
Introduction to Deep Learning Models

Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland
Research Group Leader, Juelich Supercomputing Centre, Germany

Fundamentals of Long Short-Term Memory
June 7th, 2018
Juelich Supercomputing Centre, Germany

Deep Learning

LECTURE 6

Outline of the Course

1. Introduction to Deep Learning

2. Fundamentals of Convolutional Neural Networks (CNNs)

3. Deep Learning in Remote Sensing: Challenges

4. Deep Learning in Remote Sensing: Applications

5. Model Selection and Regularization

6. Fundamentals of Long Short-Term Memory (LSTM)

7. LSTM Applications and Challenges

8. Deep Reinforcement Learning

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 2 / 70

Outline

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 3 / 70

Outline

 Recurrent Neural Networks (RNNs)
 Sequence Models & Dataset Impact
 Limitations of Feed Forward Networks
 RNN Model & Unrolling
 RNN Cells & Topologies
 Simple Application Example

 Long Short-Term Memory (LSTMs)
 LSTM Model & Memory Cells
 Vanishing Gradient Problem
 Keras and Tensorflow Tools
 Different Useful LSTM Models
 Simple Application Example

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 4 / 70

Recurrent Neural Networks (RNNs)

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 5 / 70

Deep Learning Architectures

 Deep Neural Network (DNN)
 ‘Shallow ANN‘ approach with many hidden layers between input/output

 Convolutional Neural Network (CNN, sometimes ConvNet)
 Connectivity pattern between neurons is like animal visual cortex

 Deep Belief Network (DBN)
 Composed of mult iple layers of variables; only connections between layers

 Recurrent Neural Network (RNN)
 ‘ANN‘ but connections form a directed cycle; state and temporal behaviour

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural
Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristica

 Deep Learning needs ‘big data‘ to work well & for high accuracy – works not well on sparse data

6 / 70

Revisit CNNs vs. RNNs

 CNNs (cf. day one)
 Example: remote sensing application

domain, hyperspectral datasets
 Neural network key property:

exploit spatial geometry of inputs
 Approach: Apply convolution & pooling

(height x width x feature) dimensions

 RNNs
 Examples: texts, speech, time series datasets
 Neural network key property:

exploit sequential nature of inputs
 Approach: Train a graph of ‘RNN cells‘ & each cell performs

the same operation on every element in the given sequence

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 RNNs are used to create sequence models whereby the occurrence of an element in the
sequence (e.g. text, speech, time series) is dependent on the elements that appeared before it

ht

RNN model

Xt

7 / 70

Sequence Models

 Model Categorization
 Based on different inputs/outputs to/from the sequence models

 Practical ‘standard dataset‘ perspective
 Often the order of samples is not important
 Training/testing datasets and their samples

have often no explicit order (i.e. ‘sets‘)

 Practical ‘sequence dataset‘ perspective
 Order of samples is important
 Sequence model learning/inference needs this order

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Sequence models enable various sequence predictions that are inherent different to other
more traditional predictive modeling techniques or supervised learning approaches

 In contrast to mathematical sets often used, the ‘sequence‘ model imposes an explicit
order on the input/output data that needs to be preserved in training and/or inference

 Sequence models are driven by application goals and include sequence prediction,
sequence classification, sequence generation, and sequence-to-sequence prediction

8 / 70

Limitations of Feed Forward ANN (cf. Day One)

 Selected application examples revisited
 Predicting next word in a sentence requires ‘history‘ of previous words
 Translating european in chinese language requires ‘history‘ of context

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Traditional feed forward artificial neural networks show limits when a certain ‘history‘ is required
 Each Backpropagation forward/backward pass starts a new pass independently from pass before
 The ‘history‘ in the data is often a specific type of ‘sequence‘ that required another approach

X1

X2

y

w31

w41

w32

w42

w54

w53

n2

n1 n3

n4

n5

known known Initially unknown 

9 / 70

Recurrent Neural Network (RNN)

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 A Recurrent Neural Network (RNN) consists of cyclic connections that enable the neural network to
better model sequence data compared to a traditional feed forward artificial neural network (ANN)

 RNNs consists of ‘loops‘ (i.e. cyclic connections) that allow for information to persist while training
 The repeating RNN model structure is very simple whereby each has only a single layer (e.g. tanh)

tanh

Xt

ht

 Selected applications
 Sequence labeling
 Sequence prediction tasks
 E.g. handwriting recognition
 E.g. language modeling

