

Deep Learning

Introduction to Deep Learning Models

Dr. – Ing. Gabriele Cavallaro

Postdoctoral Researcher High Productivity Data Processing Group Juelich Supercomputing Centre, Germany

LECTURE 4

Deep Learning in Remote Sensing: Applications

June 6th, 2018 Juelich Supercomputing Centre, Germany, Germany

UNIVERSITY OF ICELAND SCHOOL OF ENGINEERING AND NATURAL SCIENCES

FACULTY OF INDUSTRIAL ENGINEERING, MECHANICAL ENGINEERING AND COMPUTER SCIENCE

Outline of the Course

- 1. Introduction to Deep Learning
- 2. Fundamentals of Convolutional Neural Networks (CNNs)
- 3. Deep Learning in Remote Sensing: Challenges
- 4. Deep Learning in Remote Sensing: Applications
- 5. Model Selection and Regularization
- 6. Fundamentals of Long Short-Term Memory (LSTM)
- 7. LSTM Applications and Challenges
- 8. Deep Reinforcement Learning

Outline

Outline

- DL Architectures for RS Applications
 - Semantic Segmentation
 - Image Classification with CNNs
 - Fully Convolutional Networks (FCNs)
 - Vanishing Gradient Problem
 - Residual Networks (ResNet)
 - Vaihingen Classification Results

Progression from Coarse to Fine Inference

- **Classification**: make a prediction for a whole input
 - What are the classes and ranked list
- Localization or detection: towards fine-grained inference
 - Classification and spatial location (e.g., bounding boxes)
- Semantic segmentation: fine-grained inference
 - Make dense predictions inferring labels for every pixel
- Further improvements: Provide different instances of the same class
 - Decomposition of already segmented classes into their components
- Many applications nourish from inferring knowledge from imagery
 - Autonomous driving
 - Human-machine interaction
 - Computational photography
 - Image search engines
 - Remote sensing

[2] Image Segmentation

(a) Image classification

cube cube cube

(c) Semantic segmentation

(d) Instance segmentation

[1] A. Garcia-Garcia

Image Classification CNNs

- **Convolutional layers:** convolution operation to the input
 - Emulate the response of an individual neuron to visual stimuli
 - Each convolutional neuron processes data only for its receptive field
- **Polling layers:** progressively reduce the spatial size of the representation
 - Reduce the amount of parameters and computation and control overfitting
- Fully connected layers connect every neuron in one layer to every neuron in another layer
 - Same principle as the traditional multi-layer perceptron (MLP) network

Semantic Segmentation Approach: Sliding Window

- Break the images into many small crops and classify the central pixel
- Redundant and computational expensive
 - Store not only every pixel but also the surrounding pixels
 - Increases the data size by a factor determined by the number of neighbouring pixels
- Very inefficient and not reusing shared features between overlapping patches

More visible with Hyperspectral images

- Semantic segmentation tasks have input images with different sizes
- Fully convolutional networks can take input of any arbitrary size
- Produce correspondingly-sized dense output with efficient inference and learning

- Network as a bunch of convolutional layers to make predictions for pixels all at once
- Each layer preserve the size of the input
- The final convolutional layer output a tensor (C: number of classes)

Create a training set for this network Is very 'expensive'

- Problem: convolutions at original image resolution will be very expensive
 - E.g., Hyperspectral input images with D>100 bands

- Design networks as a bunch of convolutional layers
- With downsampling and upsampling inside the network

- Rather than transitioning to a fully connected layer Increase the spatial resolution
- Computationally very efficient
- Networks can be deep and work on lower spatial resolution in many of the layers

- The predictions of FCNs can be too coarse because of the upsampling steps
- Low level of details in the upsampled output.
- FCN can be improved by making direct use of shallower and more local features

[3] J. Long et al.

Combining Feature Hierarchies: Skip Connections

- Combine layers of the feature hierarchy for refining the spatial precision of the output
- Fuse features across layers to define a nonlinear local-to-global representation

Image

GT

Output

The network can adjust the coarse prediction to edges and specific part of the image

Residual Networks (ResNet)

Vanishing Gradient Problem

"No matter how deep a network is, it should not be any worse than the shallower network"

- With more parameters to learn, the train data should be fit at least as well as before
- Vanishing gradient problem: difficulty in learning the parameters of the earlier layers
 - Networks with gradient based methods (e.g., Backpropagation).

