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Outline of the Course

Introduction to Deep Learning

Fundamentals of Convolutional Neural Networks (CNNs)
Deep Learning in Remote Sensing: Challenges

Deep Learning in Remote Sensing: Applications

Model Selection and Regularization

Fundamentals of Long Short-Term Memory (LSTM)

LSTM Applications and Challenges

Deep Reinforcement Learning
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Outline

= Recurrent Neural Networks (RNNs)

Sequence Models & Dataset Impact
Limitations of Feed Forward Networks
RNN Model & Unrolling

RNN Cells & Topologies

Simple Application Example

" Long Short-Term Memory (LSTMs)

LSTM Model & Memory Cells
Vanishing Gradient Problem
Keras and Tensorflow Tools
Different Useful LSTM Models
Simple Application Example
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Recurrent Neural Networks (RNNs)
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Deep Learning Architectures

= Deep Neural Network (DNN)
= ‘Shallow ANN‘ approach with many hidden layers between input/output

= Convolutional Neural Network (CNN, sometimes ConvNet)

= Connectivity pattern between neurons is like animal visual cortex

= Deep Belief Network ( DBN)

= Composed of mult iple layers of variables; only connections between layers

= Recurrent Neural Network (RNN)

= ‘ANN‘but connections form a directed cycle; state and temporal behaviour

Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural
Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristica

Deep Learning needs ‘big data’ to work well & for high accuracy — works not well on sparse data

Lecture 6 — Fundamentals of Long Short-Term Memory (LSTM)




Revisit CNNs vs. RNNs

= CNNs (cf. day one)

= Example: remote sensing application
domain, hyperspectral datasets

= Neural network key property:
exploit spatial geometry of inputs

= Approach: Apply convolution & pooling
(height x width x feature) dimensions

|Forest |

= RNNs @
= Examples: texts, speech, time series datasets
= Neural network key property:
exploit sequential nature of inputs

= Approach: Train a graph of ‘RNN cells’ & each cell performs
the same operation on every element in the given sequence

RNNs are used to create sequence models whereby the occurrence of an element in the
sequence (e.g. text, speech, time series) is dependent on the elements that appeared before it

Lecture 6 — Fundamentals of Long Short-Term Memory (LSTM)




Sequence Models

Sequence models enable various sequence predictions that are inherent different to other
more traditional predictive modeling techniques or supervised learning approaches

In contrast to mathematical sets often used, the ‘sequence’ model imposes an explicit
order on the input/output data that needs to be preserved in training and/or inference

Sequence models are driven by application goals and include sequence prediction,
sequence classification, sequence generation, and sequence-to-sequence prediction

Model Categorization
= Based on different inputs/outputs to/from the sequence models
Practical ‘standard dataset’ perspective

= Often the order of samples is not important

* Training/testing datasets and their samples
have often no explicit order (i.e. ‘sets’)

Practical ‘sequence dataset’ perspective
= QOrder of samples is important
= Sequence model learning/inference needs this order




Limitations of Feed Forward ANN (cf. Day One)

= Selected application examples revisited
= Predicting next word in a sentence requires ‘history‘ of previous words
® Translating european in chinese language requires ‘history‘ of context
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= Traditional feed forward artificial neural networks show limits when a certain ‘history’ is required
= Each Backpropagation forward/backward pass starts a new pass independently from pass before
= The ‘history’ in the data is often a specific type of ‘sequence’ that required another approach

Lecture 6 — Fundamentals of Long Short-Term Memory (LSTM)




Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) consists of cyclic connections that enable the neural network to
better model sequence data compared to a traditional feed forward artificial neural network (ANN)

RNNs consists of ‘loops’ (i.e. cyclic connections) that allow for information to persist while training
The repeating RNN model structure is very simple whereby each has only a single layer (e.g. tanh)

tanhx

1of —— —_—

= Selected applications Ve
= Sequence labeling R If"; _—
= Sequence prediction tasks f-{i- @
= E.g. handwriting recognition —/_>/_ R
= E.g.language modeling g;:i'qa:/_’l)

= Loops / cyclic connections

" Enable to pass information(‘delay’) @ ?
from one step to the :

next iteration \

NEETPPPPIPS PV

= Remember ‘short-term’
data dependencies @
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Unrolled RNN

= A RNN can be viewed as
multiple copies of the
same network, each
passing a message to a
successor — this gets
clear when ‘unrolling
the RNN loop’

('delay')@ Q

(unroll the ‘loop’
over t timesteps)

oo

(use backpropagation through
time optimization approach)

..@

N
NS DG
2

(NP P
NEETTPPPTes B

\

Xt-l < Xt > < Xt+1>

Lecture 6 — Fundamentals of Long Short-Term Memory (LSTM)




Unrolled RNN - Role of ‘Delay’ and Nodes in Layers

@ ’ @ @ (output layer)
(‘delay’)

(hidden layer)

(unroll the ‘loop’
over t timesteps)

(missing in ANNs) h, @ (output layer nodes) -
/4{;.5’

‘1' A

Delay [€= @ (hidden layer nodes + activation function tanh)

h 1-1

(input layer)

° (input layer nodes)

noooooooo"

=  RNNs are unrolled programmatically during the training and prediction phase

= |dea of ‘delay’ means feeding back the output of a neural network layer at a specific time t to the
input of the same nerual network layer at time t+1 - establishes something like ‘short memory*
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RNN Model - Simple Example — Predict Next Character

words (i.e. deep RNN)
leads to the vanishing

(unroll the ‘loop’ gradient problem (cf.
over t timesteps) ° ° day one)

Q = Sequence values that
(‘delay’) are separated by a
. ‘ significant number of

= Reasoning is that small

‘ef ‘1 1" ‘0 gradients or weights
0.1 0.2 0.2 0.0 with values than 1 are
epege 0.6 0.3 0.2 0.0 e 1
(probabilities) 02 04 05 01 multiplied many
0.1 0.1 0.1 0.9 times through the

multiple time steps,
i.e. gradients shrink
asymptotically to zero

= Effect is that weights of
those earlier layers are

1 0 0 0 not changed
(one-hot encoded g (1) (1’ ‘1) significantly and the
characters) 0 0 0 0 network will not learn
y ‘o | — long-term dependencies
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Exercises — RNN Example
Use Different number of Hidden Nodes, Epochs & Iterations
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RNN Example — Data Repository

Folger Digital Texts: Downlead X

o o

¢ & @ folgerdigitaltexts.org/download B 1% - @ % Suchen  IN @| =

m

Download

Timeless Texts, Cutting-Edge Code: Free downloads of Shakespeare from Folger Digital Texts

Folger Digital Texts is your source for high-quality texts of Shakespeare's plays, sonnets, and poems, whether you are a reader, student, teacher, performer, or digital developer. These texts are free to read online, and we offer
those same great texts free to download. We offer downloadable files in five formats: XML, HTML, PDF, DOC (including or not including line numbers), TXT, and TE| Simple. You are strongly encouraged to visit the About page
before downloading fo find out which type of file is best for your needs.