 Loops / cyclic connections
 Enable to pass information

from one step to the
next iteration

 Remember ‘short-term‘
data dependencies

ht

RNN model

Xt

(‘delay’)

(‘delay’
from t-1)

10 / 70

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

tanh

Xt-1

ht-1

tanh

Xt

ht

tanh

Xt+1

ht+1

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

Unrolled RNN
 A RNN can be viewed as

multiple copies of the
same network, each
passing a message to a
successor – this gets
clear when ‘unrolling
the RNN loop’

(use backpropagation through
time optimization approach)

(‘delay’)

11 / 70

Unrolled RNN – Role of ‘Delay‘ and Nodes in Layers

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

(‘delay’)
(output layer)

(input layer)

(hidden layer)

x1

tanh

h1

Delay
h1-1

x2

tanh

h2 (output layer nodes)

(input layer nodes)

(hidden layer nodes + activation function tanh)

 RNNs are unrolled programmatically during the training and prediction phase
 Idea of ‘delay‘ means feeding back the output of a neural network layer at a specific time t to the

input of the same nerual network layer at time t+1  establishes something like ‘short memory‘

(missing in ANNs)

12 / 70

RNN Model – Simple Example – Predict Next Character

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

0.1
- 0.7
0.6

1
0
0
0

‘h‘

0.1
0.6
0.2
0.1

‘e‘

- 0.4
0.8
1.2

0
1
0
0

‘e‘

0.2
0.3
0.4
0.1

‘l‘

0.7
- 1.2
0.2

0
0
1
0

‘l‘

0.2
0.2
0.5
0.1

‘l‘

0.7
- 1.2
0.2

0
0
1
0

‘l‘

0.0
0.0
0.1
0.9

‘o‘

…

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

(probabilities)

(one-hot encoded
characters)

(‘delay’)
 Sequence values that

are separated by a
significant number of
words (i.e. deep RNN)
leads to the vanishing
gradient problem (cf.
day one)

 Reasoning is that small
gradients or weights
with values than 1 are
multiplied many
times through the
multiple time steps,
i.e. gradients shrink
asymptotically to zero

 Effect is that weights of
those earlier layers are
not changed
significantly and the
network will not learn
long-term dependencies

13 / 70

Exercises – RNN Example
Use Different number of Hidden Nodes, Epochs & Iterations

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 14 / 70

RNN Example – Data Repository

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

[7] Folger Digital Texts

15 / 70

RNN Example – Dataset & Application

 Unsupervised learning: simple sequence prediction example
 Generating text by building a language model out of given text
 Domain of Natural language processing (NLP)
 Language models enable the prediction of the probability

of a word in a given text given its previous words
 Higher level applications: machine translation, spelling correction, etc.

 Data: Shakespeare text datasets
 E.g. Shakespeare Macbeth (text)
 http://www.folgerdigitaltexts.org/download/
 Already downloaded and available on JURECA

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

[7] Folger Digital Texts

Das Bild kann zurzeit nicht angezeigt werden.

16 / 70

RNN Example – Dataset Exploration

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Use more/head/tail <textfile>
 TBD: What challenges we see w.r.t. ‘clean datasets‘ & analysis?

(metadata)

(role commands)

17 / 70

RNN Example – Language Model Setup

 Typical approach
 Create ‘generative model’ to predict the next word given previous words
 Enables to generate text by sampling from the output probabilities
 Build a ‘word-based language model’ can be computational complex

 Simplified model for tutorial
 Reasoning: simpler model and quicker training
 Train a ’character based language model’

on one text of Shakespeare
 Take advantage of standard RNN cells
 Predict (only) the next character

given 10 previous characters
 Use the trained language model

to generate some text in the same style

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

[8] Deep Learning with Keras

(10 characters  prediction)

18 / 70

RNN Example – Keras Python Script – Preprocessing

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Import necessary
modules, e.g.
SimpleRNN for a
simple RNN cell, or
Dense for a fully
connected layer

 Preprocessing of
original files that
e.g. contain line
breaks, non-ASCII
characters, capital
characters; Result
is variable text
with ‘cleaned text’

 Create lookup
tables for
characters per
index & vice versa Character-level RNN: vocabulary is the set of characters that occur

in the text  use index of character instead of a character itself [8] Deep Learning with Keras
19 / 70