- Possible Solutions:
 - Multi-level hierarchy
 - Long short-term memory
 - Faster hardware
 - Residual networks
 - Other activation functions (e.g., ReLU)

[5] The vanishing gradient problem

Degradation Problem

- Vanishing gradient becomes worse as the number of layers increases
- Accuracy gets saturated and then degrades rapidly
- Unexpectedly, such degradation is not caused by overfitting
 - adding more layers to a suitably deep model leads to higher training error
- Example with 2 "plain" networks with different depths on CIFAR-10 datset

The deeper network has higher training error and this test error

Residual Networks (ResNet)

34-layer plain

7x7 conv, 64, /2

34-layer residual

7x7 conv. 64, /2

- Architecture which solves vanishing gradient problem in a simple way
- Residual networks can be much deeper than their 'plain' counterparts,
 - Yet they require a similar number of parameters (weights)

The gradient could "skip" all the layers and reach the bottom without being diminished

The ResNet50 FCN Model

Input ResNet50 FCN Convolution ~/semseg/resnet50-fcn/resnet50 edit.py **Batch Norm** ReLU 201 x = ZeroPadding2D((3, 3))(img input) 202 x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x) x = BatchNormalization(axis=bn axis, name='bn conv1')(x) 203 204 x = Activation('relu')(x) Convolution 205 x = MaxPooling2D((3, 3), strides=(2, 2))(x)206 207 x = conv block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1) x = identity block(x, 3, [64, 64, 256], stage=2, block=!b!) 208 **Batch Norm** x = identity block(x, 3, [64, 64, 256], stage=2, block='c') 209 210 x = conv block(x, 3, [128, 128, 512], stage=3, block='a') 211 212 x = identity block(x, 3, [128, 128, 512], stage=3, block='b') ReLU 213 x = identity block(x, 3, [128, 128, 512], stage=3, block='c'.) 214 x = identity block(x, 3, [128, 128, 512], stage=3, block='d'.) 215 216 x = conv block(x, 3, [256, 256, 1024], stage=4, block='a') Convolution x = identity block(x, 3, [256, 256, 1024], stage=4, block=:b:) 217 218 x = identity block(x, 3, [256, 256, 1024], stage=4, block=!c!) 219 x = identity block(x, 3, [256, 256, 1024], stage=4, block='d') 220 x = identity block(x, 3, [256, 256, 1024], stage=4, block='e'.) **Batch Norm** 221 x = identity block(x, 3, [256, 256, 1024], stage=4, block='f') 222 223 x = conv block(x, 3, [512, 512, 2048], stage=5, block='a') x = identity block(x, 3, [512, 512, 2048], stage=5, block=!b!) 224 ReLU 225 x = identity block(x, 3, [512, 512, 2048], stage=5, block='c') 226 227 x = AveragePooling2D((7, 7), name='avg pool')(x) Addition

ReLU

Output

The ResNet is adapted into an FCN

Lecture 4 - Deep Learning in Remote Sensing: Applications

Residual Network 50 FCN

Python fu~/semseg/resnet50-fcn/ model_generator.py

```
# the function to generate a FCN version of the ResNet50 model:
15
     def generate resnet50 fcn(use pretraining):
16
           num labels = 6
17
18
           input dim row = 256
           input dim col = 256
19
           input shape = (input dim row, input dim col, 3)
20
           input tensor = Input(shape=input shape)
21
           weights = <u>'imagenet'</u> if use pretraining else None
22
           standard model = ResNet50 (include top=False, weights=weights, input tensor=input tensor)
23
24
           # get the activations after different network parts by name:
25
           x32 = standard model.get layer('act3d').output
26
           x16 = standard model.get layer('act4f').output
27
           x8 = standard model.get layer('act5c').output
28
29
30
           # apply 1x1 convolution to compress the depth of the output tensors to the number of classes:
           c32 = Convolution2D(filters=num labels, kernel size=(1, 1), name='conv labels 32')(x32)
31
           c16 = Convolution2D(filters=num labels, kernel size=(1, 1), name='conv labels 16')(x16)
32
           c8 = Convolution2D(filters=num labels, kernel size=(1, 1), name=!conv labels 8!) (x8)
33
34
           # resize the spatial dimensions to fit the spatial input size:
35
           r32 = Lambda (resize bilinear, name='resize labels 32') (c32)
36
           r16 = Lambda (resize bilinear, name='resize labels 16') (c16)
37
           r8 = Lambda (resize bilinear, name='resize labels 8') (c8)
38
39
           # sum up the activations of different stages to get information of different solution
40
           m = Add(name='merge labels')([r32, r16, r8])
41
42
           # apply a softmax activation function to get the probability of each class for each pixel
43
           x = Reshape((input dim row * input dim col, num labels))(m)
44
           x = Activation('softmax')(x)
45
           x = Reshape((input dim row, input dim col, num labels))(x)
46
47
           # return the FCN version of the ResNet50 model:
48
49
      Lecture 4 Deep Model (input s input, tensor, outputs=x)
```

