

Deep Learning

Introduction to Deep Learning Models

Dr. – Ing. Gabriele Cavallaro

Postdoctoral Researcher High Productivity Data Processing Group Juelich Supercomputing Centre, Germany

LECTURE 3

Deep Learning in Remote Sensing: Challenges

June 6th, 2018 Juelich Supercomputing Centre, Germany, Germany

UNIVERSITY OF ICELAND SCHOOL OF ENGINEERING AND NATURAL SCIENCES

FACULTY OF INDUSTRIAL ENGINEERING, MECHANICAL ENGINEERING AND COMPUTER SCIENCE

Outline of the Course

- 1. Introduction to Deep Learning
- 2. Fundamentals of Convolutional Neural Networks (CNNs)
- 3. Deep Learning in Remote Sensing: Challenges
- 4. Deep Learning in Remote Sensing: Applications
- 5. Model Selection and Regularization
- 6. Fundamentals of Long Short-Term Memory (LSTM)
- 7. LSTM Applications and Challenges
- 8. Deep Reinforcement Learning

Outline

Outline

- Remote Sensing (RS) Overview
 - RS Background
 - Challenges for Deep Learning (DL) in RS
 - ISPRS 2D Semantic Labeling Contest
 - Data Augmentation
 - Transfer Learning
 - DL and Shallow Learning
 - Hiercarchial Features of CNNs

Remote Sensing Background

Remote Sensing

Remote (without physical contact) **Sensing** (measurement of information)

 The term remote sensing was first used in the United States in the 1950s by Ms. Evelyn Pruitt of the U.S. Office of Naval Research

- Measurement of radiation of different wavelengths reflected or emitted from distant objects or materials
- They may be categorized by class/type, substance, and spatial distribution

[2] The Earth-Atmosphere Energy Balance

Platforms and Sensors

Platform: selected according to the application

- Active Sensor: own source of illumination
 - Capture image in day and night
 - Any weather or cloud conditions

- Passive Sensor: natural light available
 - Great quality satellite imagery
 - Multispectral and Hyperspectral technology

[3] Active-and-passive-remote-sensing

Spatial Resolution

- The spatial minimum area discernable by a pixel (i.e., picture element)
- Influenced primarily by the sensor and the platform altitude

- Landscapes vary greatly in their spatial complexity
 - Some may be represented clearly at coarse levels of detail
 - Others are so complex that the finest level of detail is required

Spectral Resolution

- Remote sensing observes at varied wavelengths
- Ability to define fine wavelength intervals
- The finer the spectral resolution, the narrower the wavelength range of a particular band

Spectrum of a mixture of three common minerals: kaolinite, Dolomite, Hematite

[4] Airborne Hyperspectral

Radiometric Resolution

- Maximum number of brightness levels available
- Depends on the number of bits used in representing the energy recorded
- Higher radiometric resolution, sharper images

Temporal Resolution

- The time it takes for a satellite to complete one orbit cycle (revisit time)
- Depends on the satellite/sensor capabilities, swath overlap and latitude

[5] Tsunami Damage, Gleebruk, Indonesia January 7, 2005

Repeated imaging enables assessment of changes in the type or condition of surface features

Sentinel 2 Mission

- **Platform:** Twin polar-orbiting satellites, phased at 180° to each other
- **Temporal resolution** of 5 days at the equator in cloud-free conditions

~23 TB data stored per day

[6] Earth Observation Mission Sentinel 2

75

1376.9

1373.5

10

- Images for mapping land-use change, land-cover change biophysical variables
- Monitor the coastal and inland waters and help with risk and disaster mapping

76

Classification of Remote Sensing Images

• Perhaps the most common form of image interpretation

 Applications: environmental management, agricultural planning, health studies, climate and biodiversity monitoring, and land change detection

Update of Land-Cover Maps at Country Scale

- Important task for regularly monitoring the Earth's surface
- Generation of reliable maps with spatial consistency is challenging
 - Data from several satellite orbit tracks, different dates and presence of clouds
- Cannot rely on field campaigns
 - Use existing databases to build the reference sets for supervised classification

