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DEEP LEARNING 101
Short Overview & Role of Cross-Sectional Team Deep Learning at Juelich Supercomputing Centre (JSC)

 Innovative & disruptive approach

 Provide deep learning tools that work with JSC HPC machines (e.g. Python/Keras/Tensorflow)
 Advance deep learning applications and research on HPC prototypes (e.g. DEEP-EST)
 Engage with industry (industrial relations team) & support SMEs (e.g. Soccerwatch)
 Offer tutorials & application enabling support for commercial & scientific users (e.g. YouTube)

[1] M. Riedel, Invited 
YouTube Tutorial on Deep 
Learning, Ghent University
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PYTHON
SIMPLE AND FLEXIBLE PROGRAMMING LANGUAGE

 Selected Benefits
 Work with many students reveal: qucky & easy to learn

 Is an interpreted powerful programming language

 Has Efficient high-level data structures 

 Provides a simple but effective approach 
to object-oriented programming

 Great libraries & community support (e.g. numpy)
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[2] Webpage Python

 Python is an ideal language for fast scripting and rapid application development
that in turn makes it interesting for the machine learning modeling process

 The machine learning modeling process in general and the deep learning 
modeling process in particular requires iterative and highly flexible approaches

 E.g. network topology prototyping, hyper-parameter tuning, etc.

[3] F. Chollet, ‘Deep 
Learning with Python’ Book

(this talk is not about the book)



DEEP LEARNING
Programming with TensorFlow

19th April 2018 Page 5

[1] M. Riedel, Invited 
YouTube Tutorial on Deep 
Learning, Ghent University

 Tensorflow is an open source library for deep learning models using a flow graph approach
 Tensorflow nodes model mathematical operations and graph edges between the nodes are so-called tensors (also 

known as multi-dimensional arrays)
 The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPU versions)
 Tensorflow work with the high-level deep learning tool Keras in order to create models fast

[4] Tensorflow Deep Learning 
Framework[5] A Tour of 

Tensorflow

[6] Distributed & Cloud Computing Book

(Lessons learned: Installing TensorFlow with 
right versions of CUDA, Python, and other 

dependencies on a specific system 
is NOT a trivial task)



DEEP LEARNING
Programming with TensorFlow – What is a Tensor?
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[1] M. Riedel, Invited 
YouTube Tutorial on Deep 
Learning, Ghent University

[7] Big Data Tips, What is a Tensor?

 A Tensor is nothing else than a multi-dimensional array often used in scientific & engineering environments
 Tensors are best understood when comparing it with vectors or matrices and their dimensions
 Those tensors ‘flow‘ through the deep learning network during the optimization / learning & inference process



DEEP LEARNING
Programming with TensorFlow & Keras
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[1] M. Riedel, Invited 
YouTube Tutorial on Deep 
Learning, Ghent University[8] Keras Python Deep Learning Library

 Tool Keras supports inherently the 
creation of artificial neural 
networks using Dense layers
and optimizers (e.g. SGD)

 Includes regularization (e.g. 
weight decay) or momentum

keras.layers.Dense(units, 

activation=None, 
use_bias=True, 
kernel_initializer='glorot_uniform', 
bias_initializer='zeros', 
kernel_regularizer=None, 
bias_regularizer=None, 
activity_regularizer=None, 
kernel_constraint=None, 
bias_constraint=None)

keras.optimizers.SGD(lr=0.01, 

momentum=0.0, 
decay=0.0, 
nesterov=False)

 Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-
level deep learning frameworks like Tensorflow, CNTK, or Theano

 The key idea behind the Keras tool is to enable faster experimentation with deep networks
 Created deep learning models run seamlessly on CPU and GPU via low-level frameworks 



DEEP LEARNING – SIMPLE MNIST EXAMPLE
Creating an Artificial Neural Network (ANN) using Python Scripts

Input
Layer

Hidden
Layer

Output
Layer

X1 X2 X3 X4 X5

y

 Feed-forward neural network: nodes in one layer are 
connected only to the nodes in the next layer 
(i.e. ‘a constraint of network construction’)

