
Introduction to Deep Learning

Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland
Research Group Leader, Juelich Supercomputing Centre, Germany

Model Selection and Regularization
June 7th, 2018
Juelich Supercomputing Centre, Germany

Deep Learning

LECTURE 5

Outline of the Course

1. Introduction to Deep Learning

2. Fundamentals of Convolutional Neural Networks (CNNs)

3. Deep Learning in Remote Sensing: Challenges

4. Deep Learning in Remote Sensing: Applications

5. Model Selection and Regularization

6. Fundamentals of Long Short-Term Memory (LSTM)

7. LSTM Applications and Challenges

8. Deep Reinforcement Learning

Lecture 5 – Model Selection and Regularization 2 / 71

Outline

Lecture 5 – Model Selection and Regularization 3 / 71

Outline

 Model Selection
 MNIST Dataset Exploration & Normalization
 Training and Testing Datasets
 Creating ANN Network Topologies
 Parameter Hidden Layers & Overfitting
 Validation Datasets & Splits

 Regularization
 Problem of Overfitting
 Overfitting Reasoning
 Regularization and Validation Counter Approach
 Regularization Techniques
 Dropout Regularizer

Lecture 5 – Model Selection and Regularization 4 / 71

Model Selection

Lecture 5 – Model Selection and Regularization 5 / 71

Lecture 5 – Model Selection and Regularization

Supervised Learning – Training Examples

Unknown Target Function Elements we
not exactly

(need to) know

Elements we
must and/or

should have and
that might raise
huge demands

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we

derive from
our skillset

‘constants‘
in learning

Final Hypothesis

(ideal function)

(final formula)

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)

‘constants‘
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

Training Examples

(historical records, groundtruth data, examples)

MNIST dataset

6 / 71

Lecture 5 – Model Selection and Regularization

Terminologies & Different Dataset Elements

 Target Function
 Ideal function that ‘explains‘ the data we want to learn

 Labelled Dataset (samples)
 ‘in-sample‘ data given to us:

 Learning vs. Memorizing
 The goal is to create a system that works well ‘out of sample‘
 In other words we want to classify ‘future data‘ (ouf of sample) correct

 Dataset Part One: Training set
 Used for training a machine learning algorithms
 Result after using a training set: a trained system

 Dataset Part Two: Test set
 Used for testing whether the trained system might work well
 Result after using a test set: accuracy of the trained model

7 / 71

Model Evaluation – Training and Testing Phases

 Different Phases in Learning (cf. day one remote sensing)
 Training phase is a hypothesis search
 Testing phase checks if we are on right track

(once the hypothesis clear)

 Work on ‘training examples‘
 Create two disjoint datasets
 One used for training only

(aka training set)
 Another used for testing only

(aka test set)
 Exact seperation is rule of thumb per use case (e.g. 10 % training, 90% test)
 Practice: If you get a dataset take immediately test data away

(‘throw it into the corner and forget about it during modelling‘)
 Reasoning: Once we learned from training data it has an ‘optimistic bias‘

Lecture 5 – Model Selection and Regularization

Training Examples

(historical records, groundtruth data, examples)

‘test set’‘training set’

8 / 71

Lecture 5 – Model Selection and Regularization

Learning Approaches – Supervised Learning – Formalization

 Each observation of the predictor measurement(s)
has an associated response measurement:
 Input
 Output
 Data

 Goal: Fit a model that relates the response to the predictors
 Prediction: Aims of accurately predicting the response for future

observations
 Inference: Aims to better understanding the relationship between the

response and the predictors

 Supervised learning approaches fits a model that related the response to the predictors
 Supervised learning approaches are used in classification algorithms such as SVMs
 Supervised learning works with data = [input, correct output]

[1] An Introduction to Statistical Learning

Training Examples

(historical records, groundtruth data, examples)

9 / 71

Exercises – Explore MNIST Training & Testing Dataset

Lecture 5 – Model Selection and Regularization 10 / 71

Handwritten Character Recognition MNIST Dataset

 Metadata
 Subset of a larger dataset from US National Institute of Standards (NIST)
 Handwritten digits including corresponding labels with values 0 to 9
 All digits have been size-normalized to 28 * 28 pixels

and are centered in a fixed-size image for direct processing
 Not very challenging dataset, but good for experiments / tutorials