[8] France land cover classification 2016

[9] S2 prototype LC map at 20m of Africa 2016

[7] CORINE land cover

Germany – 1 year of Sentinel 2 Data

- Sentinel-2 tile gridding is based on the NATO Military Grid Reference System
- Each tile covers an area of 100 km x 100 km (excluding overlapping edges of 9.8 km)
- Typical file size of all bands with a tile: ~700 MB
- Germany can be covered with 56 tiles

Data size to be processed: 73 acq. * 56 tiles * 700Mb = 2.72 TB

[10] Military Grid Reference System

Other Applications

Environmental assessment and monitoring: Urban growth

[11] Population growth from 1975 - 2010 of Manila

Global change detection and monitoring: *Deforestation*

[12] Deforestation in Bolivia from 1986 to 2001

Challenges for Deep Learning in Remote Sensing

Deep Learning in Remote Sensing

- DL has risen to the top in numerous areas in the last years
 - Computer vision, speech recognition, etc.
- Deep learning is also taking off in RS

FIGURE 4. The statistics for published papers related to deep learning in remote sensing [187].

Exponential increase of the paper published

[13] X. X. Zhu et al

RS possesses a number of unique challenges for deep learning

Main Challenges for DL in RS

- Multimodal data: geometries and content are completely different
 - From optical (multi- and hyperspectral), Lidar, and synthetic aperture radar (SAR) sensors
- High temporal resolutions data
 - Shift from individual image analysis to time-series processing
- Big remote sensing data: high spatial and more-so spectral dimensionality
 - Traditional DL systems operate on relatively small grayscale or RGB imagery

SAR images: noisy data

Optical data: From four to hundreds to of channels

Limited Number of Remote Sensing Datasets

- The existing datasets have a number of limitations
 - Small scale of scene classes and the image numbers
 - Lack of image variations and diversity
 - Saturation of accuracy

Table 5 HSI Dataset Usage.

Dataset and Reference	Number of uses
IEEE GRSS 2013 Data Fusion Contest ³³⁸	4
IEEE GRSS 2015 Data Fusion Contest ³³⁹	1
IEEE GRSS 2016 Data Fusion Contest ³⁴⁰	2
Indian Pines ³⁴¹	27
Kennedy Space Center ³⁴²	8
Pavia City Center ³⁴³	13
Pavia University ³⁴³	19
Salinas ³⁴⁴	11
Washington DC Mall ³⁴⁵	2

[14] J. E. Ball

They severely limit the development of new deep learning-based methods

Datasets	Image per class	Scene classes	Total images	Spatial resolution (m)	Image sizes	Year	Ref.
UC Merced Land-Use	100	21	<mark>2100</mark>	0.3	256x256	2010	[15]
WHU-RS19	~50	19	<mark>1005</mark>	up to 0.5	600x600	2012	[16]
RSSCN7	400	7	<mark>2800</mark>		400x400	2015	[17]
SAT-6		6	<mark>405000</mark>	1	28x28	2015	[18]
SIRI-WHU	200	12	<mark>2400</mark>	2	200x200	2016	[19]
RSC11	~100	11	<mark>1323</mark>	0.2	512x512	2016	[20]
Brazilian Coffee Scene	1438	2	<mark>2876</mark>		64x64	2016	[21]
NWPU-RESISC45	700	45	<mark>31500</mark>	~30 to 0.2	256x256	2016	[22]
AID	~300	30	<mark>10000</mark>	0.6	600x600	2016	[23]
EuroSAT	~2500	10	<mark>27000</mark>	10	64x64	2017	[24]

ImageNet dataset: 14,197,122 images [25] ImageNet project

ISPRS 2D Semantic Labeling Contest

ISPRS 2D Semantic Labeling Contest

- 2D semantic segmentation that assigns labels to multiple object categories
- Acquired by airborne sensors
 - Very high resolution true ortho photo tiles
 - Digital surface models (DSMs) derived from dense image matching techniques
- Very heterogeneous appearance of objects
 - High intra-class variance and low inter-class variance

Vaihingen Town with many detached buildings and small multi story buildings

[26] 2D Semantic Labeling Contest

Potsdam

Historic city with large building blocks, narrow streets and dense settlement structure

Vaihingen Dataset (1)