 Think each hidden node as a 
‘simple perceptron’ that each 
creates one hyperplane

 Think the output node simply 
combines the results of all the 
perceptrons to yield the ‘decision 
boundary’ above

(28*28 pixels, 60000 training samples ~47MB, 
10000 test samples ~7.8 MB)
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DEEP LEARNING – PYTHON SCRIPT PART 1
ANN Parameters & Data Normalization in Python Script

 NB_CLASSES: 10 Class Problem 
 NB_EPOCH: number of times the model is exposed to the training 

set – at each iteration the optimizer adjusts the weights so that the 
objective function is minimized

 BATCH_SIZE: number of training instances taken into account 
before the optimizer performs a weight update

 OPTIMIZER: Stochastic Gradient Descent (‘SGD‘) – only one training 
sample/iteration

 Data load shuffled between training and testing set
 Data preparation, e.g. X_train is 60000 samples / rows of 

28 x 28 pixel values that are reshaped in 60000 x 784 
including type specification (i.e. float32)

 Data normalization: divide by 255 – the max intensity 
value to obtain values in range [0,1]



DEEP LEARNING – PYTHON SCRIPT PART 2
Dynamic & Flexible Modeling of the ANN in Python Script

 Dense() represents a fully 
connected layer used in 
ANNs that means that 
each neuron in a layer is 
connected to all neurons 
located in the previous 
layer

 The Sequential() Keras 
model is a linear  pipeline 
(aka ‘a stack‘) of various 
neural network layers 
including Activation 
functions of different types 
(e.g. softmax)

 The non-linear Activation function ‘softmax‘ 
represents a generalization of the sigmoid 
function – it squashes an n-dimensional vector 
of arbitrary real values into a n-dimenensional 
vector of real values in the range of 0 and 1 –
here it aggregates 10 answers provided by the 
Dense layer with 10 neurons

 Loss function is a multiclass logarithmic 
loss: target is ti,j and prediction is pi,j
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DEEP LEARNING – RUNNING THE PYTHON SCRIPT
Using a Job Script for High Performance Computing (HPC) Machine with the Python Script & ANN Model
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[1] M. Riedel, Invited 
YouTube Tutorial on Deep 
Learning, Ghent University



DEEP LEARNING – CHANGING THE PYTHON SCRIPT
Dynamic & Flexible Modeling of the ANN adding Hidden Layers in Python Script

 A hidden layer in an ANN can be represented by a fully 
connected Dense layer in Keras by just specifying the 
number of hidden neurons in the hidden layer

 The non-linear Activation function ‘relu‘ represents a 
so-called Rectified Linear Unit (ReLU) that only 
recently became very popular because it generates 
good experimental results in ANNs and more recent 
deep learning models – it just returns 0 for negative 
values and grows linearly for only positive values
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DEEP LEARNING – ARCHITECTURES
Each of the Architectures provide Unique Characteristica (e.g. ‘smart layers‘)

 Deep Neural Network (DNN)

 ‘Shallow ANN‘ approach with many hidden layers between input/output

 Convolutional Neural Network (CNN, sometimes ConvNet)

 Connectivity pattern between neurons is like animal visual cortex

 Deep Belief Network (DBN)

 Composed of mult iple layers of variables; 
only connections between layers

 Recurrent Neural Network (RNN)

 ‘ANN‘ but connections form a directed cycle; 
state and temporal behaviour
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 Deep Learning architectures can be classified into 
Deep Neural Networks, Convolutional Neural 
Networks, Deep Belief Networks, and Recurrent 
Neural Networks all with unique characteristica

 Deep Learning needs ‘big data‘ to work well & for 
high accuracy – works not well on sparse data



DEEP LEARNING – EXPERIMENTING WITH TOPOLOGIES 
Programming with Python & TensorFlow & Keras – Supervised Classification Example – Network Topology
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[1] M. Riedel, Invited 
YouTube Tutorial on Deep 
Learning, Ghent University

