SIMDAS & INDUSTRY RELATIONS – EXAMPLES FROM JUELICH

PROF. DR. – ING. MORRIS RIEDEL, JUELICH SUPERCOMPUTING CENTRE / UNIVERSITY OF ICELAND
HEAD OF CROSS-SECTIONAL TEAM DEEP LEARNING & RDA CO-CHAIR INTEREST GROUP BIG DATA
3RD MAY SIMDAS & MINISTRY MEETING, NICOSIA, CYPRUS
Selected Facts

- One of EU largest inter-disciplinary research centres (~5000 employees)
- Special expertise in physics, materials science, nanotechnology, neuroscience and medicine & information technology (HPC & Data)
HPC & DATA SCIENCE: A FIELD OF CONSTANT EVOLUTION

Perspective: Floating Point Operations per one second (FLOPS or FLOP/s)

1.000.000 FLOP/s
~1984

1.000.000.000.000.000 FLOP/s
~295.000 cores~2009 (JUGENE)

- 1 GigaFlop/s = 10^9 FLOPS
- 1 TeraFlop/s = 10^{12} FLOPS
- 1 PetaFlop/s = 10^{15} FLOPS
- 1 ExaFlop/s = 10^{18} FLOPS

> 5.900.000.000.000.000 FLOP/s
~ 500.000 cores
~ 2017

© Photograph by Rama, Wikimedia Commons
EUROPEAN UNION & COMMISSION PLANS

The SIMDAS Project and Objectives are In-line with Strategic Plans

“By supporting strategic projects in frontline areas such as artificial intelligence, supercomputers, cybersecurity or industrial digitisation, and investing in digital skills, the new programme will help to complete the Digital Single Market, a key priority of the Union.”

EXAMPLE CO-DESIGN APPROACH

Drive Technology Innovation in Different Roles

- Exascale Labs
 (or Competence Centres)
 - Long-term collaboration with suppliers
 - POWER Acceleration and Design Center
 - Collaboration between Forschungszentrum Juelich, IBM and NVIDIA
 - Mission statement: Provide support to scientists and engineers to target the grand challenges facing society in the fields of energy & environment, information & health care

- Co-Design Projects
 - E.g. DEEP projects

(Selected JSC collaboration partners)
SIMDAS & JSC IMPLEMENT CO-DESIGN APPROACH

Drive Technology Innovation in Different Roles

- Address Future HPC & Data challenges via Application Co-Design Approach
 - SIMDAS thematic areas are key to future design
 - Scientific problem requirements influence architecture design & technology
 - Architectural constraints impact formulation & design of innovative algorithms and software

- Co-Design: work with technology experts on development of HPC technology & companies are partners → use case driven approaches
- Techniques to facilitate co-design is to provide mini-applications and performance analysis results → Transfer knowledge to technology experts
- Provide performance models and simulators based on new technologies and hardware architectures → Transfer knowledge to application experts
DEEP SERIES OF PROJECTS
EU Projects Driven by Co-Design of HPC Applications

- 3 EU Exascale projects
 DEEP
 DEEP-ER
 DEEP-EST

- 27 partners
 Coordinated by JSC

- EU-funding: 30 M€
 JSC-part > 5.3 M€

- Nov 2011 – Jun 2020

- Strong collaboration with our industry partners Intel, Extoll & Megware

- Innovative HPC hardware like Intel Nervana Neon and persistent RAMs

- Juelich Supercomputing Centre implements the DEEP projects designs in its HPC production infrastructure

3rd May 2018 Page 9
SIMDAS & JSC JOINTLY TOWARDS EXASCALE

SIMDAS Centre of Excellence will Strengthen the Portfolio of Both Cyprus & Germany

- Flop/s metric will become increasingly less(!) relevant
 - Driven by application co-design of HPC & Data Systems
 - Support for less regular computational tasks
 - Significantly larger memory footprint
 - Extreme data processing capabilities
 - Improved/optimized data transport capabilities & specialized analytics
 - Scalable visualisation capabilities
 - Management of complex work-flows
- One plausible answer to those facts is the modular supercomputer architecture driven by the JSC & DEEP projects
SIMDAS EXAMPLES – TRANSLAB & TOOLS