If you have any questions, concerns, or suggestions, or to join our mailing list, visit our feedback page.

w - -_— = — T - e w— = - - L eee—

Filter list by title:

Title Last Updated Download Format

Folger Digital Texts - Complete Set March 14, 2018 XML || HTML | PDF || DOC (wioline #s) | DOC (w line #s) || TXT || TEl Simple
All's Well That Ends Well March 14, 2018 XML || HTML || PDF || DOC (wioline #s) | DOC (w line #s) || TXT || TEl Simple
Anfony and Cleopatra July 31, 2015 XML || HTML | | PDF | DOC (w/ DOC (wine#s) | | TXT || TEl Simple
As You Like It July 31, 2015 XML || HTML || PDF || DOC (wio DOC (w line #s) || TXT || TEI Simple
The Comedy of Errors October 4, 2017 XML | HTML | | PDF | DOC iw poc TEI Simple
Coriolanus July 31, 2015 XML || HTML | PDF || DOC (w. Doc TAT || TEI Simple

Terms of Use | Credits | Feedback

[7] Folger Digital Texts



RNN Example — Dataset & Application

" Unsupervised learning: simple sequence prediction example
= Generating text by building a language model out of given text
= Domain of Natural language processing (NLP)

= Language models enable the prediction of the probability
of a word in a given text given its previous words

= Higher level applications: machine translation, spelling correction, etc.
» Data: Shakespeare text datasets
= E.g.Shakespeare Macbeth (text)

= http://www.folgerdigitaltexts.org/download/
= Already downloaded and available on JURECA

[7] Folger Digital Texts
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RNN Example — Dataset Exploration

Use more/head/tail <textfile>
= TBD: What challenges we see w.r.t. ‘clean datasets’ & analysis?

-bash-4.2% head Mac.txt
Macbeth
by William Shakespeare
Edited by Barbara A. Mowat and Paul Werstine
with Michael Poston and Rebecca Niles
Folger Shakespeare Library (metadata)
http://www.folgerdigitaltexts.org/?chapter=b&play=Mac
Created on Jul 31, 20815, from FDT version 0.9.2

Characters in the Play

-bash-4.2% tail Mac.txt
hat fled the snares of watchful tyranny,
*roducing forth the cruel ministers
0f this dead butcher and his fiend-like queen
(Who, as 'tis thought, by self and violent hands,
ook off her life)--this, and what needful else (role commands)
hat calls upon us, by the grace of grace,
le will perform in measure, time, and place.
50 thanks to all at once and to each one,
fhom we invite to see us crowned at Scone.
[Flourish. ALl exit.]




RNN Example — Language Model Setup

= Typical approach

= Create ‘generative model” to predict the next word given previous words

= Enables to generate text by sampling from the output probabilities
= Build a ‘word-based language model” = can be computational complex

* Simplified model for tutorial

= Reasoning: simpler model and quicker training

Train a ‘character based language model’
on one text of Shakespeare

Take advantage of standard RNN cells

Predict (only) the next character
given 10 previous characters

Use the trained language model
to generate some text in the same style

Lecture 6 — Fundamentals of Long Short-Term Memory (LSTM)

(10 characters = prediction)

it turned -> i

t turned i -> n

turned in -> t
turned int -> o
urned into ->
rned into -> a
ned into a ->
ed inte a -> p
d into ap -> i

into a pi -> g

[8] Deep Learning with Keras



RNN Example — Keras Python Script — Preprocessing

future  Import print_function
from keras.layers import Dense, Activation
Trom keras.layers.recurrent import SimpleRNN
Trom keras.models import Sequential
import numpy as np

fin = open("/home
ines = []
for line in fin:
line = line.strip().lower()
line = line.decode(’
if len(line) == 0O:
continue
lines.append(line)
fin.close()

ext = “.join(lines)

chars = set([c for ¢ in text])
nb_chars = len(chars)

= Import necessary
modules, e.g.
SimpleRNN for a
simple RNN cell, or
Dense for a fully
connected layer

=  Preprocessing of
original files that
e.g. contain line
breaks, non-ASCII
characters, capital
characters; Result
is variable text
with ‘cleaned text’

charZindex = dict({{c, i) for i, c in enumerate(chars))
indexZchar = dict({i, c) for i, © in enumerate{chars)) - c}eateIOOkuP
- tables for
A Y
s characters per
= Character-level RNN: vocabulary is the set of characters that occur index & vice versa

in the text - use index of character instead of a character itself [8] Deep Learning with Keras




RNN Example — Keras Python Script — Input & Label Texts

i : = Task: Predict (only)
SEQLEN = 10

STEP — the next character
input_chars = _ given 10 previous
label_chars = [] characters 2
for i in range(0, len(text) - SEQLEN, STEP): _
input chars.append(text[i:i + SEQLEN]) SEQLEN =10,
label chars.append(text[i + SEQLEN]) STEP=1

=  Moving step-wise
through text by
STEP=1 number of
characters &
extract span of text

X np.zeros((len(input_chars), SEQLEN, nb chars), dtype=np.bool) with size
y = np.zeros((len(input chars), nb chars), dtype=np.bool) _
for i, input char in enumerate(input chars): SEQLEN=10
for j, ch in enumerate(input_char): it turned -> i
X[1i, j, char2index[ch]] =1 t turned i -> n

turned in -> t

(input Chars turned int -> o
- urned into ->

y[i, char2index[label chars[i]]]

. - . 9 rned into -> a
= Each row of input to the RNN corresponds to one of the input texts label chars) ned into a ->
- ed into a -> p
= SEQLEN characters input; vocabulary size = nb_chars (set of different dintoap -> i

into a pi -> g

characters in text) 2 one-hot encoded vector of size (nb_chars) ) )
[8] Deep Learning with Keras




RNN Example — Modelling & Decisions
Ly P 7 |

(unroll the ‘loop’ |
over t timesteps) e ° -6

2 4 6
0 0 1 1] . 0.0 . P
(good loss 0 o o o (output/label: o0 (mternal-deasmn
. 1 0 0 0 one-hot encoded |,;| normalizes the
function for . . ]
. 0 1 0 1 vector of size 09| emitted scores to
categorical o
nb_chars) probabilities
output v vi
-> categorical usually via
softmax)

cross-entropy
loss function)

(each row in input is
2D tensor

: . } 1 0 0 0
(input: one-hot 0 1 0 0 SEQLEN x nb_chars)
encoded 0 0 1 1
vector of size 0 0 0 0
nb_chars) \ }

!

