w54

w53

n2

n1 n3

n4

n5

known known Initially unknown 
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Recurrent Neural Network (RNN)
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 A Recurrent Neural Network (RNN) consists of cyclic connections that enable the neural network to 
better model sequence data compared to a traditional feed forward artificial neural network (ANN)

 RNNs consists of ‘loops‘ (i.e. cyclic connections) that allow for information to persist while training
 The repeating RNN model structure is very simple whereby each has only a single layer (e.g. tanh)

tanh

Xt

ht

 Selected applications
 Sequence labeling
 Sequence prediction tasks
 E.g. handwriting recognition 
 E.g. language modeling

 Loops / cyclic connections
 Enable to pass information 

from one step to the
next iteration

 Remember ‘short-term‘
data dependencies

ht

RNN model

Xt

(‘delay’)

(‘delay’
from t-1)
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tanh

Xt-1

ht-1

tanh

Xt

ht

tanh

Xt+1

ht+1

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

Unrolled RNN
 A RNN can be viewed as 

multiple copies of the 
same network, each 
passing a message to a 
successor – this gets 
clear when ‘unrolling 
the RNN loop’

(use backpropagation through 
time optimization approach)

(‘delay’)
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Unrolled RNN – Role of ‘Delay‘ and Nodes in Layers 
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ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

(‘delay’)
(output layer)

(input layer)

(hidden layer)

x1

tanh

h1

Delay
h1-1

x2

tanh

h2 (output layer nodes)

(input layer nodes)

(hidden layer nodes + activation function tanh)

 RNNs are unrolled programmatically during the training and prediction phase
 Idea of ‘delay‘ means feeding back the output of a neural network layer at a specific time t to the 

input of the same nerual network layer at time t+1  establishes something like ‘short memory‘

(missing in ANNs)
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RNN Model – Simple Example – Predict Next Character 
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0.1
- 0.7
0.6

1
0
0
0

‘h‘

0.1
0.6
0.2
0.1

‘e‘

- 0.4
0.8
1.2

0
1
0
0

‘e‘

0.2
0.3
0.4
0.1

‘l‘

0.7
- 1.2
0.2

0
0
1
0

‘l‘

0.2
0.2
0.5
0.1

‘l‘

0.7
- 1.2
0.2

0
0
1
0

‘l‘

0.0
0.0
0.1
0.9

‘o‘

…

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

(probabilities)

(one-hot encoded
characters)

(‘delay’)  Sequence values that 
are separated by a 
significant number of 
words (i.e. deep RNN) 
leads to the vanishing 
gradient problem

 Reasoning is that small 
gradients or weights 
with values than 1 are 
multiplied many
times through the
multiple time steps,
i.e. gradients shrink
asymptotically to zero

 Effect is that weights of 
those earlier layers are 
not changed 
significantly and the 
network will not learn 
long-term dependencies
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RNN Example – Data Repository
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[42] Folger Digital Texts
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RNN Example – Language Model Setup

 Typical approach
 Create ‘generative model’ to predict the next word given previous words
 Enables to generate text by sampling from the output probabilities
 Build a ‘word-based language model’ can be computational complex

 Simplified model for tutorial
 Reasoning: simpler model and quicker training
 Train a ’character based language model’

on one text of Shakespeare
 Take advantage of standard RNN cells
 Predict (only) the next character 

given 10 previous characters
 Use the trained language model 

to generate some text in the same style
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[37] Deep Learning with Keras

(10 characters  prediction)
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RNN Example – Keras Python Script – Preprocessing
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 Import necessary 
modules, e.g. 
SimpleRNN for a 
simple RNN cell, or 
Dense for a fully 
connected layer

 Preprocessing of 
original files that 
e.g. contain line 
breaks, non-ASCII 
characters, capital
characters; Result 
is variable text 
with ‘cleaned text’

 Create lookup 
tables for 
characters per 
index & vice versa Character-level RNN:  vocabulary is the set of characters that occur 

in the text  use index of character instead of a character itself [37] Deep Learning with Keras
166 / 200



RNN Example – Keras Python Script – Input & Label Texts
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 Task: Predict (only) 
the next character 
given 10 previous 
characters 
SEQLEN = 10, 
STEP=1

