
DEEP LEARNING WITH PYTHON
PROF. DR. – ING. MORRIS RIEDEL, UNIVERSITY OF ICELAND / JUELICH SUPERCOMPUTING CENTRE

HEAD OF CROSS-SECTIONAL TEAM DEEP LEARNING & RDA CO-CHAIR INTEREST GROUP BIG DATA

18TH APRIL – 8TH JLESC WORKSHOP, BARCELONA, SPAIN

JUELICH SUPERCOMPUTING CENTRE & DEEP LEARNING
Convergence: Simulation and Data Labs (SDL)

Communities
Research
Groups

Simulation Labs

Cross-Sectional Teams Data Life Cycle Labs Exascale co-Design

Facilities

PADC

DEEP-EST
EU

PROJECT
Domain-specific

SDLs
Cross-

Sectional
Team Deep

Learning

HPC
Systems

JURECA &
JUQUEEN

19th April 2018 Page 2

Modular
Supercomputer

JUWELS

Research
Group High
Productivity

Data
Processing

Increasing
number of Deep

Learning
Applications in

HPC Computing
Time Grants

DEEP LEARNING 101
Short Overview & Role of Cross-Sectional Team Deep Learning at Juelich Supercomputing Centre (JSC)

 Innovative & disruptive approach

 Provide deep learning tools that work with JSC HPC machines (e.g. Python/Keras/Tensorflow)
 Advance deep learning applications and research on HPC prototypes (e.g. DEEP-EST)
 Engage with industry (industrial relations team) & support SMEs (e.g. Soccerwatch)
 Offer tutorials & application enabling support for commercial & scientific users (e.g. YouTube)

[1] M. Riedel, Invited
YouTube Tutorial on Deep
Learning, Ghent University

19th April 2018 Page 3

PYTHON
SIMPLE AND FLEXIBLE PROGRAMMING LANGUAGE

 Selected Benefits
 Work with many students reveal: qucky & easy to learn

 Is an interpreted powerful programming language

 Has Efficient high-level data structures

 Provides a simple but effective approach
to object-oriented programming

 Great libraries & community support (e.g. numpy)

19th April 2018 Page 4

[2] Webpage Python

 Python is an ideal language for fast scripting and rapid application development
that in turn makes it interesting for the machine learning modeling process

 The machine learning modeling process in general and the deep learning
modeling process in particular requires iterative and highly flexible approaches

 E.g. network topology prototyping, hyper-parameter tuning, etc.

[3] F. Chollet, ‘Deep
Learning with Python’ Book

(this talk is not about the book)

DEEP LEARNING
Programming with TensorFlow

19th April 2018 Page 5

[1] M. Riedel, Invited
YouTube Tutorial on Deep
Learning, Ghent University

 Tensorflow is an open source library for deep learning models using a flow graph approach
 Tensorflow nodes model mathematical operations and graph edges between the nodes are so-called tensors (also

known as multi-dimensional arrays)
 The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPU versions)
 Tensorflow work with the high-level deep learning tool Keras in order to create models fast

[4] Tensorflow Deep Learning
Framework[5] A Tour of

Tensorflow

[6] Distributed & Cloud Computing Book

(Lessons learned: Installing TensorFlow with
right versions of CUDA, Python, and other

dependencies on a specific system
is NOT a trivial task)

DEEP LEARNING
Programming with TensorFlow – What is a Tensor?

19th April 2018 Page 6

[1] M. Riedel, Invited
YouTube Tutorial on Deep
Learning, Ghent University

[7] Big Data Tips, What is a Tensor?

 A Tensor is nothing else than a multi-dimensional array often used in scientific & engineering environments
 Tensors are best understood when comparing it with vectors or matrices and their dimensions
 Those tensors ‘flow‘ through the deep learning network during the optimization / learning & inference process

DEEP LEARNING
Programming with TensorFlow & Keras

19th April 2018 Page 7

[1] M. Riedel, Invited
YouTube Tutorial on Deep
Learning, Ghent University[8] Keras Python Deep Learning Library

 Tool Keras supports inherently the
creation of artificial neural
networks using Dense layers
and optimizers (e.g. SGD)

 Includes regularization (e.g.
weight decay) or momentum

keras.layers.Dense(units,

activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None)

keras.optimizers.SGD(lr=0.01,

momentum=0.0,
decay=0.0,
nesterov=False)

 Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-
level deep learning frameworks like Tensorflow, CNTK, or Theano