(input: SEQLEN)
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RNN Example — Keras Python Script — Model & Parameter

HIDDEN SIZE = 128
BATCH SIZE = 12
NUM_ITERATIONS = 25
NUM_EPOCHS PER ITERATION = 1
NUM_PREDS PER EPOCH = 106

model = Sequential()
model .add (SimpleRNN(HIDDEN SIZE, return_sequences=False,
input shape=(SEQLEN, nb chars),
unroll=True))
mogeL.aua(vense(no_cnars))
model.add(Activation("softmax"))

model.compile(loss="categorical crossen , optimizer="rmsprop")

Hyperparameter
HIDDEN_SIZE=128
means output
dimension of size
128 for ok text;
parameter by
experimentation

{

= Adding a Dense layer of size nb_chars & activation function ‘softmax
(emits scores for each of the characters in vocabulary—=> probabilities)

= __Use optimizer ‘rmsprop‘ with ‘categorical_crossentropy‘ loss function

Sequential model
adding first a
SimpleRNN layer
of size 128,
return_sequences
= False means
single character as
output/label not a
‘sequence of
characters’, input
tensor is SEQLEN x
nb_chars; unroll =
True - performance




RNN Example — Keras Model & Activation Functions

it turned -> i
t turned i =-> n
turned in -> t
turned int -> o
urned into ->

(iterations) rned into -> a

ed into a -> p

d into ap -> 1
into api -> g

O
o
Q
<

L] o
P
woeoocccced®

(input layer nodes)

Lecture 6 — Fundamentals of Long Short-Term Memory (LSTM)

ned inte a -> -6

(internal decision
normalizes the
emitted scores to
probabilities
usually via
softmax)

(Dense layer with ‘number of characters’ as nodes +
‘softmax’ activation function as output layer nodes)

(SimpleRNN layer with 128 hidden nodes with
default hyperbolic tangent as activation function,

i.e. values squashed between 1 and -1)

tanhx
10F

0sF




RNN Example — Keras Python Script — Training Process

for iteration in range(NUM _ITERATIONS):
print(“=" * 50}
print(“Iteration #: %d" % (iteration))
model.fit(X, vy, batch size=BATCH SIZE, epochs=NUM EPOCHS PER ITERATION)
test idx = np.random.randint(len{input chars))
test chars = input chars[test_idx]
print(“Generating from seed: %s" % (test chars))
print(test _chars, end="")
for i in range(NUM_PREDS PER EPOCH):
Xtest = np.zeros((1l, SEQLEN, nb chars))
for i, ch in enumerate(test chars):
HNtest[0, i, charZindex[ch]] =1
pred = model.predict(Xtest, verbose=0)[0]
ypred = indexZchar[np.argmax(pred)]
print{ypred, end="")

test chars = test chars[l:] + ypred
print()

= Cf. supervised learning process (day one)
= Labels existing (not in this unsupervised example)
= Train model for fixed number of epochs

= Evaluate model against test dataset
[8] Deep Learning with Keras

Train model for
epochs = 1 since no
labelled dataset
and then testing;
training for 25
iterations 2
NUM_ITERATIONS;
aka training for 25
epochs/iterations

Test: generate a
character from
model given a
random input;
dropping the first
character from the
input & append
the predicted
character from our
previous run &
generate another
character (100 x)




RNN Example — Copy Keras Script & Job Script

/homea/hpclab/trainf0l/tools/rnn
[train@B@l@jr104 rnnl$ 1s -al
total 32

drwxr-xr-x 2 train@@l hpclab 512 143 .

drwxr-xr-x 180 train®@l hpclab 512 :31 ..

-rw-r--r-- 1 train@@1 hpclab 2349 243 rnn-example.py

-rw-r--r-- 1 trainf@@1 hpclab 361 30 rnn-example-submit-juron.sh

Create directory ‘rnn’
cp /homea/hpclab/train001/tools/rnn/rnn-example.py ~/rnn

7 06:48 submit train_simple_ rnn.sh

-rw-r--r-- 1 train@0l1 hpclab 453 Jun

cp /homea/hpclab/train001/scripts/submit_train_simple rnn.sh ~/rnn



RNN Example — Submit Script

" Job submit script

= Specify good name for the job

= Allocate GPUs
for deep learning job

= Specify job queue

m Restore module
environment with
all dependencies

= Use python with
rnn-example.py script

= Use sbatch

= Use jO bscri pt KERASSCRIPT=/homea/hpclab/train@81/tools/rnn/rnn-example.py

module restore dl_tutorial

python SKERASSCRIP




RNN Example — Output Interpretation

» Challenge: unsupervised learning problem
= Check output with ‘more out.txt
= |dea: string gives us an indication of the quality of the model

= More epochs/iterations = better quality of the model

97920,/101872 : ETA: Os - loss: 2.5135 (learned well to
99534/1018 ?’ - ETA: Os - loss: 2.5090
101245/101872 - ETA: 0s - loss: 2.5046 T :
101872/101872 12s 117us/step - loss: 2.5029 first iteration but
Generating frcm seed: but this no coherent

but this the the the the the the the the the the the the the the the the the the thoughts = still

spell compared to

Iteration #: 1 interesting since
Epoch 1/1 no word concept)