 Dataset Samples
 Labelled data (10 classes)
 Two separate files

for training and test
 60000 training samples (~47 MB)
 10000 test samples (~7.8 MB)

Lecture 5 – Model Selection and Regularization 11 / 71

MNIST Dataset for the Tutorial

 When working with the dataset
 Dataset is not in any standard image format like jpg, bmp, or gif
 One needs to write typically a small program to read and work for them
 Data samples are stored in a simple file format that is designed for

storing vectors and multidimensional matrices (here numpy binary files)
 The pixels of the handwritten digit images are organized row-wise with

pixel values ranging from 0 (white background) to 255 (black foreground)
 Images contain grey levels as a result of an anti-aliasing technique used

by the normalization algorithm that generated this dataset.

Lecture 5 – Model Selection and Regularization 12 / 71

MNIST Dataset – Exploration – One Character Encoding

Lecture 5 – Model Selection and Regularization 13 / 71

MNIST Dataset – Exploration Script Training

Lecture 5 – Model Selection and Regularization

 Loading MNIST training
datasets (X) with labels
(Y) stored in a binary
numpy format

 Format is 28 x 28 pixel
values with grey level
from 0 (white
background) to 255
(black foreground)

 Small helper function
that prints row-wise one
‘hand-written‘ character
with the grey levels
stored in training dataset

 Should reveal the nature
of the number (aka label)

 Loop of the training dataset and the testing dataset (e.g. first 10 characters as shown here)
 At each loop interval the ‘hand-written‘ character (X) is printed in ‘matrix notation‘ & label (Y)

14 / 71

Exercises – Execute Script to Explore MNIST Training Dataset

Lecture 5 – Model Selection and Regularization 15 / 71

MNIST Dataset – Exploration – Selected Training Samples

Lecture 5 – Model Selection and Regularization 16 / 71

Exercises – Modify Script to Explore MNIST Testing Dataset

Lecture 5 – Model Selection and Regularization 17 / 71

MNIST Dataset – Exploration Script Testing (one solution)

Lecture 5 – Model Selection and Regularization 18 / 71

MNIST Dataset – Reshape & Normalization

Lecture 5 – Model Selection and Regularization

 Loading MNIST training
datasets (X) and testing
datasets (Y) stored in a
binary numpy format
with labels for X and Y

 Format is 28 x 28 pixel
values with grey level
from 0 (white
background) to 255
(black foreground)

 Reshape from 28 x 28
matrix of pixels to 784
pixel values considered
to be the input for the
neural networks later

 Normalization is added
for mathematical
convenience since the
computing with numbers
get easier (not too large)

19 / 71

Exercises – Execute Script to Reshape MNIST Datasets

Lecture 5 – Model Selection and Regularization 20 / 71

MNIST Dataset – Reshape & Normalization – Example

Lecture 5 – Model Selection and Regularization

(numbers are
between 0 and 1)

21 / 71

Lecture 5 – Model Selection and Regularization

Supervised Learning – Training Examples

Unknown Target Function Elements we
not exactly

(need to) know

Elements we
must and/or

should have and
that might raise
huge demands

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we

derive from
our skillset

‘constants‘
in learning

Final Hypothesis

(ideal function)

(final formula)

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)

‘constants‘
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

Training Examples

(historical records, groundtruth data, examples)

Artificial
Neural
Network

Backpropagation

22 / 71

Artificial Neural Network (ANN) – cf. Day One

 Simple perceptrons fail: ‘not linearly seperable’

Lecture 5 – Model Selection and Regularization

?

Decision Boundary Two-Layer, feed-forward Artificial Neural Network topology

X1

X2

y

Labelled Data Table

X1 X2 Y

0 0 -1

1 0 1

0 1 1

1 1 -1

X2

X1

w31

w41

w32

w42

w54

w53

n2

n1 n3

n4

n5

(Idea: instances can be classified using
two lines at once to model XOR)

23 / 71

High-level Tools – Keras

Lecture 5 – Model Selection and Regularization

[2] Keras Python Deep Learning Library

 Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

 The key idea behind the Keras tool is to enable faster experimentation with deep networks
 Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

 Tool Keras supports inherently
the creation of artificial neural
networks using Dense layers
and optimizers (e.g. SGD)

