Deep Learning

Introduction to Deep Learning

Dr. — Ing. Morris Riedel

Adjunct Associated Professor

School of Engineering and Natural Sciences, University of Iceland
Research Group Leader, Juelich Supercomputing Centre, Germany

Model Selection and Regularization

June 7th, 2018

Juelich Supercomputing Centre, Germany

SERSITA,
<

D
ﬁ
7 \

s,

JuM
A5\

>
@

UNIVERSITY OF ICELAND
SCHOOL OF ENGINEERING AND NATURAL SCIENCES

/.

S TES) i .)
FACULTY OF INDUSTRIAL ENGINEERING,

MECHANICAL ENGINEERING AND COMPUTER SCIENCE

JULICH

Forschungszentrum

HELMHOLTZ

[

IDEEP

Profects

J

Outline of the Course

Introduction to Deep Learning
Fundamentals of Convolutional Neural Networks (CNNs)
Deep Learning in Remote Sensing: Challenges

Deep Learning in Remote Sensing: Applications

Model Selection and Regularization

Fundamentals of Long Short-Term Memory (LSTM)
LSTM Applications and Challenges

Deep Reinforcement Learning

Lecture 5 — Model Selection and Regularization

Outline

Lecture 5 — Model Selection and Regularization 3/71

Outline

= Model Selection

MNIST Dataset Exploration & Normalization
Training and Testing Datasets

Creating ANN Network Topologies
Parameter Hidden Layers & Overfitting
Validation Datasets & Splits

= Regularization

Problem of Overfitting

Overfitting Reasoning

Regularization and Validation Counter Approach
Regularization Techniques

Dropout Regularizer

Lecture 5 — Model Selection and Regularization

Model Selection

O
O 0

Lecture 5 — Model Selection and Regularization 5/71

Supervised Learning — Training Examples

Unknown Target Bistetionion P (’(‘X) Probability Distribution Elements we
" Y) not exactly
target function f X —Y plus noise P on X (need to) know
. R
(ideal function) \L
]
]
! ‘constants’
] pr— h
' X (1.17 Tt xd) X in learning
]
MNIST dataset \:/ Elements we
— must and/or
Training Examples Error Measure should have and
(X“ yl)7 ey (XN7 yN) >6(X) & that might raise
huge demands
(historical records, gropndtruth data, examples) forESioge
\ v " Elements
_ X . , X X that we derive
Learning Algorithm (‘train a system?) N Final Hypot}esm from our skillset
A L 3 0 ~ and that can be
Y i computationally
(set of knowp algorithms) (final formula) LS
. Elements
% vaot?ess Set 7_[that we
— { 1 } . C -~ derive from
y J our skillset

(set of candidate formulas)

Terminologies & Different Dataset Elements

Target Function f: X =Y

= |deal function that ‘explains’ the data we want to learn
Labelled Dataset (samples)

= ‘in-sample’ data given to us: (Xl, yl), cary (XN, yN)
Learning vs. Memorizing

= The goal is to create a system that works well ‘out of sample’

= |n other words we want to classify ‘future data‘ (ouf of sample) correct

Dataset Part One: Training set
= Used for training a machine learning algorithms
= Result after using a training set: a trained system
Dataset Part Two: Test set

= Used for testing whether the trained system might work well
= Result after using a test set: accuracy of the trained model

Lecture 5 — Model Selection and Regularization

Model Evaluation — Training and Testing Phases

= Different Phases in Learning (cf. day one remote sensing)
= Training phase is a hypothesis search

= Testing phase checks if we are on right track
(once the hypothesis clear)

= Work on ‘training examples’

= Create two disjoint datasets _

‘training set’

I

‘test set’

= One used for training only
(aka training set)

Trainin4 Examples
(X0, 8, 40 (X, U)
= Another used for testlng Only (historical records, grc')undtruth data, examples)

(aka test set)

= Exact seperation is rule of thumb per use case (e.g. 10 % training, 90% test)

= Practice: If you get a dataset take immediately test data away
(‘throw it into the corner and forget about it during modelling’)

= Reasoning: Once we learned from training data it has an ‘optimistic bias’

Lecture 5 — Model Selection and Regularization

Learning Approaches — Supervised Learning — Formalization

* Each observation of the predictor measurement(s)
has an associated response measurement:

" lnput X=x,...,0

d Training Examples
u Output y.“Z — 1,..,?1 (X17y1)7""(XN7yN)
m Data (Xl , Uy)) oeees (XN : yN) (historical records, groundtruth data, examples)

" Goal: Fit a model that relates the response to the predictors

= Prediction: Aims of accurately predicting the response for future
observations

= |nference: Aims to better understanding the relationship between the
response and the predictors

= Supervised learning approaches fits a model that related the response to the predictors
= Supervised learning approaches are used in classification algorithms such as SVMs
= Supervised learning works with data = [input, correct output]

[1] An Introduction to Statistical Learning

Exercises — Explore MNIST Training & Testing Dataset

Lecture 5 — Model Selection and Regularization

Handwritten Character Recognition MINIST Dataset

* Metadata
= Subset of a larger dataset from US National Institute of Standards (NIST)
= Handwritten digits including corresponding labels with values 0 to 9

= All digits have been size-normalized to 28 * 28 pixels
and are centered in a fixed-size image for direct processing

* Not very challenging dataset, but good for experiments / tutorials

OHZRANZITNH I
= Dataset Samples g%%%%%%%%%
= Labelled data (10 classes) %}1 % % % % % I% %} % %

= Two separate files ~ - :
for trairrw)ing and test % % % % % % %
= 60000 training samples (~47 MB) Zl 1 [el 3182 /]2 7
= 10000 test samples (~7.8 MB) % % % % % %

Lecture 5 — Model Selection and Regularization

MNIST Dataset for the Tutorial

» When working with the dataset

Dataset is not in any standard image format like jpg, bmp, or gif
One needs to write typically a small program to read and work for them

Data samples are stored in a simple file format that is designed for
storing vectors and multidimensional matrices (here numpy binary files)

The pixels of the handwritten digit images are organized row-wise with
pixel values ranging from 0 (white background) to 255 (black foreground)

Images contain grey levels as a result of an anti-aliasing technique used
by the normalization algorithm that generated this dataset.

fhomea/hpclab/trainfdl/data/mnist
[trainf@1@jrl09 mnist]$ pwd
/homea/hpclab/trainBfl/data/mnist
[train®01@jrl09 mnistl$ 1s -al

otal 53728

drwxr-xr-x 2 train@0l hpclab 512 Jun

drwxr-xr-x 180 train@8l hpclab 512 Jun .-
-rwW-r----- 1 train@@]1 hpclab 734080360 Jun : x_test.npy
-rw-r----- 1 train@Bl hpclab 47040030 Jun : X_train.npy
-rwW-r----- 1 train@®l hpclab 1060860 Jun : y _test.npy
-FrwW-r----- 1 train@®l hpclab 60080 Jun : y train.npy

MNIST Dataset — Exploration — One Character Encoding

[trainBB1@jr109 mnist]$ python explore-mnist-training.py

Samples of 28 x 28 pixel matrices reserved for training
(8] i i {8 ¢ 6] : 4] : [¢} (6] (6]
- £ £ E
: [0 [0 {8
I.

