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Outline of the Course

▪ 1. Introduction to Deep Learning

▪ 2. Fundamentals of Convolutional Neural Networks (CNNs)

▪ 3. Deep Learning in Remote Sensing: Challenges 

▪ 4. Deep Learning in Remote Sensing: Applications

▪ 5. Model Selection and Regularization 

▪ 6. Fundamentals of Long Short-Term Memory (LSTM)

▪ 7. LSTM Applications and Challenges 

▪ 8. Deep Reinforcement Learning 
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Outline

▪ DL Architectures for RS Applications 

▪ Semantic Segmentation 

▪ Image Classification with CNNs

▪ Fully Convolutional Networks (FCNs)

▪ Vanishing Gradient Problem

▪ Residual Networks (ResNet)

▪ Vaihingen Classification Results 
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• Classification: make a prediction for a whole input

• What are the classes and ranked list

• Localization or detection: towards fine-grained inference

• Classification and spatial location (e.g., bounding boxes)

• Semantic segmentation:  fine-grained inference

• Make dense predictions inferring labels for every pixel

• Further improvements: Provide different instances of the same class

• Decomposition of already segmented classes into their components 

• Many applications nourish from inferring knowledge from imagery 

• Autonomous driving 

• Human-machine interaction 

• Computational photography

• Image search engines 

• Remote sensing 
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Progression from Coarse to Fine Inference 

[1] A. Garcia-Garcia

[2] Image Segmentation 



Class score

Serie of convolution 
and pooling layers

Fully connected layers 

▪ Convolutional layers: convolution operation to the input

▪ Emulate the response of an individual neuron to visual stimuli

▪ Each convolutional neuron processes data only for its receptive field

▪ Polling layers: progressively reduce the spatial size of the representation 

▪ Reduce the amount of parameters and computation and control overfitting

▪ Fully connected layers connect every neuron in one layer to every neuron in another layer 

▪ Same principle as the traditional multi-layer perceptron (MLP) network 
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Image Classification CNNs

[3] J. Long et al.



▪ Break the images into many small crops and classify the central pixel 

▪ Redundant and computational expensive 

▪ Store not only every pixel but also the surrounding pixels

▪ Increases the data size by a factor determined by the number of neighbouring pixels 

▪ Very inefficient and not reusing shared features between overlapping patches

More visible with Hyperspectral images

Building

Building

Tree

Extract patch
Classify center 
pixel with CNN
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Semantic Segmentation Approach: Sliding Window



Serie of convolution 
and pooling layers

▪ Semantic segmentation tasks have input images with different sizes

▪ Fully convolutional networks can take input of any arbitrary size 

▪ Produce correspondingly-sized dense output with efficient inference and learning

Fully connected layers:
Inputs and feature maps of fixed size 

Convolution can have 
inputs of any size

“Transforming a classification-
purposed CNN to produce
spatial heatmaps by replacing
fully connected layers
with convolutional ones”
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Semantic Segmentation Approach: Fully Convolutional



▪ Network as a bunch of convolutional layers to make predictions for pixels all at once

▪ Each layer preserve the size of the input 

▪ The final convolutional layer output a tensor (C: number of classes)

▪ Problem: convolutions at original image resolution will be very expensive
▪ E.g., Hyperspectral input images with D>100 bands 

CONV CONV CONV CONV ARGMAX

Classification score 
for each pixel 

C x H x WConvolutions
D x H x W

Input
D x H x W

Create a training set 
for this network
Is very ‘expensive’

Predictions
H x W
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Semantic Segmentation Approach: Fully Convolutional



▪ Rather than transitioning to a fully connected layer Increase the spatial resolution

▪ Computationally very efficient 

▪ Networks can be deep and work on lower spatial resolution in many of the layers 

High-res:
𝐷1 x H/2 x WInput

D x H x W

Downsampling:
Pooling, strided
convolution

▪ Design networks as a bunch of convolutional layers

▪ With downsampling and upsampling inside the network 

Med-res:
𝐷2 x H/4 x W/4

Med-res:
𝐷2 x H/4 x W/4

Upsampling:
Unpooling or stride 
Transpose convolution

Predictions
H x W

Low-res:
𝐷1 x H/4 x W/4 High-res:

𝐷1 x H/2 x W
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Semantic Segmentation Approach: Fully Convolutional



▪ The predictions of FCNs can be too coarse because of the upsampling steps 

▪ Low level of details in the upsampled output.