 Includes regularization (e.g.
weight decay) or momentum

keras.layers.Dense(units,

activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None)

keras.optimizers.SGD(lr=0.01,

momentum=0.0,
decay=0.0,
nesterov=False)

24 / 71

ANN – MNIST Dataset – Create ANN Blueprint

 Data Preprocessing done (i.e. data normalization, reshape, etc.)
1. Define a neural network topology
 Which layers are required?
 Think about input layer need to match the data – what data we had?
 Maybe hidden layers?
 Think Dense layer – Keras?
 Think about final Activation as Softmay (cf. Day One) output probability

2. Compile the model model representation for Tensorflow et al.
 Think about what loss function you want to use in your problem?
 What is your optimizer strategy, e.g. SGD (cf. Day One)

3. Fit the model the model learning takes place
 How long you want to train (e.g. NB_EPOCHS)
 How much samples are involved (e.g. BATCH_SIZE)

Lecture 5 – Model Selection and Regularization 25 / 71

Exercises – Create a Simple ANN Model – One Dense

Lecture 5 – Model Selection and Regularization 26 / 71

ANN – MNIST Dataset – Parameters & Data Normalization

Lecture 5 – Model Selection and Regularization

 NB_CLASSES: 10 Class Problem
 NB_EPOCH: number of times the model is

exposed to the training set – at each
iteration the optimizer adjusts the weights
so that the objective function is minimized

 BATCH_SIZE: number of training instances
taken into account before the optimizer
performs a weight update

 OPTIMIZER: Stochastic Gradient Descent
(‘SGD‘) – only one training sample/iteration

 Data load shuffled between
training and testing set in files

 Data preparation, e.g. X_train is
60000 samples / rows of 28 x 28
pixel values that are reshaped in
60000 x 784 including type
specification (i.e. float32)

 Data normalization: divide by
255 – the max intensity value
to obtain values in range [0,1]

27 / 71

ANN – MNIST Dataset – A Simple Model

Lecture 5 – Model Selection and Regularization

 Dense() represents a
fully connected layer
used in ANNs that
means that each
neuron in a layer is
connected to all
neurons located in
the previous layer

 The Sequential()
Keras model is a
linear pipeline (aka
‘a stack‘) of various
neural network layers
including Activation
functions of different
types (e.g. softmax)

 The non-linear Activation function
‘softmax‘ represents a generalization of
the sigmoid function – it squashes an n-
dimensional vector of arbitrary real
values into a n-dimenensional vector of
real values in the range of 0 and 1 – here
it aggregates 10 answers provided by
the Dense layer with 10 neurons

 Loss function
is a multi-
class
logarithmic
loss: target is
ti,j and
prediction is
pi,j

 Train the
model (‘fit‘)

28 / 71

ANN – MNIST Dataset – Job Script

Lecture 5 – Model Selection and Regularization 29 / 71

ANN – MNIST Dataset – Job Submit & Check Output

Lecture 5 – Model Selection and Regularization 30 / 71

Model Evaluation – Testing Phase & Confusion Matrix

Lecture 5 – Model Selection and Regularization

 Model is fixed
 Model is just used with the testset
 Parameters are set

 Evaluation of model performance
 Counts of test records that are incorrectly predicted
 Counts of test records that are correctly predicted
 E.g. create confusion matrix for a two class problem

Counting per sample Predicted Class

Class = 1 Class = 0

Actual
Class

Class = 1 f11 f10

Class = 0 f01 f00

(serves as a basis for further performance metrics usually used)

31 / 71

Model Evaluation – Testing Phase & Performance Metrics

Lecture 5 – Model Selection and Regularization

 Accuracy (usually in %)

 Error rate

Counting per sample Predicted Class

Class = 1 Class = 0

Actual
Class

Class = 1 f11 f10

Class = 0 f01 f00

(100% accuracy in learning often
points to problems using machine
learning methos in practice)

32 / 71

ANN – MNIST Dataset – A Simple Model – Output

Lecture 5 – Model Selection and Regularization 33 / 71

ANN – MNIST Dataset – Extend ANN Blueprint

 Data Preprocessing done (i.e. data normalization, reshape, etc.)
 Initial ANN topology existing
 Initial setup of model works (create, compile, fit)