Joint Use of Smart Data Innovation Lab (SDIL) Platform

- Technology Platform for Data Analytics
 - Key technologies from vendors w.r.t. commercial parallel & scalable machine learning tool platforms
 - SAP Hana, IBM DB2 & SPSS, Software AG BigMemory MAX, Huawei FusionInsight, etc.
 - Data-driven SIMDAS projects can leverage the platform (small proposal needed / case)

- Letter of intent/support already requested and relevant joint selected work elements have been already discussed
SIMDAS EXAMPLES – TRANSLAB & TOOLS

Joint Use of Smart Data Innovation Lab (SDIL) Platform

- SDIL Partners
 - Key players in German industry
 - Head of community Medicine (Prof. M. Riedel & Prof. A. Schuppert; both SMITH ASIC Use Case partners)

- Letter of intent/support already requested and relevant joint selected work elements have been already discussed
SIMDAS EXAMPLES – HEALTH AREA

Bayer AG & RWTH Aachen + University Hospital & Forschungszentrum Juelich & Nicosia General Hospital

- SMITH ASIC Use Case
 - ASIC: Algorithmic Surveillance of Intensive Care Unit (ICU) Patients & Focus on Acute Respiratory Distress Syndrome (ARDS)
 - University Clinic Aachen (UKA): Machine Learning for patient stratification & virtual ICU patient & risk patterns
 - FZJ: Parallel & Scalable Machine Learning & Statistical Modelling via HPC
 - Bayer AG: clinical trial optimization in prevention studies & virtual ICU patients & organ models

- Letter of intent/support already requested and relevant joint selected work elements have been already discussed

3rd May 2018 Page 14
SIMDAS EXAMPLES – HEALTH AREA

Bayer AG & RWTH Aachen + University Hospital & Forschungszentrum Juelich & Nicosia General Hospital

- MCMC with VP models
 - 1 run for a patient ~ 2 sec (1 core)
 - 10^6 runs required for MCMC
 - 1 patient ~ 1000 core-h
 - Good news: 100% parallel → nice scalability and useful for booster
 - More data is helpful for more concrete feature selection w.r.t. ARDS

- Compute-intensive part of the Virtual patient model will be mapped onto a deep-learning (DL) network
 - DL-network has is numerically hard to train, but fast to simulate
 - Mapping strategy has been evaluated and applied at partner Bayer
 - Requires HPC (scanning of the full parameter space)
SIMDAS EXAMPLES – ENGINEERING AREA

Exploration of AixCAPE tools & Know-How together with SIMDAS & Various Engineering companies

- Process Systems Engineering
 - Link: Forschungszentrum Juelich (IEK-10) & RWTH Aachen University
 - Forschungszentrum Juelich IEK-10 Director & Head of AixCAPE (Prof. A. Mitsos)
 - SIMDAS thematic area impact

- Letter of intent/support already requested and relevant joint selected work elements have been already discussed
SIMDAS EXAMPLES – ENGINEERING AREA

Exploration of AixCAPE tools & Know-How together with SIMDAS & Various Engineering companies

- Known player in process engineering
 - Know-How: leverage research transfer projects (aka SIMDAS outcomes)

- Uses phases: Long-term research, prototypes, commercialization for end users

- Letter of intent/support already requested and relevant joint selected work elements have been already discussed
INDUSTRY RELATIONS TEAM (IRT) @ JSC

Examples: Selling Computing Time & Offering Code Optimization

SIEMENS
- Long-term cooperation with Siemens Power & Gas Department
- Simulation of combustion processes in turbine systems
- Computing time on JSC Jureca HPC system
- Take advantage of application support team @ JSC
- Bilateral cooperations and partners in big publicly funded (Germany BMWI) project consortium

Outotec
- Global leader in minerals & metals processing technology
- Computing time on JSC Jureca HPC System
- OpenFOAM computational fluid dynamics (CFD) computations
- Take advantage of application support team @ JSC