 Moving step-wise  
through text by 
STEP=1 number of 
characters & 
extract span of text 
with size 
SEQLEN=10

 Each row of input to the RNN corresponds to one of the input texts
 SEQLEN characters input; vocabulary size = nb_chars (set of different 

characters in text)  one-hot encoded vector of size (nb_chars)
[37] Deep Learning with Keras

(input_chars 


label_chars)
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RNN Example – Modelling & Decisions
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0.1
- 0.7
0.6

1
0
0
0

- 0.4
0.8
1.2

0
1
0
0

0.7
- 1.2
0.2

0
0
1
0

0.7
- 1.2
0.2

0
0
1
0

0
0
0
1

…

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

(input: one-hot 
encoded

vector of size
nb_chars)

(input: SEQLEN)

(each row in input is 
2D tensor 

SEQLEN x nb_chars)

(output/label: 
one-hot encoded

vector of size
nb_chars)

0.0
0.0
0.1
0.9

(internal decision 
normalizes the 

emitted scores to
probabilities
usually via 
softmax)

(good loss 
function for 
categorical 
output 
 categorical 
cross-entropy 
loss function)

1
0
0
0

0
0
0
1

0
0
1
0

168 / 200



RNN Example – Keras Python Script – Model & Parameter
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 Hyperparameter 
HIDDEN_SIZE=128 
means output 
dimension of size 
128 for ok text; 
parameter by 
experimentation

 Sequential model 
adding first a 
SimpleRNN layer 
of size 128, 
return_sequences 
= False means 
single character as 
output/label not a 
‘sequence of 
characters’, input 
tensor is SEQLEN x 
nb_chars; unroll = 
True - performance

 Adding a Dense layer of size nb_chars &  activation function ‘softmax‘
(emits scores for each of the characters in vocabulary probabilities)

 Use optimizer ‘rmsprop‘ with ‘categorical_crossentropy‘ loss function
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RNN Example – Keras Model & Activation Functions
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x1

tanh

h1

Delay
h1-1

x2

tanh

h2 (Dense layer with ‘number of characters’ as nodes + 
‘softmax’ activation function as output layer nodes)

(input layer nodes)

(SimpleRNN layer with 128 hidden nodes with
default hyperbolic tangent as activation function,
i.e. values squashed between 1 and -1)

(internal decision 
normalizes the 

emitted scores to
probabilities
usually via 
softmax)(iterations)
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RNN Example – Keras Python Script – Training Process
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 Train model  for 
epochs = 1 since no 
labelled dataset 
and then testing; 
training for 25 
iterations 
NUM_ITERATIONS; 
aka training for 25
epochs/iterations

 Cf. supervised learning process (day one)
 Labels existing (not in this unsupervised example)
 Train model for fixed number of epochs
 Evaluate model against test dataset

 Test: generate a 
character from 
model given a 
random input; 
dropping the first 
character from the 
input & append 
the predicted 
character from our 
previous run & 
generate another 
character (100 x)

[37] Deep Learning with Keras



RNN Example – Submit Script
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 Job submit script
 Specify good name for the job
 Allocate GPUs 

for deep learning job
 Specify job queue
 Restore module 

environment with 
all dependencies

 Use python with 
rnn-example.py script

 Use sbatch
 Use jobscript
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RNN Example – Output Interpretation

 Challenge: unsupervised learning problem
 Check output with ‘more out.txt‘
 Idea: string gives us an indication of the quality of the model
 More epochs/iterations  better quality of the model
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(learned well to
spell compared to
first iteration but
no coherent 
thoughts  still 
interesting since 
no word concept)
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Different Useful LSTM Models

 Standard LSTM
 Memory cells with single LSTM layer; used in simple network structures

 Stacked LSTM
 LSTM layers are stacked one on top of another; creating deep networks

 CNN LSTM
 CNNs to learn features (e.g. images); LSTM for image sequences

 Encoder-Decoder LSTM
 One LSTM network  encode input; one LSTM network  decode output

 Bidirectional LSTM
 Input sequences are presented and learned both forward & backwards

 Generative LSTM
 LSTMs learn the inherent structure relationship in input sequences; 

then generate new plausible sequences
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Long Short-Term Memory (LSTM) Models

 Specific type of Recurrent Neural Network (RNN)
 Different to techniques like standard Artificial Neural Networks (ANNs) or 

Convolutional Neural Networks (CNNs) 
 Solving certain limits of ANNs through RNNs design
 RNNs offer short-term memory – LSTMs add ‘long-term‘ capabilities
 Idea: improved performance through ‘more memory‘ (cp. HPC?!)