 Extend the neural network topology
 Which layers are required?
 Think about input layer need to match the data – what data we had?
 Maybe hidden layers?
 How many hidden layers?
 What activation function for which layer?
 Think Dense layer – Keras?
 Think about final Activation as Softmay (cf. Day One) output probability

Lecture 5 – Model Selection and Regularization 34 / 71

Exercises – Add Two Hidden Layers

Lecture 5 – Model Selection and Regularization 35 / 71

ANN – MNIST Dataset – Add Two Hidden Layers

Lecture 5 – Model Selection and Regularization

 A hidden layer in an ANN can be
represented by a fully connected
Dense layer in Keras by just
specifying the number of hidden
neurons in the hidden layer

 The non-linear Activation function ‘relu‘ represents a
so-called Rectified Linear Unit (ReLU) that only recently
became very popular because it generates good
experimental results in ANNs and more recent deep
learning models – it just returns 0 for negative values
and grows linearly for only positive values

36 / 71

ANN 2 Hidden – MNIST Dataset – Job Script

Lecture 5 – Model Selection and Regularization 37 / 71

ANN – MNIST Dataset – Job Submit & Check Output

Lecture 5 – Model Selection and Regularization 38 / 71

ANN 2 Hidden – MNIST Dataset – Output

Lecture 5 – Model Selection and Regularization 39 / 71

Lecture 5 – Model Selection and Regularization

Validation & Model Selection – Terminology

 ‘Training error‘
 Calculated when learning from data (i.e. dedicated training set)

 ‘Test error’
 Average error resulting from using the model with ‘new/unseen data‘
 ‘new/unseen data‘ was not used in training (i.e. dedicated test set)
 In many practical situations, a dedicated test set is not really available

 ‘Validation Set‘
 Split data into training & validation set

 ‘Variance‘ & ‘Variability‘
 Result in different random splits (right)

 The ‘Validation technique‘ should be used in all machine learning or data mining approaches
 Model assessment is the process of evaluating a models performance
 Model selection is the process of selecting the proper level of flexibility for a model

modified from [4] ‘An Introduction to Statistical Learning’

(1 split) (n splits)

(split creates a two subsets of comparable size)

40 / 71

Lecture 5 – Model Selection and Regularization

Validation Technique – Formalization & Goal

 Regularization & Validation
 Approach: introduce a ‘overfit penalty‘ that relates to model complexity
 Problem: Not accurate values: ‘better smooth functions‘

 Validation
 Goal ‘estimate the out-of-sample error‘
 Distinct activity from training and testing

 Validation is a very important technique to estimate the out-of-sample performance of a model
 Main utility of regularization & validation is to control or avoid overfitting via model selection

(regularization estimates
this quantity)

(regularization uses a term that captures the overfit penalty)

(minimize both to be better proxy for Eout)

(validation estimates
this quantity)

(establish a quantity known as validation error)

(testing also tries to estimate the Eout)

(measuring Eout is not possible as this is an unknown quantity,
another quantity is needed that is measurable that at least estimates it)

41 / 71

Lecture 5 – Model Selection and Regularization

Validation Technique – Pick one point & Estimate Eout

 Understanding ‘estimate‘ Eout
 On one out-of-sample point the error is
 E.g. use squared error:

 Use this quantity as estimate for Eout

 Term ‘expected value‘ to formalize (probability theory)

Training Examples

‘test set’‘training set’

(poor estimate)

(Taking into account the theory of Lecture 1 with probability distribution on X etc.)
Probability Distribution

(activity below is what we do for testing,
but call it differently for another purpose)

(one point as unbiased estimate of Eout that can have a high variance leads to bad generalization)

(aka ‘random variable‘)
(aka the long-run average value of repetitions of the experiment)

K

(involved in validation)

42 / 71

Lecture 5 – Model Selection and Regularization

 Solution for high variance in expected values
 Take a ‘whole set‘ instead of just one point for validation

 Idea: K data points for validation

 Expected value to ‘measure‘
the out-of-sample error

 ‘Reliable estimate‘ if K is large

Validation Technique – Validation Set
 Validation set consists of data that has been not used in training to estimate true out-of-sample
 Rule of thumb from practice is to take 20% (1/5) for validation of the learning model

(validation set)

Training Examples

(validation error)