 Classify pixels in a hyperspectral remote sensing image having groundtruth/labels available
 Created CNN architecture for a specific hyperspectral land cover type classification problem 
 Used dataset of Indian Pines (compared to other approaches) using all labelled pixels/classes
 Performed no manual feature engineering to obtain good results (aka accuracy)

[10] J. Lange, 
G. Cavallaro, 
M. Riedel, et al. , 
IGARSS 2018



DEEP LEARNING – EXPERIMENTING WITH TOPOLOGIES
Programming with Python & TensorFlow & Keras – Supervised Classification Example – Network Topology 
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[1] M. Riedel, Invited 
YouTube Tutorial on Deep 
Learning, Ghent University

[10] J. Lange, G. Cavallaro, 
M. Riedel, et al. , IGARSS 
2018



DEEP LEARNING HYPERPARAMETER TUNING
Programming with Python & TensorFlow & Keras – Supervised Classification Example – Network Topology 
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[1] M. Riedel, Invited 
YouTube Tutorial on Deep 
Learning, Ghent University

Blue: correctly classified
Red: incorrectly classified

[10] J. Lange, G. Cavallaro, 
M. Riedel, et al. , IGARSS 2018

 Using Python with TensorFlow & Keras easily enables changes in hyper-parameter tuning
 Various runs on different topologies add up to computational demand of GPUs
 Need for HPC machines with good GPUs and good deep learning software stacks required



COMPARE TRADITIONAL MACHINE LEARNING
Supervised Classification Example – Remote Sensing Dataset & Results

 Traditional Methods
 Support Vector Machine (SVM)

 52 classes of different land cover, 6 discarded, mixed pixels, rare groundtruth

 Substantial manual feature engineering,e.g. Self Dual Attribute Profile (SDAP)

 10-fold cross-validation

 Achieved 77,02 % accuracy
[12] C.Cortes 
and V. Vapnik, 
1995

[13] G. Cavallaro and M. Riedel, et al. , 20151m       10m         30m 

[11] G. Cavallaro et al.
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COMPARE TRADITIONAL MACHINE LEARNING
Supervised Classification Example – Speed-up Cross-Validation & MPI C Code

 Traditional Methods
 Support Vector Machine (SVM)

 pISVM C code that 
can be improved
(taken from ML
experts – not parallel
experts, tuned @ JSC)

 Message Passing
Interface (MPI)

 Feature Engineering
 Working also on parallel feature 

engineering using tree-based approach (MPI/OpenMP C)
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[13] G. Cavallaro and M. Riedel, et al. , 2015

Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

[9] M. Goetz and M. 
Riedel, et al., 2018

[16] piSVM Website, 
2011/2014 code



SELECTED COMPARISONS
Supervised Classification Example – Remote Sensing Dataset & Results

 Traditional Methods
 C MPI-based Support Vector Machine (SVM)

 Substantial manual feature engineering

 10-fold cross-validation for model selection

 Achieved 77,02 % accuracy

 Convolutional Neural
Networks (CNNs)
 Python/TensorFlow/Keras

 Automated feature learning

 Achieved 84,40 % accuracy on all 58 classes

 SVM + Feature Engineering (~3 years) vs. CNN architecture setup (~1 month)

[10] J. Lange, G. Cavallaro, 
M. Riedel, et al. , 2018
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DEEP SERIES OF PROJECTS
EU Projects Driven by Co-Design of HPC Applications

 3 EU Exascale projects
DEEP 
DEEP-ER
DEEP-EST

 27 partners
Coordinated by JSC

 EU-funding: 30 M€
JSC-part > 5,3 M€

 Nov 2011 – Jun 2020

[14] M. Goetz & M. Riedel, et al. , 2015

(classification, clustering, 
deep learning)

 Juelich Supercomputing Centre
implements the DEEP projects designs
in its production infrastructure
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JSC – MODULAR SUPERCOMPUTING ARCHITECTURE
Roadmap

 ML 
Training Deep

learning

 Data
 Models

 Innovative
Ideas, e.g. 
trained 
models in 
memory

 Innovative
Ideas, e.g. 
use of deep 
learning 
optimized 
chip 
designs 

 Deep
learning

 ML Testing,
 Inference

 Data storage 
module for 
geospatial 
datasets?