 The key idea behind the Keras tool is to enable faster experimentation with deep networks
 Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

DEEP LEARNING – SIMPLE MNIST EXAMPLE
Creating an Artificial Neural Network (ANN) using Python Scripts

Input
Layer

Hidden
Layer

Output
Layer

X1 X2 X3 X4 X5

y

 Feed-forward neural network: nodes in one layer are
connected only to the nodes in the next layer
(i.e. ‘a constraint of network construction’)

 Think each hidden node as a
‘simple perceptron’ that each
creates one hyperplane

 Think the output node simply
combines the results of all the
perceptrons to yield the ‘decision
boundary’ above

(28*28 pixels, 60000 training samples ~47MB,
10000 test samples ~7.8 MB)

19th April 2018 Page 8

DEEP LEARNING – PYTHON SCRIPT PART 1
ANN Parameters & Data Normalization in Python Script

 NB_CLASSES: 10 Class Problem
 NB_EPOCH: number of times the model is exposed to the training

set – at each iteration the optimizer adjusts the weights so that the
objective function is minimized

 BATCH_SIZE: number of training instances taken into account
before the optimizer performs a weight update

 OPTIMIZER: Stochastic Gradient Descent (‘SGD‘) – only one training
sample/iteration

 Data load shuffled between training and testing set
 Data preparation, e.g. X_train is 60000 samples / rows of

28 x 28 pixel values that are reshaped in 60000 x 784
including type specification (i.e. float32)

 Data normalization: divide by 255 – the max intensity
value to obtain values in range [0,1]

DEEP LEARNING – PYTHON SCRIPT PART 2
Dynamic & Flexible Modeling of the ANN in Python Script

 Dense() represents a fully
connected layer used in
ANNs that means that
each neuron in a layer is
connected to all neurons
located in the previous
layer

 The Sequential() Keras
model is a linear pipeline
(aka ‘a stack‘) of various
neural network layers
including Activation
functions of different types
(e.g. softmax)

 The non-linear Activation function ‘softmax‘
represents a generalization of the sigmoid
function – it squashes an n-dimensional vector
of arbitrary real values into a n-dimenensional
vector of real values in the range of 0 and 1 –
here it aggregates 10 answers provided by the
Dense layer with 10 neurons

 Loss function is a multiclass logarithmic
loss: target is ti,j and prediction is pi,j

19th April 2018 Page 10

DEEP LEARNING – RUNNING THE PYTHON SCRIPT
Using a Job Script for High Performance Computing (HPC) Machine with the Python Script & ANN Model

19th April 2018 Page 11

[1] M. Riedel, Invited
YouTube Tutorial on Deep
Learning, Ghent University

DEEP LEARNING – CHANGING THE PYTHON SCRIPT
Dynamic & Flexible Modeling of the ANN adding Hidden Layers in Python Script

 A hidden layer in an ANN can be represented by a fully
connected Dense layer in Keras by just specifying the
number of hidden neurons in the hidden layer

 The non-linear Activation function ‘relu‘ represents a
so-called Rectified Linear Unit (ReLU) that only
recently became very popular because it generates
good experimental results in ANNs and more recent
deep learning models – it just returns 0 for negative
values and grows linearly for only positive values

19th April 2018 Page 12

DEEP LEARNING – ARCHITECTURES
Each of the Architectures provide Unique Characteristica (e.g. ‘smart layers‘)

 Deep Neural Network (DNN)

 ‘Shallow ANN‘ approach with many hidden layers between input/output

 Convolutional Neural Network (CNN, sometimes ConvNet)

 Connectivity pattern between neurons is like animal visual cortex

 Deep Belief Network (DBN)

 Composed of mult iple layers of variables;
only connections between layers

 Recurrent Neural Network (RNN)

 ‘ANN‘ but connections form a directed cycle;
state and temporal behaviour

19th April 2018 Page 13

 Deep Learning architectures can be classified into
Deep Neural Networks, Convolutional Neural
Networks, Deep Belief Networks, and Recurrent
Neural Networks all with unique characteristica

 Deep Learning needs ‘big data‘ to work well & for
high accuracy – works not well on sparse data

DEEP LEARNING – EXPERIMENTING WITH TOPOLOGIES
Programming with Python & TensorFlow & Keras – Supervised Classification Example – Network Topology