(we do the same approach with the
testing set, but here different purpose)(involved in training+test) (involved in validation)

(we need points not used in training
to estimate the out-of-sample performance)

(expected values averaged over set)

(this gives a much better (lower) variance than on a single point given K is large)(on rarely used validation set,
otherwise data gets contaminated)

K

43 / 71

Lecture 5 – Model Selection and Regularization

Validation Technique – Model Selection Process

 Many different models
Use validation error to
perform select decisions

 Careful consideration:
 ‘Picked means decided‘

hypothesis has already
bias (contamination)

 Using M times

 Model selection is choosing (a) different types of models or (b) parameter values inside models
 Model selection takes advantage of the validation error in order to decide ‘pick the best‘

(set of candidate formulas across models)

Hypothesis Set

(pick ‘best‘ bias)

(final real training
to get even better
out-of-sample)

(training)

(validate)

(final training on full set, use
the validation samples too)

(out-of-sample
w.r.t. DTrain)

(training not on
full data set)

(decides model selection)

Final Hypothesis (test this on unseen data
good, but depends on
availability in practice)

(unbiased
estimates)

44 / 71

Exercises – Add 1/5th for Validation

Lecture 5 – Model Selection and Regularization 45 / 71

ANN 2 Hidden 1/5 Validation – MNIST Dataset

Lecture 5 – Model Selection and Regularization

 If there is enough data available one rule of
thumb is to take 1/5 (0.2) 20% of the datasets
for validation only

 Validation data is used to perform model
selection (i.e. parameter / topology decisions)

 The validation split parameter enables an
easy validation approach during the model
training (aka fit)

 Expectations should be a higher accuracy
for unseen data since training data is less
biased when using validation for model
decisions (check statistical learning theory)

 VALIDATION_SPLIT: Float between 0 and 1
 Fraction of the training data to be used as

validation data
 The model fit process will set apart this

fraction of the training data and will not
train on it

 Intead it will evaluate the loss and any
model metrics on the validation data at the
end of each epoch.

46 / 71

ANN 2 Hidden 1/5 Validation – MNIST Dataset – Job Script

Lecture 5 – Model Selection and Regularization 47 / 71

ANN – MNIST Dataset – Job Submit & Check Output

Lecture 5 – Model Selection and Regularization 48 / 71

ANN 2 Hidden – 1/5 Validation – MNIST Dataset – Output

Lecture 5 – Model Selection and Regularization 49 / 71

[Video] Overfitting in Deep Neural Networks

[4] Overfitting and Regularization For Deep Learning, YouTube

Lecture 5 – Model Selection and Regularization 50 / 71

Regularization

Lecture 5 – Model Selection and Regularization 51 / 71

Remote Sensing - Experimental Setup – Growing Parameter

 CNN Setup
 Table overview

 HPC Machines used
 Systems JURECA and JURON

 GPUs
 NVIDIA Tesla K80 (JURECA)
 NVIDIA Tesla P100 (JURON)
 While Using MathWorks’

Matlab for the data

 Frameworks
 Keras library (2.0.6) was used
 Tensorflow (0.12.1 on Jureca, 1.3.0rc2 on Juron) as back-end
 Automated usage of the GPU’s of these machines via Tensorflow

Lecture 5 – Model Selection and Regularization

(adding regularization values adds even
more complexity in finding the right parameters)

(having the validation with the full grid search
of all parameters and all combinations

is quite compute – intensive ~infeasable)

52 / 71

Challenge Two – Problem of Overfitting

 Key problem: noise in the target function leads to overfitting
 Effect: ‘noisy target function‘ and

its noise misguides the fit in learning
 There is always ‘some noise‘ in the data
 Consequence: poor target function

(‘distribution‘) approximation

 Example: Target functions is second
order polynomial (i.e. parabola)
 Using a higher-order polynomial fit
 Perfect fit: low , but large

Lecture 5 – Model Selection and Regularization

 Overfitting refers to fit the data too well – more than is warranted – thus may misguide the learning
 Overfitting is not just ‘bad generalization‘ - e.g. the VC dimension covers noiseless & noise targets
 Theory of Regularization are approaches against overfitting and prevent it using different methods

(target)

(overfit)

(noise)

(‘over‘: here meant as 4th order,
a 3rd order would be better, 2nd best)