=
=

=
it
[
=t

N]
=l]
1 =
1= Lo
8]
B

TN =

[aca T = N
[s=ls]
oo W

(8,1
[T =

L]
st
o

=

=

o

.

.
i

TN

“J
L
)

D M
o

)
)
o
o
]
]
W
[
=
o)

=
=
(=
(=
)
]
]

=)

o
]
[
=]

cx Jlacn N U RS
=
]
=
=
o=

2 U

=t
(W]
=]

[g I
Go R

™ I\} = T

MNIST Dataset — Exploration Script Training

LMpOrtT numpy as np

(_train

np.load("/homea/hpclab/traing

_train np.load("/homea/hpclab/train0o1/

print("Samples of 28 x 28 pixel

def character show(character):
for y in character:
row = "'
for x in y:
row += '{0: =4}"' _format(x)
print row

for i in range (0,9):
character show(X train[i])
print(“\n")
print(“Label:")
print(Y train[i])
print{"\n")

; reserved for training")

Loading MNIST training
datasets (X) with labels
(Y) stored in a binary
numpy format

Format is 28 x 28 pixel
values with grey level
from 0 (white
background) to 255
(black foreground)

Small helper function
that prints row-wise one
‘hand-written’ character
with the grey levels
stored in training dataset

Should reveal the nature
of the number (aka label)

= Loop of the training dataset and the testing dataset (e.g. first 10 characters as shown here)
= At each loop interval the ‘hand-written’ character (X) is printed in ‘matrix notation’ & label (Y)

Exercises — Execute Script to Explore MNIST Training Dataset

[train@Bl1@jrie9 mnist]l$ python /homea/hpclab/train@Bl/tools/mnist/explore-mnist-training.py

Lecture 5 — Model Selection and Regularization

ining Samples

Selected Tra

c
o

Explorati

MNIST Dataset

0
[¢]
[¢]
0
[¢]
[¢]

253 252 148 0
0
[¢]
[°]
0
[¢]
[°]
0
[¢]
[°]
0

135 253 186 12 @
131 252 225 71

165 252 173 0

114 238 253 162 ©

253 243 50 @
253 252 165 @
253 252 195 @
253 252 195 @
255 253 196 @

0
0
[°]
0

[:]
<]
<]
<]
<]
<]
<]

0

159 253 159 50 @
[°]
0
0
[°]
0
0

[:]
<]
<]
<]
<]
<]
<]
2]
48

114 253 228 47 79 255 168 0
<]
2]
<]
<]
2]
<]

6 o 0 0 o

6 e © o0 o

6 e o 0 o
0

€]
51
48 238 252 252 252 237 ©

54 227 253 252 239 233 252 57 6
le 60 224 252 253 252 282 84 252 253 122 0
163 252 252 252 253 252 252 96 189 253 167 @

51 238 253 253 190
48 238 252 252 179 12 75 12121 @

38 165 253 233 208 84 ©

178 252 240 71

57 252 252 63 @
198 253 190 ©
76 246 252 112 O
85 252 238 25 0

85 252 223 0
85 252 145 0
86 253 225 0

[c]
[c]
[¢]
<]
[c]
[¢]
c]
[c]
c]
[¢]
[¢]
c]
[¢]

0 @
0 @
0 e
0 @
0 e
<]

€]
[¢]
[c]
€]
[¢]
[c]
0
[¢]
[¢]
c]
[¢]

[¢]
[¢]
[¢]
[°]
[¢]
[¢]

[:]
<]
<]
[:]
<]
<]
0
<]
<]

2]
<]
<]
128 252 253 252 141 37 @

0]
[¢]
[°]
0]

85 252 249 146 48 29 85 178 225 253 223 167 56 @
25
4]
4]
[°]
[¢]

85 252 252 252 229 215 252 252 252 196 136 @

28 199 252 252 253 252 252 233 145 0

]
2]
0]
]
2]

27
4

0]

0]
2]
[c]
[:]
2]
0]
]
0]
0]
[c]
[:]
2]
0]
[:]
2]
0]
]
0]
0]
[c]
[:]

[¢]
166 255 247 1.
0]
[°]
0
0]
[¢]
[°]
[¢]
[¢]
[°]
64
2
[¢]
0
0]
[¢]
[°]
[¢]
[¢]
[°]
0

[¢]
[¢]
[°]
4]
[¢]
4]
[°]

[c]
€]
[¢]
[¢]
c]

249 253 249
[¢]
[¢]
c]
[c]
[¢]
[c]
€]

154 @

0]

0
0
0
183 253 253 207

0]

43

[:]

2]

0]

leg 1
[:]

18 126 136 175 26
0]
]
0]
0]
[c]
[:]

16 93 252 253 187

186 253 253 150 27
0

13@
39 148 229 253 253 253 250 182

24 114 221 253 253 253 253 201 78 ©

23 66 213 253 253 253 253 198 81 2

[¢]
171 219 253 253 253 253 195 80 9

0
0]

240 253 253 119 25 @
[°]
0
[¢]
[°]
0

<]
45
<]
[:]
46

6 e © © © 0 © @ 0 o
6 e © ©® © 0 © @ o @
6 e 6 © © 06 6 @ 0 0
6 e © © © 0 © e o0 @

<]

<]

<]

[:]

18 18
30 36 94 154 170 253 253 253 253 253 225 172 253 242 195 6

49 238 253 253 253 253 253 253 253 253 251 93 82 82 56 39 0O

18 219 253 253 253 253 253 198 182 247 241 0
81
[¢]
[c]
€]
¢}

[c]

[c]
[¢]
[c]
€]

190 253 70 0
35 241 225 160

0]
0
[°]
0
0

139 253 196 2
0
[°]
0

154 253 90 ©
11

]
0]
0]
[c]
[:]
2]
0]
0]
[c]
[:]

1
0]
[¢]
[°]
[¢]
[¢]
[°]
0
0]
[¢]
[¢]
[°]
0

14
<]
<]
2]
<]
<]
<]
[:]
<]
<]
[:]

80 156 1@7 253 253 205 11 ©
<]
<]
[:]

[¢]
[¢]
0

[°]
0
0
0
°]
0]
0
[°]
0
0
0
0
0
0
[°]
0

18
172 226 253 253 253 253 244 133 11

136 253 253 253 212 135 132 16 @
[¢] 0]
[°] [c]
0 [:]