- 33 patches of different sizes with 9 cm spatial resolution
- Manually classified into six land cover classes
 - Impervious surfaces, Building, Low vegetation, Tree, Clutter/background

Groundtruth

True orthophoto

Near infrared Red Green

DSM

One band Grey levels mapped to DSM heights

Vaihingen Dataset (2)

- The groundtruth is provided for only 16 patches
- For the remaining scenes is unreleased and used for evaluation of submitted results

ТОР	DSM	Ncol	Nrow	GT
top_mosaic_09cm_area1	dsm_09cm_matching_area1	1919	2569	top_mosaic_09cm_area1
top_mosaic_09cm_area2	dsm_09cm_matching_area2	2428	2767	
top_mosaic_09cm_area3	dsm_09cm_matching_area3	2006	3007	top_mosaic_09cm_area3
top_mosaic_09cm_area4	dsm_09cm_matching_area4	1887	2557	
top_mosaic_09cm_area5	dsm_09cm_matching_area5	1887	2557	top_mosaic_09cm_area5
top_mosaic_09cm_area6	dsm_09cm_matching_area6	1887	2557	
top_mosaic_09cm_area7	dsm_09cm_matching_area7	1887	2557	top_mosaic_09cm_area7
top_mosaic_09cm_area8	dsm_09cm_matching_area8	1887	2557	
top_mosaic_09cm_area10	dsm_09cm_matching_area10	1887	2557	
top_mosaic_09cm_area11	dsm_09cm_matching_area11	1893	2566	top_mosaic_09cm_area11
top_mosaic_09cm_area12	dsm_09cm_matching_area12	1922	2575	
top_mosaic_09cm_area13	dsm_09cm_matching_area13	2818	2558	top_mosaic_09cm_area13
top_mosaic_09cm_area14	dsm_09cm_matching_area14	1919	2565	
top_mosaic_09cm_area15	dsm_09cm_matching_area15	1919	2565	top_mosaic_09cm_area15
top_mosaic_09cm_area16	dsm_09cm_matching_area16	1919	2565	
top_mosaic_09cm_area17	dsm_09cm_matching_area17	2336	1281	top_mosaic_09cm_area17
top_mosaic_09cm_area20	dsm_09cm_matching_area20	1866	2315	
top_mosaic_09cm_area21	dsm_09cm_matching_area21	1903	2546	top_mosaic_09cm_area21
top_mosaic_09cm_area22	dsm_09cm_matching_area22	1903	2546	
top_mosaic_09cm_area23	dsm_09cm_matching_area23	1903	2546	top_mosaic_09cm_area23
top_mosaic_09cm_area24	dsm_09cm_matching_area24	1903	2546	
top_mosaic_09cm_area26	dsm_09cm_matching_area26	2995	1783	top_mosaic_09cm_area26
top_mosaic_09cm_area27	dsm_09cm_matching_area27	1917	3313	
top_mosaic_09cm_area28	dsm_09cm_matching_area28	1917	2567	top_mosaic_09cm_area28
top_mosaic_09cm_area29	dsm_09cm_matching_area29	1917	2563	
top_mosaic_09cm_area30	dsm_09cm_matching_area30	1934	2563	top_mosaic_09cm_area30
top_mosaic_09cm_area31	dsm_09cm_matching_area31	1980	2555	
top_mosaic_09cm_area32	dsm_09cm_matching_area32	1980	2555	top_mosaic_09cm_area32
top_mosaic_09cm_area33	dsm_09cm_matching_area33	1581	2555	
top_mosaic_09cm_area34	dsm_09cm_matching_area34	1388	2555	top_mosaic_09cm_area34
top_mosaic_09cm_area35	dsm_09cm_matching_area35	2805	1884	
top_mosaic_09cm_area37	dsm_09cm_matching_area37	1996	1995	top_mosaic_09cm_area37
top_mosaic_09cm_area38	dsm_09cm_matching_area38	3816	2550	

ISPRS Semantic Labeling Contest (2D): Results

Click here for a description of evaluation measures

Vaihingen: 2D Labelling challenge

All quality measures except for *overall* are F1 scores in [%] using the reference with eroded boundaries. Mouse over the column headings will display more information.