(but simple polynomial works good enough)

53 / 71

Lecture 5 – Model Selection and Regularization

 A good model must have low training error (Ein) and low generalization error (Eout)
 Model overfitting is if a model fits the data too well (Ein) with a poorer generalization error (Eout)

than another model with a higher training error (Ein)

[1] Introduction to Data Mining

Problem of Overfitting – Clarifying Terms

 Overfitting & Errors
 goes down
 goes up

 ‘Bad generalization area‘ ends
 Good to reduce

 ‘Overfitting area‘ starts
 Reducing does not help
 Reason ‘fitting the noise‘

Error

Training time

(‘generalization error‘)

(‘training error‘)

 The two general approaches to prevent overfitting are (1) regularization and (2) validation

 overfitting occursbad generalization

54 / 71

Problem of Overfitting – Model Relationships

 Review ‘overfitting situations‘
 When comparing ‘various models‘ and related to ‘model complexity‘
 Different models are used, e.g. 2nd and 4th order polynomial
 Same model is used with e.g. two different instances

(e.g. two neural networks but with different parameters)

 Intuitive solution
 Detect when it happens
 ‘Early stopping regularization

term‘ to stop the training
 Early stopping method (later)

Lecture 5 – Model Selection and Regularization

Error

Training time

(‘generalization error‘)

(‘training error‘)

(‘early stopping‘)

 ‘Early stopping‘ approach is part of the theory of regularization, but based on validation methods

model
complexity

(‘model complexity measure: the VC analysis was independent
of a specific target function – bound for all target functions‘)

55 / 71

Problem of Overfitting – ANN Model Example

Lecture 5 – Model Selection and Regularization

Error

Training time

(‘generalization error‘)

(‘training error‘)

(‘early stopping‘)

model
complexity

 Two Hidden Layers
 Good accuracy and works well
 Model complexity seem to

match the application & data

 Four Hidden Layers
 Accuracy goes down
 goes down
 goes up
 Significantly more weights to train
 Higher model complexity

56 / 71

Exercises - Add more Hidden Layers – Accuracy?

Lecture 5 – Model Selection and Regularization 57 / 71

Exercises – Add more Hidden Layers – Growth Parameter

Lecture 5 – Model Selection and Regularization 58 / 71

Exercises - Add more Hidden Layers – 4 Hidden Layers

Lecture 5 – Model Selection and Regularization 59 / 71

Problem of Overfitting – Noise Term Revisited

 ‘(Noisy) Target function‘ is not a (deterministic) function
 Getting with ‘same x in‘ the ‘same y out‘ is not always given in practice
 Idea: Use a ‘target distribution‘

instead of ‘target function‘

 ‘Different types of some noise‘ in data
 Key to understand overfitting & preventing it
 ‘Shift of view‘: refinement of noise term
 Learning from data: ‘matching properties of # data‘

Lecture 5 – Model Selection and Regularization

(target)
(overfit)

(noise)

‘shift the view’

(‘function view‘)

(‘# data view‘)

‘# samples‘

 Fitting some noise in the data
is the basic reason for overfitting
and harms the learning process

 Big datasets tend to have more noise
in the data so the overfitting problem
might occur even more intense

60 / 71

Problem of Overfitting – Stochastic Noise

 Stoachastic noise is a part ‘on top of‘ each learnable function
 Noise in the data that can not be captured and thus not modelled by f
 Random noise : aka ‘non-deterministic noise‘
 Conventional understanding

established early in this course
 Finding a ‘non-existing pattern

in noise not feasible in learning‘

 Practice Example
 Random fluctuations and/or

measurement errors in data
 Fitting a pattern that not exists ‘out-of-sample‘
 Puts learning progress ‘off-track‘ and ‘away from f‘

Lecture 5 – Model Selection and Regularization

(target)
(overfit)

(noise)

 Stochastic noise here means noise that can‘t be captured, because it‘s just pure ‘noise as is‘
(nothing to look for) – aka no pattern in the data to understand or to learn from

61 / 71

Problem of Overfitting – Deterministic Noise

 Part of target function f that H can not capture:
 Hypothesis set H is limited so best h* can not fully approximate f
 h* approximates f, but fails to pick certain parts of the target f
 ‘Behaves like noise‘, existing even if data is ‘stochastic noiseless‘