55
<]
<]
[:]

0 0
0 0
0 0
0 0
0 0

[c]

0
37 252 252 66

0 @

0 @

0 e

0 @

<]

37 252 252 60

0
13 25 1lee 122 7

33 151 208 252 252 252 146 ©
152 244 252 253 224 211 252 232 40

0
0]
[°]
0
0]

[:]
<]
<]
[:]
<]
<]

40
15 152 239 252 252 252 216 31

96 252 252 252 252 217 29 6

181 252 252 220
26 128 58 22 ©
0]

0
1o 53

4]
[°]
4]
[¢]
4]
EL]
EL]
0

[P

0 0

0 0

0 0

0 0

67 232

120 180

153 210 4
27 254 162 @
183 254 125 @

0]
[c]
[:]
2]
0]
[c]
[:]
2

[¢]
[°]
0
0
[¢]
[°]
62 8l
126 163 ©
220 163 0
222 163 0
46 245 163 0
120 254 163 ©

[¢]
[°]
0
0]
[¢]
[°]
0
0]
[¢]
[°]

77 252 252 60

d]
]
0

167 30 @

198 254 56 @
23 231 254 29 @
163 254 216 16 @

9
23
188 37
€]
[¢]
[c]
0
[¢]
[c]
[c]
[¢]

180

163 241 252 252 2
89
4]
7]
[°]
0
4]
[°]
4]
4]

100 252 252 60
157 252 252 60

]

[°]
[¢]
203 253 247 129 173 252 252 184 66 49 4

18 208 252 252 252 252 87 7

2]
<]
116 121 122 121 202 252 194 3

21

0]
179 253 253 255 253 253 228 35 @

54 227 252 243 228 170 242 252 252 231 117 6

78 252 252 125 59 @
135 252 252 180 16 ©

136 252 241 166 17 @

le5 252 242 88

53 200 252 216 65 0@

[¢]
[¢]
170 244 252 126 29 @
[°]
0
0
[°]
0]
0

0]

0]
18 73

0

0
[¢]
[°]
0 0
0
[°]
0]
0

2]
<]
<]
<]
<]

231 252 245 205 216 252 252 252 124 3
0
[¢]
[c]
[c]
[¢]

287 252 252 252 252 178 116 36 4

13 93 143121 23 6

0
[¢]
[°]
[¢]
[¢]

CCOOCOODOEDDRDDOD

[¢]
[c]
€]
[c]
[¢]
[c]
€]
[¢]
[¢]
[c]
0 0
0 0
0 0

233 250 @
102 254 220 ©
169 254 137 @
169 254 57 @
169 254 57 @
169 255 94 ©
169 254 96 ©
169 254 153 @
169 255 153 @
96 254 153 @

0 0

0 0

0 0

2]
0]
[:]
2]
0]

0]
[¢]

14 86 178 248 254 91 ©
[°]
0
[¢]
[¢]
[°]
0
0]
[¢]
[°]
0
0]
[¢]

<]
<]

0 e
06 e
[°]
[¢]
0
0
[¢]
[¢]
0
[¢]
[¢]
[¢]
0
[¢]
[¢]

2]
116 144 150 241 243 234 179 241 252 48 0

0 e
0 o
[°]

<]

[:]

<]

<]

<]

[:]

<]

<]

<]

[:]

<]

<]

e e e o
e e 6 o
e o @
0 0 47 49

177 98 56 ©

0

0]

0

[°]

0

0

0

[°]

0

0

0

[:]
0]
0]
[c]
[:]
2]
0]
[c]
[:]
2]
0]

158 253 237 207 207 207 253 254 250 240 198 143 91 28 5
119 177 177 177 177

159 254 120 0
159 254 67 ©
159 254 85 0

[°]
0
[¢]
[¢]
[°]
0
0]
[¢]
[°]
0
0]
[¢]

PO RODDRDDD

Exercises — Modify Script to Explore MNIST Testing Dataset

[train@Bl@jrl09 mnist]$ cp /homea/hpclab/train@@l/tools/mnist/explore-mnist-training.py .

Lecture 5 — Model Selection and Regularization

MNIST Dataset — Exploration Script Testing (one solution)

rt numpy as np
np.load(" /homea/hpclab/

np.load("/homea/hpclab/

print("Samples of 28 x 28 pixel

def character show(character):

for y in character:
row = "'
for x in y:
row +=
print row

10: =4}' . format(x)

for i in range (0,9):
character show(X test[i])
print("\n")
print(“Label:")
print(Y test[i])
print{“\n")

MNIST Dataset — Reshape & Normalization

1mMportT numpy as np

X _train np.load("/homea/hpclab/

Y train np.load("/homea/hpclab/trainf@l/

X _test = np.load("/homea/hpclab/trainf0l/data/mnist/x

Y test np.load("/homea/hpclab/train@@l/

RESHAPED= 734
X train X _train.reshay
X test = X test.reshape

X train = X train.astype(
X test = X test.astype(' flo

print(X train.shape[1],
print(X test.shape[l],

print(X train[0])

Loading MNIST training
datasets (X) and testing
datasets (Y) stored in a
binary numpy format
with labels for X and Y

Format is 28 x 28 pixel
values with grey level
from 0 (white
background) to 255
(black foreground)

Reshape from 28 x 28
matrix of pixels to 784
pixel values considered
to be the input for the
neural networks later

Normalization is added
for mathematical
convenience since the
computing with numbers
get easier (not too large)

Exercises — Execute Script to Reshape MNIST Datasets

[trainfBl@jrlf9 mnist]% cp mnist-reshape.py -~

Lecture 5 — Model Selection and Regularization

MNIST Dataset — Reshape & Normalization — Example

"train samples
'test samples
‘input pil 3

'input pixel val

0.

a.

B.

0.

a.

0.

a.

0.

a.

0.

0.

a.

0.

a.

0.

a.

0.

g.

a.

0.

a.

a.