99968,/101872 - - ETA: 85 - loss: 1.5870
1@1532fl“13?_ - - ETA: 05 - loss: 1.5873
101872/101872 - 35 30us/step - loss: 1.5871
ienerating frﬂm seed: eeks when

eeks when the did the pronor me the cantant in the with the dines and the servant he childred macbeth

ITteration #: 23
poch 1/1




RNN Topologies — Many-to-many (1)

RNN topologies express RNN capabilities to be arranged in many ways to solve specific problems
Recall: RNNs combine the input data vector with the previous state vector to produce new states

Common RNN topologies for sequences are driven by application problems but can be categorized
roughly as follows: (a) many-to-many (1); (b) many-to-many (2); (c) one-to-many; (d) many-to-one

= (a) many-to-many (1)

= All input sequences are
of the same length

o= OoOOo
= O OO
O OO mR
= O OO

= Qutput is produced at
each time step

= Example

= RNN-Example above:
Predicting next character

(=T =R =R ]
(=N =T =]
o= OoOOo
o= OO
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RNN Topologies — Many-to-many (2)

Grammar as a Foreign Language

"= (b) many-to-many (2)

Oriol Vinyals* Lukasz Kaiser*

[ | Output / input data: vmyaw:;(;nicqw&com 1ukas7.kaigzor%]:ooq'le com

Sequence-to-sequence network oo o e e
= Example: machine translation network
= |nput: sequence of English words
1 0

. .
Outp.ut. sequence of translated (certain time steps : :
Spanish sentence w/o outputs) 0 1

" Example: Part-of-Speech
(POS) tagging

= |nput: words in a sentence

= Qutput: corresponding
POS tags

(certain time
steps w/o inputs)

o= OoOOo

(=T =R =R ]
(=N =T =]

[9] O. Vinyals et al., ‘Grammar as a Foreign Language’

Lecture 6 — Fundamentals of Long Short-Term Memory (LSTM)



RNN Topologies — One-to-many

" (c) one-to-many

= E.g.different type of
. i Andrej Karpathy Li Fei-Fei
Inp uts combined Department of Computer Science, Stanford University
. . {karpathy, feifeili}@cs.stanford.edu
with different types
of outputs in a network

Deep Visual-Semantic Alignments for Generating Image Descriptions

" Example: Image
captioning network

" |nput: image

o= OoOOo
= O OO
O OO mR
= O OO

= Qutput: sequence of
words describing the
image

ottle of water glass of water with
red flowers ice and lemon

(=T =R =R ]

dining table
with breakfast
items

plate of fruit

[10] A. Karpathy & F. Li,
‘Deep Visual-Semantic Alignments
for Generating Image Descriptions’

banana
slices

fork

a person
sitting at a
table
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RNN Topologies — Many-to-one

= (d) many-to-one

= Summarize or judge
a sequence of words &
texts to a specific
outcome

nerdy folks

= Often binary outcomes l 0 .

| | | | 0
. Very  Negative Somewhat Neutral Somewhat Posive  Very
( O O d / n e at Ive ) negative negative positive positive 0
g g 0
phenomenal fantasy best sellers
1
. [ N
= Example: Sentiment | | | |
. Very  Negative Somewhat Neutral Somewhat Posive  Very
negative negative positive positive

analysis of sentences

= |nput: Sequence of words
(e.g. ratings, reviews, etc.)

= Qutput: Positive/negative
sentiment about input

[11] R. Socher et al., ‘Recursive Deep
Models for Semantic Compositionality
Over a Sentiment Treebank’

(=T =R =R ]
(=N =T =]
o= OoOOo
o= OO
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Exercises — RNN Example — Revisit Group Outputs

Lecture 6 — Fundamentals of Long Short-Term Memory (LSTM)



[Video] RNN Summary

RECURRENT NEUVARRL NETWORKS

Yy, Y, Y% Y,

| Ml ) Oi6/124

[12] RNNs, YouTube
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Long Short-Term Memory

O
O 0
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Deep Learning Architectures

= Deep Neural Network (DNN)
= ‘Shallow ANN‘ approach with many hidden layers between input/output

= Convolutional Neural Network (CNN, sometimes ConvNet)

= Connectivity pattern between neurons is like animal visual cortex

= Deep Belief Network (DBN)

= Composed of mult iple layers of variables; only connections between layers

= Recurrent Neural Network (RNN) = Long Short-Term Memory

= RNN with state and temporal behaviour; LSTM adds ‘strong memory’

Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural
Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristica

Deep Learning needs ‘big data’ to work well & for high accuracy — works not well on sparse data

Lecture 6 — Fundamentals of Long Short-Term Memory (LSTM)




Different Useful LSTM Models

= Standard LSTM

= Memory cells with single LSTM layer; used in simple network structures

= Stacked LSTM

= LSTM layers are stacked one on top of another; creating deep networks

= CNNLSTM

= CNNs to learn features (e.g. images); LSTM for image sequences

" Encoder-Decoder LSTM
= One LSTM network = encode input; one LSTM network = decode output

= Bidirectional LSTM

= |nput sequences are presented and learned both forward & backwards
= Generative LSTM

= LSTMs learn the inherent structure relationship in input sequences;
then generate new plausible sequences

Lecture 6 — Fundamentals of Long Short-Term Memory (LSTM)



Long Short-Term Memory (LSTM) Models

= Specific type of Recurrent Neural Network (RNN)

= Different to techniques like standard Artificial Neural Networks (ANNs) or

Convolutional Neural Networks (CNNs)
= Solving certain limits of ANNs through RNNs design
= RNNs offer short-term memory — LSTMs add ‘long-term’ capabilities
= |dea: improved performance through ‘more memory‘ (cp. HPC?!)