 Designed specifically for sequence prediction problems
 World-class results in complex problem domains & applications
 E.g. language translation, automatic image captioning, text generation
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[43] A. Karpathy & F. Li, ‘Deep Visual-Semantic Alignments for Generating Image Descriptions’ 
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tanh

Xt-1

ht-1

tanh

Xt

ht

tanh

Xt+1

ht+1

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

Unrolled RNN – Revisited 
 A RNN can be viewed as 

multiple copies of the 
same network, each 
passing a message to a 
successor – this gets 
clear when ‘unrolling 
the RNN loop’

(use backpropagation through 
time optimization approach)
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Long Short Term Memory (LSTM) Model
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 Long Short Term Memory (LSTM) networks are a 
special kind of Recurrent Neural Networks (RNNs)

 LSTMs learn long-term dependencies in data by 
remembering information for long periods of time

 The LSTM chain structure consists of four neural 
network layers interacting in a specific way

x +

tanh

x

ℴℴ ℴ x

tanh

xt

ht

x +

tanh

x

ℴℴ ℴ x

tanh

Xt+1

Ht+1

x +

tanh

x

ℴℴ ℴ x

tanh

Xt-1

Ht-1
(each line carries
an entire vector)

ht

LSTM model

xt (uses sigmoid ℴ)
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LSTM Model – Memory Cell & Cell State
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 LSTM introduce a ‘memory cell‘ structure into the underlying basic RNN architecture using four key 
elements: an input gate, a neuron with self-current connection, a forget gate, and an output gate

 The data in the LSTM memory cell flows straight down the chain with some linear interactions (x,+)
 The cell state st can be different at each of the LSTM model steps & modified with gate structures
 Linear interactions of the cell state are pointwise multiplication (x) and pointwise addition (+)
 In order to protect and control the cell state st three different types of gates exist in the structure

tanh
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Computing of LSTM Cell – Step 1-2

1. New xt input together with the output from cell hht-1
are squashed via a tanh layer
 Outputs between -1 and 1

2. New xt input together with 
the output from cell hht-1
is passed through the ‘input gate‘
 Layer of sigmoid activated nodes whose

output is multiplied by squashed input
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x +

tanh

x

ℴℴ ℴ x

tanh

xt

ht

12

(uses sigmoid ℴ)

(gate sigmoid ℴ can act to ‘switch 
off’ any elments of the input vector 
that are not required)

(sigmoid function outputs values between 0 and 1, weights connecting the 
input to these nodes can be trained to output values close to zero to ‘switch 
off’ certain input values – or outputs close to 1 to ‘pass through’ )

[44] Adventures in 
Machine Learning

ht-1
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Computing of LSTM Cell – Step 3

3. Internal state / forget gate
 LSTM cells have internal cell state st

 ‘Delay‘ – lagged one time step: st-1

 Added to the input data to create
an effective ‘layer of recurrence‘

 Addition instead of ‘usual‘ multiplication
reduces risk of vanishing gradients

 The connection to cell state is carefully
controlled by a forget gate with sigmoid
(works like the input gate)
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x +

tanh

x

ℴℴ ℴ x

tanh

xt

ht

12

st-1

3

3

(uses sigmoid ℴ)

(gate sigmoid ℴ can act to ‘switch 
off’ any elments of the cell state to 
steer what variables should be
remembered or forgotten)

[44] Adventures in 
Machine Learning
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Computing of LSTM Cell – Step 4

4. Output layer & output gate
 Output layer with tanh squashing function

 Output is controlled via output gate
with sigmoid activation function
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x +

tanh

x

ℴℴ ℴ x

tanh

xt

ht

12

3

3 4

4

(uses sigmoid ℴ)

(gate sigmoid ℴ can learn to 
determine which values are 
allowed as an output from the cell)

[44] Adventures in 
Machine Learning
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...