Abbrev.	imp surf	building	low_veg	tree	car	Overall	Strategy	Deta
SVL_1	86.3	90.8	78.2	84.2	56.8	84.7	S	DF
SVL_2	82.1	82.8	71.6	81.6	51.9	79.4	S	DF
SVL_3	86.6	91.0	77.0	85.0	55.6	84.8	S	DF
SVL_4	86.1	90.9	77.6	84.9	59.9	84.7	S	DF
SVL_5	86.1	90.3	75.6	84.7	45.9	84.0	S	DF
SVL_6	86.0	90.2	75.6	82.1	45.4	83.2	S	DF
ADL_1	88.1	92.0	79.0	86.5	59.0	86.1	S	DF
ADL_2	89.0	93.0	81.0	87.8	59.5	87.3	S	DF
ADL_3	89.5	93.2	82.3	88.2	63.3	88.0	S	DF
UT_Mev	84.3	88.7	74.5	82.0	9.9	81.8	u	DF
HUST	86.9	92.0	78.3	86.9	29.0	85.9	S	DF
ONE_1	83.0	84.4	75.0	84.9	44.7	81.0	S	DF

[26] 2D Semantic Labeling Contest

"Participants shall use all data with ground truth for training or internal evaluation of their method"

Practical 1: Access JURECA and Find the Dataset

Vaihingen Dataset in JURECA

- Access JURECA: \$ ssh –X train???@jureca.fz-juelich.de
- Data location: /homea/hpclab/train001/data/vaihingen/

[train002@jrl05 ~]\$ ls /homea/hpclab/train001/data/vaihingen/						
vaihingen_11.hdf5	<pre>vaihingen_1.hdf5</pre>	<pre>vaihingen_28.hdf5</pre>	<pre>vaihingen_37.hdf5</pre>			
vaihingen_13.hdf5	vaihingen_21.hdf5	<pre>vaihingen_30.hdf5</pre>	<pre>vaihingen_3.hdf5</pre>			
vaihingen_15.hdf5	<pre>vaihingen_23.hdf5</pre>	<pre>vaihingen_32.hdf5</pre>	<pre>vaihingen_5.hdf5</pre>			
vaihingen_17.hdf5	vaihingen_26.hdf5	<pre>vaihingen_34.hdf5</pre>	<pre>vaihingen_7.hdf5</pre>			
[train002@jr105 ~]	Ş 📕					

HDF5 files creation:

str = 'Vaihingen_1.hdf5'; h5write(str, '/x_1', cat(3, Near Infrared, Red, Green, Normalized DSM,NDVI)) h5write(str, '/y_1', Groundtruth) h5write(str, '/m_1', Boundaries)

E.G., Vaihingen_1.hdf5

Normalized Difference Vegetation Index (NDVI)

- Create additional relevant features from the existing raw features in the data
- Increase the predictive power of the classifier

Assess Classifier Performance

- If annotated samples are available, the classifier parameters are learned in a supervised way
- How to estimate the generalization error: split the groundtruth into three disjoint sets

Performances: usually more influenced by the amount and quality of the training samples (i.e., sampling design) rather than the classifier/model complexity

Assess Classifier Performance

- Training set: used to train the model
 - How do we ensure that the model is not overfitting to the data in the training set?
- Validation set: used to validate the model during training
 - Its classification is based only on the model that is learnt from the training set
 - The model weights are updated based on this set
 - Help to adjust the hyperparameters (e.g., number of hidden layers, learning rate, etc..)
- Test set: used to test the model after it has been trained

Practical 2: Generate your Copy of the Training and Validation Sets

Approach for Training and Validation Set Generation

Generate dataset of 256x256 sized image patches

```
def main(arguments):
108
109
110
            data path = arguments[1]
            output path = arguments[2]
111
112
113
            # files used for training:
            training nums = [1, 3, 5, 7, 11, 13, 17, 21, 26, 28, 34, 37]
114
115
116
            # files used for validation:
117
            validation nums = [30, 32]
118
            # generate and save the training and validation set:
119
            overlap = 0.6
120
```