 ‘Big data‘ /
parallel I/O

19th April 2018 Page 21



JSC
Juelich
Supercomputing
Centre

General Purpose Cluster

File 
Server
GPFS, 
Lustre

IBM Power 6 
JUMP, 9 TFlop/s

IBM Blue Gene/P
JUGENE, 1 PFlop/s

HPC-FF
100 TFlop/s

JUROPA
200 TFlop/s

IBM Blue Gene/Q
JUQUEEN (2012)
5.9 PFlop/s

IBM Blue Gene/L
JUBL, 45 TFlop/s

IBM Power 4+
JUMP (2004), 9 TFlop/s

Highly scalable

Hierarchical
Storage Server

JUWELS Scalable
Module (2019/20)
50+ PFlop/s

JUWELS Cluster 
Module (2018)
12 PFlop/s

JURECA Cluster 
(2015) 2.2 PFlop/s

JURECA Booster 
(2017) 5 PFlop/s
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TRADITIONAL MACHINE LEARNING
Supervised Classification – Modular Supercomputing Architecture

 (1) The training dataset and testing dataset of the remote sensing 
application is used many times in the process and make sense 
to put into the DEEP-EST Network Attached Memory (NAM) module

 (2) Training with piSVM in order to generate a model requires 
powerful CPUs with good interconnection for the inherent 
optimization process and thus can take advantage of the 
DEEP-EST CLUSTER module (use of training dataset, 
requires piSVM parameters for kernel and cost)

 (3) Instead of dropping the trained SVM model 
(i.e. file with support vectors) to disk it makes sense to 
put this model into the DEEP-EST NAM module 

 (4) Testing with piSVM in order to evaluate the model 
accuracy requires not powerful CPUs and not a good 
interconnection but scales perfectly (i.e. nicely parallel) and thus 
can take advantage of the BOOSTER module  
(use of testing dataset & model file residing in NAM), prediction & 
inference using models is largely usable on the BOOSTER module too

 (5) If accuracy too low back to (2) to change parameters [15] E. Erlingsson, G. Cavallaro, M. Riedel, et al. , 2018
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DEEP LEARNING (WORK IN PROGRESS)
Supervised Classification – CNN Design & Setup

 (1) The training dataset and testing dataset of the remote sensing 
application is used many times in the process and make sense to 
put into the DEEP-EST Network Attached Memory (NAM) module

 (2) Training with CNNs in Tensorflow works best fore many-core 
CPUs for the inherent optimization process based on Stochastic 
Gradient Descent (SGD) MPI collective available in the DEEP-EST 
Global Collective Environment (GCE) and thus can take advantage 
of the DEEP-EST BOOSTER module (use of training dataset, 
requires CNN architectural design parameters)

 (3) Trained models of selected architectural CNN setups need to 
be compared and thus can be put in the DEEP-EST NAM module 

 (4) Testing with Tensorflow in order to evaluate the model accuracy 
works also quite well for many-core architectures and scales perfectly 
(i.e. nicely parallel) and thus can take advantage of the BOOSTER module  
(use of testing dataset & CNN models residing in NAM)

 (5) If accuracy too low back to (2) to change parameters

 (Upcoming: potentially exploring the use of Intel Nervana Chips & Neon with Tensorflow)
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Intel
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Neon



DEEP LEARNING
Supervised Classification – Transfer Learning

 (1) Studies have shown that Transfer Learning works well especially for remote sensing data 
without groundtruth or labelled data (i.e. unsupervised) and pre-trained networks trained on general 
images like ImageNet (e.g. like Overfeat) are available and are put into the DEEP-EST NAM 
module to be re-used for unsupervised deep learning CNN training