The ResNet50 FCN Training Function

Python Function for ResNet50 FCN with Augmentation

Location ~/semseg/resnet50-fcn/train_resnet50_fcn.py

Python Function for ResNet50 FCN with Augmentation

- ~/semseg/resnet50-fcn/train_resnet50_fcn.py
- train_resnet50_fcn.py requires 4 parameters

```
96
      def main(arguments):
 97
 98
           data path = arguments[1]
99
           output model = arguments[2]
100
           augmentation flag = arguments[3]
101
           transfer learning flag = arguments[4]
102
103
           if augmentation flag=='True':
104
               train with augmentation (data path, output model, transfer learning flag)
105
           elif augmentation flag=='False':
106
               train(data path,output model,transfer learning flag)
107
           else:
108
               sys.exit()
109
           end
110
111
     □ if name == ! main !:
112
113
           if len(sys.argv)<4:
114
             print !!
             print .....
115
116
             print 'Four paremeters need to be specified: !
             print 1. Location of vaihingen train.hdf5 and vaihingen val.hdf5 (e.g., /homea/hnclab/train002/gemseg/data/ ).
117
             print 12. Location + name of the output model (e.g., /homea/hpclab/train002/senseg/models/resnet50 fcn weights.hdf5)!
118
119
             print [3. Augmentation: True or False]
             print .4. Transfer learning (load weights trained on ImageNet): True or False!
120
             print .....
121
122
123
             sys.exit()
124
125
           main(argv)
```

Practical 4: Check the Outcomes of the Job Previously Submitted

Lecture 4 - Deep Learning in Remote Sensing: Applications

Batch Scripts Previously Submitted

#!/bin/bash -x
#SBATCH--nodes=1
#SBATCH--ntasks=1
#SBATCH--output=train_resnet50_fcn_out.%j
#SBATCH--error=train_resnet50_fcn_err.%j
#SBATCH--time=01:00:00
#SBATCH--mail-user=g.cavallaro@fz-juelich.de
#SBATCH--mail-type=ALL
#SBATCH--job-name=train_resnet50_fcn

#SBATCH--partition=gpus #SBATCH --gres=gpu:1

#SBATCH--reservation=deep_learning

location executable RESNET50_FCN=/homea/hpclab/train002/semseg/resnet50-fcn/train_resnet50_fcn.py

module restore dl_tutorial	Augmentation	Transfer
### submit		
python \$RESNET50_FCN /homea/hpclab/train002/ser	mseg/data/	
/homea/hpclab/train002/semseg/models/resnet50_f	cn_weights.hdf5 <mark>Tri</mark>	ue False

ResNet50 FCN Trained Model (20 Epochs)

Check the output files: train_resnet50_fcn_out train_resnet50_fcn_err

Total params: 23,609,234 Trainable params: 23,556,114 Non-trainable params: 53,120

compile model ... Train on 4166 samples, validate on 736 samples Epoch 1/20 4166/4166 [==============] - 102s 24ms/step loss: 0.9315 - acc: 0.6992 - val loss: 0.7566 - val acc: 0.7103

.....