RNN Example – Keras Python Script – Input & Label Texts

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Task: Predict (only)
the next character
given 10 previous
characters 
SEQLEN = 10,
STEP=1

 Moving step-wise
through text by
STEP=1 number of
characters &
extract span of text
with size
SEQLEN=10

 Each row of input to the RNN corresponds to one of the input texts
 SEQLEN characters input; vocabulary size = nb_chars (set of different

characters in text)  one-hot encoded vector of size (nb_chars)
[8] Deep Learning with Keras

(input_chars


label_chars)

20 / 82

RNN Example – Modelling & Decisions

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

0.1
- 0.7
0.6

1
0
0
0

- 0.4
0.8
1.2

0
1
0
0

0.7
- 1.2
0.2

0
0
1
0

0.7
- 1.2
0.2

0
0
1
0

0
0
0
1

…

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

(input: one-hot
encoded

vector of size
nb_chars)

(input: SEQLEN)

(each row in input is
2D tensor

SEQLEN x nb_chars)

(output/label:
one-hot encoded

vector of size
nb_chars)

0.0
0.0
0.1
0.9

(internal decision
normalizes the

emitted scores to
probabilities
usually via
softmax)

(good loss
function for
categorical
output
 categorical
cross-entropy
loss function)

1
0
0
0

0
0
0
1

0
0
1
0

21 / 70

RNN Example – Keras Python Script – Model & Parameter

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Hyperparameter
HIDDEN_SIZE=128
means output
dimension of size
128 for ok text;
parameter by
experimentation

 Sequential model
adding first a
SimpleRNN layer
of size 128,
return_sequences
= False means
single character as
output/label not a
‘sequence of
characters’, input
tensor is SEQLEN x
nb_chars; unroll =
True - performance

 Adding a Dense layer of size nb_chars & activation function ‘softmax‘
(emits scores for each of the characters in vocabulary probabilities)

 Use optimizer ‘rmsprop‘ with ‘categorical_crossentropy‘ loss function
22 / 70

RNN Example – Keras Model & Activation Functions

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

x1

tanh

h1

Delay
h1-1

x2

tanh

h2 (Dense layer with ‘number of characters’ as nodes +
‘softmax’ activation function as output layer nodes)

(input layer nodes)

(SimpleRNN layer with 128 hidden nodes with
default hyperbolic tangent as activation function,
i.e. values squashed between 1 and -1)

(internal decision
normalizes the

emitted scores to
probabilities
usually via
softmax)(iterations)

23 / 70

RNN Example – Keras Python Script – Training Process

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Train model for
epochs = 1 since no
labelled dataset
and then testing;
training for 25
iterations 
NUM_ITERATIONS;
aka training for 25
epochs/iterations

 Cf. supervised learning process (day one)
 Labels existing (not in this unsupervised example)
 Train model for fixed number of epochs
 Evaluate model against test dataset

 Test: generate a
character from
model given a
random input;
dropping the first
character from the
input & append
the predicted
character from our
previous run &
generate another
character (100 x)

[8] Deep Learning with Keras

RNN Example – Copy Keras Script & Job Script

 Create directory ‘rnn‘
 cp /homea/hpclab/train001/tools/rnn/rnn-example.py ~/rnn

 cp /homea/hpclab/train001/scripts/submit_train_simple_rnn.sh ~/rnn

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 25 / 70

RNN Example – Submit Script

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Job submit script
 Specify good name for the job
 Allocate GPUs

for deep learning job
 Specify job queue
 Restore module

environment with
all dependencies

 Use python with
rnn-example.py script

 Use sbatch
 Use jobscript

26 / 70

RNN Example – Output Interpretation

 Challenge: unsupervised learning problem
 Check output with ‘more out.txt‘
 Idea: string gives us an indication of the quality of the model
 More epochs/iterations  better quality of the model

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

(learned well to
spell compared to
first iteration but
no coherent
thoughts  still
interesting since
no word concept)

27 / 70

RNN Topologies – Many-to-many (1)

 (a) many-to-many (1)
 All input sequences are

of the same length
 Output is produced at

each time step

 Example
 RNN-Example above:

Predicting next character

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 RNN topologies express RNN capabilities to be arranged in many ways to solve specific problems
 Recall: RNNs combine the input data vector with the previous state vector to produce new states
 Common RNN topologies for sequences are driven by application problems but can be categorized

roughly as follows: (a) many-to-many (1); (b) many-to-many (2); (c) one-to-many; (d) many-to-one