19th April 2018 Page 14

[1] M. Riedel, Invited
YouTube Tutorial on Deep
Learning, Ghent University

 Classify pixels in a hyperspectral remote sensing image having groundtruth/labels available
 Created CNN architecture for a specific hyperspectral land cover type classification problem
 Used dataset of Indian Pines (compared to other approaches) using all labelled pixels/classes
 Performed no manual feature engineering to obtain good results (aka accuracy)

[10] J. Lange,
G. Cavallaro,
M. Riedel, et al. ,
IGARSS 2018

DEEP LEARNING – EXPERIMENTING WITH TOPOLOGIES
Programming with Python & TensorFlow & Keras – Supervised Classification Example – Network Topology

19th April 2018 Page 15

[1] M. Riedel, Invited
YouTube Tutorial on Deep
Learning, Ghent University

[10] J. Lange, G. Cavallaro,
M. Riedel, et al. , IGARSS
2018

DEEP LEARNING HYPERPARAMETER TUNING
Programming with Python & TensorFlow & Keras – Supervised Classification Example – Network Topology

19th April 2018 Page 16

[1] M. Riedel, Invited
YouTube Tutorial on Deep
Learning, Ghent University

Blue: correctly classified
Red: incorrectly classified

[10] J. Lange, G. Cavallaro,
M. Riedel, et al. , IGARSS 2018

 Using Python with TensorFlow & Keras easily enables changes in hyper-parameter tuning
 Various runs on different topologies add up to computational demand of GPUs
 Need for HPC machines with good GPUs and good deep learning software stacks required

COMPARE TRADITIONAL MACHINE LEARNING
Supervised Classification Example – Remote Sensing Dataset & Results

 Traditional Methods
 Support Vector Machine (SVM)

 52 classes of different land cover, 6 discarded, mixed pixels, rare groundtruth

 Substantial manual feature engineering,e.g. Self Dual Attribute Profile (SDAP)

 10-fold cross-validation

 Achieved 77,02 % accuracy
[12] C.Cortes
and V. Vapnik,
1995

[13] G. Cavallaro and M. Riedel, et al. , 20151m 10m 30m

[11] G. Cavallaro et al.

19th April 2018 Page 17

COMPARE TRADITIONAL MACHINE LEARNING
Supervised Classification Example – Speed-up Cross-Validation & MPI C Code

 Traditional Methods
 Support Vector Machine (SVM)

 pISVM C code that
can be improved
(taken from ML
experts – not parallel
experts, tuned @ JSC)

 Message Passing
Interface (MPI)

 Feature Engineering
 Working also on parallel feature

engineering using tree-based approach (MPI/OpenMP C)
19th April 2018 Page 18

[13] G. Cavallaro and M. Riedel, et al. , 2015

Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

[9] M. Goetz and M.
Riedel, et al., 2018

[16] piSVM Website,
2011/2014 code

SELECTED COMPARISONS
Supervised Classification Example – Remote Sensing Dataset & Results

 Traditional Methods
 C MPI-based Support Vector Machine (SVM)

 Substantial manual feature engineering

 10-fold cross-validation for model selection

 Achieved 77,02 % accuracy

 Convolutional Neural
Networks (CNNs)
 Python/TensorFlow/Keras

 Automated feature learning

 Achieved 84,40 % accuracy on all 58 classes

 SVM + Feature Engineering (~3 years) vs. CNN architecture setup (~1 month)

[10] J. Lange, G. Cavallaro,
M. Riedel, et al. , 2018

19th April 2018 Page 19

DEEP SERIES OF PROJECTS
EU Projects Driven by Co-Design of HPC Applications

 3 EU Exascale projects
DEEP
DEEP-ER
DEEP-EST

 27 partners
Coordinated by JSC

 EU-funding: 30 M€
JSC-part > 5,3 M€

 Nov 2011 – Jun 2020

[14] M. Goetz & M. Riedel, et al. , 2015

(classification, clustering,
deep learning)

 Juelich Supercomputing Centre
implements the DEEP projects designs
in its production infrastructure

19th April 2018 Page 20

GPU Module Many-core BoosterCluster
Module

BN

BN

BN

BN

BN BN

BN

BN

BN

CN

CN

Data Analytics
Module

DN

Network Attached
Memory Module

NAM NAM

Array
Databases

(e.g.
Rasdaman,

SciDB)

Storage
Module

GN

GN

GN

GN

GN GN

DiskDiskDisk Disk

Intel
Nervana &

Neon

DN

JSC – MODULAR SUPERCOMPUTING ARCHITECTURE
Roadmap

 ML
Training Deep

learning

 Data
 Models

 Innovative
Ideas, e.g.
trained
models in
memory

 Innovative
Ideas, e.g.
use of deep
learning
optimized
chip
designs

 Deep
learning

 ML Testing,
 Inference

 Data storage
module for
geospatial
datasets?