» Designed specifically for sequence prediction problems
= World-class results in complex problem domains & applications
= E.g.language translation, automatic image captioning, text generation

T ey T —— 0.41 person ) 1.31 dog I 0.26 man
= 0.61 rides ans oo 031 plays ; A \ 0.31 playing

[10] A. Karpathy & F. Li, ‘Deep Visual-Semantic Alignments for Generating Image Descriptions’
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Unrolled RNN - Revisited

{

-
-0
-0

)

(unroll the ‘loop’
over t timesteps)

4

A RNN can be viewed as
multiple copies of the
same network, each
passing a message to a
successor — this gets
clear when ‘unrolling
the RNN loop’

(use backpropagation through
time optimization approach)

..@

\

-

NS
N

NS DG
2

e

NEETTPPPTes B

Xt-l < Xt > < Xt+1>
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Long Short Term Memory (LSTM) Model

= Long Short Term Memory (LSTM) networks are a
special kind of Recurrent Neural Networks (RNNs)

. =  LSTMs learn long-term dependencies in data by
remembering information for long periods of time
=  The LSTM chain structure consists of four neural

network layers interacting in a specific way

e

-0
o

(each line carries
an entire vector)

tanh

Xt- 1

Lecture 6 — Fundamentals of Long Short-Term Memory (LSTM)

1 1 J
2 4 6

(uses sigmoid ¢)

tanh

ST B




LSTM Model — Memory Cell & Cell State

LSTM introduce a ‘memory cell’ structure into the underlying basic RNN architecture using four key
elements: an input gate, a neuron with self-current connection, a forget gate, and an output gate

The data in the LSTM memory cell flows straight down the chain with some linear interactions (x,+)
The cell state s, can be different at each of the LSTM model steps & modified with gate structures
Linear interactions of the cell state are pointwise multiplication (x) and pointwise addition (+)

In order to protect and control the cell state s, three different types of gates exist in the structure




Computing of LSTM Cell — Step 1-2

1. New x, input together with the output from cell h,, ,

are squashed via a tanh layer T,
[14] Adventures in
=  Qutputs between-1and 1 R T Machine Learning
L
)
2. New x, input together with _>/ h .
I L
the output from cell h, , ) !
is passed through the ‘input gate’ l
|
= Layer of sigmoid activated nodes whose !
output is multiplied by squashed input '
- output tip Y sq p - 18E R
i=o(b+z,U" + hy {V?)
-3 (gate sigmoid o can act to ‘switch :
off’ any elments of the input vector
| o that are not required) Xy E
)/ (sigmoid function outputs values between 0 and 1, weights connecting the
. w = % & & . input to these nodes can be trained to output values close to zero to ‘switch
(uses sigmoid ¢) off’ certain input values — or outputs close to 1 to ‘pass through’)
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Computing of LSTM Cell — Step 3

3. Internal state / forget gate 7=c@' +207 +h V)

= LSTM cells have internal cell state s,

[14] Adventures in
= ‘Delay’—lagged one time step: s, , Machine Learning
= Added to the input data to create st =8 10f+goi
an effective ‘layer of recurrence’
o S Sa I
=  Addition instead of ‘usual’ multiplication = - >
reduces risk of vanishing gradients tanh :
= The connection to cell state is carefully :
. . . '
controllgd by a .forget gate with sigmoid |
(works like the input gate) ) ,

1
ﬁ (gate sigmoid ¢ can act to ‘switch
. ! off’ any elments of the cell state to

steer what variables should be
remembered or forgotten)
*IG -4 *IZ "0 ; tlt (IS
(uses sigmoid ¢)
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Computing of LSTM Cell — Step 4

4. Output layer & output gate o=o( +zU°+h 1v?)

= Qutput layer with tanh squashing function

.
-2

/
- -10k

[14] Adventures in
— Machine Learning

-4

- ' >
]
. : ]
=  Qutputis controlled via output gate ]
L . L . ]
with sigmoid activation function ]
]
- ]
]
(gate sigmoid ¢ can learn to —p>
determine which values are

05 ] ! |
)/ allowed as an output from the cell)

-6 -4 =2 0 2 4 6
(uses sigmoid ¢)

hi = tanh(s;) o o
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Low-level Tools — Theano

= Theano is a low-level deep learning library implemented in Python with a focus on

defining, optimizing, and evaluating mathematical expressions & multi-dimensional arrays

= The Theano tool supports the use of GPUs and CPUs via expressions in NumPy syntax

= Theano work with the high-level deep learning tool Keras in order to create models fast

= LSTM models are created using mathematical equations but there is no direct class for it

import numpy

import theano t h e a n 0

from theano import config //’
import theano.tensor as tensor

=4

def lstm layer (tparams, state below,
options, prefix='lstm', mask=None):

R .
[}

tensor.nnet.sigmoid( slice(preact, O, . .
options['dim proj']l))

Fh
]

tensor.nnet.sigmoid( slice(preact, 1, >

tanh

options['dim proj'l))

(o}
]

tensor.nnet.sigmoid( slice(preact, 2,
options['dim proj']l))

Q
]

tensor.tanh( slice(preact, 3, X,
options['dim proj']l))

[2] Theano Deep Learning Framework [3] LSTM Networks for Sentiment Analysis




Low-Level Tools — Tensorflow

= Tensorflow is an open source library for deep learning models using a flow graph approach

= Tensorflow nodes model mathematical operations and graph edges between the nodes are

so-called tensors (also known as multi-dimensional arrays)

= The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)

= Tensorflow work with the high-level deep learning tool Keras in order to create models fast

=  LSTM models are created using tensors & graphs and there are LSTM package contributions

[4] Tensorflow Deep Learning Framework

lstm = rnn_celﬂ.BasicLSTMCell(1stm_size, state_is_tuple:False)l

\

stacked lstm = rnn cell.MultiRNNCell ([lstm] * number_of_layers,\

state is tuple=False) ‘
\

initial state = state = stacked lstm.zero state(batch size, tf.f‘oat32)
\

for i in range(num steps):

# The value of state is updated \ -
# after processing each batch of words. \
output, state = stacked lstm(words[:, i], state) [ |

# The rest of the code.
#

final state = s

The class
BasicLSTMCell()
offers a simple
LSTM Cell
implementation
in Tensorflow




High-level Tools — Keras

= Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

= The key idea behind the Keras tool is to enable faster experimentation with deep networks
= Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

keras.layers.LSTM(

units,
activation="'tanh',

recurrent activation='hard sigmoid',
use bias=True,

kernel initializer='glorot uniform',
recurrent initializer='orthogonal',
bias initializer='zeros',

unit forget bias=True,

kernel regularizer=None,

recurrent regularizer=None,

bias regularizer=None,

activity regularizer=None,

kernel constraint=None,

recurrent constraint=None,

bias constraint=None,

dropout=0.0, ...)