0.1
- 0.7
0.6

1
0
0
0

- 0.4
0.8
1.2

0
1
0
0

0.7
- 1.2
0.2

0
0
1
0

0.7
- 1.2
0.2

0
0
1
0

0
0
0
1

…

1
0
0
0

0
0
0
1

0
0
1
0

28 / 70

RNN Topologies – Many-to-many (2)

 (b) many-to-many (2)
 Output / input data:

Sequence-to-sequence network

 Example: machine translation network
 Input: sequence of English words
 Output: sequence of translated

Spanish sentence

 Example: Part-of-Speech
(POS) tagging
 Input: words in a sentence
 Output: corresponding

POS tags

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

0.1
- 0.7
0.6

1
0
0
0

- 0.4
0.8
1.2

0
1
0
0

0.7
- 1.2
0.2

0
0
1
0

0.7
- 1.2
0.2

0
0
0
1

…

1
0
0
0

(certain time
steps w/o inputs)

(certain time steps
w/o outputs)

[9] O. Vinyals et al., ‘Grammar as a Foreign Language’

29 / 70

RNN Topologies – One-to-many

 (c) one-to-many
 E.g. different type of

inputs combined
with different types
of outputs in a network

 Example: Image
captioning network
 Input: image
 Output: sequence of

words describing the
image

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

0.1
- 0.7
0.6

1
0
0
0

- 0.4
0.8
1.2

0.7
- 1.2
0.2

0.7
- 1.2
0.2

0
0
0
1

…

1
0
0
0

0
0
0
1

0
0
1
0

[10] A. Karpathy & F. Li,
‘Deep Visual-Semantic Alignments
for Generating Image Descriptions’

30 / 70

RNN Topologies – Many-to-one

 (d) many-to-one
 Summarize or judge

a sequence of words &
texts to a specific
outcome

 Often binary outcomes
(good/negative)

 Example: Sentiment
analysis of sentences
 Input: Sequence of words

(e.g. ratings, reviews, etc.)
 Output: Positive/negative

sentiment about input

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

0.1
- 0.7
0.6

1
0
0
0

- 0.4
0.8
1.2

0
1
0
0

0.7
- 1.2
0.2

0
0
1
0

0.7
- 1.2
0.2

0
0
1
0

0
0
0
1

…

Das Bild kann zurzeit nicht angezeigt werden.Das Bild kann zurzeit nicht angezeigt werden.

[11] R. Socher et al., ‘Recursive Deep
Models for Semantic Compositionality
Over a Sentiment Treebank’

31 / 70

Exercises – RNN Example – Revisit Group Outputs

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 32 / 70

[Video] RNN Summary

[12] RNNs, YouTube

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 33 / 70

Long Short-Term Memory

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 34 / 70

Deep Learning Architectures

 Deep Neural Network (DNN)
 ‘Shallow ANN‘ approach with many hidden layers between input/output

 Convolutional Neural Network (CNN, sometimes ConvNet)
 Connectivity pattern between neurons is like animal visual cortex

 Deep Belief Network (DBN)
 Composed of mult iple layers of variables; only connections between layers

 Recurrent Neural Network (RNN)  Long Short-Term Memory
 RNN with state and temporal behaviour; LSTM adds ‘strong memory‘

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural
Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristica

 Deep Learning needs ‘big data‘ to work well & for high accuracy – works not well on sparse data

35 / 70

Different Useful LSTM Models

 Standard LSTM
 Memory cells with single LSTM layer; used in simple network structures

 Stacked LSTM
 LSTM layers are stacked one on top of another; creating deep networks

 CNN LSTM
 CNNs to learn features (e.g. images); LSTM for image sequences

 Encoder-Decoder LSTM
 One LSTM network  encode input; one LSTM network  decode output

 Bidirectional LSTM
 Input sequences are presented and learned both forward & backwards

 Generative LSTM
 LSTMs learn the inherent structure relationship in input sequences;

then generate new plausible sequences

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 36 / 70

Long Short-Term Memory (LSTM) Models

 Specific type of Recurrent Neural Network (RNN)
 Different to techniques like standard Artificial Neural Networks (ANNs) or

Convolutional Neural Networks (CNNs)
 Solving certain limits of ANNs through RNNs design
 RNNs offer short-term memory – LSTMs add ‘long-term‘ capabilities
 Idea: improved performance through ‘more memory‘ (cp. HPC?!)