 (2) Based on pre-trained features another CNN architectural setup is 
trained with the real remote sensing data whereby the DEEP-EST 
DATA ANALYTICS module is an interesting approach since the FPGA 
might be used to compute the transformation from pre-trained 
features as suitable inputs to the real training process of the CNN 
based on remote sensing data

 (3) Trained models of selected architectural CNN setups that have 
been used with pre-trained features need to be compared and thus 
can be put in the DEEP-EST NAM module 

 (4) Testing with Tensorflow in order to evaluate the model accuracy works also quite well for many-core architectures and scales perfectly (i.e. 
nicely parallel) and thus can take advantage of the BOOSTER module  (use of testing dataset & CNN models residing in NAM)

 (5) Testing results are written back to the DEEP-EST NAM per CNN architectural design, the FPGA in the NAM can compute the best obtained 
accuracy for all the different setups

 (6) If accuracy is too low consider to move back to step (1) to change 
the pre-trained network or step (2) to create a better CNN architectural



OTHER MODELS – LSTM FOR TIME SERIES ANALYSIS
Python with TensorFlow/Keras support easy development of LSTM network

[1] M. Riedel, Invited 
YouTube Tutorial on Deep 
Learning, Ghent University

 Long Short Term Memory (LSTM) networks are a special kind of Recurrent Neural Networks (RNNs)
 LSTMs learn long-term dependencies in data by remembering information for long periods of time
 The LSTM chain structure consists of four neural network layers interacting in a specific way
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OTHER MODELS – LSTM EXAMPLE
Python with TensorFlow/Keras & LSTM Models

 Prototyping sequence networks with LSTM models is 
easy using Python with Tensorflow and Keras library

 LSTM models work quite well to predict power but needs 
to be trained and tuned for different power stations

 Observing that some peaks can not be ‘learned‘
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DEEP LEARNING & GPU PARALLELIZATION
Simple Image Benchmark on JURECA JSC HPC System (75 x 2 NVIDIA Tesla K80/node – dual GPU design)

 Setup
 TensorFlow 1.4 

 Python 2.7

 CUDA 8

 cuDNN 6

 Horovod 0.11.2

 MVAPICH-2.2-GDR

 ‘Simple’ 1.2 million images with 224 x 224 pixels
 Open source tool Horovod enables distributed deep learning using Python with TensorFlow (and Keras)
 Machine & Deep Learning: speed-up is just secondary goal after primary goal accuracy
 Speed-up & parallelization nice to have for faster hyperparameter tuning, model creation, and inference
 Third goal is avoiding much feature engineering through ‘feature learning‘ of deep learning networks

19th April 2018 Page 28

(absolute number of images per 
second and relative speedup

normalized to 1 GPU are given)

[19] JURECA HPC System

[20] A. Sergeev, M. Del 
Balso,’Horovod’, 2018



DEEP LEARNING – OTHER ACTIVITIES @ JSC
Selected Projects related to Deep Learning

 SoccerWatch.TV
 SME created/joined

by a ‘exit-ing‘ PHD Student

 Besides upper leagues: 80k matches/week

 Recording too expensive (amateurs) 
with camera man needed

 Approach: Find X,Y center and zoom on
panorama camera using Deep Learning

 SMITH
 Virtual Patient models with Markov Chains

Monte Carlo (MCMC) mapped to
Deep Learning networks

[17] SoccerWatch.TV Web page

[18] SMITH Web page
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SUMMARY
 Mindset
 Think traditional machine learning still relevant for deep learning

 Using interpreted languages like Python enable easy & flexible parameter-tuning

 Selected new approaches with specific deep learning per problem (CNN, LSTM, etc.)

 Skillset
 Basic knowledge of machine learning required for deep learning

 Faster experimentation and use of various topologies and architectures through Python

 Validation (i.e. model selection) and regularization still valid(!)

 Toolset
 Parallel versions of traditional machine learning methods exist (piSVM, HPDBSCAN)

 Python with Tensorflow & Keras just one example & good performance (good install!)

 Explore technology trends, e.g. specific chips for deep learning, NAM, etc.
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