Lecture 3 - Deep Learning in Remote Sensing: Challenges

Get the Code and Test the Python Environment

- 1. Get a copy of the folder /homea/hpclab/train001/tools/resnet50-fcn
 - Create a new folder in your local path \$ ~/semseg
 - Copy \$ cp -R /homea/hpclab/train001/tools/resnet50-fcn ~/semseg/
- 2. All modules and python packages have been already prepared
 - Just run -> \$ module restore dl_tutorial
 - How was it setup?
 - \$ module use /usr/local/software/jureca/OtherStages
 - \$ ml Stages/Devel-2017a
 - \$ ml GCC/5.4.0 MVAPICH2
 - \$ ml TensorFlow/1.4.0-Python-2.7.13
 - \$ pip install --user virtualenv
 - \$ pip install --user h5py
 - \$ pip install --user keras
 - \$ pip install --user sklearn
 - \$ module store dl_tutorial

3. Check if Keras is available

- \$ python
- >>> import keras

train002@jrl12 code]\$ python

Generate the Training and Validation Set

- 4. Use the function *~/semseg/resnet50-fcn/data_io.py*
 - If you run \$ python data_io.py

```
2. Location to write training and validation sets (e.g., /homea/hpclab/train002/semseg/vaihingen/)
```

- Create a new folder where to save the sets \$ makdir ~/semseg/vaihingen
- Run the function:
 - \$ python data_io.py /homea/hpclab/train001/data/vaihingen/ ~/semseg/vaihingen/

The Outcome

The patches are assigned to the training and validation sets

[train002@jrl03 resnet50-fcn]\$ python data_io.py /homea/hpclab/train001/data/vaihingen/ ~/semseg/vaihingen/ /homea/hpclab/train002/.local/lib/python2.7/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of econd argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as ` oat64 == np.dtype(float).type`. from . conv import register converters as register converters

/homea/hpclab/train001/data/vaihingen/vaihingen 1.hdf5 /homea/hpclab/train001/data/vaihingen/vaihingen 3.hdf5 /homea/hpclab/train001/data/vaihingen/vaihingen 5.hdf5 /homea/hpclab/train001/data/vaihingen/vaihingen 7.hdf5 /homea/hpclab/train001/data/vaihingen/vaihingen 11.hdf5 /homea/hpclab/train001/data/vaihingen/vaihingen 13.hdf5 /homea/hpclab/train001/data/vaihingen/vaihingen 17.hdf5 /homea/hpclab/train001/data/vaihingen/vaihingen 21.hdf5 /homea/hpclab/train001/data/vaihingen/vaihingen 26.hdf5 /homea/hpclab/train001/data/vaihingen/vaihingen 28.hdf5 /homea/hpclab/train001/data/vaihingen/vaihingen 34.hdf5 /homea/hpclab/train001/data/vaihingen/vaihingen 37.hdf5 Generated 2083 samples! /homea/hpclab/train001/data/vaihingen/vaihingen 30.hdf5 /homea/hpclab/train001/data/vaihingen/vaihingen 32.hdf5 Generated 368 samples!

These sets will be used for training the network

train002@jrl10 vaihingen]\$ pwd homea/hpclab/train002/semseg/vaihingen train002@jrl10 vaihingen]\$ ls vaihingen_train.hdf5 vaihingen_val.hdf5 train002@jrl10 vaihingen]\$

Transfer Learning and Data Augmentation

Limited Remote Sensing Training Data

- RS applications have massive amounts of temporal and spatial data (e.g., Sentinel 2)
- But not enough labeled training samples, which usually don't fully represent:
 - Seasonal variations
 - Object variation (e.g., plants, crops, etc.)
- Most online hyperspectral data sets have little-to-no variety

[30] Indian Pines dataset

- DL systems with many parameters require large amounts of training data
 - Else they can easily overtrain and not generalize well
- DL systems in CV use very large training sets e.g., millions or billions of faces in different illuminations, poses, inner class variations, etc.

DL systems with limited training data

Possible approaches to mitigate small training samples:

1. Data augmentation

• Affine transformations, rotations, small patch removal, etc.