(numbers are
between 0 and 1)

Supervised Learning — Training Examples

Unknown Target Bistetionion P Probability Distribution Elements we
’ (!j ‘X) not exactly
on f: X =Y pusno P on X
target function | — plus noise on (need to) know
. R
(ideal function) \l/
]
]
! ‘constants’
] pr— b
' X (x17) xd) X in learning
i
\:/ Elements we
- must and/or
Training Examples Error Measure should have and
(le yl)’ e (XN7 yN))(3(){) & that might raise
huge demands
(historical records, grohindtruth data, examples) for storage
\ v " Elements
L ing Aleorithm (‘trai tem’ Backpropagation Final Hvoothesi that we derive
earning Algorithm (‘train a system’) N inal Hypo ?5|s from our skillset
A € q ~](and that can be
. . computationally
(set of known algorithms) (final formula) s
Elements
Hypothesis Set Artificial that we
7‘[= {h} . g - 7‘[Neural derive from
— Network our skillset
(set of candidate formulas)

Artificial Neural Network (ANN) — cf. Day One

= Simple perceptrons fail: ‘not linearly seperable’

(Idea: instances can be classified using

0 0 -1 two lines at once to model XOR)
1 0 1
0 1 1
1 1 -1
Labelled Data Table X
1
N\
X,
X,
Decision Boundary Two-Layer, feed-forward Artificial Neural Network topology

Lecture 5 — Model Selection and Regularization

High-level Tools — Keras

= Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

= The key idea behind the Keras tool is to enable faster experimentation with deep networks

= Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

keras.layers.Dense (units,

activation=None,

use bias=True,

kernel initializer='glorot uniform',
bias initializer='zeros',

kernel regularizer=None,

bias regularizer=None,

activity regularizer=None,

kernel constraint=None,
bias constraint=None)

keras.optimizers.SGD(1lr=0.01,

momentum=0.0,
decay=0.0,
nesterov=False)

Tool Keras supports inherently
the creation of artificial neural
networks using Dense layers
and optimizers (e.g. SGD)

Includes regularization (e.g.
weight decay) or momentum

K e r a S [2] Keras Python Deep Learning Library

ANN — MNIST Dataset — Create ANN Blueprint

v’ Data Preprocessing done (i.e. data normalization, reshape, etc.)

1. Define a neural network topology
= Which layers are required?
= Think about input layer need to match the data — what data we had?
= Maybe hidden layers?
= Think Dense layer — Keras?
= Think about final Activation as Softmay (cf. Day One) = output probability

2. Compile the model 2 model representation for Tensorflow et al.
= Think about what loss function you want to use in your problem?
= What is your optimizer strategy, e.g. SGD (cf. Day One)

3. Fit the model - the model learning takes place
= How long you want to train (e.g. NB_EPOCHS)
= How much samples are involved (e.g. BATCH SIZE)

Lecture 5 — Model Selection and Regularization

Exercises — Create a Simple ANN Model — One Dense

Lecture 5 — Model Selection and Regularization

ANN — MNIST Dataset — Parameters & Data Normalization

nport Sequential
> import Dense,
port np_utils

Activation

NE_EPOC

BATCH SIZE =
VEREOSE = 1

N _HIDDEN = 128
OPTIMIZER = (

fhomeashpclab/traingel/data/mnist/x_train.npy")

np.load(

np.load(" /homea/hpclab/traineel/data/mnist/y_train.npy")

np.load("/homea/hpclab/traingol/data/mnist/x_test.npy")

np.load("/homea/hpclab/traingol/data/mnist/y_test.npy")

RESHAPED= 784
X_train _train.reshape
X_test = X_test.reshape(1ll '

98, RESHAPED)
RESHAPED)

X_train = X_train.astype('float32")
X _test = X_test.astype(' float3z2')

X _train /=
X _test /=

print(X_train.shapel6],
print(X_test.shape[8],

print(X_train.shapel1],

print{X_test.shapel[1l], 'input pixel values per

= NB_CLASSES: 10 Class Problem

= NB_EPOCH: number of times the model is
exposed to the training set — at each
iteration the optimizer adjusts the weights
so that the objective function is minimized

= BATCH_SIZE: number of training instances
taken into account before the optimizer
performs a weight update

= OPTIMIZER: Stochastic Gradient Descent
(‘SGD’) — only one training sample/iteration

= Data load shuffled between
training and testing set in files

= Data preparation, e.g. X_train is
60000 samples / rows of 28 x 28
pixel values that are reshaped in
60000 x 784 including type
specification (i.e. float32)

= Data normalization: divide by
255 — the max intensity value
to obtain values in range [0,1]

ANN — MNIST Dataset — A Simple Model

= The Sequential() = Dense() represents a = The non-linear Activation function
Keras model is a fully connected layer ‘softmax’ represents a generalization of
linear pipeline (aka used in ANNs that the sigmoid function — it squashes an n-
‘a stack’) of various means that each dimensional vector of arbitrary real
neural network layers neuron in a layer is values into a n-dimenensional vector of
including Activation connected to all real values in the range of 0 and 1 — here
functions of different neurons located in it aggregates 10 answers provided by
types (e.g. softmax) the previous layer the Dense layer with 10 neurons

"y Prae P

_ | bin L; = =%;t; ; log(pi ;)
Y_train = np_utils.to categorical(y .t '
Y test = np_utils.to categorical(¥ test, NB_CLASSES - Loss function

: is a multi-
model = Sequential()
model.add(Dense(NB_CLASSES, input_shape=(RESHAPED,))) class
model.add(Activation('softmax'))

model . summary() logarithmic
loss: target is
model.compile(loss='categorical crossentropy', optimizer=0PTIMIZER, metrics=['accuracy']) tLjE"1d
prediction is
Ihistnry = model.f1t(X train, ¥ train, batch si1ze=BATCH SIZE, epochs=NB EPOCH, verbose=VERBOSE) I’Lj

score = model.evaluate(X_test, Y_test, verbose=VERBOSE) .
print('Test s =: ', score[8]) = Train the
print('Test accuracy: ', scorel[l]) model (‘fit’

ANN — MNIST Dataset — Job Script

[train0@l@jr109 scripts]$ cp submit train ann mnist.sh -~

MNIST=/homea/hpclab/traineel/tools/mnist/mnist-simple-ann.py I

module restore dl_tutorial 2

python SMNIS

ANN — MNIST Dataset — Job Submit & Check Output

[trainBB1@jr109 scripts]$ sbatch submit_train_ann _mnist.sh
Submitted batch job 5522445

[trainB0l@jr109 scripts]$ pwd
/homea/hpclab/train@fl/scripts

[trainB@Bl@jrle9 scripts]$ more mnist out.5522445
(60000, 'train samples')

(10000, 'test samples')

(784, 'input pixel values per train samples')

(784, 'input pixel values per test samples')

Output Shape Param #

activation_1 (Activation)
Total params: 7,850
Trainable params: 7,850
Non-trainable params: 0

Epoch 1/200

128/60000 : 5:56 - loss: 2.5313 - acc: 0.0625
2816/60000 [= : 16s - loss: 2 J - acc: 0.1225
5883/60006 - : /s - loss: 2.23! : B.2040
8960/60000 - : 55 - loss: 2 : 0.2907

Model Evaluation — Testing Phase & Confusion Matrix

= Modelis fixed

= Model is just used with the testset
= Parameters are set

= Evaluation of model performance
= Counts of test records that are incorrectly predicted
= Counts of test records that are correctly predicted
= E.g.create confusion matrix for a two class problem