 Different ‘type of noise‘ than stochastic noise
 Deterministic noise depends on
 E.g. same f, and more sophisticated : noise is smaller

(stochastic noise remains the same,
nothing can capture it)

 Fixed for a given , clearly measurable
(stochastic noise may vary for values of)

Lecture 5 – Model Selection and Regularization

 Deterministic noise here means noise that can‘t be captured, because it is a limited model
(out of the league of this particular model), e.g. ‘learning with a toddler statistical learning theory‘

(determines how much more can be captured by
h*)

(learning deterministic noise is outside the ability to learn for a given
h*)

(f)

(h*)

62 / 71

Problem of Overfitting – Impacts on Learning

 Understanding deterministic noise & target complexity
 Increasing target complexity increases deterministic noise (at some level)
 Increasing the number of data N decreases the deterministic noise

 Finite N case: tries to fit the noise
 Fitting the noise straightforward (e.g. Perceptron Learning Algorithm)
 Stochastic (in data) and deterministic (simple model) noise will be part of it

 Two ‘solution methods‘ for avoiding overfitting
 Regularization: ‘Putting the brakes in learning‘, e.g. early stopping

(more theoretical, hence ‘theory of regularization‘)
 Validation: ‘Checking the bottom line‘, e.g. other hints for out-of-sample

(more practical, methods on data that provides ‘hints‘)

Lecture 5 – Model Selection and Regularization

 The higher the degree of the polynomial (cf. model complexity), the more degrees of
freedom are existing and thus the more capacity exists to overfit the training data

63 / 71

keras.layers.Dropout(rate,

noise_shape=None,
seed=None)

from keras import regularizers

model.add(Dense(64, input_dim=64,
kernel_regularizer=regularizers.l2(0.01),
activity_regularizer=regularizers.l1(0.01)))

High-level Tools – Keras – Regularization Techniques

Lecture 5 – Model Selection and Regularization

[5] Keras Python Deep Learning Library

 Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

 The key idea behind the Keras tool is to enable faster experimentation with deep networks
 Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

 Dropout is randomly setting a fraction
of input units to 0 at each update
during training time, which helps
prevent overfitting (using parameter
rate)

 L2 regularizers allow to apply penalties
on layer parameter or layer activity
during optimization itself – therefore
the penalties are incorporated in the
loss function during optimization

64 / 71

Exercises – Underfitting & Add Dropout Regularizer

Lecture 5 – Model Selection and Regularization

 Run with 20 Epochs first (not trained enough); then 250 Epochs
 Training accuracy should be above the test accuracy – otherwise

‘underfitting‘

65 / 71

ANN – MNIST Dataset – Add Weight Dropout Regularizer

Lecture 5 – Model Selection and Regularization

 A Dropout() regularizer randomly
drops with ist dropout probability
some of the values propagated
inside the Dense network hidden
layers improving accuracy again

 Our standard model is already
modified in the python script but
needs to set the DROPOUT rate

 A Dropout() regularizer randomly
drops with ist dropout probability
some of the values propagated
inside the Dense network hidden
layers improving accuracy again

(compare with CNN models, day one ~99%)

66 / 71

ANN – MNIST - DROPOUT

Lecture 5 – Model Selection and Regularization 67 / 71

[Video] Overfitting in Deep Neural Networks

[3] How good is your fit?, YouTube

Lecture 5 – Model Selection and Regularization 68 / 71

Lecture Bibliography

Lecture 5 – Model Selection and Regularization 69 / 71

Lecture Bibliography

 [1] An Introduction to Statistical Learning with Applications in R,
Online: http://www-bcf.usc.edu/~gareth/ISL/index.html

 [2] Keras Python Deep Learning Library,
Online: https://keras.io/

 [3] YouTube Video, ‘How good is your fit? - Ep. 21 (Deep Learning SIMPLIFIED)‘,
Online: https://www.youtube.com/watch?v=cJA5IHIIL30

 [4] YouTube Video, ‘Overfitting and Regularization For Deep Learning | Two Minute Papers #56’,
Online: https://www.youtube.com/watch?v=6aF9sJrzxaM

Lecture 5 – Model Selection and Regularization 70 / 71

71 / 71Lecture 5 – Model Selection and Regularization