 Designed specifically for sequence prediction problems
 World-class results in complex problem domains & applications
 E.g. language translation, automatic image captioning, text generation

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

[10] A. Karpathy & F. Li, ‘Deep Visual-Semantic Alignments for Generating Image Descriptions’
37 / 70

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

tanh

Xt-1

ht-1

tanh

Xt

ht

tanh

Xt+1

ht+1

ht

RNN model

xt

(unroll the ‘loop’
over t timesteps)

h0

RNN model

x0

h1

RNN model

x1

ht

RNN model

xt

…

Unrolled RNN – Revisited
 A RNN can be viewed as

multiple copies of the
same network, each
passing a message to a
successor – this gets
clear when ‘unrolling
the RNN loop’

(use backpropagation through
time optimization approach)

38 / 70

Long Short Term Memory (LSTM) Model

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Long Short Term Memory (LSTM) networks are a
special kind of Recurrent Neural Networks (RNNs)

 LSTMs learn long-term dependencies in data by
remembering information for long periods of time

 The LSTM chain structure consists of four neural
network layers interacting in a specific way

x +

tanh

x

ℴℴ ℴ x

tanh

xt

ht

x +

tanh

x

ℴℴ ℴ x

tanh

Xt+1

Ht+1

x +

tanh

x

ℴℴ ℴ x

tanh

Xt-1

Ht-1
(each line carries
an entire vector)

ht

LSTM model

xt (uses sigmoid ℴ)

39 / 70

LSTM Model – Memory Cell & Cell State

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 LSTM introduce a ‘memory cell‘ structure into the underlying basic RNN architecture using four key
elements: an input gate, a neuron with self-current connection, a forget gate, and an output gate

 The data in the LSTM memory cell flows straight down the chain with some linear interactions (x,+)
 The cell state st can be different at each of the LSTM model steps & modified with gate structures
 Linear interactions of the cell state are pointwise multiplication (x) and pointwise addition (+)
 In order to protect and control the cell state st three different types of gates exist in the structure

tanh

x

ℴℴ ℴ x

tanh

xt

ht

tanh

x

ℴℴ ℴ x

tanh

Xt+1

Ht+1

tanh

x

ℴℴ ℴ x

tanh

Xt-1

Ht-1
(each line carries
an entire vector)

x + x +x +
st

40 / 70

Computing of LSTM Cell – Step 1-2

1. New xt input together with the output from cell hht-1
are squashed via a tanh layer
 Outputs between -1 and 1

2. New xt input together with
the output from cell hht-1
is passed through the ‘input gate‘
 Layer of sigmoid activated nodes whose

output is multiplied by squashed input

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

x +

tanh

x

ℴℴ ℴ x

tanh

xt

ht

12

(uses sigmoid ℴ)

(gate sigmoid ℴ can act to ‘switch
off’ any elments of the input vector
that are not required)

(sigmoid function outputs values between 0 and 1, weights connecting the
input to these nodes can be trained to output values close to zero to ‘switch
off’ certain input values – or outputs close to 1 to ‘pass through’)

[14] Adventures in
Machine Learning

Das Bild kann zurzeit nicht angezeigt werden.

ht-1

Das Bild kann zurzeit nicht angezeigt werden.

41 / 70

Computing of LSTM Cell – Step 3

3. Internal state / forget gate
 LSTM cells have internal cell state st

 ‘Delay‘ – lagged one time step: st-1

 Added to the input data to create
an effective ‘layer of recurrence‘

 Addition instead of ‘usual‘ multiplication
reduces risk of vanishing gradients

 The connection to cell state is carefully
controlled by a forget gate with sigmoid
(works like the input gate)

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

x +

tanh

x

ℴℴ ℴ x

tanh

xt

ht

12

st-1

3

3

(uses sigmoid ℴ)

(gate sigmoid ℴ can act to ‘switch
off’ any elments of the cell state to
steer what variables should be
remembered or forgotten)

[14] Adventures in
Machine Learning

42 / 70

Computing of LSTM Cell – Step 4

4. Output layer & output gate
 Output layer with tanh squashing function

 Output is controlled via output gate
with sigmoid activation function

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

x +

tanh

x

ℴℴ ℴ x

tanh

xt

ht

12

3

3 4

4

(uses sigmoid ℴ)

(gate sigmoid ℴ can learn to
determine which values are
allowed as an output from the cell)