Counting per sample Predicted Class
Class=1 Class=0

Actual Class=1 fiq fio

Class Class =0 ior Tog

(serves as a basis for further performance metrics usually used)

Lecture 5 — Model Selection and Regularization 31/71

Model Evaluation — Testing Phase & Performance Metrics

Counting per sample Predicted Class
Class =1 Class=0

Actual Class = 1 f f (100% accuracy in learning often
points to problems using machine
CI 11 10 . bl . hi
ass Class=0 for foo learning methos in practice)

= Accuracy (usually in %)

number of correct predictions
total number of predictions

Accuracy =

= Error rate
number of wrong predictions
total number of predictions

Error rate =

Lecture 5 — Model Selection and Regularization 32/71

ANN — MNIST Dataset — A Simple Model — Output

[train081@jrl@9 scripts]$ tail mnist out.5522445
A ETA: 3s
ETA: Os
i - ETA: 0Os
4544710000 : ETA: 0Os
5952/1606080 . ETA: 0Os
7392/10000 e e e ETA: 0Os
87638/100600 . ETA: Bs
Bs 36us/step

Il['Test score: ', 0.2 356147527695)
('Test accuracy: ', 0.9228)

ANN — MNIST Dataset — Extend ANN Blueprint

v’ Data Preprocessing done (i.e. data normalization, reshape, etc.)

v Initial ANN topology existing

v’ Initial setup of model works (create, compile, fit)

= Extend the neural network topology

Which layers are required?

Think about input layer need to match the data — what data we had?
Maybe hidden layers?

How many hidden layers?

What activation function for which layer?

Think Dense layer — Keras?

Think about final Activation as Softmay (cf. Day One) = output probability

Lecture 5 — Model Selection and Regularization

Exercises — Add Two Hidden Layers

Lecture 5 — Model Selection and Regularization

ANN — MNIST Dataset — Add Two Hidden Layers

= A hidden layer in an ANN can be = The non-linear Activation function ‘relu’ represents a
represented by a fully connected so-called Rectified Linear Unit (ReLU) that only recently
Dense layer in Keras by just became very popular because it generates good
specifying the number of hidden experimental results in ANNs and more recent deep
neurons in the hidden layer learning models — it just returns 0 for negative values

‘\\ and grows linearly for only positive values
N\ >°

model = Sequentiall()

model.add(Dense(N_HIDDEN, input shape=(RESHAPED,)))
model.add(Activation('relu'))
model.add(Dense(N_HIDDEN))
model.add(Activation(' ' relu'))
model.add(Dense(NB_CLASSES))
model.add(Activation('softmax'))
model.summary ()

model.compile(loss='categorical crossentropy', optimizer=0PTIMIZER, metrics=['accuracy'])

history = model.fit(X train, Y train, batch size=BATCH 5I/E, epochs=NB EPOCH, verbose=VEREOSE)

score = model.evaluate(X test, Y test, verbose=VERBOSE)
print (' Tes e: ', scorel[0])
print('Test accuracy: ', score[l])

ANN 2 Hidden — MNIST Dataset — Job Script

[train0@l@jr109 scripts]$ cp submit train ann mnist.sh -~

HNIST=Hhﬂmeafhpc1abftraiﬂﬂﬂlftmmlsfmnistfmﬂist—aﬂﬂ—ZhiddEﬂ.py‘I

module restore dl tutorial 2

python SMNIST

ANN — MNIST Dataset — Job Submit & Check Output

)01@jr106 scripts]$ sbatch submit train_ann 2hidden mnist.sh

[train@0l@jr106 scripts]$ more ann-2hidden-mnist_out.5522545
(60000, 'train samples')

(, 'test samples')

(784, 'input pixel values per train samples')

(784, 'input pixel values per test samples')

- (type) Output Shape Param #

activation 1 (Activation)
dense_2 (Dense)
activation_2 (Activation)
dense 3 (Dense)
activation :

otal params:
rainable

: 6:02 - loss

ANN 2 Hidden — MNIST Dataset — Output

5632710000
7040/10000
84438/10000
9824/10000

('lestT score:

b.ufds0l//M1s/b8110/S)

('Test accuracy: ', 0.9777)

ETA: 0Os
ETA: 0Bs
ETA: Os
ETA: @s

Os 37us/step

Validation & Model Selection — Terminology

= The ‘Validation technique’ should be used in all machine learning or data mining approaches
= Model assessment is the process of evaluating a models performance

= Model selection is the process of selecting the proper level of flexibility for a model

modified from [4] ‘An Introduction to Statistical Learning’
*" ‘Training error’
= Calculated when learning from data (i.e. dedicated training set)
= ‘Test error’
= Average error resulting from using the model with ‘new/unseen data’

= ‘new/unseen data‘ was not used in training (i.e. dedicated test set)

" |n many practical situations, a dedicated test set is not really available

. . split creates a two subsets of comparable size
= ‘Validation Set’ (sp s par)

= Split data into training & validation set
= ‘Variance’ & ‘Variability’ i USRI gy Insplits)
= Result in different random splits (right) i '

Lecture 5 — Model Selection and Regularization

Validation Technique — Formalization & Goal

= Validation is a very important technique to estimate the out-of-sample performance of a model
= Main utility of regularization & validation is to control or avoid overfitting via model selection

" Regularization & Validation
= Approach: introduce a ‘overfit penalty’ that relates to model complexity
= Problem: Not accurate values: ‘better smooth functions’

(regularization uses a term that captures the overfit penalty)

Eout (h) — E (h) -+ overﬁt penalty (minimize both to be better proxy for E_ ;)

mn

? !

(validation estimates (regularization estimates
this quantity) this quantity)

- V |d . (measuring E_, is not possible as this is an unknown quantity,
alidation another quantity is needed that is measurable that at least estimates it)

m Goal ‘estimate the Out—of—samp|e error’ (establish a quantity known as validation error)

= Distinct activity from training and testing (testing also tries to estimate the E,)

Lecture 5 — Model Selection and Regularization

Validation Technique — Pick one point & Estimate E_,

0

TrainingiExamples |

|

(X17y1)7'="(XN7yN) :
J

|

|

0

— —, (activity below is what we do for testing,
but call it differently for another purpose)

‘training set’ ‘test set’

K

(involved in validation)

* Understanding ‘estimate’ E_,
= Onone out-of-sample point (x,y) the erroris e(h(x),y)

» E.g.usesquared error: e(h(x), f(x)) = (h(x) — f(x))

e(h(x),y) = (h(x) — y)”

= Use this quantity as estimate for E_; (poor estimate)

= Term ‘expected value’ to formalize (probability theory)