▪ FCN can be improved by making direct use of shallower and more local features
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Semantic Segmentation Approach: Fully Convolutional



▪ Combine layers of the feature hierarchy for refining the spatial precision of the output

▪ Fuse features across layers to define a nonlinear local-to-global representation

dense output 

interp + sum

interp + sum
End to end, joint learning 
of semantics and location

▪ Incorporate lower level features in the inference 

The network can adjust the coarse prediction 
to edges and specific part of the image

Image                         GT                         Output
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Combining Feature Hierarchies: Skip Connections



Residual Networks (ResNet)
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“No matter how deep a network is, it should not be any worse than the shallower network”

▪ With more parameters to learn, the train data should be fit at least as well as before

▪ Vanishing gradient problem: difficulty in learning the parameters of the earlier layers
▪ Networks with gradient based methods (e.g., Backpropagation).

▪ Possible Solutions:
▪ Multi-level hierarchy
▪ Long short-term memory
▪ Faster hardware
▪ Residual networks
▪ Other activation functions (e.g., ReLU )
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[4] K. He et al. 

[5] The vanishing gradient problem 

Vanishing Gradient Problem



Degradation Problem
▪ Vanishing gradient becomes worse as the number of layers increases

▪ Accuracy gets saturated and then degrades rapidly

▪ Unexpectedly, such degradation is not caused by overfitting

▪ adding more layers to a suitably deep model leads to higher training error

▪ Example with 2 “plain” networks with different depths on CIFAR-10 datset

The deeper network has higher training error and this test error
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▪ Architecture which solves vanishing gradient problem in a simple way

▪ Residual networks can be much deeper than their ‘plain’ counterparts, 

▪ Yet they require a similar number of parameters (weights)

“If there is trouble sending the
gradient signal backwards, why not
provide the network with a
shortcut at each layer to make
things happen more smoothly”?

The gradient could “skip” all the layers and reach the bottom without being diminished
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Residual Networks (ResNet)

[4] K. He et al. 

Plain                                                                                           Residual 

[6] Deep Residual Learning for Image Recognition
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The ResNet50 FCN Model
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▪ ~/semseg/resnet50-fcn/resnet50_edit.py

ResNet50 FCN Convolution

Batch Norm

ReLU

Convolution

Batch Norm

ReLU

Convolution

Batch Norm

ReLU

Addition

ReLU

Output

Input



3 blocks                        4 blocks                       6 blocks                        3 blocks 

1x1 conv 1x1 conv 1x1 conv

upsampling upsampling upsampling

+ + =
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The ResNet is adapted into an FCN 



Residual Network 50 FCN
▪ Python fu~/semseg/resnet50-fcn/ model_generator.py
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The ResNet50 FCN Training Function
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Python Function for ResNet50 FCN with Augmentation
▪ Location ~/semseg/resnet50-fcn/train_resnet50_fcn.py

Load:
vaihingen_train.hdf5
vaihingen_validation.hdf5

Apply one random augmentation 
to each 256x256 patch 
Rotate(90,180,270) or 
Flip (up,down)

augmentation.py

Concatenate original data with the augmented data

Preprocessing

Generate the model

Train the model
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▪ ~/semseg/resnet50-fcn/train_resnet50_fcn.py
▪ train_resnet50_fcn.py requires 4 parameters

Python Function for ResNet50 FCN with Augmentation
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Practical 4:
Check the Outcomes of the Job Previously Submitted
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Batch Scripts Previously Submitted

#!/bin/bash -x
#SBATCH--nodes=1
#SBATCH--ntasks=1
#SBATCH--output=train_resnet50_fcn_out.%j
#SBATCH--error=train_resnet50_fcn_err.%j
#SBATCH--time=01:00:00
#SBATCH--mail-user=g.cavallaro@fz-juelich.de
#SBATCH--mail-type=ALL
#SBATCH--job-name=train_resnet50_fcn

#SBATCH--partition=gpus
#SBATCH --gres=gpu:1

#SBATCH--reservation=deep_learning

### location executable
RESNET50_FCN=/homea/hpclab/train002/semseg/resnet50-fcn/train_resnet50_fcn.py

module restore dl_tutorial

### submit
python $RESNET50_FCN /homea/hpclab/train002/semseg/data/ 
/homea/hpclab/train002/semseg/models/resnet50_fcn_weights.hdf5 True False

Augmentation
Transfer 
Learning
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…………..

ResNet50 FCN Trained Model (20 Epochs)

=================================================================

=================================

Total params: 23,609,234

Trainable params: 23,556,114

Non-trainable params: 53,120

_________________________________________________________________

_________________________________

compile model ... 

Train on 4166 samples, validate on 736 samples

Epoch 1/20

4166/4166 [==============================] - 102s 24ms/step -

loss: 0.9315 - acc: 0.6992 - val_loss: 0.7566 - val_acc: 0.7103

Epoch 20/20

4166/4166 [==============================] - 67s 16ms/step -

loss: 0.4269 - acc: 0.8338 - val_loss: 0.4783 - val_acc: 0.8239

Training time: 1448.95877409 seconds

Check the output files: train_resnet50_fcn_out
train_resnet50_fcn_err
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…………..