[14] Adventures in
Machine Learning

43 / 70

Low-level Tools – Theano

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Theano is a low-level deep learning library implemented in Python with a focus on
defining, optimizing, and evaluating mathematical expressions & multi-dimensional arrays

 The Theano tool supports the use of GPUs and CPUs via expressions in NumPy syntax
 Theano work with the high-level deep learning tool Keras in order to create models fast
 LSTM models are created using mathematical equations but there is no direct class for it

[2] Theano Deep Learning Framework [3] LSTM Networks for Sentiment Analysis

...

import numpy

import theano

from theano import config

import theano.tensor as tensor

...

def lstm_layer(tparams, state_below,
options, prefix='lstm', mask=None):

...

i = tensor.nnet.sigmoid(_slice(preact, 0,
options['dim_proj']))

f = tensor.nnet.sigmoid(_slice(preact, 1,
options['dim_proj']))

o = tensor.nnet.sigmoid(_slice(preact, 2,
options['dim_proj']))

c = tensor.tanh(_slice(preact, 3,
options['dim_proj']))

x +

tanh

x

ℴℴ ℴ x

tanh

xt

ht

44 / 70

Low-Level Tools – Tensorflow

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Tensorflow is an open source library for deep learning models using a flow graph approach
 Tensorflow nodes model mathematical operations and graph edges between the nodes are

so-called tensors (also known as multi-dimensional arrays)
 The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
 Tensorflow work with the high-level deep learning tool Keras in order to create models fast
 LSTM models are created using tensors & graphs and there are LSTM package contributions

[4] Tensorflow Deep Learning Framework
...

lstm = rnn_cell.BasicLSTMCell(lstm_size, state_is_tuple=False)

...
stacked_lstm = rnn_cell.MultiRNNCell([lstm] * number_of_layers,

state_is_tuple=False)
...
initial_state = state = stacked_lstm.zero_state(batch_size, tf.float32)

for i in range(num_steps):
The value of state is updated
after processing each batch of words.
output, state = stacked_lstm(words[:, i], state)

The rest of the code.
...

final_state = s

 The class
BasicLSTMCell()
offers a simple
LSTM Cell
implementation
in Tensorflow

45 / 70

High-level Tools – Keras

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

[1] Keras Python Deep Learning Library

 Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

 The key idea behind the Keras tool is to enable faster experimentation with deep networks
 Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

keras.layers.LSTM(units,
activation='tanh',

recurrent_activation='hard_sigmoid',

use_bias=True,

kernel_initializer='glorot_uniform',

recurrent_initializer='orthogonal',

bias_initializer='zeros',

unit_forget_bias=True,

kernel_regularizer=None,

recurrent_regularizer=None,

bias_regularizer=None,

activity_regularizer=None,

kernel_constraint=None,

recurrent_constraint=None,

bias_constraint=None,

dropout=0.0, ...)

 Tool Keras supports the LSTM
model via keras.layers.LSTM()
that offers a wide variety of
configuration options

46 / 70

Exercises – LSTM Example
Use Different number of Hidden Nodes, Epochs & Iterations

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 47 / 70

LSTM Example – Data Repository

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

[13] Kaggle, UMICH SI650 – Sentiment Classification Data

48 / 70

LSTM Example – Dataset & Application

 Sentiment analysis (many-to-one RNN topology)
 Input: sentence as sequence of words (i.e. movie ratings texts)
 Output: Sentiment value (positive/negative movie rating)
 Application was a former competition (i.e. Kaggle platform overall idea)
 Goal: Create LSTM network that will learn to predict a correct sentiment

 Small dataset example for tutorial: training & test data available
 Training samples: 7086 short sentences (labelled) [~440 KB]
 Test samples: 33052 short sentences[~1.94 MB]
 Format: label & tab seperated sentence
 https://www.kaggle.com/c/si650winter11/data

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

[13] Kaggle, UMICH SI650 –
Sentiment Classification Data

49 / 70

LSTM Example – Dataset Exploration

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

(labelled training dataset)

(testing dataset)

 Create
directory lstm

 Copy data
 cp /homea/hpclab/train001/data/sentiments/* ~/lstm

50 / 70

LSTM Example – Keras Python Script – Preprocessing

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Import necessary
modules, e.g.
LSTM for a simple
LSTM cell, or
Dense for a fully
connected layer