Probability Distribution

(Taking into account the theory of Lecture 1 with probability distribution on X etc.) Pon X

ey T,)€
K [e (h(x) : y)] = F . (h) (aka the long-run average value of repetitions of the experiment)

(one point as unbiased estimate of E

(aka ‘random variable’) X = (:13

that can have a high variance leads to bad generalization)

out

Lecture 5 — Model Selection and Regularization

Validation Technique — Validation Set

= Validation set consists of data that has been not used in training to estimate true out-of-sample
= Rule of thumb from practice is to take 20% (1/5) for validation of the learning model

= Solution for high variance in expected values Ele(h(x),y)] = Eyu(h)

= Take a ‘whole set’ instead of just one point (x,) for validation

TraininglExamples (we need points not used in training
(Xla Yy)3 s (XNa yN) to estimate the out-of-sample performance)

(involved in training+test) K (involved in validation)

= |dea: K data points for validation

(we do the same approach with the
testing set, but here different purpose)

(le yl)? " (XK, yK) (validation set) wl E 6 k-; yk (validation error)
= Expected value to ‘measure’ (expected values averaged over set)
the out-of-sample error
E[Eval Z E k yk)] Eout

= ‘Reliable estimate’ if Kis large
(on rerely used valldatlon- set, (this gives a much better (lower) variance than on a single point given K is large)
otherwise data gets contaminated)

Lecture 5 — Model Selection and Regularization

Validation Technique — Model Selection Process

= Model selection is choosing (a) different types of models or (b) parameter values inside models
= Model selection takes advantage of the validation error in order to decide = ‘pick the best’

Hypothesis Set

H={h}; geH

(set of candidate formulas across models)

= Many different models

(training not on
full data set)

Use validation error to
perform select decisions

= Careful consideration:

= ‘Picked means decided’
hypothesis has already
bias (= contamination)

= Using Dy M times

Final Hypothesis

gm*%f

(test this on unseen data
good, but depends on
availability in practice)

Lecture 5 — Model Selection and Regularization

DT?"az’n

w.r.t. Dr.,i,)

11 1

gﬂ/f

(out-of-sample

DVal

l(vahdatel unbiased 1
estlmates)

\ Evall 'Ualg valM

(pick ‘best’ = bias) Y(decides model selection)

Hm* E'valm*

D (final real training
(final training on full set, use to get even better

the validation samples too) g out-of-sample)
m *

Exercises — Add 1/5 for Validation

Lecture 5 — Model Selection and Regularization

ANN 2 Hidden 1/5 Validation — MNIST Dataset

= |f there is enough data available one rule of
thumb is to take 1/5 (0.2) 20% of the datasets
for validation only

= Validation data is used to perform model
selection (i.e. parameter / topology decisions)

nport numpy as np
keras.models import Sequential
1 keras.layers.core import Dense, Activation
1 keras.utils import npiutils

NE CLASSES

NB_EPOCH = 2
BATCH_SIZE
VERBOSE = 1
N_HIDDEN = 128
OPTTMT7ER =

odel.compile(loss="'categorical cr

The validation split parameter enables an
easy validation approach during the model
training (aka fit)

Expectations should be a higher accuracy
for unseen data since training data is less
biased when using validation for model
decisions (check statistical learning theory)

VALIDATION_SPLIT: Float between 0 and 1

Fraction of the training data to be used as
validation data

The model fit process will set apart this
fraction of the training data and will not
train on it

Intead it will evaluate the loss and any
model metrics on the validation data at the
end of each epoch.

-
-
-
- =

', optimizer=0PTIMIZER, metrics=["accuracy'])

1istory = model.fit(X train, Y _train, batch size=BATCH SIZE, epochs=NB _EPOCH, verbose=VERBOSE, validation split = VALIDATION SPLIT)

ANN 2 Hidden 1/5 Validation — MNIST Dataset — Job Script

I—IHIST;IH omea/hpclab/train@@l/tools/mnist/mnist-ann-2hidden-val.py I

odule restore dl tutorial 2

python SMNIST

ANN — MNIST Dataset — Job Submit & Check Output

[trainB01@jrl06 scripts]$% sbatch submit train_ann_ 2hidden val mnist.sh

Submitted batch job

[trainf0l@jrl06 scripts]$ more ann-2hidden-val-mnist out.5522545
(66 "train samples')

(10006, 'test samples')

(784, 'input pixel values per train samples')

(784, 'input pixel values per test samples')

Layer (type) 0 shape Param #

dense 1 (Dense)
activation_ 1 (Activation)
dense_2 (Dense)
activation 2 (Activation)
1290

0]

Total params:
Trainable params: 113,282
Mon-trainable params: @

Epoch 1/200

128/48000 [.. ... - ETA: 4:53 - loss: 2.3388 - acc: 0.0391

ANN 2 Hidden — 1/5 Validation — MNIST Dataset — Output

6734/10000 [==—=============—===>_.........]1 - ETA: Bs
- ETA: 0Os
- ETA: 0Os
- Bs 3Jus/step

{('Test score: ', 0.07833538340910454)
('Test accuracy: ', 0.9772)

[Video] Overfitting in Deep Neural Networks

20 hidden neurons

e ® o
@ (-]
@
® ® 8
[] @
] <]
. L J v .
L] . S °
L]
L 5]
L] [] ¢
L]
@

BRI the student is, the more patterns he can memorize. JEAEIEEE
PAPERS

> B W 247/233

[4] Overfitting and Regularization For Deep Learning, YouTube

Lecture 5 — Model Selection and Regularization

Regularization

O
O 0

Lecture 5 — Model Selection and Regularization 51/71

Remote Sensing - Experimental Setup — Growing Parameter

- C NN SEt u p Feature Representation / Value
) Conv. Layer Filters 48, 32, 32
= Table overview Conv. Layer Filter size | (3,3,5), (3,3,5), (3,3,5)
. Dense Layer Neurons 128, 128
= HPC Machines used opgmizer SGD
Loss Function mean squared error
= Systems JURECA and JURON Activation Functions ReLU
Training Epochs 600
= GPUs Batch Size 50
Learning Rate 1
= NVIDIA Tesla K80 (J URECA) Learning Rate Decay 5x10°°
= NVIDIA Tesla P100 (J U RON) (adding regularization values adds even

more complexity in finding the right parameters)

= While Using MathWorks’

Matlab for the data (having the validation with the full grid search
of all parameters and all combinations
= Frameworks is quite compute — intensive - ~infeasable)

= Keras library (2.0.6) was used
= Tensorflow (0.12.1 on Jureca, 1.3.0rc2 on Juron) as back-end
= Automated usage of the GPU’s of these machines via Tensorflow