K e r a S [1] Keras Python Deep Learning Library

Tool Keras supports the LSTM
model via keras.layers.LSTM()
that offers a wide variety of
configuration options




Exercises — LSTM Example
Use Different number of Hidden Nodes, Epochs & Iterations

Lecture 6 — Fundamentals of Long Short-Term Memory (LSTM)



LSTM Example — Data Repository

(o} Competitions Datasets Kernels Discussion Learn

UMICH SI650 - Sentiment Classification

This is an in-class contest hosted by University of Michigan SI650 (Information Retrieval)

28 teams years ago
Overview Data Leaderboard Rules Team My Submissions
Overview
Description This is a text classification task - sentiment classification. Every document (a line in the data file) is a
o sentence extracted from social media (blogs). Your goal is to classify the sentiment of each sentence into

"positive” or "negative”.

The training data contains 7086 sentences. already labeled with 1 (positive sentiment) or O (negative
sentiment). The test data contains 33052 sentences that are unlabeled. The submission should be a .Ixt
file with 33052 lines. In each line, there should be exactly one integer. 0 or 1, according to your
classification results.

You can make 5 submissions per day. Once you submit your results, you will get an accuracy score
computed based on 20% of the test data. This score will position you somewhere on the leaderboard.
Once the competition ends. you will see the final accuracy computed based on 100%% of the test data. The
evaluation metric is the inverse of the the mis-classification error - so the higher the better.

You can use any classifiers, any features, and either supervised or semi-supervised methods. Be creative
in both the methods and the usernames you select!

[13] Kaggle, UMICH S1650 — Sentiment Classification Data
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LSTM Example — Dataset & Application

= Sentiment analysis (many-to-one RNN topology)
" |nput: sentence as sequence of words (i.e. movie ratings texts)
= Qutput: Sentiment value (positive/negative movie rating)
= Application was a former competition (i.e. Kaggle platform overall idea)
= @Goal: Create LSTM network that will learn to predict a correct sentiment

= Small dataset example for tutorial: training & test data available
= Training samples: 7086 short sentences (labelled) [~440 KB]
= Test samples: 33052 short sentences[~1.94 MB]
= Format: label & tab seperated sentence
= https://www.kaggle.com/c/si650winter11/data

Training data: 7086 lines. [13] Kaggle, UMICH S1650 -
Format: 1|0 (tab) sentence Sentiment Classification Data

Test data: 33052 lines, each contains one sentence.

Lecture 6 — Fundamentals of Long Short-Term Memory (LSTM)



LSTM Example — Dataset Exploration

/homea/hpclab/train@@l/data/sentiments

= (Create
directory Istm ot xtx 1 ' )5:55

-rw-r--r-- 1 train@@1 hpclab 206 45 ;44 testdata.txt
-rw-r--r-- 1 train@@l1 hpclab 447540 16:16 training-original.txt

o CO py data -rw-r--r-- 1 train@@l hpclab 447540 16:10 training.txt
= cp /homea/hpclab/train001/data/sentiments/* ~/lstm

-bash-4.2% head training.txt

The Da Vinci Code book is just awesome.

this was the first clive cussler i've ever read, but even books like Relic, and Da Vinci code were more plausible than this.
i liked the Da Vinci Code a lot.

i liked the Da Vinci C a lot.

I liked the Da Vinci Code but it ultimatly didn't seem to hold it's own.

that's not even an e ration ) and at midnight we went to Wal-Mart to buy the Da Vinci Code, which is amazing of course.
I loved the Da Vinci , but now I want something better and different!..

i thought da vinci code was great, same with kite runner.

The Da Vinci Code is actually a good movie...

I thought the Da Vinci Code was a pretty good book.

[

(labelled training dataset)

-bash-4.2% head testdata.txt
" I don't care what anyone says, I like Hillary Clinton.
nave an awesome time at purdue!..

ep, I'm still in London, which is pretty awesome: P Remind me to post the million and one pictures that I took when I get back to Markham!...
ave to say, I hate Paris Hilton's behavior but I do think she's kinda cute..
i will love the lakers.

'm so glad I love Paris Hilton, too, or this would be excruciating.

i T1ik MIT though, esp their little info book(
jefore I left Missouri, I thought London was going to be so good and cool and fun and a really great experience and I was really excited.
still like Tom Cruise.

(testing dataset)



LSTM Example — Keras Python Script — Preprocessing

m keras.layers.core import Activation, Dense, Dropout, SpatialDropoutlD

om keras.layers.embeddings import Embedding " Import necessary
1 keras.layers.recurrent 1 t LSTM modules, e.g.

! keras . nodols import Seauential LSTM for a simple
m keras.preprocessing import sequence

1 sklearn.model_selection import train_test split LSTM cell, or
t collections Dense for a fully

t matplotlib.pyplot as plt
 nltk connected layer

C numpy as np = Import good
"L 05

sklearn model
selection tools

nltk.download( 'punkt"') -
=  Import numpy for

as helper tool

= Natural Language
Toolkit (NLTK) is

/homea/hpclab/trainffl/data/sentiments fOf buﬂdmg Python
[trainB@l@jr104 sentiments]$ 1s -al programs Working
2 trainBfl hpclab 512 96133 . on human

drwxr-xr-x 12 train@@l hpclab 55 ..
-rw-r--r-- 1 train@@l hpclab 203334! p6:44 testdata.txt Ianguage datasets

-Tw-r--r-- 1 train@@l hpclab 447546 P6:16 training-original.txt (punkt is tokenizer)
-rw-r--r-- 1 train@@1 hpclab ! 06:10 training.txt

[8] Deep Learning with Keras



LSTM Example — Keras Python Script — Vocabulary Setup

_ t " Perform
maxlen 0
word freqs collections.Counter() exploratory
num_recs = 0 - analysis in order to

ftrain open(os.path.join(DATA DIR, “"training.txt"), .
for 1ine in ftrain: find out the
label, sentence = line.strip().split('\t") number of unique
words = nltk.word tokenize(sentence.decode("ascii", .
if len{words) = maxlen: words in the whole
maxlen = len{words) corpus & how

for word in words: ) many words are
word freqs[word] += 1

num_recs += 1 roughly in each
ftrain.close() sentence

MAX_FEATURES = 2000 = Exploration reveals
MAX_SENTENCE LENGTH = maxlen: 42 &

len(word_freqs):

vocab _size = min(MAX FEATURES, len{word fregs)) + 2 2313
word2index = {x[0]: i+2 for i, x in
enumerate(word fregs.most common(MAX FEATURES))} =  Number of words
wordZindex["PAD"] = 0O .
word2index["UNK"] = I In sentence
indexZword = {v:k f:jr k, v in wordZindex.items ()} (maxlen) enables a
—— - fixed sequence
= Creating indices index2word and vice versa length & PAD = 0;
)