2. Transfer learning

Train on other imagery to obtain low-level to mid-level features

3. Use ancillary data

- Other sensor modalities (e.g., LiDAR, SAR, etc.)
- 4. Unsupervised training
 - training labels not required

Need for a Large Amount of Training Data

- State of the art DL networks have parameters in the order of millions
 - The learning model needs a proportional amount of examples
 - The number of parameters should be proportional to the complexity of the task

	VGGNet	DeepVideo	GNMT
Used For	Identifying Image Category	ldentifying Video Category	Translation
Input	Image	Video	English Text
Output	1000 Categories	47 Categories	French Text
Parameters	140M	~100M	380M
Data Size	1.2M Images with assigned Category	1.1M Videos with assigned Category	6M Sentence Pairs, 340M Words
Dataset	ILSVRC-2012	Sports-1M	WMT'14

[31] Data Augmentation

- The available dataset is taken in a limited set of conditions
 - Different orientation, location, scale, brightness etc.

Data Augmentation

- Train with additional synthetically modified data
- Techniques to artificially increase the size of the training set
- Make minor changes such as flips, translations and rotations to the existing dataset
- Employed to counteract overfitting

[31] Data Augmentation

"A poorly trained neural network would think that these three tennis balls, are distinct, unique images"

Essential Assumption: Invariance

- Ability to recognize an object as an object, even when its appearance varies in some way
- It allows to abstract an object's identity from the specifics of the visual input
 - E.g., relative positions of the viewer/camera and the object.
- Well-trained CNNs can be invariant to translation, viewpoint, size or illumination

Rotation/Viewpoint Invariance

Size Invariance

Illumination Invariance

[32] Invariance property

Popular Augmentation Techniques

- Flip horizontally and vertically
- Rotate
- Scaled outward or inward
- Crop: random sample a section
- Translate: moving the image along the X or Y direction
- Add noise
- Data augmentation is more challenging for remote sensing
 - Images exist in a variety of conditions (e.g., different seasons) [31] Data Augmentation
 - They cannot be accounted for by the above simple methods

Classification Results Assessment

Traditional classifiers are based on the assumption that training and test samples are generated from the same feature space and distribution

Remote sensing data usually present heterogeneous feature spaces and distributions due to differences in acquisition or changes in the nature of the object observed.

Most of the statistical models are likely to fail the prediction of new samples

Transfer of Knowledge

- Direct solution: rebuild from scratch the predictive model using new training samples
- However it is preferable to reduce the need for and effort in recollecting new samples
- Other solutions: transfer learning, domain adaptation and active learning approaches
- Exploit the knowledge acquired by the available reference samples for classifying new images acquired over different geographical locations at diverse times with different sensors

[33] Domain Adaptation

Practical 3: Submit two Training Jobs

Edit the Script and Submit the First Training Job

1. Get a copy of the script /homea/hpclab/train001/script/submit train resnet50 fcn.sh

2. Modify the highlighted parts

#!/bin/bash -x **#SBATCH--nodes=1 #SBATCH--ntasks=1 #SBATCH--output=train resnet50 fcn out.%** #SBATCH--error=train resnet50 fcn err.%j #SBATCH--time=01:00:00 #SBATCH--mail-user=g.cavallaro@fz-juelich.de **#SBATCH--mail-type=ALL #SBATCH--job-name=train resnet50 fcn**

#SBATCH--partition=gpus #SBATCH --gres=gpu:1

#SBATCH--reservation=deep learning

location executable RESNET50 FCN=/homea/hpclab/train002/semseg/resnet50-fcn/train resnet50 fcn.py

module restore dl tutorial

Location of training and validation sets

submit

python \$RESNET50 FCN /homea/hpclab/train002/semseg/data/ /homea/hpclab/train002/semseg/models/resnet50_fcn_weights.hdf5 True False

3. Submit: \$ sbatch submit train resnet50 fcn.sh

Create a new folder where the trained model will be saved 46

Edit the Script and Submit the Second Training Job

1. Get a copy of the script

/homea/hpclab/train001/script/submit_train_resnet50_fcn_pretrained.sh

2. Modify the highlighted parts

#!/bin/bash -x
#SBATCH--nodes=1
#SBATCH--ntasks=1
#SBATCH--output=train_resnet50_fcn_out.%j
#SBATCH--error=train_resnet50_fcn_err.%j
#SBATCH--time=01:00:00
#SBATCH--mail-user=g.cavallaro@fz-juelich.de
#SBATCH--mail-type=ALL
#SBATCH--job-name=train_resnet50_fcn

#SBATCH--partition=gpus #SBATCH --gres=gpu:1

#SBATCH--reservation=deep_learning

location executable RESNET50_FCN=/homea/hpclab/train002/semseg/resnet50-fcn/train_resnet50_fcn.py

module restore dl_tutorial

submit

python \$RESNET50_FCN <mark>/homea/hpclab/train002/semseg/data/</mark> /homea/hpclab/train002/semseg/models/resnet50_fcn_weights.hdf5</mark> True True Location of training and validation sets

Create a new folder where the trained model will be saved

Deep Learning and Shallow Learning

How to Extract Spatial Features?