Epoch 20/20 4166/4166 [===========] - 67s 16ms/step loss: 0.4269 - acc: 0.8338 - val_loss: 0.4783 - val_acc: 0.8239 Training time: 1448.95877409 seconds

Pre-Trained ResNet50 Trained Model (20 Epochs)

Total params: 23,609,234 Trainable params: 23,556,114 Non-trainable params: 53,120

compile model ... Train on 4166 samples, validate on 736 samples Epoch 1/20 4166/4166 [=============] - 92s 22ms/step loss: 0.6261 - acc: 0.7748 - val_loss: 1.2206 - val_acc: 0.7112

.....

Epoch 20/20 4166/4166 [============] - 67s 16ms/step loss: 0.1395 - acc: 0.9450 - val_loss: 0.5231 - val_acc: 0.8440 Training time: 1439.80376601 seconds

Practical 6: Test the Models

Test Set

Lecture 4 - Deep Learning in Remote

Sensin

Test ResNet50 FCN

- Use the function ~/semseg/resnet50-fcn/evaluate_network.py
- Run the test on the login node (i.e., no batch script submission)
- Setup the Python environment: \$ module restore dl_tutorial
- evaluate_network.py requires 2 parameters

Run the test on the Vaihingen 15:

\$ python evaluate_network.py 15 ~/semseg/models/resnet50_fcn_weights.hdf5

Run the test on the Vaihingen 23:

Or

\$ python evaluate_network.py 23 ~/semseg/models/resnet50_fcn_weights.hdf5

Experiment 1: Test ResNet50 FCN

Experiment 1: Test ResNet50 FCN

Class	Pixels	Accuracy
Impervious surfaces	855112	79.3%
Building	1075170	84.8%
Low vegetation	1309897	80.1%
Tree	1643189	80.3%
Car	31684	39.9%
Clutter/background	7183	0.0%

	Confusion matrix PREDICTED					
	678470	27787	111927	35596	1332	0
	77693	911674	73864	11848	91	0
ACTUAL	50176	35116	1049665	174888	44	8
	15034	4887	304333	1318935	0	0
	18528	13	181	305	12657	0
	226	581	6103	13	260	0

Class	Pixels	Accuracy
Impervious surfaces	801652	72.3%
Building	885284	82.8%
Low vegetation	1345728	79.3%
Tree	1789171	79.9%
Car	15447	42.3%
Clutter/background	7756	0.0%

-			PRED	ICTED		
	579374	27187	153102	40069	581	1339
	62403	733366	78575	9724	22	1194
TUAL	43527	23396	1067768	210626	411	0
AC	14370	5981	338902	1429851	0	67
	8464	92	189	164	6538	0
	0	1614	5929	213	0	0

Vaihingen_23

Experiment 2: Test Pre-Trained ResNet50 with ImageNet

Experiment 2: Test Pre-Trained ResNet50 with ImageNet

Class	Pixels	Accuracy
Impervious surfaces	855112	75.6%
Building	1075170	93.6%
Low vegetation	1309897	72.2%
Tree	1643189	86.4%
Car	31684	81.9%
Clutter/background	7183	0.0%

	Confusion matrix PREDICTED					
	646590	40574	102219	60719	5003	7
١٢	12621	1006203	39785	16494	67	0
ACTU₽	50571	49736	945549	263760	281	0
	17049	7515	199078	1419534	8	5
	5685	24	6	6	25963	0
	634	1	6337	0	211	0

Class	Pixels	Accuracy
Impervious surfaces	801652	76.2%
Building	885284	94.6%
Low vegetation	1345728	66.6%
Tree	1789171	90.4%
Car	15447	84.9%
Clutter/background	7756	0.0%

_			PRED	ICTED		
	611119	34778	93020	60029	2482	224
	8924	837288	21510	17213	279	70
AL	54358	39947	896551	354659	197	16
ACTU	17677	8520	145840	1616651	361	122
	2270	7	0	55	13115	0
	112	239	7290	115	0	0

Ω
Ň
Ì
Ð
60
:=
<u> </u>
a'
\geq

Vaihingen_15

Results Summary

Vaihingen 15	OA
ResNet50 FCN	80.68%
Pre-trained ResNet50	82.15%

Vaihingen 23	OA
ResNet50 FCN	78.78%
Pre-trained ResNet50	82.04

Tutorial Competition

Our Competition

Vaihingen_15

WG	ACCURACY	TRAINING TIME
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

WG	ACCURACY	TRAINING TIME
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		

Optimizers

SGD 10 1 0.1 0.001 0.0001

RMSprop

Adagrad

Adadelta

Adam

Adamax

Lecture 4 - Deep Learning in Remote Sensing: Applications

What can you change?