 ‘Big data‘ /
parallel I/O

19th April 2018 Page 21

JSC
Juelich
Supercomputing
Centre

General Purpose Cluster

File
Server
GPFS,
Lustre

IBM Power 6
JUMP, 9 TFlop/s

IBM Blue Gene/P
JUGENE, 1 PFlop/s

HPC-FF
100 TFlop/s

JUROPA
200 TFlop/s

IBM Blue Gene/Q
JUQUEEN (2012)
5.9 PFlop/s

IBM Blue Gene/L
JUBL, 45 TFlop/s

IBM Power 4+
JUMP (2004), 9 TFlop/s

Highly scalable

Hierarchical
Storage Server

JUWELS Scalable
Module (2019/20)
50+ PFlop/s

JUWELS Cluster
Module (2018)
12 PFlop/s

JURECA Cluster
(2015) 2.2 PFlop/s

JURECA Booster
(2017) 5 PFlop/s

19th April 2018 Page 22

TRADITIONAL MACHINE LEARNING
Supervised Classification – Modular Supercomputing Architecture

 (1) The training dataset and testing dataset of the remote sensing
application is used many times in the process and make sense
to put into the DEEP-EST Network Attached Memory (NAM) module

 (2) Training with piSVM in order to generate a model requires
powerful CPUs with good interconnection for the inherent
optimization process and thus can take advantage of the
DEEP-EST CLUSTER module (use of training dataset,
requires piSVM parameters for kernel and cost)

 (3) Instead of dropping the trained SVM model
(i.e. file with support vectors) to disk it makes sense to
put this model into the DEEP-EST NAM module

 (4) Testing with piSVM in order to evaluate the model
accuracy requires not powerful CPUs and not a good
interconnection but scales perfectly (i.e. nicely parallel) and thus
can take advantage of the BOOSTER module
(use of testing dataset & model file residing in NAM), prediction &
inference using models is largely usable on the BOOSTER module too

 (5) If accuracy too low back to (2) to change parameters [15] E. Erlingsson, G. Cavallaro, M. Riedel, et al. , 2018

19th April 2018 Page 23

DEEP LEARNING (WORK IN PROGRESS)
Supervised Classification – CNN Design & Setup

 (1) The training dataset and testing dataset of the remote sensing
application is used many times in the process and make sense to
put into the DEEP-EST Network Attached Memory (NAM) module

 (2) Training with CNNs in Tensorflow works best fore many-core
CPUs for the inherent optimization process based on Stochastic
Gradient Descent (SGD) MPI collective available in the DEEP-EST
Global Collective Environment (GCE) and thus can take advantage
of the DEEP-EST BOOSTER module (use of training dataset,
requires CNN architectural design parameters)

 (3) Trained models of selected architectural CNN setups need to
be compared and thus can be put in the DEEP-EST NAM module

 (4) Testing with Tensorflow in order to evaluate the model accuracy
works also quite well for many-core architectures and scales perfectly
(i.e. nicely parallel) and thus can take advantage of the BOOSTER module
(use of testing dataset & CNN models residing in NAM)

 (5) If accuracy too low back to (2) to change parameters

 (Upcoming: potentially exploring the use of Intel Nervana Chips & Neon with Tensorflow)

19th April 2018 Page 24

Intel
Nervana &

Neon

DEEP LEARNING
Supervised Classification – Transfer Learning

 (1) Studies have shown that Transfer Learning works well especially for remote sensing data
without groundtruth or labelled data (i.e. unsupervised) and pre-trained networks trained on general
images like ImageNet (e.g. like Overfeat) are available and are put into the DEEP-EST NAM
module to be re-used for unsupervised deep learning CNN training

 (2) Based on pre-trained features another CNN architectural setup is
trained with the real remote sensing data whereby the DEEP-EST
DATA ANALYTICS module is an interesting approach since the FPGA
might be used to compute the transformation from pre-trained
features as suitable inputs to the real training process of the CNN
based on remote sensing data