lstm = rnn_cell.BasicLSTMCell(lstm_size, state_is_tuple=False)

...
stacked_lstm = rnn_cell.MultiRNNCell([lstm] * number_of_layers,

state_is_tuple=False)
...
initial_state = state = stacked_lstm.zero_state(batch_size, tf.float32)

for i in range(num_steps):
# The value of state is updated 
# after processing each batch of words.
output, state = stacked_lstm(words[:, i], state)

# The rest of the code.
# ...

final_state = s

Low-Level Tools – Tensorflow 
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 Tensorflow is an open source library for deep learning models using a flow graph approach
 Tensorflow nodes model mathematical operations and graph edges between the nodes are 

so-called tensors (also known as multi-dimensional arrays)
 The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
 Tensorflow work with the high-level deep learning tool Keras in order to create models fast
 LSTM models are created using tensors & graphs and there are LSTM package contributions

[31] Tensorflow Deep Learning Framework

 The class 
BasicLSTMCell() 
offers a simple
LSTM Cell 
implementation
in Tensorflow
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High-level Tools – Keras 
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[30] Keras Python Deep Learning Library

 Keras is a high-level deep learning library implemented in Python that works on top of 
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

 The key idea behind the Keras tool is to enable faster experimentation with deep networks
 Created deep learning models run seamlessly on CPU and GPU via low-level frameworks 

keras.layers.LSTM( units, 
activation='tanh', 

recurrent_activation='hard_sigmoid', 

use_bias=True, 

kernel_initializer='glorot_uniform',

recurrent_initializer='orthogonal', 

bias_initializer='zeros', 

unit_forget_bias=True, 

kernel_regularizer=None, 

recurrent_regularizer=None, 

bias_regularizer=None, 

activity_regularizer=None, 

kernel_constraint=None, 

recurrent_constraint=None, 

bias_constraint=None, 

dropout=0.0, ...)

 Tool Keras supports the LSTM 
model via keras.layers.LSTM()
that offers a wide variety of 
configuration options
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LSTM Example – Data Repository
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[45] Kaggle, UMICH SI650 – Sentiment Classification Data 

184 / 200



LSTM Example – Dataset & Application

 Sentiment analysis (many-to-one RNN topology)
 Input: sentence as sequence of words (i.e. movie ratings texts)
 Output: Sentiment value (positive/negative movie rating)
 Application was a former competition (i.e. Kaggle platform overall idea)
 Goal: Create LSTM network that will learn to predict a correct sentiment

 Small dataset example for tutorial: training & test data available
 Training samples: 7086 short sentences (labelled) [~440 KB]
 Test samples: 33052 short sentences[~1.94 MB]
 Format: label & tab seperated sentence
 https://www.kaggle.com/c/si650winter11/data
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[45] Kaggle, UMICH SI650 –
Sentiment Classification Data 
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LSTM Example – Dataset Exploration
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(labelled training dataset)

(testing dataset)
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LSTM Example – Keras Python Script – Preprocessing
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 Import necessary 
modules, e.g. 
LSTM for a simple 
LSTM cell, or 
Dense for a fully 
connected layer

 Import good 
sklearn model 
selection tools

 Import numpy for 
as helper tool

[37] Deep Learning with Keras

 Natural Language 
Toolkit (NLTK) is
for building Python
programs working
on human 
language datasets
(punkt is tokenizer)

 Location for labeled training data and testset data
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LSTM Example – Keras Python Script – Vocabulary Setup
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 Perform 
exploratory 
analysis in order to 
find out the 
number of unique 
words in the whole 
corpus & how 
many words are 
roughly in each 
sentence

[37] Deep Learning with Keras

 Exploration reveals 
maxlen: 42 & 
len(word_freqs): 
2313

 Number of words 
in sentence 
(maxlen) enables a 
fixed sequence 
length & PAD = 0; 
truncate long ones

 Creating indices index2word and vice versa
 Out of vocabulary means UNK (unknown)
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LSTM Example – Keras Python Script – Indices & Padding
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 Convert input 
sentences from the 
training data to 
word index 
sequences and add 
unknown ones as 
UNK in index

[37] Deep Learning with Keras

 Perform padding 
to the maximum 
sentence length 
(40) 