• Very High Spatial Resolution images: huge amount of details

WorldView-2 Panchromatic - Resolution 0.46 [m]

- Sub-metric resolution
- Allows for accurate analysis
- Objects with different scales and shapes

Traditional RS Pipeline

- Traditional feature extraction methods involve approaches to extract information
 - Based on spatial, spectral, textural, morphological content, etc.
- The features are designed for a specific task
 - e.g. Enhancing the spatial information (Self-Dual Attribute Profiles SDAPs)

Representative: they contain salient structures of the input image

Non-redundant: same objects are present only in one or few levels of the SDAP

Deep Learning and Shallow Learning

- Shallow learning: learning networks that usually have at most one to two layers
 - E.G. Support Vector Machines (SVMs)
- They compute linear or nonlinear functions of the data (often hand-designed features)

- DL means a deeper network with many layers of non-linear transformations
 - No universally accepted definition of how many layers constitute a "deep" learner
 - Typical networks are typically at least four or five layers deep.

Hiercarchial Features of CNNs

Pyramid and CNNs Analogy

- Multi-scale signal representation
- An image is subject to repeated smoothing and subsampling
- Used for doing tasks at multiple scales
- Gaussian pyramid
 - Subsequent images are weighted and scaled down
 - Each pixel is local average of the neighborhood on a lower level
- Laplacian pyramid
 - It saves the difference image of the blurred versions between each levels.

Deep Networks Learn Hierarchical Feature Representations

^[38] H. Lee et al.

Lecture Bibliography (1)

- [1] CORONA: American's First Satellite Program: first photograph.
 Online: <u>https://www.oneonta.edu/faculty/baumanpr/geosat2/RS%20History%20II/RS-History-Part-2.html</u>
- [2] The Earth-Atmosphere Energy Balance
 Online: <u>http://theatmosphere.pbworks.com/w/page/27058542/The%20Earth-Atmosphere%20Energy%20Balance</u>
- [3] Active-and-passive-remote-sensing
 Online: <u>http://grindgis.com/remote-sensing/active-and-passive-remote-sensing</u>
- [4] Airborne Hyperspectral Remote Sensing Systems
 Online: <u>http://uregina.ca/piwowarj/Satellites/Hyperspectral.html</u>
- [5] Tsunami Damage, Gleebruk, Indonesia January 7, 2005
 Online: <u>https://earthobservatory.nasa.gov/IOTD/view.php?id=5145</u>
- [6] Earth Observation Mission Sentinel 2
 Online: <u>https://sentinel.esa.int/web/sentinel/missions/sentinel-2</u>
- [7] CORINE land cover
 Online: https://land.copernicus.eu/pan-european/corine-land-cover
- [8] France land cover classification 2016
 Online: <u>http://www.cesbio.ups-tlse.fr/multitemp/?p=11778</u>
- [9] S2 prototype LC map at 20m of Africa 2016
 Online: <u>http://2016africalandcover20m.esrin.esa.int/</u>
- [10] Military Grid Reference System
 Online: <u>https://en.wikipedia.org/wiki/Military_Grid_Reference_System</u>
- [11] Population growth from 1975 2010 of Manila
 Online: <u>https://manilabydaniellaandisabel.weebly.com/location-and-characteristics.html</u>
- [12] Deforestation in Bolivia from 1986 to 2001
 Online: <u>https://www.satimagingcorp.com/gallery/more-imagery/aster/aster-deforestation-bolivia/</u>

Lecture Bibliography (2)