 Import good
sklearn model
selection tools

 Import numpy for
as helper tool

[8] Deep Learning with Keras

 Natural Language
Toolkit (NLTK) is
for building Python
programs working
on human
language datasets
(punkt is tokenizer)

 Location for labeled training data and testset data

51 / 70

LSTM Example – Keras Python Script – Vocabulary Setup

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Perform
exploratory
analysis in order to
find out the
number of unique
words in the whole
corpus & how
many words are
roughly in each
sentence

[8] Deep Learning with Keras

 Exploration reveals
maxlen: 42 &
len(word_freqs):
2313

 Number of words
in sentence
(maxlen) enables a
fixed sequence
length & PAD = 0;
truncate long ones

 Creating indices index2word and vice versa
 Out of vocabulary means UNK (unknown)

52 / 70

LSTM Example – Keras Python Script – Indices & Padding

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Convert input
sentences from the
training data to
word index
sequences and add
unknown ones as
UNK in index

[8] Deep Learning with Keras

 Perform padding
to the maximum
sentence length
(40)

 Labels are binary
(positive/negative
sentiment) and do
not need padding

 Split between training & testing set (ratio rule of thumb 80:20)
 There is another test set put aside for nicely checking out-of-sample

53 / 70

LSTM Example – Modelling & Decisions

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

ht

LSTM model

xt

(unroll the ‘loop’
over t timesteps)

h0

LSTM model

x0

h1

LSTM model

x1

…

(Dense layer with Sigmoid activation function 
0 – negative review / 1 positive review)

(input for each row is a sequence of word indices –
sequence length is given by MAX_SENTENCE_LENGTH)

modified from [8] Deep Learning with Keras

(tensor dimensions: first is None 
indicate that the batch size is currently unknown,

i.e. number of records fed to the network 
defined in runtime using BATCH_SIZE parameter)

(tensor layout: None X MAX_SENTENCE_LENGTH X 1)

(tensor fed to embedding layer 
weights are initialized with small random values & learned

i.e. layer transforms the tensor to a shape of
None X MAX_SENTENCE_LENGTH X EMBEDDING_SIZE)

(output of LSTM is the tensor
None X HIDDEN_LAYER_SIZE, because last tensor can be defined
as return_sequences = False  we just need 0/1 output)

54 / 70

LSTM Example – Keras Python Script – Model & Parameter

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Hyperparameters
embedding=128;
hidden layers=64;
parameter by
experimentation

 Create first
embedding layer with
input tensor None X
maximum sentence
length X 1

 Add regularizer
SpatialDropout1D

 Add LSTM cell with
hidden layer size 64
with regularizers
dropout and
recurrent_dropout

 Add Dense layer and
Sigmoid activation

 All hyperparameters are tuned
experimentally over many runs

 Compile model using binary
cross-entropy loss function good
for a binary model used here

 Use of Adam optimizer as good
general purpose optimizer

[8] Deep Learning with Keras
55 / 70

LSTM Example – Keras Python Script – Train & Evaluate

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Train the LSTM
network for 10
epochs
(NUM_EPOCHS) &
with batch size 32

 Perform validation
at each epoch
using test data

 Evaluate model
against the full test
set showing score
and accuracy

 Show the LSTM
prediction with
pick of a few
random sentences
from the test set
(predicted label,
label & actual
sentence

 Cf. supervised learning process (day one)
 Labels existing (not in this unsupervised example)
 Train model for fixed number of epochs
 Evaluate model against test dataset (splitted training)

 TBD (home work): Use model for prediction
of the real ‘test-data‘ (not splitted training)
 Note: real ‘test-data‘ has no labels, aka unseen data

56 / 70

RNN Example – Copy Keras Script & Job Script

 Create directory ‘lstm‘
 cp /homea/hpclab/train001/tools/lstm/lstm-example.py ~/lstm

 cp /homea/hpclab/train001/scripts/submit_train_simple_lstm.sh ~/lstm

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 57 / 70

LSTM Example – Submit Script (JURECA)

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 Job submit script
 Specify good name

for the job
 Allocate GPUs for

deep learning job
 Specify job queue
 Restore module

environment with
all dependencies

 Use python with
lstm-example.py script

 Use sbatch
 Use job script

58 / 70

LSTM Example – Output Interpretation

 Supervised learning problem
 Check output with ‘more out.txt‘
 Idea: predicted sentiment should be closed to sentiment labels
 More epochs/iterations  better quality of the model