/homea/hpclab/train001/...../data_io.py

59 60	def	<pre>generate_dataset(image_numbers, overlap_factor): # input / output size of the FCN:</pre>
61		size = 256
113		<pre># generate and save the training and validation set: overlap = 0.6</pre>

LIST TO BE DONE -Number of epochs -More augmented data

•••••

Multiple GPUS

Lecture Bibliography (1)

[1] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, J. Garcia-Rodriguez, "A Review on Deep Learning Techniques Applied to Semantic Segmentation", in CoRR, 2017.

Online: http://arxiv.org/abs/1704.06857

- [2] Image Segmentation Using DIGITS 5
 Online: <u>https://devblogs.nvidia.com/image-segmentation-using-digits-5/</u>
- [3] J. Long, E. Shelhamer and T. Darrell, "Fully convolutional networks for semantic segmentation," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 3431-3440.
- [4] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778.
- [5] The vanishing gradient problem

Online: http://adventuresinmachinelearning.com/vanishing-gradient-problem-tensorflow/

[6] Deep Residual Learning for Image Recognition
 Online: <u>http://neural.vision/blog/article-reviews/deep-learning/he-resnet-2015/</u>

Lecture Bibliography (2)

- [15] Introduction to Remote Sensing: Radiometric Corrections
 Online: <u>http://gsp.humboldt.edu/olm_2015/Courses/GSP_216_Online/lesson4-1/radiometric.html</u>
- [16] G. Hughes, "On the mean accuracy of statistical pattern recognizers," in IEEE Transactions on Information Theory, vol. 14, no. 1, pp. 55-63, 1968

Online: <u>http://ieeexplore.ieee.org/document/1054102/?reload=true&tp=&arnumber=1054102</u>

- [17] Normalized Difference Vegetation Index (NDVI)
 Online: http://www.agasyst.com/portals/NDVI.html
- [18] NDVI & Classification

Online: https://lholmesmaps.wordpress.com/my-work-2/environmental-studies-421-gis-iv-advanced-gis-applications/2-2/

 [19] H. Hotelling, "Analysis of a complex of statistical variables into principal components", in Journal of Educational Psychology, 24, 417–441, and 498–520, 1933

Online: https://www.scribd.com/document/59617538/Analysis-of-a-Complex-of-Statistical-Variables-Into-Principal-Components

Lecture Bibliography (3)

- [20] A. Plaza, G. Martín, J. Plaza, M. Zortea and S. Sánchez, "Recent Developments in Endmember Extraction and Spectral Unmixing", in Optical Remote Sensing, vol 3. Springer, Berlin, Heidelberg, 2011
 Online: https://link.springer.com/chapter/10.1007/978-3-642-14212-3 12
- Online: <u>http://ieeexplore.ieee.org/document/7486184/</u>
- Online: <u>http://ieeexplore.ieee.org/document/7842555/</u>
- [23] Rome Image dataset

Online: https://b2share.eudat.eu/records/daf6c389e54340b4b1416cf874251e77

- [24] G. Cavallaro, M. Riedel, et al., "Smart data analytics methods for remote sensing applications," in the Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, 2014, pp. 1405-1408.
- [25] Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
 Online: <u>https://www.jpl.nasa.gov/missions/airborne-visible-infrared-imaging-spectrometer-aviris/</u>
- [26] Indian Pines dataset: 220 Band AVIRIS Hyperspectral Image Online: <u>https://purr.purdue.edu/publications/1947/1</u>
- [27] G. Cavallaro, M. Riedel, M. Richerzhagen, J. A. Benediktsson and A. Plaza, "On Understanding Big Data Impacts in Remotely Sensed Image Classification Using Support Vector Machine Methods," in the IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 10, pp. 4634-4646, Oct. 2015.
- [28] Indian Pines Raw and Processed
 Online: http://hdl.handle.net/11304/9ec5eac8-61b4-4617-ae1c-1f8c8cd3cd74
- [29] YouTube Video, "What is Remote Sensing?"
 Online: <u>https://www.youtube.com/watch?v=nU-CjAKry5c</u>