[8] Deep Learning with Keras

=  Qut of vocabulary means UNK (unknown) truncate long ones




LSTM Example — Keras Python Script — Indices & Padding

x np.empty((num_recs, ),
W np.zeros((num _recs, ))
i 4]
ftrain = open(os.path.join(DATA DIR, "training.txt
for line in ftrain:
label, sentence = line.strip().split({'\t")
words = nltk.word tokenize(sentence.decode("ascii”,
seqs = [1]
for word in words:
if wordZ2index.has key(word):
seqs.append(word2index[word])
else:
seqs.append(word2index[ "UNK"])
X[i] = seqs
y[i] = int(label)
i += 1
ftrain.close()

dtype=Llist)

X = sequence.pad sequences(X, maxlen=MAX SENTENCE LENGTH)

Xtrain, Xtest, ytrain, ytest = train_test split(X, vy,
test size=0.2, random state=42)

S
N

Convert input
sentences from the
training data to
word index
sequences and add
unknown ones as
UNK in index

Perform padding
to the maximum
sentence length
(40)

Labels are binary
(positive/negative
sentiment) and do
not need padding

= Split between training & testing set (ratio rule of thumb 80:20)

[8] Deep Learning with Keras

= There is another test set put aside for nicely checking out-of-sample




LSTM Example — Modelling & Decisions
Ly P 7

(unroll the ‘loop’
over t timesteps)

> =

(input for each row is a sequence of word indices —
sequence length is given by MAX_SENTENCE_LENGTH)

(tensor layout: None X MAX_SENTENCE_LENGTH X 1) (tensor dimensions: first is None =

(None, MAX_SENTENCE_LENGTH, 1) indicate that the batch size is currently unknown,

‘ i l l l l i.e. number of records fed to the network 2>
defined in runtime using BATCH_SIZE parameter)

Embedding

(tensor fed to embedding layer 2>

weights are initialized with small random values & learned
i.e. layer transforms the tensor to a shape of

None X MAX_SENTENCE_LENGTH X EMBEDDING_SIZE)

(None, MAX_SENTEMNCE_LENGTH, EMBEDDING_SIZH

LSTM

(output of LSTM is the tensor

None X HIDDEN_LAYER_SIZE, because last tensor can be defined
as return_sequences = False = we just need 0/1 output)

(Mone, HIDDEN_LAYER_SIZE)

Dense

(Dense layer with Sigmoid activation function 2>
0 — negative review / 1 positive review)

(Mone, 0/1)

modified from [8] Deep Learning with Keras
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LSTM Example — Keras Python Script — Model & Parameter

EMBEDDING SIZE = 1
HIDDEN LAYER SIZE = 64
BATCH SIZE 32

NUM EPOCHS

model = Sequential()

model.add(Embedding(vocab size, EMBEDDING SIZE,
input_length=MAX_ SENTENCE_ LENGTH))
model.add(SpatialDropoutlD(Dropout(®.2)))
model.add(LSTM(HIDDEN LAYER SIZE, dropout=0.2, recurrent dropout=60.2))

Hyperparameters
embedding=128;
hidden layers=64;
parameter by
experimentation

model.add(Dense(1)) \
model . add{Activation("sigmoic \
mﬂdel.Eﬂmpile{IGSSZ'ﬁﬂﬂary_f'“::“*t'jjy', optimizer="adam", \
metrics=["accuracy"”]) \
— \
(None, MAX_SENTENCE_LENGTH, 1) ———— |‘
| T g | = All hyperparameters are tuned {
Embedding experimentally over many runs
(None, MAX_SENTENCE_LENGTH, EMBEDDING_SIZH .

Compile model using binary
cross-entropy loss function good
for a binary model used here

LSTM

(None, HIDDEN_LAYER_SIZE)

=  Use of Adam optimizer as good
general purpose optimizer

Dense

[8] Deep Learning with Keras

(None, 0/1)

Create first
embedding layer with
input tensor None X
maximum sentence
length X 1

Add regularizer
SpatialDropoutlD

Add LSTM cell with
hidden layer size 64
with regularizers
dropout and
recurrent_dropout

Add Dense layer and
Sigmoid activation




LSTM Example — Keras Python Script — Train & Evaluate

story = model.fit(Xtrain, ytrain, batch size=BATCH 5IZE, epochs=NUM EPOCHS,
validation data=(Xtest, ytest))

-
-

score, acc = model.evaluate(Xtest, ytest, batch size=BATCH SIZE)

print(“Test score: %.3f, accuracy: %.3f" % (score, acc))

for i in range(5):
idx = np.random.randint(len(Xtest))
xtest = Xtest[idx].reshape(l,40)
ylabel = ytest[idx]
ypred = model.predict(xtest)[O0][0]

Train the LSTM
network for 10
epochs
(NUM_EPOCHS) &
with batch size 32

Perform validation
at each epoch
using test data

sent = " ".join([index2word[x] for x in xtest[0].tolist() if x !'= 0©O])

print("%.0ft

Sdt " % (ypred, ylabel, sent))

= Cf. supervised learning process (day one)
= Labels existing (not in this unsupervised example)
= Train model for fixed number of epochs
= Evaluate model against test dataset (splitted training)
= TBD (home work): Use model for prediction
of the real ‘test-data‘ (not splitted training)
= Note: real ‘test-data‘ has no labels, aka unseen data

e —

Evaluate model
against the full test
set showing score
and accuracy

Show the LSTM
prediction with
pick of a few
random sentences
from the test set
(predicted label,
label & actual
sentence




RNN Example — Copy Keras Script & Job Script

[train@@l@jr104 1stm]$ pwd
/homea/hpclab/trainffl/tools/1lstm
[trainf@l@jrle4 1stm]$ 1s -al
total 32

drwxr-xr-x 2 train@@l hpclab 512 40 .

drwxr-xr-x 10 trainB@l hpclab 512 31 ..