Pre-Trained ResNet50 Trained Model (20 Epochs)

=================================================================

=================================

Total params: 23,609,234

Trainable params: 23,556,114

Non-trainable params: 53,120

_________________________________________________________________

_________________________________

compile model ... 

Train on 4166 samples, validate on 736 samples

Epoch 1/20

4166/4166 [==============================] - 92s 22ms/step -

loss: 0.6261 - acc: 0.7748 - val_loss: 1.2206 - val_acc: 0.7112

Epoch 20/20

4166/4166 [==============================] - 67s 16ms/step -

loss: 0.1395 - acc: 0.9450 - val_loss: 0.5231 - val_acc:  0.8440

Training time: 1439.80376601 seconds
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Practical 6:
Test the Models
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Test Set

Vaihingen_15

Impervious surfaces 

Building 

Low vegetation 

Tree 

Car 

Clutter/background

Thematic classes:

Vaihingen_23
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Test ResNet50 FCN
▪ Use the function ~/semseg/resnet50-fcn/evaluate_network.py

▪ Run the test on the login node (i.e., no batch script submission)

▪ Setup the Python environment: $ module restore dl_tutorial

▪ evaluate_network.py requires 2 parameters

▪ Run the test on the Vaihingen 15:
$ python evaluate_network.py 15 ~/semseg/models/resnet50_fcn_weights.hdf5

Or
▪ Run the test on the Vaihingen 23:

$ python evaluate_network.py 23 ~/semseg/models/resnet50_fcn_weights.hdf5
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Experiment 1: Test ResNet50 FCN

OA: 80.68%

Groundtruth Classification map                    Classification errors

Groundtruth Classification map                    Classification errors
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Experiment 1: Test ResNet50 FCN

Class Pixels Accuracy

Impervious surfaces 855112 79.3%

Building 1075170 84.8%

Low vegetation 1309897 80.1%

Tree 1643189 80.3%

Car 31684 39.9%

Clutter/background 7183 0.0%

678470 27787 111927 35596 1332 0

77693 911674 73864  11848 91  0

50176 35116 1049665 174888 44 8

15034 4887 304333  1318935 0 0

18528 13 181  305 12657 0

226 581 6103 13 260 0

Class Pixels Accuracy

Impervious surfaces 801652 72.3%

Building 885284 82.8%

Low vegetation 1345728 79.3%

Tree 1789171 79.9%

Car 15447 42.3%

Clutter/background 7756 0.0%

579374 27187 153102 40069 581 1339

62403 733366 78575 9724 22 1194

43527 23396 1067768 210626 411 0

14370 5981 338902 1429851 0 67

8464 92 189 164 6538 0

0 1614 5929 213 0 0
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Experiment 2: Test Pre-Trained ResNet50 with ImageNet

OA: 82.15%

Groundtruth Classification map                    Classification errors

Groundtruth Classification map                    Classification errors
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Experiment 2: Test Pre-Trained ResNet50 with ImageNet

Class Pixels Accuracy

Impervious surfaces 855112 75.6%

Building 1075170 93.6%

Low vegetation 1309897 72.2%

Tree 1643189 86.4%

Car 31684 81.9%

Clutter/background 7183 0.0%

646590 40574 102219 60719 5003 7

12621 1006203 39785 16494 67 0

50571 49736 945549 263760 281 0

17049 7515 199078 1419534 8 5

5685 24 6 6 25963 0

634 1 6337 0 211 0

Class Pixels Accuracy

Impervious surfaces 801652 76.2%

Building 885284 94.6%

Low vegetation 1345728 66.6%

Tree 1789171 90.4%

Car 15447 84.9%

Clutter/background 7756 0.0%

611119 34778 93020 60029 2482 224

8924 837288 21510 17213 279 70

54358 39947 896551 354659 197 16

17677 8520 145840 1616651 361 122

2270 7 0 55 13115 0

112 239 7290 115 0 0
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Results Summary 

Vaihingen 15 OA 

ResNet50 FCN 80.68%

Pre-trained ResNet50 82.15%

Vaihingen 23 OA 

ResNet50 FCN 78.78%

Pre-trained ResNet50 82.04
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Tutorial Competition 
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Our Competition

Vaihingen_15

WG ACCURACY TRAINING TIME

1

2

3

4

5

6

7

8

9

10

WG ACCURACY TRAINING TIME

11

12

13

14

15

16

17

18

19

20
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Optimizers 
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SGD  10 1 0.1 0.001 0.0001

RMSprop

Adagrad

Adadelta

Adam

Adamax



What can you change?

▪ /homea/hpclab/train001/……./data_io.py

LIST TO BE DONE
-Number of epochs
-More augmented data
……..

Multiple GPUS
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