- [13] X. X. Zhu et al., "Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources," in IEEE Geoscience and Remote Sensing Magazine, vol. 5, no. 4, pp. 8-36, Dec. 2017.
- [14] J. E. Ball, D. T. Anderson, and C. S. Chan, "A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community," in Proceedings of the SPIE Journal of Applied Remote Sensing, 2017.
- [15] Y. Yang and S. Newsam, "Bag-of-visual-words and spatial extensions for land-use classification," in Proc. ACM SIGSPATIAL Int. Conf. Adv. Geogr. Inform. Syst., 2010, pp. 270-279.
- [16] J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 844-856, 2013.
- [17] Q. Zou, L. Ni, T. Zhang, and Q. Wang, "Deep learning based feature selection for remote sensing scene classification," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 11, pp. 2321-2325, 2015.
- [18] S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano, M. Karki, and R. Nemani. Deepsat: a learning framework for satellite imagery. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, page 37. ACM, 2015
- [19] B. Zhao, Y. Zhong, G.-S. Xia, and L. Zhang, "Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 4, pp. 2108-2123, 2016
- [20] L. Zhao, P. Tang, and L. Huo, "Feature significance-based multibag-of-visual-words model for remote sensing image scene classification," J. Appl. Remote Sens., vol. 10, no. 3, pp. 035004-035004, 2016.
- [21] O. A. Penatti, K. Nogueira, and J. A. dos Santos, "Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?," in Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. Workshops, 2015, pp. 44-51.
- [22] G. Cheng, J. Han and X. Lu, "Remote Sensing Image Scene Classification: Benchmark and State of the Art," in Proceedings of the IEEE, vol. 105, no. 10, pp. 1865-1883, Oct. 2017.
- [23] G.-S. Xia, J. Hu, F. Hu, B. Shi, X. Bai, Y. Zhong, and L. Zhang. Aid: A benchmark dataset for performance evaluation of aerial scene classication. arXiv preprint arXiv:1608.05167, 2016.
- [24] P. Helber, B. Bischke, A. Dengel, D. Borth. 2017. "EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification", ArXiv
- [25] ImageNet project

Online: http://image-net.org/about-overview

Lecture Bibliography (3)

- [26] 2D Semantic Labeling Contest
 Online: <u>http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html</u>
- [27] Normalized Difference Vegetation Index (NDVI)
 Online: http://www.agasyst.com/portals/NDVI.html
- [28] NDVI & Classification
 Online: <u>https://lholmesmaps.wordpress.com/my-work-2/environmental-studies-421-gis-iv-advanced-gis-applications/2-2/</u>
- [29] G. Cavallaro, N. Falco, M. Dalla Mura and J. A. Benediktsson, "Automatic Attribute Profiles," in IEEE Transactions on Image Processing, vol. 26, no. 4, pp. 1859-1872, April 2017.
- [30] Indian Pines dataset: 220 Band AVIRIS Hyperspectral Image Online: <u>https://purr.purdue.edu/publications/1947/1</u>
- [31] Data Augmentation How to use Deep Learning when you have Limited Data
 Online: <u>https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced</u>
- [32] Invariance property
 Online: <u>https://i.stack.imgur.com/iY5n5.png</u>
- [33] D. Tuia, C. Persello and L. Bruzzone, "Domain Adaptation for the Classification of Remote Sensing Data: An Overview of Recent Advances," in IEEE Geoscience and Remote Sensing Magazine, vol. 4, no. 2, pp. 41-57, June 2016.
- [34] G. Cavallaro, N. Falco, M. Dalla Mura and J. A. Benediktsson, "Automatic Attribute Profiles," in IEEE Transactions on Image Processing, vol. 26, no. 4, pp. 1859-1872, April 2017.
- [35] Pyramid: image processing
 Online: <u>https://en.wikipedia.org/wiki/Pyramid (image processing)#Gaussian pyramid</u>
- [36] The Laplacian Pyramid
 Online: https://hypjudy.github.io/2017/05/10/panorama-image-stitching/
- [37] Typical CNN
 Online: <u>https://commons.wikimedia.org/wiki/File:Typical_cnn.png</u>
- [38] H. Lee, R. Grosse, R. Ranganath and A. Y. Ng, "Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks", in Commun. ACM, vol. 54, no. 10, pp. 95-103, 2011.