Lecture 5 — Model Selection and Regularization

Challenge Two — Problem of Overfitting

= Overfitting refers to fit the data too well — more than is warranted — thus may misguide the learning
= Qverfitting is not just ‘bad generalization’ - e.g. the VC dimension covers noiseless & noise targets
= Theory of Regularization are approaches against overfitting and prevent it using different methods

= Key problem: noise in the target function leads to overfitting

= Effect: ‘noisy target function” and
its noise misguides the fit in learning

(target)

(overfit)

= There is always ‘some noise’ in the data noise)
noise

= Conseqguence: poor target function
(‘distribution’) approximation

= Example: Target functions is second \r
order polynomial (i.e. parabola)
= Using a higher-order polynomial fit (but simple polynomial works good enough)

" (‘over’: here meant as 4th order,
= Perfect fit: low Ein (g) ’ but Iarge Eout (g) a 3" order would be better, 2" best)

Lecture 5 — Model Selection and Regularization

Problem of Overfitting — Clarifying Terms

= A good model must have low training error (E;,) and low generalization error (E,,)

= Model overfitting is if a model fits the data too well (E,,) with a poorer generalization error (E,,)
than another model with a higher training error (E,)

[1] Introduction to Data Mining

= Qverfitting & Errors
= . (g) goes down error
= F (g)goesup

= ‘Bad generalization area‘ ends
= Good to reduce F. (¢g)

(‘generalization error’) Eout (g)

(“training error’)

E,.(9)

>

= ‘Overfitting area’ starts
= Reducing . (g) does not help

(frya: s o Training time
= Reason "fitting the noise’ g4 generalization€ ¢-> overfitting oCCUrs

= The two general approaches to prevent overfitting are (1) regularization and (2) validation

Lecture 5 — Model Selection and Regularization

Problem of Overfitting — Model Relationships

" Review ‘overfitting situations’
= When comparing ‘various models® and related to ‘'model complexity’
= Different models are used, e.g. 2"¥ and 4t order polynomial
= Same model is used with e.g. two different instances
(e.g. two neural networks but with different parameters)

m |ntuitive So|uti0n A (‘generalization error?) Eout (g)

Error
= Detect when it happens

= ‘Early stopping regularization [\ \ =~ __.- .
term’ to stop the training

model
complexity

= Early stopping method (later)

(“training error’)

£, (9)

>

(‘model complexity measure: the VC analysis was independent | ,/
of a specific target function — bound for all target functions’) I’

oedeocooopoovoe

Training time
(‘early stopping’)

= ‘Early stopping’ approach is part of the theory of regularization, but based on validation methods

Lecture 5 — Model Selection and Regularization

Problem of Overfitting — ANN Model Example

Input Hidden Layers Output

= Two Hidden Layers

= Good accuracy and works well

= Model complexity seem to
match the application & data

" Four Hidden Layers

= Accuracy goes down rror A (‘generalization error’) Eout (g)
“ B (g) goes down
- Eout (g) goesup NN 2 .model

= Significantly more weights to train complexity

* Higher model complexity (‘training error)

oedeocooopoovoe

Ouput
U4
N ”, E?,’n, (g)
Q@ . >
Training time
V! W AN (‘early stopping’)

Lecture 5 — Model Selection and Regularization

Exercises - Add more Hidden Layers — Accuracy?

Input Hidden Layers Output

Lecture 5 — Model Selection and Regularization

Onwrpat

Exercises — Add more Hidden Layers — Growth Parameter

001@jrle6 scripts]$ more ann-4hidden-val-mnist out.5522545
, 'train samples')
B, 'test samples')

"input pixel values per train samples')

"input pixel values per test samples')

OQutput Shape Param #

activation 1 (Activation)
dense 2 (Dense)
activation 2 (Activation)

dense 3

activation 3 (Activation)
dense 4 (Dense)
activation 4 (Activation)

dense 5 (Dense)

activation 5 (Activation)

otal params: 151,306
rainable params: 151,306
Non-trainable params: @

rain on 48000 samples, validate on
Epoch 1/200

Exercises - Add more Hidden Layers — 4 Hidden Layers

Input Hidden Layers

’ o W 4 '
=i \
’ o N 4 '

CHiTait

[trainB81@jrl06 scripts]$ tail ann-4hidden-val-mnist out.5522545

1248/10000
2464/10000
3744/10000
4992/10000
6272/10000
7520/10000
8768/10000

{('Test score:
('Test accuracy: ', 0.9746)

', B8.12568975675739202)

ETA:
ETA:
ETA:
ETA:
ETA:
ETA:
ETA:

s
Os
@s
Bs
Os
Os
@s

Bs 40us/step

Problem of Overfitting — Noise Term Revisited

= ‘(Noisy) Target function’is not a (deterministic) function

= Getting with ‘same x in” the ‘same y out’ is not always given in practice

= |dea: Use a ‘target distribution’ —
. , . , Unknown Target Distribution !;{” |}CJ
instead of ‘target function targetfunction f : X — Y plusnoise
(ideal function)
= Fitting some noise in the data
is the basic reason for overfitting (target)
and harms the learning process (overfit)
= Big datasets tend to have more noise (nois
in the data so the overfitting problem . 7 \
might occur even more intense Va

= ‘Different types of some noise’ in data
= Key to understand overfitting & preventing it

(‘function view’)

‘shift the view’

= ‘Shift of view": refinement of noise term) o
(‘# data view’)

= Learning from data: ‘matching properties of # data’ P Py
W W A

. _— ‘# samples’
Lecture 5 — Model Selection and Regularization

Problem of Overfitting — Stochastic Noise

= Stoachastic noise is a part ‘on top of each learnable function
= Noise in the data that can not be captured and thus not modelled by f

= Random noise : aka ‘non-deterministic noise’

= Conventional understanding Unknown Target isrbution o [0
. . Fa . . J
established early in this course target function f : X' —» Y plusnoise

(ideal function)

" Finding a ‘non-existing pattern
in noise not feasible in learning’

" Practice Example

(target)

= Random fluctuations and/or (overfit)
measurement errors in data (nois

" Fitting a pattern that not exists ‘out-of-sample’ \’f\

= Puts learning progress ‘off-track” and ‘away from f

= Stochastic noise here means noise that can‘t be captured, because it‘s just pure ‘noise as is’
(nothing to look for) — aka no pattern in the data to understand or to learn from

Lecture 5 — Model Selection and Regularization

Problem of Overfitting — Deterministic Noise

= Part of target function f that H can not capture: f(x) — h*(x)
= Hypothesis set H is limited so best h* can not fully approximate f
= h* approximates f, but fails to pick certain parts of the target f

= ‘Behaves like noise’, existing even if data is ‘stochastic noiseless’

» Different ‘type of noise’ than stochastic noise

= Deterministic noise depends on 7—[(determines how much more can be captured by
. . h*
= E.g.same f, and more sophisticated 7{ : noise is smaller |