 Labels are binary 
(positive/negative
sentiment) and do
not need padding

 Split between training & testing set (ratio rule of thumb 80:20)
 There is another test set put aside for nicely checking out-of-sample 
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LSTM Example – Modelling & Decisions
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ht

LSTM model

xt

(unroll the ‘loop’
over t timesteps)

h0

LSTM model  

x0

h1

LSTM model 

x1

…

(Dense layer with Sigmoid activation function 
0 – negative review / 1 positive review)

(input for each row is a sequence of word indices –
sequence length is given by MAX_SENTENCE_LENGTH)

modified from [37] Deep Learning with Keras

(tensor dimensions: first is None 
indicate that the batch size is currently unknown,

i.e. number of records fed to the network 
defined in runtime using BATCH_SIZE parameter)

(tensor layout: None X MAX_SENTENCE_LENGTH X 1)

(tensor fed to embedding layer 
weights are initialized with small random values & learned

i.e. layer transforms the tensor to a shape of 
None X MAX_SENTENCE_LENGTH X EMBEDDING_SIZE)

(output of LSTM is the tensor 
None X HIDDEN_LAYER_SIZE, because last tensor can be defined
as return_sequences = False  we just need 0/1 output)
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LSTM Example – Keras Python Script – Model & Parameter
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 Hyperparameters 
embedding=128; 
hidden layers=64;  
parameter by 
experimentation

 Create first 
embedding layer with 
input tensor None X 
maximum sentence 
length X 1 

 Add regularizer 
SpatialDropout1D

 Add LSTM cell with 
hidden layer size 64
with regularizers 
dropout and 
recurrent_dropout

 Add Dense layer and
Sigmoid activation

 All hyperparameters are tuned 
experimentally over many runs

 Compile model using binary 
cross-entropy loss function good 
for a binary model used here

 Use of Adam optimizer as good 
general purpose optimizer

[37] Deep Learning with Keras
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LSTM Example – Keras Python Script – Train & Evaluate
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 Train the LSTM 
network for 10 
epochs 
(NUM_EPOCHS) &
with batch size 32

 Perform validation 
at each epoch 
using test data

 Evaluate model 
against the full test 
set showing score 
and accuracy

 Show the LSTM 
prediction with 
pick of a few 
random sentences 
from the test set 
(predicted label, 
label & actual 
sentence

 Supervised learning process
 Labels existing (not in this unsupervised example)
 Train model for fixed number of epochs
 Evaluate model against test dataset (splitted training)
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LSTM Example – Submit Script (JURECA)
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 Job submit script
 Specify good name 

for the job
 Allocate GPUs for 

deep learning job
 Specify job queue
 Restore module 

environment with 
all dependencies

 Use python with 
lstm-example.py script

 Use sbatch
 Use job script
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LSTM Example – Output Interpretation

 Supervised learning problem
 Check output with ‘more out.txt‘
 Idea: predicted sentiment should be closed to sentiment labels
 More epochs/iterations  better quality of the model
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(learned well 
compared to
first iteration 
one can observe 
loss decrease and 
increase in 
accuracy over 
multiple epochs)
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LSTM Example – Model Evaluation
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[37] Deep Learning with Keras

 Selected plots (e.g. for papers)
 E.g. matplotlib & pyplot can be used to create simple graphs
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Different Useful LSTM Models – Many other Applications

 Standard LSTM
 Memory cells with single LSTM layer; used in simple network structures

 Stacked LSTM
 LSTM layers are stacked one on top of another; creating deep networks

 CNN LSTM
 CNNs to learn features (e.g. images); LSTM for image sequences

 Encoder-Decoder LSTM
 One LSTM network  encode input; one LSTM network  decode output

 Bidirectional LSTM
 Input sequences are presented and learned both forward & backwards

 Generative LSTM
 LSTMs learn the inherent structure relationship in input sequences; 

then generate new plausible sequences
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Tensorflow – LSTM Google Translate Example & GPUs

 Use of 2 LSTM networks in a stacked manner
 Called ‘sequence-2-sequence‘ model
 Encoder network
 Decoder network
 Needs context of sentence

(memory) for translation
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[47] Sequence Models
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[Video] RNN & LSTM

[46] Recurrent Neural Networks, YouTube
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