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

(learned well
compared to
first iteration 
one can observe
loss decrease and
increase in
accuracy over
multiple epochs)

59 / 70

LSTM Example – Model Evaluation

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

[8] Deep Learning with Keras

 Selected plots (e.g. for papers)
 E.g. matplotlib & pyplot can be used to create simple graphs

60 / 70

Different Useful LSTM Models – Many other Applications

 Standard LSTM
 Memory cells with single LSTM layer; used in simple network structures

 Stacked LSTM
 LSTM layers are stacked one on top of another; creating deep networks

 CNN LSTM
 CNNs to learn features (e.g. images); LSTM for image sequences

 Encoder-Decoder LSTM
 One LSTM network  encode input; one LSTM network  decode output

 Bidirectional LSTM
 Input sequences are presented and learned both forward & backwards

 Generative LSTM
 LSTMs learn the inherent structure relationship in input sequences;

then generate new plausible sequences

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 61 / 70

Different Useful LSTM Models – Many other applications

 Standard LSTM

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

 LSTM models work quite well to predict power but needs
to be trained and tuned for different power stations

 Observing that some peaks can not be ‘learned‘

62 / 70

Different Useful LSTM Models – Stacked LSTMs

 E.g. predicting electricity
consumption / customer
 Stacked LSTM cells
 Periodic elements can

take advantage of state
 Needs to be carefully tuned
 Requires through use of

state more computing

 E.g. damped sine
wave prediction
 Stacked LSTM cells since

again periodic character
 Depending on wave

the pattern might be
not able to be detected w/o LSTMs

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 63 / 70

Tensorflow – LSTM Google Translate Example & GPUs

 Use of 2 LSTM networks in a stacked manner
 Called ‘sequence-2-sequence‘ model
 Encoder network
 Decoder network
 Needs context of sentence

(memory) for translation

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

[5] Sequence Models

64 / 70

Exercises – LSTM Example – Revisit Group Outputs

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 65 / 70

[Video] RNN & LSTM

[6] Recurrent Neural Networks, YouTube

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 66 / 70

Lecture Bibliography

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 67 / 70

Lecture Bibliography (1)

 [1] Keras Python Deep Learning Library,
Online: https://keras.io/

 [2] Theano Deep Learning Framework,
Online: https://github.com/Theano/Theano

 [3] LSTM Networks for Sentiment Analysis,
Online: http://deeplearning.net/tutorial/lstm.html

 [4] Tensorflow Deep Learning Framework,
Online: https://www.tensorflow.org/

 [5] YouTube Video‚‘Sequence Models and the RNN API (TensorFlow Dev Summit 2017)‘,
Online: https://www.youtube.com/watch?v=RIR_-Xlbp7s

 [6] YouTube Video, ‘Recurrent Neural Networks - Ep. 9 (Deep Learning SIMPLIFIED)’,
Online: https://www.youtube.com/watch?v=_aCuOwF1ZjU&t=7s

 [7] Timeless Texts, Cutting-Edge Code: Free downloads of Shakespeare from Folger Digital Texts,
Online: http://www.folgerdigitaltexts.org/download/

 [8] A. Gulli and S. Pal, ‘Deep Learning with Keras‘, Packt Publishing,2017, ISBN 978-1-78712-842-2
 [9] O. Vinyals et al., ‘Grammar as a Foreign Language’, Advances in Neural Information Processing

Systems, 2015, Online: https://arxiv.org/abs/1412.7449

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 68 / 70

Lecture Bibliography (2)

 [10] A. Karpathy and F. Li, ‘Deep Visual-Semantic Alignments for Generating Image Descriptions’,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015,
Online: https://cs.stanford.edu/people/karpathy/cvpr2015.pdf

 [11] R. Socher, ‘Recursive Deep Models for Semantic Compositionality over a Sentiment Treebank’,
Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).
Vol. 1631, 2013, Online: https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf

 [12] YouTube Video‚‘RNNs‘,
Online: https://www.youtube.com/watch?v=H3ciJF2eCJI

 [13] Kaggle, ‘UMICH SI650 – Sentiment Classification‘,
Online: https://www.kaggle.com/c/si650winter11

 [14] Adventures in Machine Learning, Keras LSTM tutorial,
Online: http://adventuresinmachinelearning.com/keras-lstm-tutorial/

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM) 69 / 70

70 / 70Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