-rw-r--r-- 1 train@@1 hpclab 2993 31 Istm-example.py

-rw-r--r-- 1 train@@l hpclab 366 31 1stm-example-submit-juron.sh

= Create directory ‘Istm’
= cp /homea/hpclab/train001/tools/Istm/Istm-example.py ~/Istm

-rw-r--r-- 1 train@@l hpclab 454 Jun 7 07:34 submit train simple lstm.sh

= cp /homea/hpclab/train001/scripts/submit_train_simple_Istm.sh ~/Istm




LSTM Example — Submit Script (JURECA)

" Job submit script

= Specify good name
for the job

= Allocate GPUs for
deep learning job

= Specify job queue

m Restore module
environment with
all dependencies

KERASSCRIPT=/homea/hpclab/trainf@l/tools/1stm/1stm-example.py

module restore dl tutorial

= Use python with
Istm-example.py script python SKERASSCRIPT

= Use sbatch
= Use job script



LSTM Example — Output Interpretation

= Supervised learning problem
= Check output with ‘more out.txt
= |dea: predicted sentiment should be closed to sentiment labels

* More epochs/iterations = better quality of the model (learned well
compared to

first iteration 2>
rain on 5668 samples, validate on 1418 samples one can observe
Epoch 1/10 loss decrease and
32/5668 : 35:08 - loss: 0.6938 - acc: 0.4638 Increasein
64/5668 : 17:36 - loss: 0.6927 - acc: 0.5312 accuracy over
96/5668 : 11:45 - loss: ©.6911 - acc: 0.5625 multiple epochs)

5664/5668 . ETA: 0s - loss: 0.0815 - acc: ©.9995
5668/5668 155 3ms/step - loss: 0.0015 - acc: ©.9995 - val loss: 0.08845 - val _acc: 0.9718
Epoch 10/10

32/56682 ETA: 13s loss: ©.0697 - acc: 0.9638
64/5668 ETA: 13s loss: 0.0353 - acc: 0.9844
96/5668 ETA: 13s loss: 0.0240 - acc: 0.9896

est score: 0.072, accuracy: ©0.980
1t the people who are worth it know how much i love the da vinci code
1t anyway , thats why i love *° brokeback mountain
Ot the da vinci code sucked
Bt this quiz sucks and harry potter sucks ok bye..
1t because i would like to make friends who like the same things i like




LSTM Example — Model Evaluation

= Selected plots (e.g. for papers)
= E.g. matplotlib & pyplot can be used to create simple graphs

Accurac
100 - 1"

098
0.96 |-
094
.92 |- f;-’
090 | / S
0.88 b — Validation |
(.86

0

—  Train

1 2 3 B 5 B T B 9

0.35 - - . - - - - -
0.30 N — Train

0.25 |\ S
020 | \ — Validation ||

il .
0.10 L N

0.05 | — — —_—

0.00
0

[8] Deep Learning with Keras
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Different Useful LSTM Models — Many other Applications

= Standard LSTM

= Memory cells with single LSTM layer; used in simple network structures

= Stacked LSTM

= LSTM layers are stacked one on top of another; creating deep networks

CNN LSTM

= CNNs to learn features (e.g. images); LSTM for image sequences

" Encoder-Decoder LSTM

= One LSTM network = encode input; one LSTM network = decode output
= Bidirectional LSTM

" |nput sequences are presented and learned both forward & backwards

" Generative LSTM

= LSTMs learn the inherent structure relationship in input sequences;
then generate new plausible sequences

Lecture 6 — Fundamentals of Long Short-Term Memory (LSTM)



Different Useful LSTM Models — Many other applications

= Standard LSTM = LSTM models work quite well to predict power but needs

rom keras.models imp
rom keras.layers i

t Sequential
t Dense
rom keras.layers in L LSTM

to be trained and tuned for different power stations
=  Observing that some peaks can not be ‘learned’

rom keras.layers in t Dropout

model = Sequential()
model . add (LSTM(
units=config[ ‘units'],
input shape=(train_X.shape[1], train_X.shape[2])

))
model.add(Dense(1, activation=config[ activation']))

model . compile(loss=config| "loss'], optimizer=config[ ' opt

print("Fitting model..™)

history = model.fit(
train X,
train y,
epochs=config[’
batch size=config[ 'batchsize
validation_data=(test X, test_y),
verbose=2,
shuffle=config[ "shuffle’]

Lecture 6 — Fundamentals of Long Short-Term Memory (LSTM)

MW - Innm&tun

e h ™ ™
B - a el Fa =
1 = % H .5 3 |
A JSA BN ALF Y B A% 00N
r
—— LJO Innmotun
147 ) Ll h ; 110 05K-KairasDB
=) f A il - —— LIO Keras
N Y -~ M b
12 | R TRV
10 | ¥ L
L
8
6
4
2
o
Jan 2015 1l 2015 Jan 2016 10l 2016 Jan 2017 1l 2017 Jan 2018




Different Useful LSTM Models — Stacked LSTMs

= E.g. predicting electricity

140

consumption / customer
= Stacked LSTM cells | |

100 ~

=
]
(=]

= Periodic elements can
take advantage of state

electricity consumption
[==]
(=]
=

= Needs to be carefully tuned

=1}
[=]
|

= Requires through use of “ H' L A‘
state more computing 40 ’
[ | E.g. damped Sine time (1pt = 15 mins)

. e # € $Q =
wave prediction

= Stacked LSTM cells since
again periodic character

= Depending on wave
the pattern might be
not able to be detected w/o LSTMs
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Tensorflow — LSTM Google Translate Example & GPUs

= Use of 2 LSTM networks in a stacked manner

= Called ‘sequence-2-sequence’ model

= Encoder network
= Decoder network

» Needs context of sentence
(memory) for translation

[5] Sequence Models

Lecture 6 — Fundamentals of Long Short-Term Memory (LSTM)

ENCODER Translated Text
(= Yes, what's up? <END>
i D - ""ﬂﬂ}'ﬂﬂ]”ﬂ”'\
1 1 l T J _J ([ J
= # =57 <START>
Original Text DECODER

i GPUS

8 :Iovers
: GPU3
i GPU2
T

TR

i
GPUB |

GPU3
GPU2

GPUL




Exercises — LSTM Example — Revisit Group Outputs
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[Video] RNN & LSTM

SOLUTION
Gating units - LSTM, GRU
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[6] Recurrent Neural Networks, YouTube
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