3rd May 2018

INDUSTRY RELATIONS TEAM (IRT) @ JSC

Examples: Selling Computing Time & Offering Code Optimization

- One out of four German Transmission System Operators (TSOs) & designs, builds, and operates high voltage grids
- Selected Consultation & Expertise Services from JSC included software & hardware guidance & support
- Software: code analysis, optimization plan, work-flows
- Hardware: support of a purchase decision & cluster testing

Benefit for FZJ/JSC: Work on real industry problem with high societal relevances & follow-up projects discussed like German BMBF projects

INNOVATIVE DEEP LEARNING TECHNOLOGIES
Short Overview & Role of Team Deep Learning for SIMDAS & Juelich Supercomputing Centre

- Innovative & disruptive approach

- Provide deep learning tools that work with HPC machines (e.g. Python/Keras/Tensorflow)
- Advance deep learning applications and research on HPC prototypes (e.g. DEEP-EST, etc.)
- Engage with industry (industrial relations team) & support SMEs (e.g. Soccerwatch)
- Offer tutorials & application enabling support for commercial & scientific users (e.g. YouTube)

SIMDAS EXAMPLES – INNOVATIVE START-UPS
Collaboration in Applying Deep Learning in Commercial Scenarios & Small Start-Up Guidance

- **SoccerWatch.TV**
 - **Start-up**: created/joined by a ‘exit-ing’ PHD Student @ JSC
 - Besides upper leagues: 80k matches/week
 - Recording too expensive (amateurs) with camera man needed
 - Approach: Find X,Y center and zoom on panorama camera using Deep Learning
 - Investor grant (1,5 mio €) from Adesso AG

- Letter of intent/support already requested and relevant joint selected work elements have been already discussed
- Further German BMBF project has been submitted (NRW-HUB) with relevance to SIMDAS & Retail (with Adesso)
SUMMARY

- Mindset
 - SIMDAS strategic roadmap is long – stay flexible (e.g. new chips or approaches?)
 - Engage with commercial partners in Cyprus in co-design applications (e.g. use cases)

- Skillset
 - SIMDAS commercial partners have access to many skills (e.g. how to create a start-up)
 - TransLab, thematic share research & industry share approaches (e.g. deep learning)

- Toolset
 - SIMDAS offers a wide variety of tools/services and underlying infrastructure (e.g. HPC)
 - People are key to use tools to engage in application enabling (e.g. consulting users)
THANKS FOR TEAMING WITH US!
REFERENCES (1)

- [6] JSC Industry Relations Team (IRT) @ Juelich Supercomputing Centre, Online: http://www.fz-juelich.de/ias/jsc/EN/Expertise/IndustryRelations/_node.html
- [8] M. Riedel, ‘Deep Learning using a Convolutional Neural Network’, Ghent University, Invited YouTube Tutorial, Online: https://www.youtube.com/watch?v=gOL1_YIosYk&list=PLrmNhuZo9sgZUdaZ-f6OHK2yFW1kTS2qF
REFERENCES (2)

- [9] SoccerWatch.TV,
 Online: https://soccerwatch.tv/

- [10] Smart Data Innovation Lab (SDIL),
 Online: https://www.sdil.de/en/

 Online: https://ec.europa.eu/commission/sites/beta-political/files/communication-modern-budget-may2018_en.pdf?utm_source=POLITICO.EU&utm_campaign=e3a8a86cc6-EMAIL_CAMPAIGN_2018_05_02&utm_medium=email&utm_term=0_10959edeb5-e3a8a86cc6-189710085
ACKNOWLEDGEMENTS

Previous & current members of the High Productivity Data Processing Research Group

- PD Dr. G. Cavallaro
- Senior PhD Student A.S. Memon
- Senior PhD Student M.S. Memon
- PhD Student E. Erlingsson
- PhD Student S. Bakarat
- MSc Student G.S. Guðmundsson (Landsverkjun)

- Dr. M. Goetz (now KIT)
- MSc M. Richerzhagen
- MSc P. Glock (now INM-1)
- MSc C. Bodenstein (now Soccerwatch.tv)

Further acknowledgements of this talk go to Prof. Dr. Dirk Pleiter & Industrial Relations Teams (IRT) @ JSC / FZJ

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 763558
THANKS

Talk shortly available under www.morrisriedel.de