(stochastic noise remains the same,

nothing can capture it) (f)

= Fixed for a given x, clearly measurable (%)
(stochastic noise may vary for values of x)

(learning deterministic noise is outside the ability to learn for a given
h*)

= Deterministic noise here means noise that can‘t be captured, because it is a limited model
(out of the league of this particular model), e.g. ‘learning with a toddler statistical learning theory’

Lecture 5 — Model Selection and Regularization

Problem of Overfitting — Impacts on Learning

= The higher the degree of the polynomial (cf. model complexity), the more degrees of
freedom are existing and thus the more capacity exists to overfit the training data

" Understanding deterministic noise & target complexity
" |ncreasing target complexity increases deterministic noise (at some level)
" |ncreasing the number of data N decreases the deterministic noise

= Finite N case: H tries to fit the noise
= Fitting the noise straightforward (e.g. Perceptron Learning Algorithm)
= Stochastic (in data) and deterministic (simple model) noise will be part of it

= Two ‘solution methods’ for avoiding overfitting

= Regularization: ‘Putting the brakes in learning’, e.g. early stopping
(more theoretical, hence ‘theory of regularization’)

= Validation: ‘Checking the bottom line‘, e.g. other hints for out-of-sample
(more practical, methods on data that provides ‘hints‘)

Lecture 5 — Model Selection and Regularization

High-level Tools — Keras — Regularization Techniques

= Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

= The key idea behind the Keras tool is to enable faster experimentation with deep networks
= Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

keras.layers.Dropout (rate, . . .
, = Dropout is randomly setting a fraction
noise shape=None,

seed=None) of input units to 0 at each update
during training time, which helps
prevent overfitting (using parameter
rate)

from keras import regularizers - -
P g = L2 regularizers allow to apply penalties
model.add (Dense (64, input dim=64,

kernel regularizer=regularizers.12(0.01), on Iayer parameter or Iayer activity
activity regularizer=regularizers.11(0.01))) during optimization itself — therefore

the penalties are incorporated in the
loss function during optimization

K e r a S [5] Keras Python Deep Learning Library

Exercises — Underfitting & Add Dropout Regularizer

= Run with 20 Epochs first (not trained enough); then 250 Epochs

= Training accuracy should be above the test accuracy — otherwise
‘underfitting’

Lecture 5 — Model Selection and Regularization

ANN — MNIST Dataset — Add Weight Dropout Regularizer

Input Hidden Layers Output

OPTIMIZER = 'SGD'
ALIDATION SPLIT = 0.2
JIROPOUT = 0,3

= A Dropout() regularizer randomly
drops with ist dropout probability

_ Sequential() :sorpe of the values propaga.ted

.add (Dense (N_HIDDEN, input_shape=(RESHAPED,))) inside the Dense network hidden

add(Activation(reli’)) layers improving accuracy again
lm::::iel .add(Dropout (DROPOUT))

ModeT . add(Dense (i HIDDENT) = QOur standard model is already
model _add{Activation! "relu')) ¥ . .
modified in the python script but
.add(Dropout (DROPOUT)) Py P
“add{Dense (B CLASSEST) needs to set the DROPOUT rate

.add{hctivatigﬂ{'53f:1ax'}}
.summary()

= A Dropout() regularizer randomly
drops with ist dropout probability
(compare with CNN models, day one ~99%) some of the values propagated
inside the Dense network hidden
layers improving accuracy again

ANN — MNIST - DROPOUT

, 'train samp

, 'test samples')

"input pixel values per train samples')
"input pixel values per test samples')

or (type Output Shape

activation_1 (Activation)
dropout_1 (Dropout)
dense_2 (Dense)
activation 2 (Activation)

dropout_2 (Dropout)

118,282
rainable params: 118,
Non-trainable params:

rain on 48000 samples, validate on 12
Epoch 1/200

[train® jri@6 scripts]$ tail !

1088/1 > ETA: 0Os
ETA: @Os
ETA: @Os
ETA: Os
ETA: 0Os
ETA: 0Os
ETA: 0Os
Os 39us/step

('Test scor , 0.6

('Test accuracy: ', 0.9779)

[Video] Overfitting in Deep Neural Networks

Causes and Outcomes

8

needed and will add unnecessary complexity

P pl o) 342/ ".3
[3] How good is your fit?, YouTube

Lecture 5 — Model Selection and Regularization 68/71

Lecture Bibliography

O
O 0

Lecture 5 — Model Selection and Regularization 69/71

Lecture Bibliography

= [1] An Introduction to Statistical Learning with Applications in R,
Online: http://www-bcf.usc.edu/~gareth/ISL/index.htm|

= [2] Keras Python Deep Learning Library,
Online: https://keras.io/

= [3] YouTube Video, ‘How good is your fit? - Ep. 21 (Deep Learning SIMPLIFIED),
Online: https://www.youtube.com/watch?v=cJA5IHIIL30

= [4] YouTube Video, ‘Overfitting and Regularization For Deep Learning | Two Minute Papers #56’,
Online: https://www.youtube.com/watch?v=6aF9sJrzxaM

Lecture 5 — Model Selection and Regularization

£ \=lI'I'E.'“U\‘r

measurement ‘; @ funding

SEWICES({ Policy-based 4= concepts c tdE\FICE Analysis @ 5
forms _ cross-disciplinary resnurcesE € climate ™" gouse & 25

ye arllk Computatlﬂﬂal CDm utlﬂ m 2 > disciplines agylts £ gE EﬂabIEE

Cross-Disciplinar = Z SModelli =
e methods s blggg‘,‘;‘iz:; gﬁs:::::m: mporiant "

=% c I e n c e storage ... Infrastructure B

- e sim |aiéLOD£'ITS S ENES techngp!co gies
EES . increasing gl via iy PeC

EE %2, i pl"O(.‘,e.."’SlI'Ig'i*mhﬂdﬁc TB

g %""‘ % computlng USlng Euro ean

“databasegﬂm 3 GﬂSu;:uen.:n:Jmputlng wﬂrk,mages
aan.IYSIS DLCL stored Resources analyze '_Ia bg ‘5.0 SCIEHE;EIIFIC zﬂﬁ:ﬂl‘l

3 computatlonal 3 esearCh 385 1% performance

research °5 GC]@FCEHPC § Juslich £ % 5, J2t25et5

=] m o
&% ., compute cs
S)"S em Cllmate mﬂdelllng AR5 Hardware E "’E access & = hundreds "= Services £
Understandmg structures Technologies Earth B k) Structure = = network @
OLCLs Slnﬁllatlnne g directory = =2 project General 3

L

N

=

Pro'u'lde HhSA Energy systems day o Health

manag

8
[

Lecture 5 — Model Selection and Regularization