 (3) Trained models of selected architectural CNN setups that have
been used with pre-trained features need to be compared and thus
can be put in the DEEP-EST NAM module

 (4) Testing with Tensorflow in order to evaluate the model accuracy works also quite well for many-core architectures and scales perfectly (i.e.
nicely parallel) and thus can take advantage of the BOOSTER module (use of testing dataset & CNN models residing in NAM)

 (5) Testing results are written back to the DEEP-EST NAM per CNN architectural design, the FPGA in the NAM can compute the best obtained
accuracy for all the different setups

 (6) If accuracy is too low consider to move back to step (1) to change
the pre-trained network or step (2) to create a better CNN architectural

OTHER MODELS – LSTM FOR TIME SERIES ANALYSIS
Python with TensorFlow/Keras support easy development of LSTM network

[1] M. Riedel, Invited
YouTube Tutorial on Deep
Learning, Ghent University

 Long Short Term Memory (LSTM) networks are a special kind of Recurrent Neural Networks (RNNs)
 LSTMs learn long-term dependencies in data by remembering information for long periods of time
 The LSTM chain structure consists of four neural network layers interacting in a specific way

x +

tanh

x

ℴℴ ℴ x

tanh

xt

ht

x +

tanh

x

ℴℴ ℴ x

tanh

Xt+1

Ht+1

x +

tanh

x

ℴℴ ℴ x

tanh

Xt-1

Ht-1

(each line carries an entire vector)
ht

LSTM model

xt

(uses sigmoid ℴ)
19th April 2018 Page 26

OTHER MODELS – LSTM EXAMPLE
Python with TensorFlow/Keras & LSTM Models

 Prototyping sequence networks with LSTM models is
easy using Python with Tensorflow and Keras library

 LSTM models work quite well to predict power but needs
to be trained and tuned for different power stations

 Observing that some peaks can not be ‘learned‘

19th April 2018 Page 27

DEEP LEARNING & GPU PARALLELIZATION
Simple Image Benchmark on JURECA JSC HPC System (75 x 2 NVIDIA Tesla K80/node – dual GPU design)

 Setup
 TensorFlow 1.4

 Python 2.7

 CUDA 8

 cuDNN 6

 Horovod 0.11.2

 MVAPICH-2.2-GDR

 ‘Simple’ 1.2 million images with 224 x 224 pixels
 Open source tool Horovod enables distributed deep learning using Python with TensorFlow (and Keras)
 Machine & Deep Learning: speed-up is just secondary goal after primary goal accuracy
 Speed-up & parallelization nice to have for faster hyperparameter tuning, model creation, and inference
 Third goal is avoiding much feature engineering through ‘feature learning‘ of deep learning networks

19th April 2018 Page 28

(absolute number of images per
second and relative speedup

normalized to 1 GPU are given)

[19] JURECA HPC System

[20] A. Sergeev, M. Del
Balso,’Horovod’, 2018

DEEP LEARNING – OTHER ACTIVITIES @ JSC
Selected Projects related to Deep Learning

 SoccerWatch.TV
 SME created/joined

by a ‘exit-ing‘ PHD Student

 Besides upper leagues: 80k matches/week

 Recording too expensive (amateurs)
with camera man needed

 Approach: Find X,Y center and zoom on
panorama camera using Deep Learning

 SMITH
 Virtual Patient models with Markov Chains

Monte Carlo (MCMC) mapped to
Deep Learning networks

[17] SoccerWatch.TV Web page

[18] SMITH Web page
19th April 2018 Page 29

SUMMARY
 Mindset
 Think traditional machine learning still relevant for deep learning

 Using interpreted languages like Python enable easy & flexible parameter-tuning

 Selected new approaches with specific deep learning per problem (CNN, LSTM, etc.)

 Skillset
 Basic knowledge of machine learning required for deep learning

 Faster experimentation and use of various topologies and architectures through Python

 Validation (i.e. model selection) and regularization still valid(!)

 Toolset
 Parallel versions of traditional machine learning methods exist (piSVM, HPDBSCAN)

 Python with Tensorflow & Keras just one example & good performance (good install!)

 Explore technology trends, e.g. specific chips for deep learning, NAM, etc.
19th April 2018 Page 30

REFERENCES

19th April 2018 Page 31

REFERENCES (1)

 [1] M. Riedel, ‘Deep Learning using a Convolutional Neural Network‘, Ghent University, Invited YouTube Tutorial,
Online: https://www.youtube.com/watch?v=gOL1_YIosYk&list=PLrmNhuZo9sgZUdaZ-f6OHK2yFW1kTS2qF

 [2] Official Web Page for Python Programming Language,
Online: https://www.python.org/

 [3] François Chollet ‘Deep Learning with Python‘, Book, ISBN 9781617294433, 384 pages, 2017,
Online: https://www.manning.com/books/deep-learning-with-python

 [4] Tensorflow Deep Learning Framework,
Online: https://www.tensorflow.org/

 [5] A Tour of Tensorflow,
Online: https://arxiv.org/pdf/1610.01178.pdf

 [6] K. Hwang, G. C. Fox, J. J. Dongarra, ‘Distributed and Cloud Computing’, Book,
Online: http://store.elsevier.com/product.jsp?locale=en_EU&isbn=9780128002049

 [7] Big Data Tips, ‘What is a Tensor?‘,
Online: http://www.big-data.tips/what-is-a-tensor

 [8] Keras Python Deep Learning Library,
Online: https://keras.io/

19th April 2018 Page 32

REFERENCES (2)

 [9] M. Goetz, G. Cavallaro, T. Geraud, M. Book, M. Riedel, ‘Parallel Computation of Component Trees on Distributed Memory Machines‘,
Journal of Transactions on Parallel and Distributed Systems, 2018, to appear

 [10] J. Lange, G. Cavallaro, M. Goetz, E. Erlingsson, M. Riedel, ‘The Influence of Sampling Methods on Pixel-Wise Hyperspectral Image Classification with 3D
Convolutional Neural Networks’, Proceedings of the IGARSS 2018 Conference, to appear

 [11] G. Cavallaro, N. Falco, M. Dalla Mura and J. A. Benediktsson, "Automatic Attribute Profiles," in IEEE Transactions on Image Processing, vol. 26, no. 4,
pp. 1859-1872, April 2017, Online: http://ieeexplore.ieee.org/document/7842555/

 [12] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20(3), pp. 273–297, 1995

 [13] G. Cavallaro, M. Riedel, J.A. Benediktsson et al., ‘On Understanding Big Data Impacts in Remotely Sensed Image Classification using Support Vector
Machine Methods’, IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2015, DOI: 10.1109/JSTARS.2015.2458855

 [14] M. Goetz, C. Bodenstein, M. Riedel, ‘HPDBSCAN – Highly Parallel DBSCAN’, in proceedings of the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC2015), Machine Learning in HPC Environments (MLHPC) Workshop, 2015,
Online: http://dx.doi.org/10.1145/2834892.2834894

 [15] E. Erlingsson, G. Cavallaro, M. Riedel, H. Neukirchen, ‘Scaling Support Vector Machines Towards Exascale Computing for Classification of Large-Scale
High-Resolution Remote Sensing Images’, Proceedings of the IGARSS 2018 Conference, to appear

 [16] Original (not JSC tuned) piSVM tool,
Online: http://pisvm.sourceforge.net/

19th April 2018 Page 33

REFERENCES (3)

 [17] SoccerWatch.TV,
Online: https://soccerwatch.tv/

 [18] Smart Medical Information Technology for HealthCare (SMITH),
Online: http://www.smith.care/

 [19] JURECA HPC System @ Juelich Supercomputing Centre (JSC),
Online: http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/Configuration/Configuration_node.html;jsessionid=CF5F5276AE7CFF0B185DCA048A2D0010

 [20] A. Sergeev, M. Del Balso‚‘Horovod: fast and easy distributed deep learning in TensorFlow’, 2018
Online: https://arxiv.org/abs/1802.05799

19th April 2018 Page 34

ACKNOWLEDGEMENTS
Previous & current members of the High Productivity Data Processing Research Group

Thesis
Completed

PD Dr.
G. Cavallaro

Dr. M. Goetz
(now KIT)

Thesis
Completed

Senior PhD
Student A.S. Memon

Senior PhD
Student M.S. Memon

MSc M.
Richerzhagen

Thesis
Completed

MSc
P. Glock

(now INM-1)

DEEP
Learning
Startup

MSc
C. Bodenstein

(now Soccerwatch.tv)

PhD Student
E. Erlingsson

PhD Student
S. Bakarat

Starting
in Fall
2018

MSc Student
G.S. Guðmundsson
(Landsverkjun)

19th April 2018 Page 35

THANKS
Talk shortly available under www.morrisriedel.de

